
University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Andrzej Jackowski

Adapting Distributed Storage with

Deduplication to Cloud Use Cases

PhD dissertation

in COMPUTER SCIENCE

Supervisor:

dr hab. Konrad Iwanicki
Institute of Informatics

University of Warsaw

Auxiliary supervisor:

dr Cezary Dubnicki
9LivesData, LLC

Warsaw, September 2023

Author's declaration:
I hereby declare that this dissertation is my own work.

.. ...
date signature

Supervisors' declaration:
The dissertation is ready to be reviewed

.. ...
date signature

The dissertation is ready to be reviewed

.. ...
date signature

Abstract

Deduplication is a widely adopted data reduction technique. It is commonly utilized in backup
and archival storage systems to decrease space consumption and increase write throughput.
Today, such systems have to confront the fact that the popularity of cloud computing has
grown rapidly in recent years, and hence, to keep up with these technological trends, they
have to be adapted to the cloud environment. However, employing deduplication in cloud
computing poses multiple challenges. In this dissertation, we introduce novel solutions to
three such signi�cant problems emerging in distributed storage with deduplication for cloud-
oriented backup and archival applications.

First, given that object storage is a leading interface for accessing cloud data, we pro-
pose ObjDedup, a layer that implements such an interface for backup systems with block-
level deduplication, thereby enabling their interoperability with clouds. ObjDedup introduces
global data structures and algorithms designed to handle considerable object metadata, which
are produced in such solutions. In e�ect, it achieves 1.8�3.93x higher write throughput than
object storage without in-line deduplication. Moreover, compared to object storage on top of
�le-based backup systems, it processes 5.26�11.34x more object put operations per time unit.

Our second solution is InftyDedup, a novel system that implements tiering to cloud with
deduplication, which is a technique that enables moving deduplicated data to a cloud store
lacking deduplication. Unlike existing solutions, InftyDedup maximizes scalability by utilizing
cloud services not only for storage but also for computation. Following a distributed batch
processing approach with dynamically assigned cloud computing resources, InftyDedup can
deduplicate multi-petabyte backups from multiple sources at costs on the order of a few dollars.
Moreover, by selecting between �hot� and �cold� cloud storage based on the characteristics of
each data chunk, it further reduces the overall costs by up to 26%�44%.

Since ObjDedup and InftyDedup require high resilience and e�cient resource utilization
from the deduplication system, our third solution, Derrick, aims to maximize both. It is a
data balancer designed to make its decisions quickly in case of failures, yet to be allowed to
take extra time to �nd a nearly optimal data arrangement and a plan for reaching it when the
device population changes in a planned fashion. Derrick provides better capacity utilization,
reduced data movement, and improved performance compared to balancing algorithms in
two other leading systems. Moreover, it can be easily adapted to meet custom placement
requirements.

Apart from advancing the state of the art, our solutions have been or will be deployed in
HYDRAstor, a commercial system utilized by many organizations. Therefore, our research
actually improves real-world backup and archival storage products.

1

Contents

1. Introduction . 7

2. Deduplication in Data Storage . 11

2.1. Challenges in Systems with Data Deduplication 12

2.1.1. Data Chunking . 12

2.1.2. Fingerprint Generation . 12

2.1.3. Fingerprint Indexing . 13

2.1.4. Data Fragmentation . 13

2.1.5. Data Removal . 13

2.1.6. Inline and O�ine Deduplication . 13

2.1.7. Reliability . 14

2.1.8. Security . 14

2.1.9. Higher-Level Abstractions . 14

2.1.10. Resource E�ciency . 15

2.1.11. Final Remarks . 15

2.2. Applications of Deduplication . 15

2.3. HYDRAstor . 16

2.4. Global System Assumptions . 17

3. Relevant Work on Distributed Storage and Clouds 19

3.1. Evolution of Storage Technologies . 19

3.2. Modern Data Carriers . 20

3.3. Cloud Computing and Storage . 21

3.4. Object Storage Interface . 22

3.5. Final Remarks . 23

4. ObjDedup: Backup Appliances with Deduplication as Object Stores . . . 25

4.1. Background and Related Work . 26

4.1.1. Global In-Line Block-Level Deduplication 27

4.1.2. Deduplicated Data Organization . 27

4.1.3. Deduplication in Object Storage . 27

4.2. Preliminary Study . 28

4.2.1. Object Storage API Analysis . 28

4.2.2. Backup Data Pattern Analysis . 29

4.2.3. Main Lessons Learned . 31

4.3. The Design of ObjDedup . 32

4.3.1. Problem Statement . 33

4.3.2. Principal Ideas . 34

3

4.3.3. Object Metadata Log (OML) . 35

4.3.4. Object Metadata Tree (OMT) . 35

4.3.5. Metadata Merge . 37

4.3.6. Metadata Merge Prefetch . 37

4.3.7. Distributing Metadata Merge . 38

4.3.8. Final Remarks . 41

4.4. Implementation . 41

4.4.1. Overall Architecture . 41

4.4.2. Object Driver Architecture . 42

4.4.3. Additional Issues . 43

4.5. Experimental Evaluation . 44

4.5.1. Assessment of the Main Performance Goals 45

4.5.2. Comparison with Existing Solutions 48

4.5.3. Microbenchmarks . 50

4.6. Conclusions . 55

5. InftyDedup: E�ective Cloud Tiering with Deduplication 57

5.1. Background . 58

5.1.1. Lifecycle of Backups . 59

5.1.2. Cloud Storage . 59

5.1.3. Cloud Computing . 60

5.1.4. Data Security in Cloud . 60

5.1.5. Cloud Tiering with Deduplication . 61

5.2. Architecture of InftyDedup . 61

5.2.1. Cloud Cost Considerations . 61

5.2.2. Assumptions and Design Decisions . 63

5.2.3. Data and Metadata in Cloud . 64

5.2.4. Communication between Tiers . 64

5.2.5. Batch Deduplication . 64

5.2.6. Batch Garbage Collection . 66

5.2.7. File Restore . 67

5.3. Cold Storage Utilization . 67

5.4. Evaluation . 69

5.4.1. Performance Evaluation . 69

5.4.2. Evaluation of the Strategies . 71

5.5. Conclusions . 77

6. Derrick: Balancer for Resilient and E�cient Distributed Storage 79

6.1. Data Arrangement Problems and Solutions 81

6.2. Requirements on Data Balancing . 82

6.2.1. High Capacity Utilization . 83

6.2.2. Resilience to Failures . 84

6.2.3. Balancing Distinguished Components 85

6.2.4. Keeping Related Data in One Rack . 86

6.2.5. Limiting Data Movements . 86

6.2.6. Limiting Non-stable Components . 87

6.2.7. Final Remarks . 87

6.3. Derrick's Overview . 88

6.3.1. Hill Climbing in Derrick . 88

4

6.3.2. Central Balancing . 90
6.3.3. Transition Guide . 91
6.3.4. Distributed Balancing . 91

6.4. Derrick's Details . 92
6.4.1. Capacity and Resilience in CentrBal 92
6.4.2. Multiple ScoreDims in CentrBal . 93
6.4.3. DistrBal ScoreDims . 94
6.4.4. Component Stability in TrGuide . 96
6.4.5. Stability of DistComps in TrGuide . 97
6.4.6. Final Remarks . 99

6.5. Evaluation . 99
6.5.1. Comparison with Ceph and Swift . 99
6.5.2. Evaluation of Distributed Balancing 107
6.5.3. Computational Overhead . 108

6.6. Formalization . 111
6.6.1. Problem Statement . 111
6.6.2. Auxiliary Functions, De�nitions and Corollaries 111
6.6.3. Operations . 113
6.6.4. Lemma 1 . 113
6.6.5. TrGuide De�nitions . 115
6.6.6. Lemma 2 . 115
6.6.7. Lemma 3 . 116
6.6.8. Lemma 4 . 117

6.7. Conclusions . 118

7. Conclusions and Future Work . 119

5

Chapter 1

Introduction

Deduplication is a data reduction technique for storage systems that prevents keeping the
same data units more than once. To date, it has been widely adopted, especially in systems
for backup and archival applications, which have to reliably and e�ciently maintain large
data volumes [94, 95, 234]. In particular, because consecutive backups typically share most
of their data, deduplication can reduce the storage space they consume by over 90% [95,
285]. Considering that in enterprise environments, the copies of data needing protection that
accumulates over the years often require much more space than the original data [85], e�ective
deduplication is a highly desirable feature. It is thus often one of the core functionalities of
so-called purpose-built backup appliances (PBBAs) (or backup appliances for short) [89, 137],
that is, (distributed) storage systems dedicated primarily to the backup and archival market.

Since the worldwide data volume is expected to continue growing exponentially in the
coming years [99], data storage techniques � including those related to deduplication �
constantly evolve to meet the evolving market demands and harness the potential o�ered
by new technologies. On the one hand, physical storage carriers, notably hard disk drives
(HDDs) and solid state drives (SSDs), are improved to o�er more capacity [133]. On the
other hand, various paradigms and abstractions over such physical resources, which facilitate
their e�ective utilization, gained popularity. In particular, given that in recent years, the
adoption of cloud services has grown rapidly [208], a notable trend in the backup and archival
market is the increasing use of solutions employing object storage services o�ered by public
clouds [45].

However, apart from presenting new opportunities for distributed storage with dedupli-
cation, these novel technologies and paradigms also pose multiple challenges. For instance,
according to a survey published in 2018 by Storage Networking Industry Association [265],
adopting the cloud, lowering costs, and facilitating data migration are critical concerns re-
garding long-term data retention in large-scale storage systems. Similarly, high-impact open
problems pertaining speci�cally to deduplication [273] include facilitating data migration, in-
creasing reliability, and optimizing resource consumption. Gartner emphasizes the fact that
many leading enterprise backup and recovery solutions lack su�cient cloud support [127].
The trends report published in 2023 by Veeam con�rms that companies typically store data
in both on-premise and cloud systems, and that the majority of companies have unmet data
availability and protection needs in the era of such hybrid solutions [306]. Finally, the sig-
ni�cance of improving PBBAs is reinforced by the expected growth of their market, which is
projected at 68% in the next �ve years [257].

Considering the aforementioned and similar analyses, this dissertation investigates novel
solutions for distributed storage systems with deduplication, especially ones aimed at the

7

backup and archival market, that would make such systems better suited for the cloud com-
puting environment. More speci�cally, the dissertation tackles the following research problems
motivated below:

1. How to provide an object storage interface in a backup appliance with deduplication,
which may be internally implemented as a distributed system, so that the throughput
achievable over the interface would be comparable to those over the classic interfaces
supported by the appliance?

2. How to integrate a backup appliance with cloud computing services into a two-tier
storage system that would allow for moving deduplicated data between the tiers without
capacity constraints due to the appliance tier and with low maintenance costs due to
the cloud tier?

3. How to manage the placement of data onto physical storage devices in a backup ap-
pliance so as to ensure high resource utilization and reliability irrespective of the scale
that a distributed system constituting the appliance exhibits?

To start with, as object storage is arguably the most common storage abstraction in the
cloud, �nding a solution to Problem 1 would allow services and apps written to work with
the cloud interface to integrate seamlessly with PBBA, thereby utilizing in cloud services the
immense body of knowledge on deduplication. To address Problem 1, we present ObjDedup, a
high-throughput object storage layer for a state-of-the-art distributed store with global block-
level in-line deduplication. As backup is one of the primary use cases for such systems [329],
ObjDedup aims to provide a high throughput for workloads generated by modern backup
applications writing data to object stores. They tend to use relatively small objects (e.g.,
1 MB [301]), thereby incurring a large overhead on metadata, which is di�cult to handle
even in storage systems without deduplication [67]. Consequently, for e�ciently managing
such large metadata volumes, ObjDedup introduces novel data structures and algorithms
dedicated for immutable-block stores under the considered workloads.

Second, given the popularity of keeping data in the cloud and the fact that, unlike backup
appliances, most cloud storage services do not implement deduplication, Problem 2 concerns
an emerging scenario in which on-premise backup appliances with deduplication are integrated
with cloud services to implement two-tier storage systems that combine the advantages of both
tier types. Such a technique of moving data from on-premise systems to the cloud is often
referred to as tiering to cloud or cloud tiering. For the considered applications of such a system,
a key challenge is e�ciently moving data from the on-premise tier to the cloud tier such that
the data end up deduplicated in the cloud. Although the �rst solutions implementing tiering
to cloud have been proposed recently, they are fundamentally limited by the resources of the
on-premise tier and lack in cost optimization. We thus present a novel solution to Problem 2,
InftyDedup, that addresses these shortcomings by leveraging not only object storage but
also a few other cloud features, such as dynamic resource allocation. This approach allows
InftyDedup to perform duplicate elimination entirely in the cloud and facilitates employing
various special-purpose cloud storage classes for data maintenance cost reduction.

Finally, both ObjDedup and InftyDedup require high resilience and e�cient resource uti-
lization from backup appliances; otherwise, the performance of systems the appliances are
part of, such as the two aforementioned ones, would be compromised in those respects. On
the one hand, providing these features in a constantly evolving system is di�cult. In par-
ticular, the performance of storage devices does not increase as fast as their capacity [133].
On the other hand, changing the size of the system constituting a backup appliance in most

8

cases is inevitable for two reasons. First, due to the worldwide data growth, the storage
requirements of the system are growing each year. Second, when the system capabilities are
extended, notably by adopting ObjDedup or InftyDedup, the system should be prepared to
handle the additional load resulting from the new functionality. Therefore, to address Prob-
lem 3, we propose Derrick, a three-layer balancer for what we called self-managed continuous
scalability. It is a novel method of data distribution, which ensures that various constraints,
including those speci�c for deduplication [283], are met during system con�guration changes.

The rest of the dissertation is organized as follows. Chapter 2 provides the necessary
background on deduplication. Chapter 3 gives a survey of relevant existing and emerging
technologies in distributed storage. Chapters 4, 5, and 6 present the aforementioned core
contributions of the dissertation: respectively, ObjDedup, InftyDedup, and Derrick. Finally,
Chapter 7 concludes and outlines possible future work.

The research on ObjDedup, described in Chapter 4, was previously published in IEEE
Transactions on Parallel and Distributed Systems [146]. Likewise, InftyDedup, covered in
Chapter 5, was originally presented at the 21st USENIX Conference on File and Storage
Technologies (FAST '23) [169]. The work on Derrick, described in Chapter 6, appeared in
turn in ACM Transactions on Storage [145]. Also, some parts of Chapters 2 and 3 have been
compiled from those three publications.

All three solutions have been implemented for the HYDRAstor distributed storage system
[94, 225]. Some of them are already integrated into the product and have proved to be e�ective
in real-world deployments, while others still wait to be released in the future.

9

Chapter 2

Deduplication in Data Storage

Before we explain the details of our techniques for adapting distributed storage with dedu-
plication to cloud use cases, let us introduce essential details of deduplication. From the
perspective of the �Mathematical Theory of Communication� [271], discrete information can
be represented as a string of bits, and the occurrence probability of each group of bits might
be di�erent. Entropy is a measure of uncertainty in data (i.e., entropy is maximized if each
symbol or symbol sequence is equally possible), whereas redundancy measures a relative dif-
ference between the actual entropy and its maximal possible value. Techniques to decrease
redundancy (e.g., data compression to reduce data size) and to increase redundancy (e.g.,
error correction codes to improve system reliability) are commonly used.

Deduplication is a method of decreasing redundancy. It originates from systems that avoid
writing �les [54, 282] or blocks of data [220, 255] when a �le or block with exactly the same
�ngerprint (i.e., a cryptographic hash of data, like SHA-1) is already stored in the system.
As deduplication is often utilized with other algorithms for decreasing redundancy, such as
Lempel-Ziv '77 [255] or gzip [220], the term deduplication is typically used to distinguish
techniques that avoid writing data based on �ngerprints [202, 348] from other algorithms,
such as the previously mentioned Lempel-Ziv '77, which are often denoted as compression [79].
There are many approaches to implementing deduplication, for instance, similarity signature
can be computed [33] rather than a cryptographic hash of data, however, in our study, we
focus on the methods that are dominating the commercial systems.

Empirical studies show that performing deduplication on blocks of data with limited sizes
(e.g., 2�128 KB per block) yields a higher data reduction than deduplication of entire �les
[211, 285]. Therefore, in our work, we focus on such block-level deduplication. The fact that
block-level deduplication achieves superior reductions matches the intuition that �nding two
identical sequences of bytes is easier if the sequences are shorter. However, blocks cannot be
too small as various overheads increase when the block size decreases [202].

Implementation of block-level deduplication requires chunking data into blocks. The most
straightforward approach is to simply chunk data into �xed-size blocks (e.g., 8 KB each) [255].
Such a method fails to detect many real-world cases of duplicates, for instance, between two
almost identical data streams if one of the streams is shifted relative to the boundaries of
the blocks. Therefore, content-based variable-length chunking methods [172, 220] are often
employed instead to improve the achievable deduplication ratios.

To sum up, a typical system with block-level deduplication chunks data streams into
blocks, computes the �ngerprint for each block, and eventually makes a decision on whether
the block should be kept. However, this is just the beginning of the deduplication process
because the e�ective implementation of deduplication requires solving numerous non-trivial

11

problems. Apart from selecting methods for data chunking, calculation of �ngerprints, and
�ngerprint indexing, deduplication introduces challenges regarding data organization and lo-
cality, resource utilization, security, reliability, and many more. Therefore, the rest of this
chapter is organized in the following way. Section 2.1 surveys challenges posed by systems with
deduplication and related solutions proposed in the literature. Section 2.2 reviews applications
of deduplication. Section 2.3 describes HYDRAstor, a state-of-the-art commercial distributed
storage system with deduplication that was a starting point for our research. Finally, Section
2.4 presents the model of a deduplication system that we assume in the remaining chapters.

2.1. Challenges in Systems with Data Deduplication

2.1.1. Data Chunking

The �rst step of deduplication is chunking, which divides a data stream (e.g., a �le) into �ne-
grained blocks. Fixed-size chunking generates blocks of equal lengths, which, as mentioned
earlier, fails to detect duplicates in shifted data. In some applications (e.g., deduplication of
blocks comprising a disk image of a virtual machine) shifts do not occur, and hence, �xed-
size chunking is viable [6]. Moreover, the simple idea of �xed-size chunking can be further
extended. For instance, DSFSC [171] limits occurrences of undetected duplicates for shifted
data by performing �xed-size chunking twice: once from the start of a stream and once from
the end.

Nevertheless, substantial research attention has concentrated on variable-length chunking
which improves deduplication for shifted data. LBFS [220] implements variable-length chunk-
ing by computing a Rabin �ngerprint [256] for each 48-byte region of a stream and setting
the block boundaries based on the values of the �ngerprints. As calculating and comparing
�ngerprints introduces signi�cant CPU overheads, there are several algorithms, such as Gear
[330], AE [342], and FastCDC [331], that focus on improving chunking performance without
a signi�cant deterioration of duplicate elimination. Since a reduction of block size typically
results in a better deduplication ratio but also increases the overhead on storing and managing
block metadata, algorithms such as Bimodal CDC [172] and Anchor-Driven Subchunk [259]
introduce techniques that increase the average size of a block without decreasing the dedupli-
cation ratio. Finally, data characteristics depend on a data format and a source application.
For instance, tar archives mix their metadata with the actual data, which spoils deduplica-
tion [193]. Consequently, approaches like Application Aware Deduplication [102] and Format
Aware Deduplication [193] improve chunking with methods speci�c to particular applications
and formats.

2.1.2. Fingerprint Generation

After a data stream is chunked into blocks, each of the blocks is assigned its �ngerprint. A
typical compare-by-hash approach is employed: computing a cryptographic hash of a block's
data, such as SHA-1 or SHA-256, and comparing the blocks solely based on their hashes [220,
255]. Such an approach can be seen as counterintuitive because of the theoretical possibility
of a hash collision [125]. However, the probability of a collision for 20-byte and longer hashes
is marginal, and therefore, compare-by-hash is considered safe [52].

Similarly to chunking, �ngerprinting introduces a signi�cant computational overhead that
researchers have tried to minimize. A possible solution is to employ GPUs [119, 288] or
FPGAs [4] to speed up the hash computations. There are also algorithms that do not require

12

speci�c hardware, for instance, DeWrite [351] computes only a lightweight hash of data instead
of a cryptographic one and, in case of collisions, resorts to comparing the data.

2.1.3. Fingerprint Indexing

Assuming a 20-byte �ngerprint per 8 KB block, each petabyte of data requires 2.5 TB of
�ngerprints. Therefore, in multi-petabyte systems, storing all �ngerprints entirely in RAM is
typically not possible, and hence search and comparison of �ngerprints is non trivial. Fin-
gerprints can be stored on HDDs and relying on data locality [190, 348] and Bloom �lters
[318, 295], one can try to prevent expensive random I/Os. Alternatively, �ngerprints can be
stored on SSDs [6, 86], which provide orders of magnitude more random I/Os per second.

2.1.4. Data Fragmentation

Information locality is important not only for an e�cient organization of �ngerprints but also
for the organization of the actual data blocks on disks. In systems without deduplication, a �le
is typically stored with a high locality (i.e., sequential bytes of the �le are located close to each
other on disk or disks). In contrast, in a system with deduplication, two consecutive blocks
may have a completely di�erent location if one of them is a duplicate (so it is already stored
somewhere) and the other block is non-duplicate (so it is written in the currently available
space). Such a phenomenon is often referred to as fragmentation. It is a serious issue when
reading deduplicated data from HDD-based systems, as such drives can provide a relatively
small number of non-sequential read I/Os per second.

The fragmentation issue can be mitigated if selected blocks are kept in an in-memory
cache [152, 244] or on SSDs [83, 192]. Alternatively, blocks can be kept on a disk in more
than one order to trade the data reduction for locality [61, 189]. Finally, blocks can be
rewritten to newer locations [151] and removed from the old locations to prevent additional
storage consumption.

2.1.5. Data Removal

Removal of old data blocks from a system with deduplication is required not only to implement
defragmentation but also to allow e�cient resource utilization if the system user decides to
delete some of the stored data. The problem with the implementation of data removal is that
deletion of a �le in a system with deduplication does not exactly mean that any of its blocks
are removed, as each block can belong to more than one �le. Even if the system con�rms that
a block is no longer referenced by any of the existing �les, a dangerous race condition arises in
which the block can be removed and written again simultaneously. Therefore, some systems
with deduplication explicitly disallow removing data [189, 255], whereas others implement
complex garbage-collection solutions based on mark-and-sweep [92] or reference counting [283].

2.1.6. Inline and O�ine Deduplication

An important decision in systems with deduplication is whether duplicate elimination should
be done before storing the data (inline deduplication) or after the data are stored in a non-
deduplicated format (o�ine deduplication). On the one hand, inline deduplication decreases
storage capacity usage the most and, for data with a high number of duplicates, achieves
considerably higher throughput as the volume of disk and network operations is decreased.

13

On the other hand, o�ine deduplication is often applied in systems with low-latency expecta-
tions [174, 234] to provide some space savings in the longer term but with a marginal impact
on the write latency.

2.1.7. Reliability

Since the goal of deduplication is redundancy reduction, data reliability is in�uenced. In par-
ticular, a loss of a single block may a�ect more than one �le. Therefore, systems with dedu-
plication employ techniques such as RAID, erasure coding, and replication to improve data
reliability [94, 348]. Moreover, there are deduplication-speci�c techniques to increase relia-
bility in such systems, for example, Per-File Parity [326], which increases the reliability of
frequently referenced chunks through their selective replication.

Interestingly, there are scenarios when deduplication actually decreases the likelihood of
data loss [186]. For instance, restoring redundancy of the most popular blocks with a higher
priority largely increases their reliability [101].

2.1.8. Security

Deduplication also has important implications for data security. First of all, encryption of
data can preclude its later deduplication, as the point of encryption is to make the data harder
to identify. Therefore, encryption should be applied after deduplication is done, or a special
encryption method compatible with deduplication must be used.

One of the most popular methods of combining encryption with deduplication is convergent
encryption [55], which uses a hash derived from data as an encryption key. Therefore, multiple
users can encrypt the data with the same key if they possess the same information to store. As
convergent encryption has its �aws, there are numerous techniques to improve the method [3,
148, 160].

A di�erent security threat arises in situations where deduplication is performed over data
belonging to multiple users, possibly from di�erent organizations that do not trust each other.
For instance, there are side-channel attacks on systems with deduplication [32, 38]. A system
with deduplication can leak information whether particular data have already been stored if
writing a new instance of the data results in a lower latency in comparison to non-duplicates.
Therefore, various techniques are proposed to mitigate such information leakages [250, 335].

2.1.9. Higher-Level Abstractions

Data management in systems with block-level deduplication is di�cult for many reasons.
First of all, a system with block-level deduplication keeps data as �ne-grained blocks, whereas
the user normally expects that the system provides a higher-level abstraction, such as POSIX
�les [138]. Consequently, complex layers are provided on top of such systems to organize
blocks into higher-level data structures [92, 298].

Nevertheless, many operations typical for systems without deduplication are complicated
when deduplication is introduced. For instance, a question about how much space a particular
�le consumes is ambiguous. Should the system return the size of the �le before deduplication
or the actual number of bytes consumed on a disk drive? How should the answer change for
directories or other groups of �les? Answering such questions not only requires an exact spec-
i�cation but also possibly computationally complex algorithms. Harnik et al. [123] describe
a possible approach to approximate the space consumption calculation. The idea is further
developed by GoSeed [221] and Kisous et al. [167] to answer more questions, like which �les
should be moved between deduplication systems to optimize capacity usage.

14

2.1.10. Resource E�ciency

To meet the user demand, a system with deduplication needs to provide high and consistent
throughput for various workloads, simultaneously performing all other tasks resulting from
the challenges described hitherto. To this end, dedicated techniques have been introduced to
improve resource utilization for various workloads in systems with deduplication [6, 278, 280].
In particular, systems accessed by multiple di�erent users require special techniques to improve
resource utilization [179, 205].

2.1.11. Final Remarks

The challenges described hitherto are often discussed by researchers, but there are far more
research topics related to deduplication. To give a few examples, DedupSearch [97] is a novel
method of �nding keywords in deduplicated data; Finesse [343] is an approach of mixing dedu-
plication with delta compression to achieve even higher data reduction; APP-Dedupe [204]
is a technique reducing the write ampli�cation of SSD drives, as �ash memory used in SSDs
enforces rewriting some of the old data when writing. Finally, systems with deduplication take
advantage of methods designed for other kinds of storage systems, which we will describe in
Chapter 3. More examples of solutions related to data deduplication can be found in related
surveys [201, 218, 248, 329].

2.2. Applications of Deduplication

The presented diversity of challenges arises largely because there are many applications of
deduplication in the real world.

Data backup is a use case existing from the earliest years of deduplication-related re-
search [255, 282]. Typical backup policies require storing multiple versions of data, for in-
stance, daily backups for a week, weekly backups for a month, and monthly backups for a
year [2, 93, 106]. As only a fraction of the data change day by day, the backup data reduction
with deduplication is often higher than 90% [285]. Therefore, a signi�cant part of the research
concerns deduplication in the backup use case [102, 152, 172, 189, 192, 244, 288].

However, applications of deduplication are not only limited to backups. DupHunter [344]
is a new architecture of a (Docker) container registry that leverages the predictability of
user access patterns to implement highly e�cient deduplication, which decreases both storage
consumption and container image retrieval latency. Operating systems, such as the Windows
Server [214], allow deduplication of users' data, just as ZFS [240] enables deduplication for sys-
tems from the UNIX family. Distributed storage systems, like Ceph [320], o�er deduplication
[234, 316] for primary storage use cases.

Methods of deduplication in primary storage often depend on the type of medium that
stores the data. DeWrite [351] is an inline deduplication scheme that utilizes lightweight
hashing to speed up non-volatile memory reads and writes, as well as the average non-volatile
memory consumption. Similarly, CA-Dedupe [105] and CRFTL [340] implement deduplication
in a �ash translation layer of NAND �ash memory to provide deduplication for a large number
of devices, including SSD drives and smartphones. Yet other methods are used to implement
deduplication in DRAM [314, 328].

To sum up, there are numerous practical applications of deduplication. In our research,
we focus mostly on the backup use case, as we will explain in the rest of this chapter.

15

2.3. HYDRAstor

HYDRAstor [225] is a commercial scale-out storage system with deduplication for backup and
archive produced by NEC [228]. Since we have adopted HYDRAstor as a platform for our
research, in this section we introduce its most important features.

To start with, HYDRAstor supports a variety of system sizes: from small one-server
Virtual Appliances [230] to multi-petabyte grids with thousands of hard drives [225]. The
grid systems can be expanded with servers from multiple generations without disrupting the
workloads [229]. The performance scales linearly with the number of servers and, in the largest
con�guration, HYDRAstor can write petabytes per hour.

Inline variable-length deduplication is one of the most important features of HYDRAs-
tor [94]. Actually, HYDRAstor was the �rst commercial implementation of scalable global
deduplication, that is, one that eliminates duplicates against data distributed across a multi-
rack system. To maximize data reduction, HYDRAstor employs content-based chunking,
further improved with techniques such as marker-�ltering [227], combined with data compres-
sion.

HYDRAstor ensures high reliability and resiliency to failures. Erasure coding [40] splits
blocks into fragments and generates redundant ones. Such fragments are distributed across
multiple devices to provide high availability even in the event of failures. Self-management
features, such as automatic data rebuilding after failures, additionally increase the reliability of
the system [94]. Moreover, WAN-Optimized Replication [229] can be used to achieve recovery
in case of major (datacenter-wide) disasters.

The architecture of HYDRAstor provides an API for accessing deduplicated blocks. No-
tably, a �lesystem interface [298] is implemented on top of this API to provide local �le access,
as well as compatibility with the Network File System (NFS) and the Common Internet File
System (CIFS) protocols. HYDRAstor's Express I/O [226] is another access protocol, which
reduces overheads and maximizes data throughput. Moreover, Deduped Transfer delivers even
higher throughput by performing parts of deduplication on external media servers. Finally,
HYDRAstor's OpenStorage Optimized Synthetics and Accelerator allows integration with the
popular Veritas NetBackup [312] application.

Independent of the interface over which blocks are accessed, the blocks in HYDRAstor
are immutable. They are organized in directed acyclic graphs (DAGs), to form larger data
collections like �les [94] (see also Fig. 2.1). Besides data, each block can store references to
other blocks. Special blocks called searchable retention roots are source vertices of the DAG,
and blocks referenced from searchable retention roots together with their descendants are
considered live. Searchable retention roots can be marked as deleted by writing an associated
deletion root. Blocks without live references are eventually deleted by a garbage collection
algorithm.

Concurrent Deletion [283] is a garbage collection algorithm implemented in HYDRAstor.
It introduces the concept of epochs to distinguish which data are written before a deletion
is started, and therefore to allow reading, writing, and removing data simultaneously, even
in a multi-server con�guration. Similarly to other garbage collection algorithms in systems
with deduplication, it is executed periodically in background and can take over an hour to
complete. Notably, the performance of Concurrent Deletion is scalable, i.e. the computation
takes roughly the same time if both the number of servers and the size of data are doubled.

Since HYDRAstor uses HDDs for user data, two algorithms were proposed to mitigate the
e�ect of fragmentation. The �rst is Content-based Rewriting (CBR) [151], which analyzes a
level of fragmentation when data are written and rewrites selected blocks to new locations.
The second is Limited Forward Knowledge cache (LFK) [152], which keeps selected blocks in

16

Figure 2.1: Block organization in HYDRAstor. A block can contain data (black) and/or
references to other blocks (gray). Blocks with multiple incoming arrows are deduplicated.
Descendants of Searchable Retention Root #2 without references from Searchable Retention
Root #1 will be eventually deleted.

memory. According to an empirical evaluation [152], when both algorithms are combined, the
restore speed can be comparable to reading non deduplicated data.

The portfolio of features o�ered by HYDRAstor is extensive and it includes many others
not described here. In particular, there are important security and privacy functionalities,
like Write-Once Read-Many (WORM) support, encryption, and data shredding [224]. Never-
theless, describing everything is beyond the scope of this dissertation.

2.4. Global System Assumptions

Systems with deduplication are a vast research area with numerous challenges and trade-o�s.
Therefore, in our research, we assume a particular system model. Our model is compatible
with HYDRAstor, and therefore, we could implement our ideas in real-world systems deployed
on several continents for many generations. However, the model is generally applicable to
many other leading systems with deduplication, at least to some degree.

First of all, we assume a multi-server architecture with HDDs as the main storage medium.
We do not assume any particular components like CPU models, RAM, or network, but we
expect the hardware to meet the standards of average enterprise systems in the foreseeable fu-
ture. For example, a system composed of ten servers with a 12-core CPU clocked at 2.40 GHz,
128 GB of RAM, multi-gigabit Ethernet, and 12x 6 TB HDDs meets our expectations. In our
empirical evaluation, we used servers similar to this speci�cation, and we describe our testbed
for each experiment.

We assume that our system already implemented inline, block-level deduplication with
multi-kilobyte blocks. We expect that chunking and �ngerprinting algorithms are already
optimized, and we do not go into their details. We also assume the blocks are organized into
DAGs to form data collections such as �les.

Our next assumption is that our system is designed primarily for storing backups, as
this has a signi�cant impact on the expected workloads. Accordingly, we assume that data
will be written to the system mostly by backup applications, just as in real-world backup
environments. Moreover, we expect the data to have characteristics that are typical for
backups, for example, a high deduplication ratio between consecutive backups.

Regarding garbage collection, we do not assume any particular algorithm, but only that
garbage collection is a long-running job that is executed periodically.

Finally, we assume that the system is highly reliable and stores data with erasure codes
or similar techniques to ensure availability even in case of hardware failures.

17

Our system model overlaps signi�cantly with many systems described in a survey on
storage systems with deduplication by Paulo and Pereira [248].

18

Chapter 3

Relevant Work on Distributed Storage

and Clouds

Distributed storage is a method of keeping and serving data in a system or a group of systems
that consist of multiple devices, such as servers and data carriers. As distributing data across
devices brings bene�ts such as increased reliability (a distributed system can be available even
if some of its devices fail), and increased performance (combined devices can achieve higher
throughput or more I/Os per second than a single device), distributed storage is widely used
[81, 242, 243, 320].

In recent years, there has been a signi�cant research attention towards distributed storage
systems related to the cloud [58], which is a general term that describes resources, systems,
and services available on demand. To explain the connection between clouds and distributed
storage, and to provide background to our research, this chapter reviews important storage
technologies as follows. Section 3.1 introduces the necessary historical context on storage
systems. Section 3.2 surveys modern technologies of disks and other data carriers. Section 3.3
describes cloud computing and cloud storage and explains why the topic has been so important
in research and industry in recent years. Section 3.4 discusses object storage, a modern data
abstraction with skyrocketing popularity. Finally, Section 3.5 summarizes some of the most
relevant recent publications in distributed storage and concludes.

3.1. Evolution of Storage Technologies

Data storage techniques constantly evolve to meet the market demand. In the last decades,
storage system sizes have increased exponentially. In 1956, IBM 350 was released as one of the
�rst hard disk drives [107]. Although IBM 350 physical dimensions dwarfed today's HDDs, its
capacity was less than 4 MB. In the 1980s, disks such as IBM 3380 had roughly a 1000 times
larger capacity than IBM 350. However, their performance (in terms of I/Os per second) did
not increase between 1956 and 1980 as much as the capacity. Therefore, disks started to be
grouped into arrays [245] to provide a higher number of operations per second.

The 1980s was also a time when techniques of coupling storage and network technologies
were rapidly developed. Notably, the �rst distributed �le systems were introduced [268, 294],
including NFS [267], which continues to be developed and commonly deployed nowadays
[124]. Further evolution of network technologies in the 1990s, such as the adoption of Fibre
Channel [299], resulted in the introduction of new storage architectures, such as Storage
Area Network [164], which is a specialized network that provides block-level access to disks.
A di�erent technological breakthrough of the 1990s was the introduction of the �rst solid-

19

state drive (SSD) [122], which o�ered orders of magnitude more random read operations
per second than HDDs. However, the per-byte cost of SSDs was an order of magnitude
higher than HDDs. Therefore, despite the superior performance, at the end of the twentieth
century, massive distributed storage systems still utilized primarily HDDs and tape drives
[65, 121]. Tape drives were especially appealing for storing backups [75], as tapes were several
times cheaper than HDDs [116]. The situation changed in the �rst decade of the twenty-�rst
century when the popularization of deduplication [94, 255, 348] made storing backups on
HDDs economically justi�ed.

At the time this dissertation is being written, HDDs are almost 1,000,000 times larger
than in 1956 [322], and similarly, SSDs are almost 1000 times larger than in 1991 [269]. Just
as in earlier decades, new types of data carriers are developed, and similarly, novel algorithms
and system architectures that leverage the newest technology are invented.

3.2. Modern Data Carriers

For decades, computer systems have employed diverse data carriers [251], as di�erent physical
properties of devices o�er di�erent cost-performance trade-o�s. A modern processor typically
has L1 and L2 caches, which o�er latencies below ten nanoseconds but have a very limited
size (e.g., below 1 MB) [57]. Next, there are L3 caches and DRAM, which are an order of
magnitude slower than L1 and L2 caches but are also much cheaper, and hence, modern
servers can contain terabytes of RAM [1]. Caches and DRAM are typically volatile, which
means data are lost when the device is disconnected from the power supply. That is why
storing data for a longer time in caches and DRAM is not only expensive but also di�cult.
Therefore, only specialized solutions such as in-memory databases [63, 100], keep data solely
in caches and DRAM.

Memory carriers are actively researched for the purpose of providing non-volatility by, for
instance, employing carbon nanotubes instead of silica [104]. One of the promising non-volatile
memory technologies called 3D XPoint, was released for production in 2017 as Intel Optane
[144]. Unfortunately, in 2022 Intel announced plans to cease future development of Optane
to focus on the development of other products [143]. Nevertheless, the cost of 3D XPoint was
still much higher than SSDs, not to mention other carriers like HDDs and tapes.

As tapes are still more a�ordable than HDDs, and HDDs are still less expensive than SSDs,
whereas the performance relationship of these carriers is inversed, currently all three types
of data carriers are applied [261]. These carriers are also actively developed. For instance, a
modern LTO-9 tape format allows to store 18 TB of uncompressed data, but in the future
LTO-14 is expected to provide 576 TB per tape [297] (one generation of LTO typically lasts
for 2 to 3 years). Similarly, modern HDDs o�er a capacity of up to 22 TB [322], but HDDs
of 100 TB and more are already planned [219] as techniques to increase the areal density
of platters are researched. One of the techniques available today to increase the density of
HDDs is overlapping adjacent tracks during writing in shingled magnetic recording (SMR)
drives [324]. SMRs typically have a 25% larger capacity than regular HDDs but writing
tracks so close to each other requires write-ampli�cation (i.e. rewriting data that was not
recently modi�ed), as adjacent tracks need to be often rewritten. Multi-terabyte SSDs are
also available [266], and SSDs are expected to grow in the next years, not only due to the
increased number of bits stored per cell [147] but also because new form factors such as EDSFF
enable increasing storage density [166].

Looking at the roadmaps of tapes, HDDs, and SSDs, we can infer that all three data
carriers will be developed and present on the market for at least a couple of years. The

20

challenge is, however, to utilize the data carrier most appropriate for a speci�c application
and also to adapt systems to continuously improved hardware. At least until new types of
data carriers replace the existing ones. For instance, DNA storage o�ers an order of magnitude
higher areal density than any of the current data carriers, but at present, the technology is
immature: the �rst automated DNA storage presented in 2019 [290] was capable of writing
and reading data only in 5-byte cycles which take 21 hours [290]. Similarly, quartz glass [29] is
a promising candidate for a storage medium but so far, glass-based storage is not commercially
available. It is an open question whether new storage medium will dominate the market in
the next decade [73]. What is certain, however, is that cloud storage, which o�ers services
built on top of various storage devices, will have a large share of the market. Interestingly,
in the case of public clouds, a customer often receives no information on what data carrier
is employed for the implementation of the storage services. For instance, there is no public
information on how AWS Glacier is built [80]. However, this does not prevent organizations
from utilizing it successfully.

3.3. Cloud Computing and Storage

Cloud computing is a model of providing services and infrastructure in a highly scalable and
dynamic manner [287]. The idea of cloud computing was introduced in the 1960s [103], but
arguably, the �rst cloud computing services in today's sense were introduced in 2002 by Ama-
zon [11]. In fact, the cloud started to become a market standard years later when companies
like Microsoft [296] and Google [76] also began o�ering their clouds. Currently, the global
public cloud market is expected to grow from $445 billion in 2022 to $988 billion in 2027 [258],
and the majority of the market is held by Amazon, Microsoft, and Google [289], which are
often referred to as hyperscalers [53]. However, the whole cloud market is even bigger and
more versatile, because the public cloud is not the only available type of cloud. For instance,
there are private clouds that are implemented for particular companies or institutions. Pri-
vate clouds that are prepared for government are often called government clouds [187], as
they require special features to provide security and privacy to implement systems such as
electronic voting [349]. In turn, hybrid clouds are a mix of both private and public clouds
[114].

The multiplicity of cloud services, their pricing model, and the potentiality to outsource
IT work and become more �exible [327], convince companies to employ clouds. For instance,
during the launch of Pokemon GO (which is a game for smartphones), the number of players,
and therefore the data tra�c exceeded expectations by an order of magnitude [198]. However,
the implementation of the game server in the cloud facilitated scaling, and game developers
were able to meet players' demands. Similarly, in scienti�c use cases such as high-performance
computing (HPC), the cloud can o�er easy access to a variety of hardware con�gurations [117].
Finally, clouds are also used by governments to provide the required resilience, security, and
continuity in the face of emergencies [168]. Nevertheless, despite its advantages, the cloud
model also brings several risks and threats. In the cloud, data is often kept and processed by
a third party, which brings many questions regarding data con�dentiality, integrity, and avail-
ability [10]. In turn, pay-as-you-go pricing introduces business risks, such as the possibility of
excessive or uncontrolled spending [215].

Each cloud o�ers a variety of computing, network, and storage resources, as well as
platforms and services built on top of the resources [39]. For instance, Amazon Web Ser-
vices (AWS) customers can choose between virtual machines and containers available billed
hourly [263], and many other services, such as the serverless lambdas (e.g., AWS Lambda

21

[246]) that completely hides physical resources as a customer is billed per function execution.
Clouds typically also o�er ready-to-use products, such as databases [277], key management
services [8], and load balancers [279].

Cloud storage services are also diverse and provide varying interfaces, latency, and pricing.
One extreme is network-attached SSDs providing a high performance for I/O-intensive work-
loads [44]. Another extreme, Glacier Deep Archive [43], allows for storing data for less than
one dollar per terabyte per month but can require 12 hours to restore even a single byte. Some
of the storage products, such as Elastic File System (EFS) [15] provide a storage interface (in
the case of EFS, it is a classic �lesystem interface) and dynamically scale the system based
on customer demand. One of the most popular interfaces for that kind of use was the object
storage interface, developed particularly for clouds, as described in detail in the next section.
However, object storage is not the only storage abstraction designed for cloud usage. For
instance, in recent years, there has been ongoing research on providing storage for serverless
lambdas [64, 210].

3.4. Object Storage Interface

Object storage, such as Amazon S3 [12] or Microsoft Azure Blob Storage [126], has become
a highly popular and versatile storage abstraction. It organizes unstructured data as objects
that are grouped into buckets. Apart from the data themselves, each object normally com-
prises up to a few kilobytes of metadata, including a key identifying it within its bucket.
These storage primitives can be accessed via an HTTP-based interface following REST prin-
ciples: reading objects/buckets is done with HTTP GETs and HEADs, uploading with PUTs,
deleting with DELETEs, and so on. Therefore, data can be easily accessed via REST API,
even if an application using the interface and the object storage server are distant from each
other as in a wide area network.

The demand for object storage abstraction is immense, as the simple structure and HTTP
communication make it a good �t for cloud applications. In 2017, it was estimated that over
30% of data center capacity was in object stores [188]. In 2021, in turn, Amazon alone stored
over 100 trillion objects in S3 [45]. Object storage interfaces are provided by hyperscalers [5,
213], other public clouds [36], on-premise enterprise storage systems [130], and open-source
solutions [67, 142, 236]. What is important is that the on-premise (private cloud) solutions
are just as popular as the public clouds. For instance, MinIO, which is one of the leading on-
premise object storage, reported that a docker image with their object storage was downloaded
over a billion times [217], and 75% of Fortune 100 companies run MinIO.

Likewise, object storage is utilized in diverse applications. For instance, video companies
such as Net�ix [9] and Dreamworks [231], and social media companies such as Pinterest [13],
employ object storage to store videos. Similarly, object storage is employed to store game
assets [206], or gamers' results [98]. Another application is keeping in object storage data
sets for big data processing [212, 260]. Finally, popular use case example is storing backups
[42, 88].

Object storage is implemented in systems that utilize various data carriers, including SSDs,
HDDs, and tapes [180]. Backblaze, which is one of the popular object storage providers, re-
ports that their data center has almost 100x more HDDs than SSDs [37]. To decrease storage
costs even further, some cloud providers use SMRs [347]. Clouds often provide dedicated ob-
ject storage services for data with a decreased reading frequency, such as Amazon Glacier [313]
that o�er large discounts for storing data but charge extra for restores. With that kind of
service, object storage is an a�ordable option for rarely accessed data kept for a long time.

22

Despite having a few �avors, object storage interfaces are largely similar [109, 237]: an
object storage interface is often described as S3-compatible or Swift-compatible, names orig-
inating from Amazon S3 and OpenStack Object Storage (Swift), respectively. In particular,
MinIO [142], describes its interface as S3-compatible. RadosGW (Ceph Object Gateway)
[67], which is in turn an object layer for the widely-adopted Ceph [67], supports both �avors.
Finally, even OpenStack Object Storage [236], the original implementation of the Swift in-
terface, now also incorporates middleware that emulates S3 [235]. Support for either of the
interfaces in a backup appliance can thus be extended to other object storage interfaces.

3.5. Final Remarks

Distributed storage is a wide research area, with scienti�c publications also covering topics
di�erent than the cloud, e�ective use of particular data carriers, and deduplication. Each year,
over a thousand publications on distributed storage appear [139], and whereas the summation
of all of them is beyond the scope of this dissertation, we will summarize some of the most
frequently researched topics that may help position our work.

First of all, the reliability of the storage system is crucial. Therefore, many publications
analyze metrics such as failure rates in large-scale, production environments [120, 203, 333].
Based on the analysis of real-world failures, new techniques to improve reliability are intro-
duced [155, 196]. Similarly, popular methods of increasing failure resilience, such as erasure
codes, are revised [156, 185].

Large production installations are investigated not only in terms of their performance and
general functionalities. For instance, Facebook published conclusions from the analysis of
their exabyte scale Tectonic [243]. Similarly, Alibaba presented a modernized version of their
exabyte scale Pangu [184]. Researchers from National Supercomputing Center in Wuxi the
storage challenges on Sunway TaihuLight [149], which in 2019 was the third most powerful
supercomputer in the world. Each of the publications outlines the problems that appear in
practice in such systems and proposes novel approaches to improving the system performance.

One of the most common approaches in storage systems is caching selected data in faster-
access layers. Despite the fact that caching techniques have been researched for decades
[48, 252], new results regarding the usage of caches are published every year [195, 284]. The
appearance of new data carriers is one of the reasons why new caching algorithms are necessary,
as modern hardware, such as persistence memory, brings new challenges [325].

Similarly, �le systems are adapted to support modern hardware such as SSDs [178, 346]
and persistent memory [223, 323]. In fact, many other di�erent aspects of �lesystems are re-
searched as well. For instance, new methods of journaling are still being investigated [165, 233].
Regardless of decades of �lesystem research [207], there are still many open problems, even
seemingly simple, like a proper handling of the case-sensitivity of �le names [46]. Considering
the popularity of the �lesystem abstraction, it is unlikely that object storage will completely
replace �le systems in the foreseeable future.

Another interface that has received much attention recently is a key-value store [177] that
simply allows querying, adding, and deleting keys associated with values. Key-value stores
often utilize log-structured merge trees (LSMT) [41, 140, 175], which feature amortized O(1)
writes. An interesting improvement in key-value stores proposed recently [84, 183] is the usage
of a so-called learned index [170], which employs machine learning to optimize the system's
performance.

Finally, there is vast research in optimizing speci�c use cases of storage. Graph processing
has many practical applications, and hence, many storage systems focus on providing low

23

latency and high throughput for operations on graphs [173, 334]. Similarly, storage systems
are optimized for boosting machine learning applications [163, 194]. Yet another important
problem is the optimization of storage for personal devices, such as smartphones [262, 350].

To summarize, this dissertation focuses on solving important problems in distributed stor-
age systems with deduplication, especially for the use case of storing backups. However, the
problem of e�ciently storing data is a very broad one. Some of the issues it involves, such as
keeping data resiliently, are general and applicable to most storage systems. Others, however,
are very speci�c and suit only peculiar storage applications.

24

Chapter 4

ObjDedup: Backup Appliances with

Deduplication as Object Stores

Object storage has recently become a widely adopted solution in the backup market. There
are many properties that make this storage abstraction attractive for these applications. In
particular, provided as a cloud service, object storage o�ers a convenient way of dependably
keeping backups o�-site, as its interfaces contain provisions for transferring large amounts
of data via wide-area networks. They also display design concerns over security, including
strong ransomware protection. Consequently, novel backup solutions utilizing cloud-hosted
object stores as backends have appeared [42, 88]. Likewise, systems that internally back up
their state (e.g., databases or analytic platforms [77, 293]) have added support for object stor-
age. Finally, leading backup applications�originally targeting dedicated backup appliances
as storage backends�have started integrating with Amazon S3 and similar object storage
interfaces [301, 308].

In this light, there is a strong market incentive also to have dedicated backup appliances
implement these interfaces. In particular, appliances that can signi�cantly add much value as
backends for object-storage-compatible backup applications are those supporting data dedu-
plication. This is because backups inherently contain data that are repeating over time,
thereby yielding high deduplication ratios [211]. Notably, an appliance o�ering global block-
level in-line deduplication can reduce the storage footprint of data written independently by
the di�erent applications, even if backup applications internally implement their own form
of deduplication. In combination with simpli�ed regulatory compliance and higher control
over data stored by on-premise machines, these compelling space savings and compatibility
with cloud-based storage backends are the primary motivations behind adding object storage
interfaces to backup appliances.

However, it is unclear how a backup appliance with deduplication should implement such
an interface so as to o�er adequate performance. Normally, for external applications, backup
appliances provide dedicated data-transfer interfaces, such as Common Internet File System
(CIFS), Virtual Tape Library (VTL), and others [254], which di�er signi�cantly from ob-
ject storage interfaces. Although objects and buckets resemble �les and directories from �le
systems, these primitives do di�er. Likewise, object storage is designed for di�erent access
patterns than backup appliances. For instance, Amazon recommends relatively small objects:
if an object is to exceed 100 MB, it should be uploaded in multiple parts for better throughput
and recovery from network issues [12]. Accordingly, backup applications for object storage
backends typically organize a backup into numerous small objects (1�64 MB) [78, 141, 308]. In
contrast, leading backup applications for dedicated appliances use large �les (≥100 GBs) [315].

25

The bottom line is that backup appliances with deduplication may not be prepared to handle
the volumes of metadata due to both the speci�c functionality and usage patterns of object
storage interfaces.

In this chapter, we thus investigate the problem of e�ciently implementing an object
storage interface in state-of-the-art backup appliances with global block-level in-line dedu-
plication. To this end, we take the following �pragmatic� approach. Since the considered
appliances are a mature, complex, and highly optimized technology, we do not aim to re-
design any of their internal functionality but only to add new functionality. Likewise, as a
single appliance normally o�ers multiple backup interfaces at once, and data written via any
of those are globally deduplicated (i.e., also against data written via others), when adding
support for an object storage interface, we must preserve this behavior.

Our approach is further reinforced by the fact that many steps of data deduplication are
independent of the particular interface, and a backup appliance is itself often a distributed
storage system, ranging from a few to as many as thousands of machines. Such a system
implements a number of features that work across all interfaces, such as ensuring the quality
of service, preventing premature exhaustion of storage space, or controlling data resilience.
Implementing these features as a single block-level storage engine that is shared by all exported
interfaces is a common practice.

A consequence of this approach is that, similarly to the classic backup interfaces, an object
storage interface should be provided as a layer over the block-level engine of a distributed
storage system with deduplication. On the one hand, this decreases the number of design
decisions required during our study, because e�ective solutions for many problems are already
available. On the other hand, it poses novel problems because adapting some techniques that
are popular in object storage without deduplication is not possible, and we needed to propose
new dedicated solutions to achieve satisfactory performance.

Given this approach, the major contributions of the chapter are twofold. First, we present
a preliminary study that aims to identify particular issues an implementation of an object
storage interface for a backup appliance with global block-level in-line deduplication has to
address. Based on data from 686 real-world deployments of our backup system, we extract
statistical information characterizing their usage patterns. With this information, we analyze
commonly used object interfaces to identify requirements, meeting which may be challeng-
ing in a system with global block-level in-line deduplication. Second, based on the study,
we identify core algorithmic problems and propose our solutions to these problems, that is,
algorithms and data structures, dubbed ObjDedup, which can be employed to provide object
storage functionality e�ciently as a layer on top of a block-level engine of a backup appliance.
We also outline our implementation of this design for HYDRAstor and evaluate it experimen-
tally. The evaluation indicates, among others, that the presented solutions can outperform
the state of the art multiple times in terms of I/O operation throughput.

The rest of the chapter is organized as follows. Section 4.1 provides the necessary back-
ground and surveys related work. Section 4.2 contains our preliminary study based on real-
world deployment data. Section 4.3 introduces the algorithmic core of our solution. Sec-
tions 4.4 and 4.5 discuss, respectively, the implementation and the experimental evaluation
of the solution. Section 4.6 concludes.

4.1. Background and Related Work

As explained in Chapter 2, deduplication has multiple applications but it is particularly
appealing for backup systems. In this section, we give a high-level outline of the operation of

26

such systems, emphasizing aspects that are the most relevant to the implementation of object
storage.

4.1.1. Global In-Line Block-Level Deduplication

Our work focuses on a model referred to as global in-line block-level deduplication, as it is
the state of the art for backup appliances (see Chapter 2). Although deduplication-related
research focuses largely on improving the deduplication operations [6, 86] or reorganizing data
to reduce fragmentation [61, 62, 151, 189], our research addresses an orthogonal problem: an
e�ective implementation of object storage interfaces on top of a deduplication system that
already has its block maintenance optimized. In general, state-of-the-art backup appliances
solve numerous problems (e.g., block caching, ensuring the quality of service, balancing space
utilization, or controlling data redundancy). Therefore, their block maintenance (including
deduplication) is encapsulated into an engine that o�ers a block-level interface, allowing for
reading and writing blocks as well as querying their presence. The higher layers, such as CIFS
or VTL, are implemented on top of this block-level engine, treating it mainly as a black box,
which is also the approach we follow in ObjDedup.

Consequently, the exact solutions the block-level engine employs to the aforementioned
problems are largely abstracted out and should be irrelevant for the higher layers, includ-
ing ObjDedup. However, the data must be eventually stored by the backup appliance in
2KB�128KB blocks using a well-de�ned data organization.

4.1.2. Deduplicated Data Organization

More speci�cally, the following data organization is commonly adopted in deduplication ap-
pliances and hence is also assumed in the design of ObjDedup.

All blocks are immutable. If block contents were allowed to change after a �ngerprint
computation, the contents of a block could be lost forever if it was deduplicated against
another block that was modi�ed later or, conversely, two blocks with ultimately di�erent
contents could have the same �ngerprint. The �ngerprint of a block is thus normally used as
(an element of) the unique address of the block.

Blocks are organized into directed acyclic graphs (DAGs). Since a single block
is typically too small to represent an entire data collection, such as a �le or a directory,
there must be means of grouping multiple related blocks. Therefore, blocks form DAGs as
explained in Chapter 2. Since block data are immutable and since the address of a block
contains a �ngerprint computed over both the data and references constituting the block, the
references must be immutable as well. As a result, changing a reference in some block
deep in a DAG entails generating a new block with a new address, replacing references in all
its ancestors, so that the change propagates up to the root blocks.

Blocks with no live references are eventually deleted to reclaim storage space. Deleting
blocks in a system with in-line deduplication requires considerable additional
e�ort to prevent situations where new blocks reference data that have been deleted. Typically,
the system employs a multi-phase algorithm that follows a garbage collection technique such
as mark-and-sweep or reference counting [92, 283].

4.1.3. Deduplication in Object Storage

Despite the popularity of object storage, there has been little work on how such support can
be provided e�ciently in a backup appliance with deduplication.

27

To start with, Cloud Tier [95] moves data written to a backup appliance (using an interface
di�erent than object storage) to cloud-based object stores. Such object stores do not provide
deduplication, so the backup appliance deduplicates data before transferring them to the
cloud. The solution is much di�erent from ObjDedup, which extends the backup appliance
itself with the object storage interface.

Several publications proposed adding deduplication to existing object storage systems,
notably Swift [237] and Ceph [67].

Post-process deduplication approaches, like Ceph's deduplication [234] or LOFS [74],
are very di�erent from ObjDedup, which assumes in-line deduplication in the underlying
block-level engine. In-line deduplication, if exploited well, can inherently o�er superior write
throughput and space savings for highly duplicated backup data [248].

In-line deduplication approaches proposed to date do not examine the problem of
e�ciently managing metadata due to supporting object storage interfaces. In particular,
Wang et al. [316] focus on classic �les in Ceph and explicitly mention support for Ceph
Object Gateway as future work. Similarly, Khan et al. [161, 162] provide deduplication for
Ceph's internal objects, which are di�erent from object storage objects, supported in Ceph
Object Gateway. In other words, rather than tackling the problems attacked by ObjDedup,
that research explains how a variant of the black-box part of ObjDedup (i.e., the block-level
engine) could be implemented in Ceph. Those ideas are further improved by CROCUS [119],
which schedules deduplication-related operations onto CPUs and GPUs.

In contrast, the aforementioned Ceph Object Gateway requires bucket indexes [68] that
are frequently accessed and modi�ed. Therefore, they can incur a signi�cant overhead if kept
in a store with in-line deduplication. Yet, we are not aware of any relevant prior performance
results for Ceph Object Gateway, and generally, the published results are insu�cient to predict
how the solutions would behave with large numbers of objects or small �les, as generated by
backup applications for object storage backends.

Finally, DedupeSwift [200] adds deduplication to Swift. In DedupeSwift, objects are stored
as binary �les, and metadata are stored in xattrs, so there is no dedicated metadata structure
like in ObjDedup. DedupeSwift's throughput tops 10.54�25.51MB/s even with SSDs for
deduplication caches, which is insu�cient for a commercial backup appliance.

In conclusion, we are not aware of any in-depth analysis of the problems posed by a
high-performance implementation of an object storage interface for a state-of-the-art backup
appliance with global block-level in-line deduplication.

4.2. Preliminary Study

To gain more insight into the problems, we have conducted a study contrasting real-world
usage patterns of backup appliances featuring global block-level in-line deduplication with the
relevant properties of object storage interfaces.

4.2.1. Object Storage API Analysis

Certain features of object storage interfaces have become a market standard, and under-
standing what backup applications can expect is a part of our research. Because of space
constraints, here we focus only on those features that are the most vital for the considered
applications. When it comes to storage organization, a crucial property is that, apart from
the data themselves, each object (and bucket) has associated metadata. The metadata of an
object contains a key that uniquely identi�es the object within its bucket, metainformation
on the object's data (e.g., length, MD5 digest), and user-de�ned metadata. The total size

28

of the metadata can vary and�compared to the size of object data�can be signi�cant. For
instance, in Amazon S3, a key is up to 1 KB, and user-de�ned metadata are up to 2 KB [12].

Likewise, although the basic commands follow REST principles, object storage interfaces
are extensive. For example, Amazon S3 currently has almost 100 commands, of which some
have no counterparts in POSIX �le systems. In particular, besides object management re-
quests, such as PutObject, DeleteObject, ListObjects, there exist commands related to multi-
part uploads, tiering, replication, security (e.g., encryption, ACLs, ownership control) and the
like. Virtually all these commands access object metadata.

Another feature with far-reaching consequences is the usage of key pre�xes. First, objects
can be listed given a key pre�x and a delimiter. In e�ect, even though the bucket-object
hierarchy has just two levels, a deeper, directory-like structure of a classic �le system is often
recreated by organizing objects through their key pre�xes. For example, listing objects with
delimiter �/� and pre�x �mydir/� is similar to calling �ls� in �mydir� of a �le system. There
are, however, some di�erences from classic �le systems. A major one is that object listings
are limited in size (in Amazon S3, to 1000 objects), which entails multiple invocations for
pre�xes with large numbers of objects. Second, pre�xes are utilized for guaranteeing and
scaling performance. For instance, Google Cloud Storage initially o�ers 1000�5000 requests
per pre�x per second. If the actual number surges dramatically for a pre�x, some time may be
needed for reorganization, during which the performance is lower [110]. Moreover, as object
storage interfaces originally assumed wide-area networks, they promote moving large data
in smaller parts. For objects larger than 5MB, multi-part upload (MPU) is recommended,
with object transfer split into up to 10,000 parts. MPU state needs to be tracked by the
backend because the parts can be provided in any order, and uploads are done in parallel and
reattempted if required.

Finally, when operating with object storage interfaces, modern backup applications do
make use of their features, notably wide-area-network- or security-oriented provisions. Even
though not every application utilizes all commands of an interface, their deep understanding is
necessary when developing support for object storage, especially since the market is constantly
evolving and the demand is changing. For instance, in recent years, some backup applications
have started using object locks as a protection mechanism aimed to prevent unintentional
data updates and deletes [31, 222]. Another example is that some backup applications avoid
MPUs (e.g., by uploading backups in objects below 5 MB [141]), but others do utilize this
feature [56]. In either case, however, the typical object size in such applications is between
1 MB and 64 MB [78, 141, 308]. In other words, even if the data fed to a backup application for
an object storage interface are the same as the data fed to a backup application for traditional
backup interfaces, in the �rst case, the storage backend will receive data collections that are
several orders of magnitude smaller than in the second.

4.2.2. Backup Data Pattern Analysis

To contrast these observations on object storage interfaces with the usage patterns of backup
appliances with global block-level in-line deduplication, we analyze real-world deployments
of such systems. Data are written to a backup appliance in various patterns in backup
jobs [6], and the jobs are run periodically (e.g., once a day at a speci�c time) [304] based
on backup life cycles and policies. Even a single backup application can write hundreds of
jobs each week to back up diverse servers and business applications [27]. Similarly, deletion
of data from each job is done based on a retention policy (e.g., after �ve days) [305], but, as
mentioned previously, garbage collection under deduplication requires signi�cant work and is
thus executed sparingly, at most a few times a week. Therefore, we examine how a system

29

20
20
-0
1-
21

20
20
-0
1-
22

20
20
-0
1-
23

20
20
-0
1-
24

20
20
-0
1-
25

20
20
-0
1-
26

20
20
-0
1-
27

20
20
-0
1-
28

0

20

40

60
Max capacity
decrease

Max capacity
increase

S
y
st
em

C
ap
ac
it
y
[T
B
]

Figure 4.1: The evolution of capacity utilization in a representative sample.

0-
0.
33

0.
33
-0
.6
6

0.
66
-1

1-
1.
5

1.
5-
3

>
3

O
nl
y
W
rit
es

O
nl
y
D
el
et
es

N
o
ac
tiv
ity

0

0.1

0.2

0.3

Writes to deletes ratio

F
ra
ct
io
n
of

al
l
sa
m
p
le
s

Raw Capacity E�ective Capacity

Figure 4.2: The ratio of weekly maximal increase and decrease of raw capacity (after dedu-
plication) and e�ective capacity (before deduplication).

behaves based on information collected over a week, which we refer to as a sample. More
speci�cally, we analyze 13, 102 samples collected from 686 commercial deployments of our
backup appliances and present those results that have had the most impact on the design of
ObjDedup. While this is yet to be con�rmed empirically when the solutions introduced in
this chapter are massively adopted, we expect that object storage interfaces would not alter
the observed patterns signi�cantly, as the backup life cycles, policies, and data themselves are
largely independent of a backup interface.

For every sample, we calculate the ratio of the maximal increase and decrease of capacity
utilization (cf. Fig. 4.1). We examine changes in both: raw capacity (i.e., data physically
stored after deduplication) and e�ective capacity (i.e., data written by backup application,
before being deduplicated). The distribution of this value for all samples is plotted in Fig. 4.2.
A majority of samples have their ratios above 1.0, that is, writes exceed deletes, which is
expected given the continuous worldwide data growth [135]. Typically, the ratio is in the
range 0.66�1.5, so every week similar amounts of data are added and deleted. Samples with
no activity are virtually nonexistent, which implies that backups are indeed done regularly.

The magnitude of changes to raw and e�ective capacity utilization is shown in Fig. 4.3,
separately for increases and decreases. It can be observed that capacity utilization in a system
can change a lot in a week. The changes in e�ective capacity have even higher magnitudes

30

0-
1%

1-
5%

5-
10
%

10
-2
0%

20
-5
0%

50
-1
00
%

0.1

0.2

0.3

0.4

Max capacity increase

F
ra
ct
io
n
of

al
l
sa
m
p
le
s

0-
1%

1-
5%

5-
10
%

10
-2
0%

20
-5
0%

50
-1
00
%

0.1

0.2

0.3

0.4

Max capacity decrease

Raw Capacity E�ective Capacity

Figure 4.3: Maximal positive and negative capacity utilization changes within a week.

than in raw capacity. Given that e�ective capacity can be larger by an order of magnitude
than raw capacity, this means that despite fairly stable capacity utilization (per Fig. 4.2), the
data turnover is considerable: older backups are removed to store fresh ones.

Finally, Fig. 4.4 depicts the distribution of maximal capacity utilization in samples. It
shows that although some fraction of free space usually remains in a system, in 16% of cases,
the capacity utilization exceeds 80%. Therefore, considering the possibility of substantial
(≥20%) utilization increases (Fig. 4.3), the system indeed relies on e�cient garbage collection.

0-
0.
2

0.
2-
0.
4

0.
4-
0.
6

0.
6-
0.
8

0.
8-
1.
0

0

0.1

0.2

Fraction of total system capacity used

F
ra
ct
io
n
of

al
l
sa
m
p
le
s

Figure 4.4: The weekly maximal utilization of system capacity.

4.2.3. Main Lessons Learned

The following major lessons can be drawn from our study.
Backup appliances and object stores have dissimilar characteristics. Backup

appliances are optimized for write throughput, which is crucial given that their overwhelmingly
dominant usage pattern is writing long data streams. Operating on individual data collections,
in turn, hardly ever takes place, as even recovery typically concerns entire snapshots and is
considered rather sporadic; the same applies to modifying metadata of existing collections.
In contrast, object storage interfaces have been designed for �exibly organizing, e�ciently
accessing, and remotely managing large numbers of data items, so as to cover many use cases
that may be encountered in the plethora of possible cloud-oriented applications. To this end,

31

object storage features an extensive API, rich system- and user-de�ned metadata enabling
this API, and additional provisions for wide-area communication, scalability, security, and
the like. It also requires respecting peculiar constraints regarding shaping the organization of
the data and access tra�c.

Dynamic and relatively large metadata of an object are problematic under
immutable deduplicated blocks. For an object, the size of its metadata can be signi�cant
compared to the relatively small size of the data themselves, as recommended by object
interfaces and respected by backup applications for object stores. In backup appliances, this
phenomenon is likely to be aggravated since the data are normally repeating over time, and
hence are often deduplicated. Furthermore, their high weekly replacement rate implies that
many objects will be written and deleted every week. Each such operation on an object also
requires at least one access to its metadata. In general, many object operations solely a�ect
the metadata, updating them in some way. This is problematic given the block immutability
in backup appliances with global in-line block-level deduplication. What is more, some object
storage operations require tracking their progress by the backend. Such an operation generates
metadata that are heavily accessed for a short time and are deleted afterward but need to
be kept persistently in the backend to allow completing the operation even under transient
failures. A prominent example is the aforementioned multi-part upload (MPU), which can
produce thousands of metadata items for a single object.

E�ciency of metadata management is a fundamental problem on the scale
of an entire backup appliance. This is due to the assumptions object storage interfaces
make regarding the use of object key pre�xes for collective operations, such as object listing,
and for performance scaling. In particular, the listing feature implies that the metadata of all
objects should be somehow indexed or sorted for e�ciency. The potential solutions are further
constrained by the fact that the delimiter of subsequent pre�x parts is provided on demand and
can thus be arbitrarily changed at runtime, even between requests. Guaranteeing performance
and scalability, in turn, requires dynamically distributing the load on various objects between
machines, for instance, based on the indexes. This implies that the algorithms for managing
object metadata have to be able to work in a distributed fashion and handle partial failures.

Object metadata management solutions must not impair the performance of
space reclamation. As revealed by our study, the high weekly data replacement rate in
backup appliances already entails extensive use of block deletion and garbage collection. Sup-
porting an object storage interface will likely increase the pressure on these mechanisms.
This is because any update to metadata stored in immutable blocks typically invalidates
these blocks as blocks with the new version of the metadata are written. Therefore, when
addressing the previous problems, any implications on space reclamation must be carefully
considered so that its e�ciency is not impaired. In particular, adding an object storage in-
terface to a backup appliance must not lead to situations in which blocks that are no longer
necessary are not garbage-collected as soon as possible because of some dangling references,
for instance, due to metadata indexing.

4.3. The Design of ObjDedup

In this section, we translate the conclusions from our preliminary study into algorithmic
problems and present solutions to these problems, which we dubbed collectively ObjDedup.

32

4.3.1. Problem Statement

As explained previously, a backup appliance with global block-level in-line deduplication typi-
cally exports multiple well-established interfaces that are utilized by external backup applica-
tions, possibly at the same time. Internally, in turn, it is usually implemented as a distributed
system that encapsulates the core functionality of deduplicated write-optimized fault-tolerant
storage into a block-level engine, which is often a product of many years of development
and �ne tuning. The external interfaces are simply implemented as higher layers on top of
this shared engine. We thus assume the object storage interface to be provided in the same
manner. This assumption imposes a few constraints on our solutions, the major ones being:

1. The block-level engine must not be changed so as to avoid a�ecting the operation of the
other interfaces exported by the appliance.

2. Likewise, extra hardware, such as additional machines or custom storage devices, must
not be required from the appliance to support the new functionality.

3. The performance of the object storage interface, notably write throughput, space uti-
lization, and fault tolerance, must be comparable to that of the classic interfaces.

Under these constraints, we consider the following overall design of ObjDedup. Objects
and buckets are organized as other data collections (e.g., �les and directories): into logical
block trees within the block storage, with the root block representing a particular object
or bucket and regular blocks holding the data of the object/bucket. In e�ect, the existing,
highly-optimized pipeline can be utilized for writing object and bucket data, which allows for
ensuring the same performance of these operations as for the other interfaces of the backup
appliance. Object/bucket metadata are also kept in regular blocks within the block storage.
Although an alternative design involving dedicated hardware for the metadata, like SSDs
or non-volatile memories, could improve the performance of operations on the metadata, it
would violate the previously formulated constraints. Moreover, storing the metadata within
the block storage is essential for fault tolerance: if a machine responsible for a particular
portion of the metadata fails, other machines can take over, as the block engine ensures
that metadata are stored redundantly in the block storage and are available to all machines
comprising the appliance. In contrast, what is di�erent in the case of metadata compared
to data is that because of the way object storage uses key pre�xes in multiple operations
and performance scaling, the metadata must be indexed and/or sorted by object/bucket key
pre�xes.

The central algorithmic problem that has to be solved can thus be formulated as follows:

How to e�ciently organize object and bucket metadata by key pre�xes and dynam-
ically manage this organization by multiple processes given shared deduplicated
write-optimized fault-tolerant immutable-block storage?

E�ciency in this context has two facets.

First, the achievable throughput of the object storage interface must be comparable to that
of the classic interfaces of the backup appliance, ensuring among others that while accesses
to metadata are write-optimized, the performance of reads is not impaired. More speci�cally,
as HDDs are assumed as the main storage medium, achieving a high write throughput is
possible only if random disk I/Os are limited. Since blocks are immutable, updating metadata
structures requires both reading some already stored blocks and writing new ones. Whereas
the block-level engine batches writes, random reads may easily exhaust HDD capabilities.

33

Therefore, our asymptotic complexity goal for the number of reads necessary to update the
metadata of an object/bucket is O

(
log(n)

)
, where n is the total number of objects and buckets

in the store. We also want to ensure that in the case of updating the metadata of u objects
sharing the same pre�x, the complexity is O

(
logs(n) · u

s

)
, where s is the expected number of

object metadata entries per block.

Second, the storage space of the appliance must be used e�ciently as well. Not only does
this mean that the storage overhead on metadata should be limited, preferably to O

(
log(n)

)
,

but also, what is particularly important in a system with deduplication, that deleted blocks
containing references to other blocks should be garbage-collectible without an unacceptably
long delay. To be more speci�c, at any time, the number of blocks that store lifeless references
should be smaller than a constant M and the constant itself should be small enough to ensure
that in practice blocks can be updated within seconds or, at most, minutes.

Last but not least, our formulation of the problem entails that the management by multiple
processes of the logical structure holding metadata in the block storage must be resilient to
failures of these processes, so that the resulting solution can be made as fault-tolerant as the
underlying block storage itself. This necessitates distributed algorithms.

4.3.2. Principal Ideas

To address the problem, we analyzed or experimented with multiple potential solutions: from
database-oriented or �le-system-oriented data structures and algorithms for write-once or
erase-before-write storage drives to various fault-tolerant distributed indexes [34, 115, 191,
199, 339]. In short, the fact that the blocks in the assumed underlying storage are immutable
and organized into DAGs limits the applicability of techniques that employ in-place updates,
notably classic B-tree or many of its modern variations [115]. In our settings, these techniques
would be ine�cient because emulating each in-place update would require rewriting not only
the updated block but also its every ancestor in the DAG. A particularly promising data
structure for immutable-block storage was LSM-tree [199], which is widely adopted in dis-
tributed databases and o�ers an excellent amortized cost of insertions. However, to this end,
it requires keeping deleted elements for inde�nite periods, which is at odds with the need for
prompt garbage-collection of deleted data. According to our preliminary study, keeping just
a single deleted block with references can prevent reclaiming multi-gigabyte storage space.
This can be very problematic, even if it happens just for few days.

All in all, we were unable to �nd an existing solution that would �t the assumed model of
block storage with deduplication while at the same time being able to maintain the massive
amounts of metadata required by object storage. Consequently, we have devised new data
structures and algorithms dedicated for the considered scenarios.

More speci�cally, our solution involves two persistent data structures dubbed Object-
MetadataLog (OML) and ObjectMetadataTree (OMT). From the systems perspective, they
are used to store object metadata and live references to object data in a write-optimized
fashion: all metadata updates are �rst appended to an OML and only asynchronously (in
the background) applied in batches to an OMT, which decreases the write latency and im-
proves the throughput while at the same time ensuring e�cient indexing by key pre�xes. Both
structures are kept in the deduplicated write-optimized fault-tolerant shared immutable-block
storage, and their parts are also cached in memory. There is one instance of OMT in the stor-
age and as many instances of OML as there are processes implementing the object storage
interface. For scalability, this number of processes can be dynamically controlled to ensure,
among others, an appropriate collective throughput and failure resilience. For presentation
purposes, however, let us assume for a while that there is only one such process. We will drop

34

Figure 4.5: Sample contents of an OML.

this assumption shortly.

4.3.3. Object Metadata Log (OML)

The OML contains a sequence of yet unapplied metadata updates ordered by their time
of arrival (cf. Fig. 4.5). In particular, it also keeps object removals because, for instance,
combinations PUT-then-DELETE and DELETE-then-PUT di�er in their outcome. A new
operation modifying metadata is appended to the sequence, and the client is noti�ed as soon
as the append completes. To further improve the throughput of metadata writes, a burst
of operations can be batched into a single write request to the block storage. Moreover, the
sequence is kept small enough so as to be stored not only in the block storage but also in a
memory bu�er.

When the in-memory bu�er is �lled, it is swapped with a new bu�er, and the operations
it contains are applied to the OMT in the background. The application procedure has to be
su�ciently fast so that the memory available for the bu�ers is not exceeded in the meantime.
If that happened, processing client commands via the object storage interface would have to
be paused, heavily impairing the overall write throughput. We will address this issue shortly.

When the operations from an in-memory bu�er have been applied to the OMT, the bu�er
is ready to be reused, and the OML blocks corresponding to its contents are also deleted
from the block storage (i.e., marked for garbage collection). Apart from potential memory
constraints, this is another reason for keeping OML in-memory bu�ers small: in the block
storage, the contents of such a bu�er may include references to blocks that may be suitable
for garbage collection (e.g., root blocks of deleted objects) and hence after an application to
the OMT, they should be deleted as quickly as possible to reclaim storage space.

The careful reader may have noticed that the OML is never read from the block storage
during regular operation described hitherto, as the in-memory bu�ers are su�cient. However,
keeping the OML also in the block storage is necessary for fault tolerance. If a process running
the object storage interface fails (e.g., its host machine crashes), its reincarnation (or another
process) can continue after recovery without losing any updates to the metadata.

4.3.4. Object Metadata Tree (OMT)

The OMT complements the OML by organizing the object metadata in the block storage
to enable e�cient access, notably looking up and listing by key pre�xes. Unlike the OML,
the OMT is meant to be very large, as it keeps most metadata of the system�possibly for
hundreds of millions of objects. The OMT resembles a B+-tree and keeps a few types of

35

metadata utilized in object storage in its leaves. The most important ones are metadata of
individual objects, MPU parts, and buckets (cf. Fig. 4.6). They are sorted by their type, key,
and other content. Apart from storing the metadata, OMT leaves also have references to the
roots of the logical block trees with actual object data.

Figure 4.6: An example of an OMT.

The blocks that store internal nodes of the tree have references to the blocks with next-level
nodes and separators that facilitate tree traversing. Each tree node, except for the rightmost
ones, has its size between 1

2S and S elements, where S is a con�guration parameter. To keep
the tree balanced, all paths from the root node to the leaves, apart from the rightmost one,
have the same length. OMT merges are the only operation that modi�es the OMT and they
keep both aforementioned invariants. All OMT operations are listed in Table 4.1.

Table 4.1: List of OMT operations.

Description

OMT Merge
Applies changes from an OML to the OMT

(described in Section 4.3.5)

OMT Distributed
Merge

Applies changes from an OML to the OMT
in a distributed manner and consists of two
phases: SubOMT Generation (Section 4.3.7)

and OMT Combining (Section 4.3.7).

OMT Lookup
Searches for an object in the OMT from
its root node to a leaf (B-tree search).

OMT Prefetch
A special lookup version optimized for

OMT merges (Section 4.3.6).

In contrast to the OML, the OMT is too large to �t in memory. However, a subset of its
nodes is cached to improve performance. In particular, as our preliminary study shows, the
list operations limit the number of returned objects, so caching internal nodes can signi�cantly

36

accelerate consecutive listings. The size of such a cache is meant to be small: asymptotically
proportional to the maximal size in the in-memory bu�er of the OML.

4.3.5. Metadata Merge

Metadata merge is a background operation of applying to the OMT all changes from the
OML. Since blocks holding the tree nodes are immutable, conceptually, the operation has to
generate a new tree. However, rewriting all OMT nodes each time an in-memory bu�er of
the OML �lls up would be an overkill. In particular, it would entail rewriting the metadata
of every object and bucket in the system. Therefore, instead, the nodes from the old tree
are reused whenever possible. In contrast, the blocks containing the overwritten nodes are
eventually not reachable from any live blocks, and can thus be garbage-collected.

More speci�cally, a merge traverses the OMT in a depth-�rst search (DFS) manner. For
each node, a decision is made if either the whole subtree of the node can be reused in the new
version of the tree or some update exists in the OML that has to be applied in the subtree.
If such an update exists, the subtree is traversed recursively down to locate the relevant leaf
node. If, after the update, leaf size is not in [12S, S], the node is split into two or the node
next to the right is read so as to combine the two nodes into one or more nodes of valid
sizes. In any case, all internal nodes on the path from the rewritten leaf to the root require
rewriting as well, because the block addresses of the nodes deeper in the tree have changed.
For a rewritten internal node with an invalid size, splitting or combination is done as for the
leaf. If the size of the root node exceeds S, the node is split, and a new root node above is
added: the tree grows by one level.

Special care is given to the MPU delete operation, whose single entry in the OML a�ects
up to 10,000 parts of the deleted MPU in the OMT, and hence could potentially be costly.
In such a case, only the two leaves containing the start and the end of the MPU range (and
their OMT ancestors) need rewriting, while the nodes in between become suitable for space
reclamation. This is because, after the OMT rewrite, their blocks are no longer referenced,
directly or indirectly, from any live blocks, and hence will be garbage-collected eventually.
In this way, instead of up to 10,000 nodes, the MPU delete a�ects only a number of nodes
proportional to the height of the OMT.

4.3.6. Metadata Merge Prefetch

As mentioned previously, the pace at which the metadata merge operation can be done is
crucial for the entire system's performance. A metadata merge that iterated through the
OMT and issued a new read to the block storage each time a node intersected with an entry
from the OML would last far too long and hence could lead to the aforementioned OML
in-memory bu�er exhaustion. This, in turn, would require pausing user operations, thereby
severely deteriorating the overall backup throughput.

As a remedy, we thus propose a prefetch algorithm, referred to as OMT Prefetch, that
reads from the block storage at most 2h(b − m) + 3h · m = h(2b + m) OMT nodes, where
h is the OMT height, b is the length of the OML in-memory bu�er (in entries), and m is
the number of MPU delete entries in the bu�er. The algorithm can be run in parallel for all
entries of the OML in-memory bu�er, so at most h sequential steps (i.e., causally-dependent
reads) are required to prefetch all nodes. In other words, the work and span of the algorithm
are respectively h(2b+m) and h.

The prefetch distinguishes three types of OML operations: metadata inserts/updates,
object deletes, and MPU deletes. For each type, a di�erent set of nodes is prefetched. First,

37

a metadata insert or update can over�ll a leaf node and may thus force splitting it and
possibly its ancestors. Splitting a node does not require reading any other nodes, so for an
insert/update operation in the OML, only those nodes are prefetched whose key ranges include
the inserted/updated key. A metadata delete can in turn lead to combining or combining-
and-splitting a leaf node, and possibly its ancestors, with the �rst succeeding nodes at the
same levels. Therefore, only the nodes whose key ranges include the deleted key and their
�rst right siblings are prefetched.1 Finally, as explained previously, an MPU delete can lead
to removing multiple nodes and updating no more than three nodes at each level. It is thus
enough to prefetch the nodes that intersect with the keys representing the start and the end
of the MPU parts, together with their ancestors, and the �rst right siblings of the nodes on
the MPU end path (all of the nodes in between will be deleted).

4.3.7. Distributing Metadata Merge

The solution described hitherto assumes only a single process operating on the OML and
OMT. However, the number of such processes must be scalable to handle more load and
tolerate failures. A straightforward approach would be to partition the buckets among the
multiple processes so each process would operate on a disjoint set of buckets and objects they
contain. However, this may lead to overloading the processes responsible for popular buckets.2

We propose a solution in which, rather than only buckets, also individual objects are
partitioned among the processes. Metadata operations for a given object are directed to
the corresponding process. Each process appends updates to its objects and buckets into
its private OML. However, the OMT is shared by all processes, which requires distributing
the previously described metadata merge operation. Such a distributed merge proceeds in
two phases (see Fig. 4.7). First, many disjoint OMTs, called SubOMTs, are generated by
individual processes. Second, all these subtrees are combined into a single OMT, using a
parallel algorithm.

SubOMT Generation Phase

To distribute work evenly, the space of OMT keys is divided into ranges, and each range is
assigned to a di�erent process. To achieve this, keys are �rst partitioned among all processes
(e.g., based on their strong hashes), so that each OML is expected to have a similar size.
Before each merge, a single, dynamically chosen process calculates boundaries for the ranges
based on the contents of its OML. Then, the ranges are broadcast to the other processes, so
that each process can generate its own SubOMT by merging relevant entries from all OMLs
with the subset of OMT nodes that are within its assigned range. In this phase, each process
reads all OMLs, but this happens simultaneously and, per previous explanations, the OMLs
are small, and hence the block storage caches can be e�ectively used.

OMT Combining Phase

After the �rst phase, each of the resulting subtrees covers a disjoint contiguous key range. In
the second phase, the subtrees are combined into the new global OMT with all keys. This

1With a small exception: the sibling of the leaf, which is not prefetched even though it may be needed to
create a new leaf of proper size. The reason is that such a read can be done on demand later without a�ecting
the critical path and the tree iteration, and we wanted the algorithm never to read more leaves than necessary.

2As a side note, in theory, rather than a bucket, a particular object could be popular and receive an
excessive load. Our solution does not aim to address this simply because, in practice, we have not observed
this phenomenon to be relevant to the backup use case.

38

Figure 4.7: The phases of the distributed metadata merge.

process is not trivial, because the nodes on the rightmost path of each subtree can have their
sizes below 1

2S and the heights of the subtrees may vary.

For two subtrees, we present how to generate a valid OMT by reading only the rightmost
path of the �rst subtree and the leftmost path of the second (also see Fig. 4.8). First, read
the rightmost path of the �rst subtree. According to the invariant, all other nodes in the
subtree have correct sizes. Likewise, read the leftmost path of the second subtree. Starting
from the leaf node in the leftmost path of the second subtree, add each entry from the node
to the corresponding node from the rightmost path of the �rst subtree. If the size of the
node is exceeded, create a new node and add a reference to it in a higher-level node; if the
size of that node is exceeded too, repeat the process. The key observation is that if there are
two nodes and at least one of them (the one from the second tree) has a valid size then one
or two valid nodes can be created in a way that there are no leftovers. Ultimately, the only
nodes with their sizes less than 1

2S are: the node that contains the entries from the root of
the second subtree, the nodes on the rightmost path of the second subtree (it was spliced),
and, if the �rst subtree was higher, the upper nodes on the rightmost path of the �rst subtree.
Altogether, the combining reads only h1+h2 nodes, where h1 and h2 are the subtree heights.
The tree height is tiny, as discussed shortly, and the appropriate paths in di�erent SubOMTs
can be read in parallel from the block storage, so even for huge numbers of keys, one process
is su�cient to combine thousands of SubOMTs quickly.

Remarks on Object Key Space Partitions

The presented solution spreads the load due to handling metadata between all processes,
for instance, based on hashes of keys. Such an approach is e�cient for those object storage
interface commands that a�ect a single key (e.g., GET, PUT, DELETE), because one process

39

Figure 4.8: Combining two SubObjectMetadataTrees with S = 4. Only the gray nodes are
read and written. The letters denote object keys.

can handle a given command invocation entirely. Interestingly, an MPU command invocation
can also be handled by one process because the number of parts in such a request is limited
(e.g., to 10,000). However, an object interface does contain commands that read information
about many keys at once, like object listing. E�cient and consistent handling of such collective
operations requires special attention.

Since the OMT is global and maintains the order of keys, retrieving from the OMT meta-
data, for example, for object listing, requires just a handful of reads, and hence they can be
performed by one or multiple processes. Object storage interfaces limit the size of an object
listing (e.g., to 1000 objects) and, in general, of the output of similar collective operations.
In e�ect, many consecutive requests must be sent to generate a longer output. Nevertheless,
such long outputs are also handled e�ciently, as the block storage can cache the blocks cor-
responding to the repeating node paths in the OMT. The issue, however, is that the freshest
metadata are not stored in the OMT but in the OMLs. Therefore, during a listing or a similar
collective operation, the metadata from the OMT must be updated with the metadata from
the OMLs of relevant processes. If the metadata are distributed by key hashes, virtually every
OML must be contacted, which entails �ooding all processes with requests.

To avoid such �ooding, we propose to dynamically partition keys among processes. More
speci�cally, the space of keys can be divided into ranges that are dynamically calculated based
on the current load. If there are few or no requests, each process can be responsible for a
similar number of keys. It reports its load to a distinguished process, so that if one process
receives more requests than it can handle, the ranges can be recalculated. If necessary, multiple

40

processes can handle the same range, and in such a case, the requests within that range can
be further distributed to selected processes based on the key hashes. With this approach,
collective operations read metadata handled by multiple processes only when necessary, and
only the relevant subset of the OMLs is a�ected.

Failover Handling

In the case of a process failure, another existing or new process can take over. This requires
only restoring in-memory data from the block storage: the in-memory bu�er of the OML of
the failed process and the cache containing the OMT nodes with the operations from the bu�er
applied. If the failover is handled by some existing process instead of a new or recovered one,
the process also needs to take over the metadata merge responsibilities for the failed process,
so that an ongoing merge can be completed. In e�ect, it has additional keys to handle during
the merge. This temporal imbalance is naturally corrected by a new key partitioning, which
will take into account the change and distribute the work more evenly.

4.3.8. Final Remarks

The proposed solution can be used even in very large systems. The height of the OMT is
limited by h = ⌈logs(n)⌉, where s is a branching degree (limited by constant S) and n is the
total number of objects and buckets. Even for a massive 20,000-machine backup appliance,
with each machine having 12 high-end 14-TB HDDs, an average object size of 10 MB, 20:1
deduplication ratio, and 5:1 compression, there can be n =∼ 3.36∗1013 objects. With S = 64,
which is reasonable to keep the OMT nodes small when keys are large (i.e., 1 KB), the tree
has at most 9 levels.

Further calculations con�rm that keeping metadata in block storage rather than, for in-
stance, in memory or on dedicated local SSDs of machines hosting the processes implementing
the object storage interface is not only a design decision but actually a necessity in large sys-
tems. For example, in the previous system, each machine needs to store metadata of 1.68∗109
objects, so with 1 KB keys, they take 1.7 TB. If the objects are smaller (e.g., 1 MB) and
have additional 2-KB user-de�ned metadata, the required capacity per machine sums up to
over 50 TB. Assuming a typical hardware architecture of backup appliances, storing such a
volume of metadata in RAM or on SSDs is infeasible today. Even if there are SSD disks in
such appliances (which is not always the case), their capacity can already be used for other
purposes. In other words, our algorithmic assumption is reinforced by the limits of today's
technology.

4.4. Implementation

We have implemented ObjDedup in the aforementioned HYDRAstor system [94]. At the time
of writing this dissertation, it was part of the product, delivering the object storage interface
in the same way as the classic backup interfaces.

4.4.1. Overall Architecture

From a systems perspective, HYDRAstor consists of storage servers, which keep data on their
disks, and a layer of access servers, which provide external access (cf. Fig. 4.9). The number
of storage and access servers can vary depending on the capacity and performance targets,
and the system can scale from one server to multi-rack installations.

41

Figure 4.9: A high-level architecture of access and storage servers. One or multiple instances
of driver processes communicate through a block interface with the storage cluster.

Storage servers maintain data by means of the block-level engine. In particular, they man-
age the distribution of blocks among storage media and memory caches, perform operations
on the blocks, handle hardware failures, coordinate garbage collection, and the like. Stor-
age servers comprise a storage cluster that exports a coherent block-level interface to access
servers, with operations like writing a block or querying if a block is stored given (a hash of)
its content.

Access servers, in turn, provide higher-level interfaces, like CIFS or, in our case, REST,
on top of this block-level engine. These interfaces are implemented as drivers. Internally,
they use common middleware that facilitates reusing functionality for accessing the block-
level engine of the storage cluster. Especially the deduplication pipeline, including chunking
and �ngerprinting, is implemented in the middleware and coordinated by the access servers.
Likewise, services for distributing computations, including optimized message routing (con-
ceptually similar to MPI [158]) and locating servers, are provided by that middleware.

Overall, this architecture matches what we assumed previously for our algorithms. In this
view, our work concerns the object driver, which implements the algorithms for OML and
OMT to provide an object storage interface on top of the common driver middleware (cf.
Fig. 4.9). Depending on the scale of the system as well as client-speci�c performance and
fault tolerance requirements, instances of the object driver are hosted by one or more access
servers.

4.4.2. Object Driver Architecture

The most outer layer of the object driver is HTTPServer, which receives REST commands
(see Fig. 4.10). They are then processed by RequestHandler, which implements the logic of
handling both data and metadata of objects and buckets, which ultimately end up in the stor-
age cluster. For data-related operations, RequestHandler essentially uses the aforementioned
common driver middleware, as data can be handled similarly to the other interfaces. For
metadata-related operations, it also collaborates with ObjectMetadataLogHandler and In-
MemoryObjectMetadataStore. ObjectMetadataLogHandler maintains the in-memory bu�er
of the OML corresponding to the instance and is responsible for coordinating metadata merge

42

operations. InMemoryObjectMetadataStore manages the cache of the OMT with the updates
from the in-memory bu�er of the OML applied.

Again, this architecture is coherent with our algorithmic assumptions. HYDRAstor is
write-optimized, and thus the object driver must follow the same principle. Writing data is
inherently optimized by the storage cluster, and the control �ow in the driver does not add
any extra steps. For handling metadata, in turn, the object driver simply employs ObjDedup,
which is also write-optimized by design.

Figure 4.10: The architecture of the object driver.

4.4.3. Additional Issues

To reduce the latency of selected read and write operations, especially on small �les or during
more interactive sessions with the backup appliance, HYDRAstor features priority requests.
They have a higher preference in queues, and their outcomes are re�ected in storage media
faster. However, they must not be abused, because their performance gains would not be
observable in such a case. Following this approach, our object driver uses priority requests
only for appends to the OML to further improve the client-perceived latency of metadata write
operations. In contrast, all other requests to the storage cluster are regular (non-priority)
ones. This is possible thanks to the fact that metadata merge is done in the background
and utilizes OMT Prefetch, which anticipates and parallelizes future reads, thereby making

43

metadata merge fast even without priority requests. In the same way, OMT Prefetch improves
the performance of collective operations, like object listing by the key pre�x.

Such e�ciency is also important for space reclamation. As a basis for garbage-collecting
dead blocks, HYDRAstor utilizes reference counting. The space reclamation process is done
in the background, in parallel to normal requests. Because of deduplication, parallel re-
quests can increase or decrease block reference counts while seemingly dead blocks are being
garbage-collected. The space reclamation algorithm must remain correct in the face of such
concurrency, which is not trivial [283]. In particular, the algorithm operates in epochs and
imposes restrictions on driver-kept block addresses. Notably, in epoch T , a driver must not
keep addresses obtained before epoch T − 1. From the perspective of the object driver, if
the deletion operation for an entity (e.g., an object, bucket, or MPU) is not applied from the
OML to the OMT and deleted from the OML, a reference to the entity is live and garbage
collection does not remove the entity. In practice, this means that the object driver should
be able to apply changes from the OML to the OMT within a few minutes. This reinforces
our previous claims about the need for the e�ciency of metadata merge in ObjDedup.

Another side issue is the use of a dynamically selected, distinguished object driver instance
in cases when multiple such instances operate in parallel. Essentially, this problem entails
leader election. As HYDRAstor already implements leader election and automatic failover,
we were able to reuse this functionality. In practice, however, any sensible at-most-one leader
election algorithm could be used instead [276].

Finally, object storage interfaces are sizeable and change over time. One cannot simply
ignore some of their functionality, because its use by backup applications evolves as well.
Therefore, while devising the algorithmic solutions was already challenging, implementing
them as the production-ready object driver without altering the block-level engine was equally
demanding. In e�ect, however, as the requirements of ObjDedup on this engine are minimal,
it can likely be implemented in other systems with interfaces allowing for writing immutable
blocks in tree-like structures, which is a common feature in deduplication storage [248].

4.5. Experimental Evaluation

To evaluate our solutions, we have conducted numerous experiments using the implementa-
tion of ObjDedup for HYDRAstor. We present the most important results in three groups:
Section 4.5.1 contains experiments that evaluate the main performance goals of ObjDedup
in a distributed setup; Section 4.5.2 o�ers a comparison with the state of the art; and Sec-
tion 4.5.3 encompasses a detailed evaluation of OMT performance in various scenarios, which
aim to highlight possible limitations and bottlenecks.

The presented experiments emphasize write-related workloads. This is because, �rst, they
are the most critical for a backup appliance and, second, other operations (e.g., object deletes
or MPUs) incur largely similar or lower overheads on the performance of the system.

Most of the experiments were conducted on a testbed composed of 12 servers, which, for the
following reasons, was su�cient to show how our solutions behave at scale. First, the data were
kept in a default 9+3 erasure-code scheme. In e�ect, with 12 servers or more, each machine
stored only one fragment of erasure-coded data, and that would not have changed if the
system had grown further. Second, considering the maximal raw capacity of one HYDRAstor
server, which is 168 TB, the total capacity of a 12-server system was over 2 PB. In other
words, it was a fairly large installation considering deduplication, especially given that, in
contrast to HYDRAstor, many popular backup appliances available on the market do not scale
more [87, 253]. Finally, the experiments put a considerable pressure on our infrastructure:

44

altogether they took several weeks. Therefore, even in the scaling tests, we had to limit the
maximal size of our testbed to 18 servers. Each of the servers comprised 2x Intel Xeon CPUs
E5-2620 v3 2.40GHz, E5-2660 v3 2.60GHz, or E5-2430 2.20GHz, 96 GB of RAM, and 12x
7200-RPM SATA HDDs of 2�6 TB each.

4.5.1. Assessment of the Main Performance Goals

We start by assessing the main performance goals of ObjDedup. To this end, we evaluate its
backup throughput, scalability, and overheads.

Backup Throughput

We test ObjDedup with varying object sizes and four di�erent workloads: 100% non-duplicate
writes, 100% duplicate writes, 90%:10% duplicate:non-duplicate writes, and reads. The �rst
two workloads are extreme scenarios but still possible in practice (e.g., writing an initial
backup without internal duplicates and writing the same backup twice). The 90%:10%
duplicates:non-duplicates matches the expected average daily deduplication ratio [26]. Fi-
nally, the workload with reads is for reference. Each experiment involves a 2.4-TB data set,
which is large enough to get reproducible results.

Figure 4.11 presents the throughput of ObjDedup normalized to the results of the HY-
DRAstor �le system driver in the same con�guration, which we use as a baseline. The objec-
t/�le sizes varied from 8 MB, which is rather small even for object storage backup (we present
results for yet smaller �les in further experiments), to 1 GB, as increasing object size has a
marginal impact on performance from some point. Both drivers achieve a comparable write
performance for larger object/�le sizes (over 128 MB). Moreover, since ObjDedup reuses the
deduplication implementation (e.g., chunking, �ngerprinting), it achieves the same deduplica-
tion ratios. With smaller object/�le sizes, there are di�erences in write performance in favor
of ObjDedup. The read throughput is comparable for all object sizes; the only noticeable
di�erence is for 8 MB objects in favor of ObjDedup.

8
M
B

32
M
B

12
8
M
B

51
2
M
B

1
G
B

1

2

3

File / Object size

N
or
m
al
iz
ed

th
ro
u
gh
p
u
t

Non-dup. Dup. 100% Dup. 90% Reads

Figure 4.11: ObjDedup throughput normalized
to results of the �le system.

4.
57
M
B

45
.7
M
B

45
7
M
B

0

0.5

1

Object size

N
or
m
al
iz
ed

th
ro
u
gh
p
u
t

Figure 4.12: Throughput of writing with
three di�erent object sizes normalized to
throughput of writing with the one (average)
size.

45

Since ObjDedup is expected to handle simultaneous streams from multiple backup appli-
cations, the data in each of the streams can come in di�erently-sized objects. Nevertheless, as
Fig. 4.12 shows, the throughput of writing data from three simultaneous streams with di�erent
object sizes (2/8/32 MB, 20/80/320 MB, 200/800/3200 MB) does not diverge signi�cantly
from the throughput of writing the same streams with a single object size (4.57/45.7/457 MB).
The object size was selected as an average object size when three streams of equal size were
written with three di�erent object sizes (e.g., when three 1024 MB streams are written in
2/8/32 MB objects, the average object size is 4.57 MB).

Scalability

To demonstrate the scalability of ObjDedup, Fig. 4.13 depicts the throughput of writes in the
three di�erent write workloads (100% non-duplicates, 100% duplicates, 90%:10% duplicates to
non-duplicates) and with three di�erent object sizes (512 KB, 8 MB, 512 MB) that represents
very small, medium and large objects (as presented in Fig. 4.11 increasing object size over
128 MB has a marginal impact on the performance). The presented values are normalized to
the per-server throughput of 4-server HYDRAstor setup.

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

N
or
m
al
iz
ed

th
ro
u
gh
p
u
t

(5
12

K
B
ob
j.
)

Non-duplicates Dups 90% Dups 100%

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

N
or
m
al
iz
ed

th
ro
u
gh
p
u
t

(8
M
B
ob
j.
)

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

Number of servers

N
or
m
al
iz
ed

th
ro
u
gh
p
u
t

(5
12

M
B
ob
j.
)

Figure 4.13: Scalability of ObjDedup (normalized to results for 4 servers).

On average, 18 servers were 4.41 times faster than four. The worst result (an average
improvement of 4.18) was obtained with the smallest objects (512 KB), which reinforces the
claim that e�ciently handling small objects is not trivial. The smallest possible distributed

46

con�guration (2 servers) is also included in the plot, but the results are a bit skewed, as such
con�guration uses far less network communication.

Overheads

We also measured and evaluated the overheads incurred by ObjDedup in terms of resource
consumption (memory, storage, CPU), response latency, and scaling.

Memory consumption: The major cost is bu�ering data incoming through the HTTP
server. The bu�ering is required to ensure that all components of the system have enough
work to achieve a high level of parallelism. In our experiments, we use a 2-GB bu�er per
server, which is su�ciently large. The memory overhead of other data structures is in turn
signi�cantly smaller (e.g., metadata of 50k objects in an OML take less than 200 MB, even
with 3 KB of metadata per object). Overall, none of our experiments consumed more than
3 GB of RAM per server.

Storage space consumption: Data blocks are referenced, and these references can take
up a considerable amount of storage space. However, this happens with any interface, not
just ObjDedup. Similarly, objects contain their metadata (up to 3 KB per object), but any
object storage system must keep these. Therefore, the most important aspect is quantifying
additional overheads in OMT and OML.

For each object, besides its metadata, an OMT leaf keeps 20 bytes of our internal metadata.
Second, there are internal OMT blocks (storing object keys of up to 1 KB and separators), but
with a branching degree S = 64, there are on average 48x fewer of them in the penultimate
level of an OMT than leaves, and far fewer on all other levels combined. Finally, an OML keeps
metadata of a limited number of objects (typically ∼50k), which is negligible in comparison
to the millions of objects kept in the system. What is important, however, is that, during a
merge, each object in an OML can cause a rewrite of a whole OMT leaf, and both versions
of such a leaf need to be stored until the merge is �nished. Therefore, for S=64, an OML can
store as many as 3.2 M of object metadata copies. To sum up, with a realistic workload for
backup data (e.g., object data being considerably larger than object keys) and multi-terabyte
storage servers, the storage capacity overheads incurred by ObjDedup are far below 1% of the
system capacity.

CPU consumption: If HTTPS is enabled, the majority of CPU load is due to encryption
and decryption, as providing a multi-gigabyte throughput with cryptographic algorithms can
require multiple cores. The CPU consumption of ObjDedup itself, in turn, highly depends
on the workload. Typically, it does not exceed 3 cores per server, mostly handling HTTP
requests and managing the OMT.

Latency: In the expected write-dominant backup workloads, the latency overhead is
marginal and mostly comes from the fact that at the end of writing an object, an OML
entry must be written in the block storage. However, there are two cases in which ObjDedup
increases the latency considerably. First, when reading an object, multiple levels of the OMT
are accessed, unless at least some of them are cached. In e�ect, the time of arrival of the
�rst bytes of the data is proportional to the height of the OMT. For instance, if the OMT
has 5 levels and a block read takes 100 ms because of the concurrent load, reading object
data will take 500 ms. Second, a metadata merge can cause numerous additional I/Os per
object if object keys are non-sequential, which we study in microbenchmarks (Section 4.5.3).
In such cases, the storage cluster can become overwhelmed with requests and have several
times longer response times, which ultimately increases the latency of all operations.

Scaling: As shown previously, the throughput of ObjDedup scales nearly linearly (as
presented in Fig. 4.13), just as bare HYDRAstor. However, this is true as long as meta-

47

data handling does not become a bottleneck. We study such problematic scenarios in the
microbenchmarks (Section 4.5.3).

Conclusions

To sum up, the main performance goals of ObjDedup were met. The achieved throughput of
writing and reading backup with ObjDedup is comparable to the results achieved by �lesystem
driver for large objects/�les and even better for smaller objects/�les. In general, ObjDedup
scales linearly, just as the underlying storage cluster. Finally, the overheads on ObjDedup are
limited.

4.5.2. Comparison with Existing Solutions

In this section, we show how ObjDedup compares against the state of the art. As mentioned
previously, we are not aware of any prior work that closely matches ours, and hence for
comparison, we select systems that are close to our solutions in as many relevant aspects
as possible. In Section 4.5.2, we thus compare ObjDedup to two state-of-the-art open-source
object stores. In Section 4.5.2, in turn, we compare it to three �le systems with deduplication.

Furthermore, performing the comparison was still challenging because of signi�cant di�er-
ences between ObjDedup and the reference systems. To avoid bias in favor of our solutions,
the experiments evaluated ObjDedup in an unfavorable setup: in the �rst one, ObjDedup
was the only object store that performed deduplication during non-duplicate writing, and in
the second, the con�guration was far from what ObjDedup was designed for.

Backup Throughput

In the �rst experiment, we used COSBench [345] to compare ObjDedup with other object
stores. COSBench is a framework that enables performance testing of object storage but does
not support writing duplicates. Therefore, we modi�ed its code for that purpose. As the two
reference systems, we selected Ceph with RadosGW and MinIO, which are state-of-the-art
open-source object stores. We chose them despite their lack of in-line deduplication, because
we did not �nd any alternative o�ering this feature that could be used in the experiments or
had comparable results published.

In the experiment, we used one of our servers (2x Intel Xeon CPU E5-2620 v3 2.40GHz
and 12x 4 TB SATA HDD). We decided upon the single-server setting, as it signi�cantly
simpli�ed the setup and result analysis. Each of the three systems used 9+3 erasure codes,
which give a high failure resilience with 12 disks and are broadly adopted (e.g., they are
proposed in Ceph's documentation [66]). To store data internally, we used XFS for MinIO
and BlueStore for RadosGW, which are recommended to achieve a high performance. The
object sizes in the presented experiments vary from 8 KB to 2 GB, as decreasing them even
further did not a�ect the number of operations per second and increasing them did not a�ect
the throughput.

For non-duplicates, ObjDedup achieves a similar throughput as the others (Fig. 4.14). De-
spite the fact that deduplication consumes additional resources when writing non-duplicates,
ObjDedup is either the fastest or the second fastest system. With duplicates, in turn, it
has a 1.8�3.83x higher throughput than the others (up to 2790 MB/s), which is expected,
because for duplicate writes in-line deduplication can overcome the limits of HDDs. Finally,
in COSBench read tests (not plotted), the performance of ObjDedup is also comparable to
MinIO and RadosGW. With small objects, it exceeds 740 GET/s. Its throughput with 32MB
or larger objects is in turn close to 800 MB/s.

48

8 KB 64 KB 512 KB 4 MB 32 MB 256 MB 2 GB

101

102

103

Object size

M
B
/s

ObjDedup (non-dup.) ObjDedup (100% dup.)

MinIO RadosGW

Figure 4.14: Write throughput (log. y-axis) with varying object sizes.

Files/Objects per Second

In the second experiment, we compared ObjDedup with existing deduplication solutions.
Therefore, we selected three commercial �le systems with in-line deduplication. We do not
disclose their vendors, as our goal is to validate ObjDedup and not to compare the products.

Some of the �le systems were designed for a mix of HDDs and faster storage devices (e.g.,
for a write-back journal). Therefore, to �nd the common denominator and make it possible to
compare the solutions, we employed two testbeds: the �rst using SATA 1 TB 7200 RPM HDDs
and the second using NVMe 1 TB SSDs for all kinds of storage. Both con�gurations were
very di�erent from what ObjDedup was tuned for, especially the full-SSD one, but facilitate
result reproduction. In both of them, a single machine with Intel Core i7-7820X @ 3.60GHz
and 64 GB RAM was used, as some of the �le systems do not scale to more machines.

The presented experiments were conducted using MinIO's client, which can copy data to
both �le systems and object stores. Nevertheless, experiments with other tools gave similar
results. We also conducted experiments with MinIO con�gured as a layer on top of each �le
system to provide object storage with in-line deduplication.

Initially, we intended to show results for objects and �les of various sizes, similarly to the
previous experiments. However, for objects below 100 MB, ObjDedup was typically one or
two orders of magnitude faster, so we decided to investigate the phenomenon even further.
Therefore, we limited the contents and �le names to 32 bytes, despite the fact that ObjDedup
was not designed to handle data in such small objects e�ciently. In that way, we were able to
measure the upper bound for operations (�le creates or object PUTs) of each solution. The
same directory was copied twice, so in the second run, all data were duplicates.

As shown in Fig. 4.15, ObjDedup can handle 4.6�8.35x more operations than the fastest
of the �le systems. In general, �le systems with in-line deduplication are complex, so handling
so many �les per second is challenging for them. In contrast, ObjDedup applies updates to
the OMT in batches, so they are highly e�cient. Additionally, MinIO's client copies �les to
a temporary location and renames them afterward to prevent listings on inconsistent �les, so
two operations are needed per �le. Compared with MinIO on top of a �le system solution
(FS+MinIO in Fig. 4.15), ObjDedup can handle 5.26�11.34x more PUT/s, which is justi�ed
as an additional layer introduces new overheads. To sum up, even with such a minimal object
size, none of the �le systems reaches a request rate comparable to ObjDedup.

49

HDD
non-dup

HDD
dup

SSD
non-dup

SSD
dup

0

500

1,000

1
6
.7

3
1
.2
7

1
6
.8
5 1
5
0
.6

8
.9
8

1
9
.6
5

7
.7
6 7
8
.3
5

1
2
0
.8

1
1
1
.0
8

1
8
3
.6
5

2
0
0
.2
6

7
4
.7
9

8
1
.8
1

1
6
0
.7
7

1
6
7
.3
9

1
.8
9

2
.0
8

4
4
.6
4

5
0
.7
6

0
.8
3

1
.0
6

1
9
.4
6

2
0
.2
4

6
4
5
.9
9

9
2
8
.2
7

8
4
5
.6
6

1
,1
4
2

O
P
/s

FS1 FS1+MinIO FS2 FS2+MinIO

FS3 FS3+MinIO ObjDedup

Figure 4.15: Number of operations (�le copy / object put) per second.

Conclusions

ObjDedup is the �rst system of its kind and therefore comparison with existing solutions was
challenging but we managed to conduct experiments with systems that are somehow similar.
Compared to object storage implementations on top of �le systems provided by state-of-the-
art deduplication solutions, our solution can handle signi�cantly more requests per second
(5.26�11.34x). Moreover, ObjDedup o�ers a much higher throughput when writing duplicate
data (1.8�3.93x) compared to leading object stores without in-line deduplication.

4.5.3. Microbenchmarks

OMT is our novel data structure essential for high performance. If a metadata merge takes
too long, new requests cannot be handled, and the system throughput is decreased. For
instance, if an OML stores up to 50k entries and a merge takes 100 seconds, the system
cannot handle more than 500 PUT/s. Therefore, we evaluate the metadata merge and the
distributed metadata merge in a series of experiments that show their performance under
various circumstances, especially, how the pattern of the workload a�ects the performance of
a merge.

The experiments were on-purpose conducted in a rather small con�guration to emphasize
the impact of the pattern and not system scaling. More speci�cally, the con�guration involved
two servers with 12x SATA 7200 RPM 6 TB HDDs each and 2x Intel Xeon CPU E5620 @
2.40GHz or 2x Intel Xeon CPU E5620 @ 2.40GHz. The �rst server hosted both an object driver
and a storage cluster server, and the second�just a storage server. Our testbed thus consisted
of more than one server but only one object driver conducted merges (merge scalability is
evaluated in further experiments).

To discuss the experiments, let us explain the object key patterns they utilized. In the
rand pattern, all keys consisted of generated UUIDs, so object metadata were uniformly
distributed across a large number of OMT leaves. In the seq pattern, objects were written to

50

1000 di�erent pre�xes (50 characters of a pre�x followed by subsequent integer numbers), so
consecutive objects belonged to the same or neighboring leaves. Seq thus approximated what
we would expect from backup applications, while rand modeled a theoretical worst case. In
addition, in some experiments�those with su�x -delay�block reads in the storage cluster
were delayed by 150 ms to simulate a system overloaded with other tasks (e.g., due to drivers
other than ObjDedup). Finally, unless stated otherwise, up to 50k entries were stored in an
OML before a merge was initiated.

Prefetch Algorithms

First, we evaluate the impact of our metadata merge prefetching (OMT Prefetch). Without
any prefetching, waiting for consecutive reads increases the merge time to tens of minutes,
even when an OMT contains less than a million objects (Fig. 4.16). Therefore, prefetching is
simply a necessity.

2 · 105 2.5 · 105 3 · 105 3.5 · 105 4 · 105 4.5 · 105 5 · 105 5.5 · 105 6 · 105

101

102

103

Number of objects in system

T
im
e
(s
)

NoPref OMTPref

Figure 4.16: OMT merge with data written in rand pattern.

However, with a naive approach, referred to as the AllInt Prefetch, which simply prefetches
all internal nodes of the OMT, the number of read nodes increases linearly in the total number
of servers, even in the seq pattern (Fig. 4.17). In contrast, with the OMT Prefetch, it stabilizes
around 10 seconds.

Since merges without the OMT Prefetch are slow, all experiments in the subsequent
sections utilize it.

1 · 106 2 · 106 3 · 106 4 · 106 5 · 106 6 · 106 7 · 106 8 · 106 9 · 106 1 · 107

10

20

Number of objects in system

T
im
e
(s
)

AllIntPref OMTPref

Figure 4.17: OMT merge with data written in seq-delay pattern.

51

Key and Metadata Sizes

As described in Section 4.2.1, an object key can consume 1 KB. Each OMT node stores full
keys, so the key size a�ects the amount of information that is written and read during a
merge. Object metadata, which consume additional kilobytes, are not kept in internal nodes
but can be stored in leaves to decrease the number of I/Os for HEAD requests.

Long keys can increase the time of a merge up to 2x (cf. Fig. 4.18) if a bottleneck on the
throughput of processed metadata arises. Moreover, if each OMT leaf stores additional 2 KB
of uncompressible metadata, the time of a merge grows even further (Key1KBmetadata2KB
in Fig. 4.18). In such a scenario, keeping object metadata together with object data should
be considered. In practice, a block containing multiple keys can be compressed when the keys
are similar (typically, long keys have a common pre�x). If keys are large, but blocks holding
them compress well, there is hardly any impact on the merge time (CompressibleKey1KB in
Fig. 4.18).

0 5 · 106 1 · 107 1.5 · 107 2 · 107 2.5 · 107
0

20

40

60

80

Number of objects in system

M
er
ge

ti
m
e
(s
)

ShortKey Key1KB
Key1KBmetadata2KB CompressibleKey1KB

Figure 4.18: Merge time depending on key and user-de�ned metadata size.

Number of Objects

As shown in Fig. 4.19, irrespective of the total number of objects in the system, for the seq
pattern, a merge takes at most 10�11 seconds, even with an arti�cial delay of 150 ms on the
storage cluster emulating other load. This is because under this pattern the locality is high,
so most of new objects are added in groups to new OMT leaves, and also few of the internal
OMT nodes require rewriting.

The results are much di�erent with the rand pattern, as the changes are distributed across
the whole OMT. Therefore, the top levels of the OMT are almost completely rewritten, and
each of the deeper levels requires up to 50K changes. In Fig. 4.19, the plot for the rand
pattern looks almost like a linear function despite the fact that tree height is a logarithm
of the objects number. Two phenomena contribute to this behavior. First, the number of
internal nodes is small (about 10K for 25M objects), so most of them are rewritten when
50K randomly distributed objects are added. Second, the e�ciency of caching in the storage
cluster diminishes, because the larger the tree is, the less data locality.

To get more insight into how the bottleneck on reads from the storage cluster a�ects
metadata merge for the rand pattern, we include results for two di�erent types of erasure
codes, that is, apart from the default 9+3, also 3+9. In rand/9+3 and rand-delay/9+3, each
read of a block needs 9 disk accesses. With such a volume of disk read I/Os, the merge time
increases quickly for over 40M objects when the cache e�ciency drops. In contrast, with

52

0 1 · 107 2 · 107 3 · 107 4 · 107 5 · 107 6 · 107 7 · 107
0

20

40

60

Number of objects in system

M
er
ge

ti
m
e
(s
)

Seq Seq-delay Rand/9+3

Rand-delay/9+3 Rand/3+9 Rand-delay/3+9

Figure 4.19: OMT merge with di�erent key naming and EC schemes.

3+9 codes, each read needs 3 disk accesses, so the disks were not overloaded, and a merge
can �nish almost twice as fast. Note that there are techniques that allow for reducing disk
accesses, such as adopting erasure codes requiring fewer I/Os during reads or simply caching
a larger fraction of internal OMT nodes.

Distributed Metadata Merge

The last microbenchmark evaluates the distributed metadata merge in con�gurations of up to
16 servers hosting object drivers. In such a distributed setup, each object driver writes into
its own OML, so the number of entries processed by each merge can be increased without
changing the size of the OML per driver. In other words, an increased number of servers
increases the number of objects processed per merge.

Figure 4.20 shows how the time of a merge changes for the rand pattern when the number
of objects driver instances and storage servers (one per driver instance) increases with the
number of entries per merge. Despite the driver coordination overhead due to the distribution,
16 servers are able to merge 800k objects faster than 8 servers merge 400k objects, 4 servers
merge 200k objects, or 1 server merges 50k (using a non-distributed merge). This is because,
with more objects in a single merge, the ratio of changed internal OMT nodes to leaf nodes
decreases. In other words, the more changes to apply in a merge, the higher the probability
that two or more objects have a common leaf or internal nodes. This characteristic enables
handling the same load more than twice as fast when the number of servers is doubled.

On the other hand, the total number of objects in a system with more servers could likely
be larger as well. In such a scenario, there is some loss resulting from the load distribution
overhead and the increased subtree heights. For instance, for 30M objects in the system with
8 servers, a merge takes 45.335 s, while for 60M objects and 16 servers, it takes 50.951 s.
Again, however, it is worth emphasizing that these results are for the rand pattern, which
entails a lot of reads dispersed across virtually all parts of the OMT.

53

0 1 · 107 2 · 107 3 · 107 4 · 107 5 · 107 6 · 107 7 · 107
0

50

100

Number of objects in system

M
er
ge

ti
m
e
(s
)

1 server (50k/merge) 4 servers (200k/merge)

8 servers (400k/merge) 16 servers (800k/merge)

Figure 4.20: OMT distributed merge time with random keys.

A backup job, in contrast, typically a�ects only a consistent subset of the OMT (e.g., the
keys have a common pre�x). Therefore, we also analyze the seq pattern, scaling the number
of pre�xes for which data are written sequentially (1000 with one server, but 16,000 with 16
servers). As can be seen in Fig. 4.21, similarly to the previous seq experiments, the total
number of objects has a marginal impact on the time of a merge. Moreover, as for the rand
pattern, the merge time decreases with the number of servers. These are highly desirable
behaviors for the considered backup applications.

1 · 107 2 · 107
0

2

4

6

8

10

Number of objects in system

M
er
ge

ti
m
e
(s
)

1 server (50k/merge) 4 servers (200k/merge)

8 servers (400k/merge) 16 servers (800k/merge)

Figure 4.21: OMT distributed merge time with seq keys.

Conclusions

Our microbenchmark shows that our metadata structures consumes a small fraction of avail-
able resources for workloads with sequential pre�xes, and also reasonably well with more
malicious patterns. Even in workloads with randomized pre�xes, our merging algorithms
processes hundreds of operations per server per second. Moreover, as our evaluation shows,
our distributed merging techniques allows e�ective scaling to handle thousands operations per
second.

54

4.6. Conclusions

To sum up, there is a growing market demand for object storage interfaces in scale-out backup
appliances with deduplication. Using empirical data from 686 real-world deployments of such
commercial systems, we showed that a key challenge when aiming to provide support for such
interfaces e�ciently is the management of object metadata resulting from a di�erent data
organization and usage patterns of object storage. To address this problem, we proposed
ObjDedup, a suite of distributed data structures and algorithms optimized to keep object
metadata in immutable globally deduplicated block storage. We implemented ObjDedup as a
layer on top of HYDRAstor and evaluated the implementation experimentally. The obtained
results indicate that the performance of our solutions is comparable to that of the classic
interfaces o�ered by HYDRAstor, despite the more challenging usage patterns. Moreover, our
solutions can handle signi�cantly more requests per second (5.26�11.34x) than object storage
implementations on top of �le systems provided by state-of-the-art deduplication solutions.
Likewise, compared to leading object stores without in-line deduplication, it o�ers a much
higher throughput when writing duplicate data (1.8�3.93x), not to mention the compelling
storage cost reductions due to deduplication.

From a broader perspective, our preliminary study and evaluation of ObjDedup show that
the trend in backup applications dedicated to object storage to write data as relatively small
objects is problematic for traditional backup systems with deduplication. While ObjDedup
addresses these challenges in a wide range of common con�gurations, we also demonstrated
corner cases that are particularly hard to handle, such as extremely small objects, large keys
that do not compress well, or keys without locality. As a result, we believe our study can also
guide backup applications in how to adjust object writing patterns to maximize performance
of storage with deduplication. Moreover, ObjDedup is an e�ective implementation for the
object storage interface, and hence, it allows the utilization of backup appliances by cloud
applications.

55

Chapter 5

InftyDedup: E�ective Cloud Tiering

with Deduplication

Managing the surging volumes of data that require protection or long-term retention increas-
ingly necessitates novel backup strategies [30]. A popular approach is employing cloud-based
solutions. For instance, according to Veeam, the number of organizations adopting cloud-
powered data protection is expected to rise from 60% in 2020 to 79% in 2024 [303]. Similarly,
in a survey by ESG, 72% of the participants con�rmed using tiering techniques to move colder
data (e.g., older backups and archives) from on-premise storage to the cloud [50].

In this context, deduplication can become e�ective and, as a result, is a core feature of
several storage systems for on-premise backup applications [94, 234, 348]. In this light, for
backup use cases, it is sensible to consider cloud tiering with deduplication, that is, moving
data from a local tier (e.g., on-premise backup appliances such as HYDRAstor) to a cloud
tier (e.g., a cloud object store like Amazon S3), so that ultimately the data kept in the cloud
tier are deduplicated.

However, implementing cloud tiering with deduplication poses two major problems. First,
state-of-the-art cloud storage systems provided by hyperscalers (e.g., Amazon, Google, and
Microsoft) do not o�er deduplication as a core functionality for their clients. Consequently,
deduplication algorithms tailored for cloud tiering have to be developed. In the process,
the extra tier should be treated not only as a challenge but also a potential opportunity for
exploring novel deduplication paradigms dedicated for the cloud. Second, there is a large
variety of available cloud storage service types, notably di�ering in pricing models. Initially,
a lower storage cost implied a longer retrieval time (e.g., AWS Glacier [43]) but nowadays,
systems like AWS Glacier Instant Retrieval [313] o�er the same performance as other cloud
storage services. The trade-o� is that with a decreased per-byte monthly storage fee, the costs
of data retrieval and the minimal data storage period are increased. Therefore, algorithms
have to be devised to decide what type of service to use for which data, speci�cally considering
the peculiarities due to deduplication.

As we discuss in more detail further in the chapter, despite some research progress, these
two problems are largely open. In short, regarding the �rst problem, although a few backup
applications [310, 247] and backend appliances [95, 281] with deduplication o�er mechanisms
for cloud tiering, they heavily rely on and are implemented mainly in the local tier. In e�ect,
deduplication between di�erent local tier systems is not supported for data stored in the
cloud. Moreover, the entire process is fundamentally limited by the resources of the local
tier. In other words, despite the possibilities o�ered by the hyperscalers, the actual scalability
of the cloud tier in such solutions is severely limited, proportionally to what is o�ered by

57

the local tier. When it comes to the second problem, although the diversity of the service
models o�ered by the hyperscalers can also be exploited in some solutions [232], this has to be
con�gured manually or, at best, through policies depending on the ages of data collections.
However, deduplication typically entails chunking data collections into smaller pieces that
will hopefully be referenced multiple times, thereby possibly having di�erent access patterns.
This calls for �ner-grained and more automated approaches to storage type selection.

In this chapter, we address both these problems, introducing solutions for scalable and
cost-e�ective cloud tiering with deduplication. Accordingly, our contribution is twofold.

First, we present InftyDedup, a novel system for cloud tiering with deduplication. Like the
existing tiering-to-cloud backup solutions, InftyDedup moves selected data from a local-tier
system to the cloud, based on customer-speci�c backup policies. However, its operation aims
to maximize scalability by exploiting cloud services�not only for storage but also for com-
putation. Therefore, rather than relying on deduplication methods of on-premise solutions,
InftyDedup deduplicates data using the cloud infrastructure. This is done periodically in
batches before actually transferring data to the cloud, which, among others, enables dynamic
allocation of cloud resources. Other functionalities, such as garbage collection of deleted data,
are supported in the same way. We integrate InftyDedup with HYDRAstor [94], a commercial
backup system with deduplication, and evaluate its performance in AWS, demonstrating that
multiple petabytes can be deduplicated for a couple of dollars. Being highly independent of
the local tier, InftyDedup overcomes the limitations of similar state-of-the-art technologies
and o�ers unprecedented scalability. To the best of our knowledge, this is the �rst application
of such solutions to backup systems.

The second contribution is an algorithm for decreasing the �nancial cost of storing dedupli-
cated data in the cloud tier. It extends InftyDedup by allowing it to move deduplicated data
blocks between cloud services dedicated to hot and cold storage. Whereas existing solutions
do not address the problem at all or enable some optimizations at the level of data collections
(e.g., backups or �les), the fact that blocks are deduplicated between backups/�les makes
them a better unit for optimizations. In InftyDedup, the blocks are moved based on their
metadata, notably deduplication reference counts and terse information provided by system
administrators on their data collections. Our empirical evaluation of the algorithm shows that
mixing storage types can reduce the total �nancial cost of cloud tiering with deduplication
by up to 26�44%.

The rest of the chapter is organized as follows. Section 5.1 gives the background. Sec-
tion 5.2 describes the overall architecture and speci�c algorithms comprising InftyDedup.
Section 5.3 discusses the algorithm for exploiting cold cloud storage for cost minimization.
Section 5.4 presents the experimental results. Finally, Section 5.5 concludes.

5.1. Background

To design InftyDedup, we assumed a typical implementation of deduplication system, de-
scribed in Chapter 2. The data stream is chunked into small immutable blocks of size from
2 KB to 128 KB [286]; each block receives a �ngerprint; the �ngerprint is compared with
other �ngerprints in the system, and if it is unique, the block is written.

In case of tiering, a block can be removed after it has been migrated to another tier.
However, reclaiming storage capacity in the presence of deduplication is nontrivial, as the
system must ensure there are no other references to the removed block. Complex garbage-
collecting algorithms are implemented [118, 283] which may process block metadata for hours.

In our research, we leverage the characteristics and lifecycle of backups to decrease the

58

total storage cost. Therefore, this section reviews the characteristics of backups, and cloud
services, which are essential for the architecture of InftyDedup.

5.1.1. Lifecycle of Backups

Typically, backups are created and managed based on assigned retention policies [127]. From
the perspective of our research, there are two essential constraints regarding the timing and
life cycle of protected data.

On the one hand, the data should be up-to-date and available quickly in case of a disas-
ter. For instance, Zerto reports [337] that their customers achieve Recovery Point Objectives
(maximal length of period from which data is lost after a disaster) of seconds and Recovery
Time Objectives (maximal time when data can be inaccessible after a disaster) of minutes.
To achieve such ambitious objectives, recent data are kept as closely as possible to the infras-
tructure being recovered.

On the other hand, older versions of backups need to be stored for weeks, months, or
even years [302]. As the objective points for older data di�er, backups are often moved to
less expensive storage after a speci�c time [311, 338]. Cloud is often chosen to keep the older
backups for many reasons, including storing data in a di�erent physical location. The pricing
model of cloud storage is also appealing, but as described in the next section, many factors
in�uence the total costs.

5.1.2. Cloud Storage

The market of cloud storage is mostly shared between three hyperscalers: Amazon Web Ser-
vices, Microsoft Azure, and Google Cloud (as we described in Section 3.3). Therefore, in our
considerations, we assume services o�ered by the three as a market standard.1 The portfolio
of hyperscalers comprises numerous storage and computing products: from databases, queues,
and distributed �lesystems to simple storage primitives, such as objects or blocks. Our goal
is to minimize the storage cost of backups, so our research focuses on the most a�ordable
products. The lowest price per stored gigabyte is o�ered by cold archival object stores, which
are orders of magnitude cheaper than block devices, as shown in Tab. 5.1. However, many
factors determine the total cost, including fees per request or I/O, charges for removing data
before meeting the minimal storage duration, and data transfer costs. Accessing data in some
types of the coldest storage takes additional time (e.g., 12 hours), but every hyperscaler o�ers
cold storage with instant access [51, 113, 313].

Amazon
Web Services

Microsoft
Azure

Google
Cloud

Block Storage [$/GB] 0.08 0.15 0.04

Object Storage [$/GB] 0.021 0.0166 0.02

Archival
Object Storage [$/GB] 0.004 0.01 0.004

Coldest Archival
Object Storage [$/GB] 0.000 99 0.000 99 0.0012

Table 5.1: Sample monthly costs of storing blocks and objects in public clouds 2[17, 14, 111,
112, 216].

1However, there are numerous innovative services o�ered by other providers. For instance, the latest trend
to decentralize the cloud [270, 272] can help to implement InftyDedup e�ciently.

59

Uploading data to the cloud is usually free, whereas the cost of downloading data once a
month can outweigh the cost of monthly data storage. In either case, network throughput to
the cloud is a major concern. Hyperscalers o�er connecting data centers to the cloud directly
(e.g., with 100 GbE) [19, 25], but the availability of such networks is limited to speci�c regions.
Alternatively, physical devices can be used for the movement of data [21], but it is rather for
niche applications. Therefore, moving terabytes to the cloud can take up days.

5.1.3. Cloud Computing

The product portfolio of cloud computing services is also versatile, as summarized in Sec-
tion 3.3. Among others, there are virtual machines (e.g., AWS EC2), containers (e.g., AWS
ECS), and other services, such as event-driven function execution (e.g., AWS Lambda). The
pricing model of computation services is typically based on the cost of the lower-level resources.
For instance, ECS allows running containers on EC2 instances, so the cost of container execu-
tion depends on the amount and size of virtual machines which host the containers [16]. This
billing model enables utilizing numerous servers (e.g., hundreds of servers) for short periods
at a very low cost.

What is important for cost reduction, hyperscalers o�er so-called spot instances, which are
virtual machines with a discounted price of up to 90%. Spot instances can be interrupted by
their cloud provider at any moment, but the computations interrupted within the �rst hour are
free [23]. The exact price of a spot instance depends on multiple factors (e.g., the momentary
demand), but historical data shows that achieving both a very low risk of termination and
a signi�cant cost reduction is possible [96]. Virtual machines (including spot instances) can
have their local storage (e.g., SSD drives) that is less expensive than network-attached drives
but has limited durability as the data are lost if the machine is destroyed or fails.

To minimize the costs of computations, we considered these cloud attributes in the archi-
tecture of InftyDedup.

5.1.4. Data Security in Cloud

A large number of publications explore security threats of deduplication in the cloud. There-
fore, several methods of preventing particular attack types were proposed [49, 160, 182, 336].
Likewise, side channels leaking information from deduplication storage have been studied
[32, 38]. Most threats arise from the situation in which a public cloud provider implements
deduplication between users. InftyDedup is meant to be utilized by a single organization,
and writing to InftyDedup requires accessing the local tier, so the situation is much di�erent.
Nevertheless, some organizations might �nd the deduplication side-channels as a threat within
the organization, and adding security mechanisms to InftyDedup can be required. Moreover,
the users of InftyDedup may not trust the cloud provider, so the local tier can encrypt data
before storing them in the cloud. The structure of the data (information on block sizes and
which blocks are referenced by which �les) is still exposed to allow the computations, but the
situation is similar in other tiering with deduplication solutions, as restoring blocks reveals
the structure of �les.

2The price of storage products depends on many factors, including region. Each cloud provides many
products (e.g., each provider o�ers more than one cold object store). The prices between providers cannot be
compared directly because the products di�er. However, there are several categories of cloud storage products
similar to the order of magnitude of the price. The table contains list prices as of 2023-01-01.

60

5.1.5. Cloud Tiering with Deduplication

DD Tier [95] is tiering with deduplication that performs its computations in the local tier,
thereby imposing fundamental restrictions and limitations. First, deduplicating data between
di�erent local tier systems is impossible, as each system performs deduplication on its own.
Furthermore, all or at least a large fraction of metadata is needed locally to operate. Therefore,
metadata are stored in both tiers, which not only increases storage capacity usage but also
forces downloading a large amount of metadata to recover even a single �le. Moreover, the
resources for metadata storage and processing of the local tier are limited. As locally stored
metadata can consume hundreds of terabytes, the size of the cloud tier is limited (to 2x the
size of the local tier). Alike, deduplication and garbage collection algorithms cannot overuse
scarce local resources, especially RAM, CPUs, and disk I/Os. To this end, perfect hashing is
used to decrease memory requirements below 3 bits per �ngerprint. In e�ect, extending such
solution with techniques similar to our storage type selection is very di�cult.

DD Tier introduces a technique for estimating how much space will be freed from the
local tier after moving data to the cloud, and in recent years, signi�cant research attention
has been paid to the problem of selecting �les for e�cient data removal and migration in
systems with deduplication [123, 167, 221]. As long as such methods do not require storing
additional metadata locally, they can be used with InftyDedup.

5.2. Architecture of InftyDedup

InftyDedup moves selected data from local-tier systems (i.e., on-premise backup appliances
implemented as described in Chapter 2) to the cloud tier. The local tier is expected to have its
own deduplication and to be hardware-failure resistant (e.g., by implementing erasure codes
or RAID), as it persistently stores local data (e.g., data not selected for tiering). As shown
in Fig. 5.1, the cloud tier stores deduplicated data with necessary persistent metadata, and
occasionally executes highly optimized batch algorithms.

Before we describe the details of the structures and algorithms, we discuss our study
of cloud characteristics (Section 5.2.1) and the assumptions we made based on them (Sec-
tion 5.2.2). After that, we describe the structure of in-cloud data and metadata (Section 5.2.3),
the model of communication between tiers (Section 5.2.4), and algorithms of deduplication
(Section 5.2.5), garbage collection (Section 5.2.6), and �le restore (Section 5.2.7).

5.2.1. Cloud Cost Considerations

We studied the pricing of public clouds to design InftyDedup in line with the current trends.
First, we chose product types common for all vendors and compared the pricing models and
capabilities of each product with other products of the same vendor. We did not compare
pricing between vendors, as our goal was to design a cost-e�cient architecture for any regular
cloud, not choosing a particular vendor.

Keeping 1 PB of non-deduplicated data in a standard cloud object store costs between
$16, 600 and $21, 000 per month, and between $4, 000 and $10, 000 for archival object storage
with instant access. Therefore, the overall cost of storing data with deduplication, including
additional storage for deduplication metadata and costs of computations, must be lower than
that to bring any �nancial bene�t.

Assuming a deduplication block size of 8 KB, a 10:1 deduplication, and 20 bytes per
�ngerprint, 1 PB of data requires 262 GB of �ngerprints. If new backups of a similar size are

61

written each week, over 496 billion �ngerprint existence queries to the cloud are needed each
month.

Figure 5.1: The architecture of InftyDedup.

Modern architectures of deduplication often keep the �ngerprint index (or its parts) on
SSDs [7, 86, 209]. Considering a naive approach in which each deduplication query requires
a read I/O from an SSD drive, at least 190k I/Os per second are required to perform the
necessary queries each month. To estimate the cost, let us consider AWS as an example. The
monthly cost of EBS gp3 block storage which provides such an amount of I/Os per second
is $978, and EC2 instances (m5.large) capable of utilizing the I/Os cost $3827. With a total
cost of nearly $5000 monthly for just handling deduplication queries, there is still room for
a cost bene�t from deduplication (depending on the deduplication ratio). Nevertheless, the
price is signi�cant compared to the cost of storage without deduplication.

These calculations led us to our conclusion that, despite the fact that SSDs provide a
high number of random-read I/Os per second, relying on a random-read-intensive �ngerprint

62

index is not negligibly inexpensive in the cloud environment. Although there are techniques
that reduce the number of reads for traditional sequential workloads [348], their e�ciency is
decreased for modern non-sequential workloads, which need to be handled in addition to classic
sequential workloads, as explained by Y.Allu et al. [6]. Similarly, the e�ciency of methods that
rely on data locality (like SISL [348]) decreases when data are highly fragmented.3 Finally,
these methods are often not prepared to update block information during deduplication, which
is a necessary part of our algorithms for cold storage.

On the other hand, transferring data within the cloud is free of charge, and even the
cheapest instance can transfer hundreds of gigabytes per hour [24]. Having the possibility of
dynamically scaling resources between zero and hundreds of servers, processing the �ngerprint
index sequentially with a batch job can be more cost-e�ective than keeping the �ngerprint
index online 24/7 or relying on short-lived lambdas [20]. This is particularly true considering
up to 10 times less expensive computation using the aforementioned spot instances. This
key observation was used when designing the InftyDedup architecture based on assumptions
explained in the next section.

5.2.2. Assumptions and Design Decisions

Our principal assumption is that our cloud tiering deduplication must be processed outside
the local tier to overcome resource limitations and enable functionalities like deduplication
between many local tier systems. Therefore, all metadata required for deduplication must be
stored and processed outside the local tier.

As the network throughput between the tiers is limited, data movement between the tiers
should be minimal. Therefore, only non-duplicate data must be uploaded to the cloud tier.
When restoring data, it must be possible to download only the data absent at the local tier.
However, for e�cient disaster recovery, quick and granular backup restores must be possible,
even when the local tier is unavailable.

The next central assumption is that batch processing is preferred over streaming processing.
Therefore, the algorithms are executed occasionally (e.g., once a day or week for deduplication
and even less frequently for garbage collection). There are multiple reasons for that. Firstly,
as our cost analysis of public clouds shows, being prepared for data deduplication 24/7 is not
negligibly cheap. Secondly, as explained in Section 5.1.1, backups are typically moved to the
cloud after a speci�ed period, so batch processing can be done without disrupting the data
lifecycle. Finally, tiering to cloud with deduplication requires steps that take a signi�cant
amount of time: uploading data to the cloud, and running garbage collection in the local tier
to reclaim space there. All in all, performing a costly deduplication query with each write
brings few bene�ts in practice, and we decided to use the less expensive option of infrequent
batch processing.

Garbage collection in the cloud tier must be cost-aware to ensure that data removal costs
are not higher than keeping the data for a longer period. Similarly, storing frequently accessed
data in cold cloud storage actually increases the costs, so the deduplication and garbage
collection algorithms must be extendable with �intelligent� storage type selection.

Finally, our solution is meant to be suitable for a variety of cloud platforms and providers.
Although in our description and evaluation we focus on the most popular hyperscalers, our
architecture can be easily adapted to others. In particular, private clouds ensure privacy and
compliance, so we veri�ed our solution in our private cloud environment as well.

3Fragmentation also concerns the restore throughput [151, 189]. However, in the case of cloud storage, the
read performance scales, and even with random 8 KB reads, the egress tra�c cost is equal to the per-request
fee.

63

5.2.3. Data and Metadata in Cloud

Based on the assumptions, we designed persistent structures of InftyDedup to be kept in a
cloud object store as follows.

The largest structure contains blocks with deduplicated data grouped into containers.
Selecting the size of containers depends on the cloud pricing, as writing and reading larger
containers requires fewer requests but can increase rewriting costs when reclaiming space after
garbage collection.

The largest metadata structure contains �le recipes, which are e�ectively a list of per-block
metadata as they appear in each �le. If one block exists in a �le multiple times, its metadata
also occurs multiple times in its �le recipe. There are two types of �le recipes. Firstly, there
are unprocessed �le recipes (UFRs), which are provided by the local tier. UFRs contain the
�ngerprint of each block, as the local tier does not know the cloud location of the block. Later,
during deduplication processing, each entry of UFR receives a cloud address of the block it
references, so the �le recipes are converted to processed �le recipes (PFRs). A PFR can be
a simple list of cloud addresses or have a tree structure to enable deduplication of its parts.
In the latter case, �ngerprints of the PFR blocks are added to the �ngerprint index described
next.

The second largest metadata structure is the Fingerprint Index (FingIdx) which contains
a mapping from the deduplication �ngerprint of each block to the cloud location. FingIdx
is expected to be smaller than PFRs, as it contains only one entry per unique �ngerprint.
FingIdx is bucketed [291] rather than sorted, meaning the �ngerprints are divided into thou-
sands of buckets based on a hash function. Such a representation enables optimization of
distributed FingIdx processing, as each bucket is small enough to �t into server memory.

There are also a few orders of magnitude smaller structures that keep information per �le
or container. The metadata structures are compressed to reduce space and network usage.

5.2.4. Communication between Tiers

The data exchange between the tiers is bidirectional but kept to a minimum, as the network
connection between the tiers can easily become a bottleneck. Two types of information are
sent from the local tier to the cloud (cf. Fig. 5.1). For each �le selected for cloud tiering, the
local tier system generates a UFR (a list of �ngerprints of all blocks in the �le). The UFR
is later used as an input to batch deduplication, which generates in return a blocks-to-upload
list that is, in fact, a list of containers. Each container comprises unique blocks that still need
to be uploaded to the cloud tier. Based on the list, the local tier uploads the blocks to the
cloud. During a �le restore operation, blocks can be later downloaded from the cloud tier.

Therefore, the cloud tier has minimal requirements on the interface of the local tier. It is
su�cient that the local tier is able to generate a UFR and later upload blocks based on the
list of �ngerprints. The local tier can be composed of multiple systems, provided that each
system uses consistent chunking and �ngerprinting.

5.2.5. Batch Deduplication

Batch deduplication (BatchDedup) is our distributed method of block deduplication in the
cloud. It is expected to be run periodically, in harmony with the schedule of backups and
garbage collection in local-tier systems. Each execution of BatchDedup is a distributed, fault-
tolerant computation that ultimately changes persistent structures kept in the cloud object
store. The computations are divided into steps, and each of the steps comprises smaller jobs
that are parallelized and repeated in the event of failure. In our implementation, we used

64

YARN [300] to schedule jobs and HDFS [274] for reliable storage of temporary data. In
e�ect, the jobs can be run on spot instances, as proposed in the AWS guide [22]. The state
of computation is maintained by the YARN master node, which can be hosted on a non-spot
instance to increase reliability, but even if the entire computation fails, the valid version of
metadata always remains in the cloud object storage.

In short, BatchDedup takes UFRs as input, speci�es new containers with blocks to be
uploaded, waits until the local tier uploads the blocks, and updates persistent metadata.
The UFRs are expected to be uploaded to the cloud before BatchDedup is started (partially
uploaded UFRs do not take part in the process). The steps are as follows:

Step #1: UFR processing selects blocks that need to be uploaded to the cloud by
comparing �ngerprints from both UFRs and FingIdx. FingIdx and UFRs are bucketed based
on �ngerprints, and the buckets are distributed across multiple servers. After that, the �n-
gerprints are compared in batches that are small enough to �t in memory.

Step #2: Container generation splits blocks selected in Step #1 into containers to
generate descriptions for the local tier. Each server processes a subset of blocks, and the
blocks are distributed based on their original �le (so blocks from the same �le can be placed
in the same container). The blocks are sorted by the order (o�sets) in their original �les,4

as preserving the original order makes the latter step of uploading the container easier, and
reduces the number of requests for garbage collection and data restores for non-fragmented
data.

Step #3: PFR update is conducted after the �rst two steps, when the block location (its
container and o�set) is �nally known for both new and old blocks. Based on that information,
each newly written �le receives its PFR.

Step #4: Block upload is initiated by the local tier systems. The local tier systems
�rst download the descriptions of new containers (i.e., which blocks should be uploaded to
what container). After that, each of the local tier systems uploads the actual data. When
the uploads are successfully completed, the in-cloud metadata structures are updated to mark
the new �les as ready in the cloud.

The �rst two steps of BatchDedup are depicted in Fig. 5.2. Similar techniques are used
to perform the remaining steps of BatchDedup and garbage collection at scale.

Figure 5.2: The �rst two steps of BatchDedup processed in a distributed manner.

BatchDedup processes FingIdx and all recently uploaded UFRs but does not touch any
previously generated PFRs. As UFRs likely contain duplicates, in practice, the total size
of UFRs is expected to be at least comparable to the size of the whole FingIdx, and with

4A block is expected to exist in multiple �les or to be repeated within one �le. In such a case, only the
�rst appearance is stored in a container.

65

such an assumption, processing FingIdx does not dominate the asymptotic cost. Overall, the
process is expected to take time: BatchDedup is executed periodically, the computations in
Steps #1�#3 take from minutes to hours, and the block upload in Step #4 can even take
days, depending on the data volume and network bandwidth. As Step #4 is inevitable in
any cloud-tiering solution, the cloud tier alone is not suitable for providing very short RPOs.
However, as backups are moved to the cloud typically after a speci�c time, the steps can be
scheduled in periods that will not violate the timing constraints of the backup policy.

5.2.6. Batch Garbage Collection

Batch garbage collection (BatchGC in short) identi�es blocks no longer referenced by any PFR
and reclaims free space in the containers. BatchGC is expected to be executed periodically
but less frequently than BatchDedup. Both algorithms modify the same metadata structures,
so they cannot be executed simultaneously. However, �le restores are possible at any moment.

PFRs keep the addresses of containers, so rewriting a container requires modi�cations of
PFRs. The cost of processing PFRs is discouraging, as PFRs can be many times larger than
FingIdx. However, garbage collection is done only occasionally, so even if it is a few times
more expensive than BatchDedup, the overall cost of InftyDedup is not a�ected that much.
Therefore, our primary goal is ensuring scalability, which enables meeting the time constraints
of other garbage collection algorithms for deduplication storage [92, 283].

BatchGC comprises the following steps:
Step #1: File removal processes non-removed PFRs to �nd blocks that are still refer-

enced by at least one �le.
Step #2: Container veri�cation checks how many blocks in each container are live.

Based on one of the strategies (which we introduce shortly), a set of containers that will be
removed or rewritten is selected.

Step #3: Metadata are updated based on the results of Step #2. More speci�cally,
new metadata for modi�ed containers are calculated. Some blocks may receive a new address,
so new versions of FingIdx and PFRs are also needed.

Step #4: Containers are rewritten to actually reduce space usage. When all newly
generated containers are written, the metadata computed in Step #3 take e�ect, and old
containers are deleted.

Immediate removal of unreferenced data is not always optimal, as rewriting a container in
the cloud has a signi�cant cost. Therefore, we investigated three strategies to decide whether
a container should be rewritten:

GC-Strategy #1: Reclaim only empty containers. As in most cloud services,
sending a request to remove an entire container is free, the strategy brings a cost reduction
(as less capacity needs to be stored) with no additional cost. However, the strategy does not
remove containers in which only a fraction of data has been deleted.

GC-Strategy #2: Reclaim containers if the rewrite pays for itself after T days.
To determine whether rewriting a container will bring a cost-bene�t, the following ratio can
be calculated for each container:

x =
COSTrewrite

Tdays ∗ CAPACITYto_be_reclaimed ∗ COSTbyte_per_day
(5.1)

Only if x < 1.0, rewriting a container is less expensive than storing deleted data from the
container for Tdays. However, picking the proper value of Tdays is nontrivial. For instance, if
Tdays is the time left until the next BatchGC, the containers are rewritten only if it brings
�nancial bene�t before the next chance to remove any data. In many cases, such Tdays value is

66

too small and will prevent rewriting a container, although rewriting the container would bring
a �nancial bene�t in the long run. On the other hand, a large Tdays value implies frequent
rewriting, which can lead to exceeding Strategy #1 costs.

GC-Strategy #3: Reclaim containers based on �le expiration dates. GC-
Strategy #2 can be improved if �les contain information about their expiration date (de-
noted EXPtime). Such information can be provided by the local tier systems in UFRs, if
the EXPtime results from the backup con�guration. Therefore, for each container, Tdays can
be calculated as the maximal EXPtime of its blocks (aligned up to the BatchGC schedule).
EXPtime is expected to increase in time,5 as new �les with later EXPtime are stored. How-
ever, even with rising EXPtime, the cost never exceeds GC-Strategy #1, as a non-empty
container is rewritten only when it is bene�cial.

5.2.7. File Restore

The cloud metadata format supports straightforward �le restores. Each �le has its own object,
with the key based on the local tier system identi�er and �le path. Therefore, the object
storage interface features such as ACLs and per-pre�x listings can be used for convenient �le
management. Based on the PFR, which stores the container address and data o�set, the �le
can be read without accessing the local tier systems. As PFRs are updated during BatchGC,
the movement of data between containers during GC does not spoil the reads.

However, egress tra�c is a major cost, so restores can be additionally integrated with
the local tier for cost reduction. For blocks available locally, the download from the cloud
can be omitted. Blocks absent locally can be optionally stored in the local tier system after
downloading, as some workloads require reading data again in the near future (e.g., restoring
multiple similar VMs). Implementing such local-tier assisted reads requires storing �ngerprints
in PFRs, which increases the metadata size, but the �ngerprints can be easily added and
removed from PFRs on-demand in batch algorithms.

5.3. Cold Storage Utilization

To reduce the cost of storing data in the cloud, InftyDedup can be extended with an algorithm
that selects whether a block should be stored in hot or cold cloud storage. We aimed to
use cold storage services o�ering di�erent pricing models than other cloud storage products
but comparable durability and latency [113, 313]; otherwise, the movement of data to cold
storage would negatively a�ect the recovery time.6 Therefore, we focused on colder storage
which o�ers a reduced price of storing data but increases the price of restores and imposes
a minimal storage period (e.g., 90 days). To utilize the storage e�ectively, we rely on two
additional pieces of information provided with each �le (in UFRs):

1. Current expiration date, as in GC-Strategy #3.
2. Rough, expected frequency of �le restore.
As explained earlier, the expiration time is typically known. The restore frequency is

unknown in advance. However, assessing the read frequency of a �le is a common practice
for data kept in the cloud. For instance, Amazon explicitly recommends di�erent storage
classes for data accessed �once per quarter� and �1-2 times per year� [18]. In the speci�c
case of backups, assessing the restore frequency should be possible, as a study of numerous

5Theoretically, EXPtime can decrease if someone deletes a �le before the expiration date. We �nd such a
case rather marginal. In particular, enabling WORM protection [309] prevents such removals.

6Our algorithms can also work with the coldest storage services, which lengthens the retrieval process.
However, in such a case, additional information is needed to specify the allowed retrieval time of each �le.

67

backup jobs [26] suggests that backup domains fall into three categories: those with very
frequent restores, sporadic restores, and virtually no restores. Moreover, particular backup
policies in�uence the restore frequency [241], and an upper bound on the restores can be
calculated based on restore service-level agreements (SLAs). Finally, modern backup software
already implements tools that allow viewing historical data on the restore frequency of selected
resources [307].

The persistent data and metadata structures are organized as shown in Fig. 5.3.

Figure 5.3: Architecture of data and metadata with two types of data storage (hot and cold).
Fingerprint Index is extended.

The process of container writing during BatchDedup and BatchGC is extended to store
each block in an appropriate cloud storage type, as shown in Fig. 5.4.

Figure 5.4: Writing blocks to more than one storage type. Although it is already available
in colder storage, block b5 is written to hotter storage if it brings a cost bene�t (e.g., due to
expected frequent restores of b5).

Each block is stored in a storage type for which the following formula has lower value:

t=COSTinsert+(COSTB/day+COSTrestore∗FREQrestore)∗EXPtime (5.2)

In the formula, COSTinsert depends on cloud pricing, as well as the sizes of the block
and its container, as the amortized cost of data insertion is included. COSTB/day describes
the storage cost of the block. COSTrestore depends on the data locality, as many blocks can
be read with one request, so the upper bound for the COSTrestore can be calculated as one

68

request per block or assessed with a heuristic. FREQrestore and EXPtime are inherited from
�les referencing block and are stored with each block in FingIdx.

However, further adjustments to FREQrestore and EXPtime are required. This is because
the �rst decision about the storage type must be taken when the block is stored for the �rst
time and FREQrestore and EXPtime are underestimated, as more references to the block will
likely come in the future. For instance, a block can be initially stored in cold storage but later
it receives more references (and its FREQrestore increases). Vice versa, data with a short
EXPtime can be kept in hot storage, although a reference with a larger EXPtime may come
soon.

Therefore, both FREQrestore and EXPtime should be heuristically modi�ed. A heuristic
that worked well in our experiments relies on block reference counts. First, we select a number
R of expected references for each block (e.g., a hard-coded value 5 or a value calculated from
the system state). Then, we modify FREQrestore and EXPtime for blocks that have not
reached the expected number based on the formula (e.g., we multiply it by R− r, where r is
the actual number of references). In the end, FREQrestore and EXPtime for newly written
blocks are more similar to their future values.

In justi�ed cases, a block can be stored in multiple storage types (e.g., when a block stored
in cold storage receives a reference with a high FREQrestore), but BatchGC will eventually
remove the unnecessary copies. Similarly, BatchGC can move a block from one type of storage
to another (e.g., when a reference with high restore frequency has been deleted). Generally,
during BatchGC, a formula for calculating whether a container should be rewritten considers
the potential cost reduction caused by a change of the storage type. A decision on whether
rewriting a particular container is pro�table must be made for the whole container because
rewriting the container also introduces costs. Nevertheless, blocks from one container can be
moved to containers in various storage classes (see Fig. 5.5).

Figure 5.5: Rewriting containers to multiple types of storage.

5.4. Evaluation

We present our experimental evaluation of InftyDedup in two parts. First, we evaluate the
performance and cost of our implementation executed in a public cloud. Second, we evaluate
our strategies for garbage collection and storage type selection under various workloads.

5.4.1. Performance Evaluation

To evaluate the performance, we implemented InftyDedup using Apache Hive [60], which we
selected as a possible approach to provide portability between di�erent public and private
clouds. We present results of the evaluation of our batch algorithms, as uploading containers

69

and restoring data are straightforward object storage operations in which the bottleneck is
expected mostly on the network to the cloud (even a naive implementation can saturate 1 GbE
network with uploads and restores using a single core).

Our batch algorithms di�er greatly from the state-of-the-art tiering to cloud with dedupli-
cation techniques. Therefore, a fair comparison with existing solutions is virtually impossible.
Instead, we present the results using publicly available hardware. The evaluation was con-
ducted in AWS using m5d.xlarge instances with 4x vCPU, 16 GB of RAM, and 1x 150 GB
NVMe (which costs less than network attached EBS). We aimed to use the smallest possible
instances (to maximize horizontal scaling). However, in our workloads, the technological stack
of Apache Hive was ine�ciently utilizing the limited memory of the smallest instances.

The presented experiments used synthetic data with the following characteristics. Each
�le contained approximately 51 GB (as backup �les typically have tens of gigabytes or more
[315]) chunked into blocks of approximately 64 KB (the target block size of the deduplication
system for which we prepared InftyDedup). The contents of the �les are described in each
experiment. We present results with synthetically generated data, as our algorithms mostly
distribute the data (e.g., based on �ngerprints) and later sort the data in small portions,
so the exact characteristic of the data (e.g., the initial order of blocks) does not a�ect the
performance much.

Batch Deduplication Processing

We evaluated BatchDedup in con�gurations varying in size. Each experiment comprised
two steps. In the �rst (initial) step, a large number of �les without duplicates is processed
to resemble a situation in which new backups are uploaded to the cloud. In the second
(incremental) step, a dataset 3x smaller than the initial backup is uploaded (as typically
incremental backups are smaller than their corresponding full backups [26]), where 90% of
the blocks are duplicates (which matches the expected average daily deduplication ratio [26]).
The smallest con�guration (8 instances) uploads 3072 �les in the �rst step and 1024 in the
second step. In larger con�gurations, the amount of data to be processed is scaled linearly
with the system size. Therefore, the smallest experiment processed metadata of 208 TB data
and the largest one of 1.66 PB. In all con�gurations, the �rst step takes between 1h53m and
2h10m (see Fig. 5.6), and the second step takes up to 30m.

8
x
m
5d
.x
l

16
x
m
5d
.x
l

32
x
m
5d
.x
l

64
x
m
5d
.x
l

0

2,000

4,000

6,000

8,000

T
im
e
[s
]

Initial Incremental Dedup. data

0

500

1,000

1,500

D
ed
u
p
li
ca
te
d
d
at
a
[T
B
]

Figure 5.6: BatchDedup performance. The line and right y-axis show size of deduplicated
data.

Overall, the performance scales close to linearly, as two times larger experiment with twice

70

as many machines achieve similar computing time. We analyzed the resource utilization, and
the main bottleneck is the CPU, as most of the time its usage is above 95%. The network and
the local SSDs are underutilized, with the peak per-server usage of respectively 350 MB/s of
network bandwidth and 6% of disk utilization. We expect the computations can be further
optimized, but the computations are already marginal compared to the costs of data storage.
For instance, in the experiment with 32 instances, the second stage eliminates 191 TB of
duplicates and costs below $1, which is less than 0.1% of monthly savings on storage. Similarly,
the costs of accessing in-cloud metadata during processing are marginal, as both steps require
roughly 250K GETs ($0.1) and 20K PUTs ($0.1), and the transfer fees within one availability
zone are free.

We also conducted a di�erent experiment with multiple steps of incremental uploads in
one con�guration (8 instances). As shown in Fig. 5.7, the incremental uploads are much
shorter, as only a small fraction of new data is added to FindIdx. Each of the incremental
steps take similar amount of time but later steps are slightly longer, because there are more
unique blocks in FingIdx.

Initial 1 2 3 4 5 6 7
0

2,000

4,000

6,000

8,000

Backup step

T
im
e
[s
]

0 · 100
2 · 109
4 · 109
6 · 109
8 · 109

B
lo
ck
s

Time All Blocks Unique Blocks

Figure 5.7: BatchDedup with growing data. The lines and right y-axis present the number of
blocks before deduplication (all) and after deduplication (unique).

Batch Garbage Collection Processing

First, we evaluated BatchGC by removing a fraction of data uploaded in the �rst experiment
from Section 5.4.1. Speci�cally, we removed the data uploaded in the �rst step to resemble
removing the oldest backup. The processing took between 61 and 65 minutes (not plotted).
BatchGC, unlike BatchDedup, reads all PFRs, so we also verify that the processing time
increases close to linearly with the size of both FingIdx and PFRs. The experiment shown
in Fig. 5.8 had multiple incremental steps, and in BatchGC we removed data from the �rst
incremental step.

The results con�rm that, for data with many duplicates, BatchGC is more expensive
than BatchDedup. However, BatchGC is expected to be executed less frequently, so both
algorithms will have comparable amortized execution costs.

5.4.2. Evaluation of the Strategies

We evaluated how our garbage collection and storage type selection strategies behave in
numerous workload simulations. The strategies optimize the costs of storing data for months
and years, so we could not conduct these experiments in the public cloud, as it would take too

71

1 3 5 7
0

5,000

10,000

15,000

Backup step

T
im
e
[s
]

0 · 100
2 · 109
4 · 109
6 · 109
8 · 109

B
lo
ck
s

Time All Blocks Unique Blocks Removed Blocks

Figure 5.8: BatchGC performance. After 1-7 incremental steps, data from one incremental
step was deleted (removed blocks).

long. Instead, we ran some initial experiments to con�rm our understanding of the pricing
model and features of the cloud, and based on the results, we implemented a simulator. The
simulator calculates costs based on the pricing of cloud storage, requests, transfer, and other
factors, like the minimal storage duration.

Each experiment was conducted in many con�gurations of workload characteristics and
system parameters. We present aggregated (minimal, maximal, and average) results, with
values normalized to the result with the minimal cost.

Workload Characteristics

Our simulator allowed specifying the following factors to evaluate various backup workloads:

Data source was selected from the following two sets. First, we generated synthetic
workloads in which a given fraction of data was modi�ed and deleted each day. Both types of
modi�cations were applied in variable length stream-contexts (of size from 1 to 1024 blocks),
so a given number of consecutive blocks was modi�ed at once. The introduction of the stream-
contexts was necessary, as data modi�ed in small contexts is more fragmented, so the number
of requests required to read is increased. Secondly, FSL traces [292] were used, as they are
real-world datasets that contain information on how the data of multiple users change over
years.

Retention policy speci�es how long each �le (backup) is stored. We analyzed guidelines
related to retention policies [2, 93, 106] to generate realistic policies. Typically, each type of
backup is stored for a longer time than its backup period (e.g., weekly backups are kept for
four weeks). In our experiments, daily backups are kept for one week, weekly backups are
kept for a month, monthly backups are kept for a year, and yearly backups are kept for �ve
years. Based on that, we came up with three di�erent policies: keepAll policy in which all
types of backups are stored in the cloud, dailyExcluded in which daily backups are excluded
(so only backups stored for at least a month are kept in the cloud), and dailyOnly in which
only daily backups are kept in the cloud. The garbage collection was, in turn, executed every
7, 30 or 90 days. In all experiments, the simulation covered a period of 5 years.

Read patterns remarkably a�ect the total cost of ownership of data in the cloud. Unlike
for writing data, we found no collected read traces for backup data. Similarly, there are no
precise guidelines that describe typical backup read patterns. Therefore, we adopted a model
in which each �le is read with a given probability and veri�ed the full spectrum of potential
values.

72

Evaluation of Garbage Collection Strategies

To evaluate how the proposed garbage collection strategies perform in di�erent workloads, we
conducted experiments with the pricing model of AWS S3 Standard as hot storage and Glacier
Instant Retrieval as cold storage.7 Experiments in which the storage types are mixed based
on our strategy are denoted as mixed. Garbage collection strategies are denoted as follows:
Strategy #1, which removes a container only when it is empty, is denoted as onlyEmpty ;
less{25; 50; 75; 99} denotes Strategy #2 with the Tdays parameter such that the behavior is
equivalent to reclaiming space when less than 25 / 50 / 75 / 99 percent of container capacity
is used by live data; and Strategy #3 is denoted as costBased.

First, we evaluated a case in which there were no reads. As shown in Fig. 5.9, onlyEmpty
strategy achieved the worst results. For cold and mixed storage, costBased strategy gave
signi�cantly better results than others (on average 1.4%-23%), whereas for hot storage (where
the rewrite cost is marginal) it gave similar results to less99.

co
ld
co
st
Ba
se
d

co
ld
on
ly
Em
pt
y

co
ld
le
ss
25

co
ld
le
ss
50

co
ld
le
ss
75

co
ld
le
ss
99

1

2

3

4

N
or
m
al
iz
ed

co
st

average max min

ho
t
co
st
Ba
se
d

ho
t
on
ly
Em
pt
y

ho
t
le
ss
25

ho
t
le
ss
50

ho
t
le
ss
75

ho
t
le
ss
99

1

3

5

7

9

m
ix
ed
co
st
Ba
se
d

m
ix
ed
on
ly
Em
pt
y

m
ix
ed
le
ss
25

m
ix
ed
le
ss
50

m
ix
ed
le
ss
75

m
ix
ed
le
ss
99

1

2

3

4

Figure 5.9: Garbage collection with di�erent strategies.

In the next set of experiments, which included reads (with patterns explained in Section
5.4.2) and mixed storage, there are more di�erences between the strategies (Fig. 5.10). On
average, costBased strategy is only 2.2% better, but comparing the worst cases, the di�erence
is 24%. The analysis of the number of containers that are rewritten, deleted empty, or
remain live at the end of the experiment, con�rms that onlyEmpty has the largest number of
containers that are live (Fig. 5.11).

7At the moment of writing this dissertation, cold storage had 4x/25x more expensive PUT/GET requests,
5.25x times less expensive storage costs, the minimum storage duration was 90 days, and an additional per-
gigabyte retrieval cost for cold storage was equal to the fee for 3000 GET requests.

73

co
st
Ba
se
d

on
ly
Em
pt
y

le
ss
25

le
ss
50

le
ss
75

le
ss
99

1

2

3

N
or
m
al
iz
ed

co
st

average max min

Figure 5.10: Garbage collection strategies
with reads.

co
st
Ba
se
d

on
ly
Em
pt
y

le
ss
25

le
ss
50

le
ss
75

le
ss
99

0

0.5

1

N
or
m
al
iz
ed

co
n
ta
in
er
s
n
u
m
.

rewritten deleted live

Figure 5.11: Breakdown of containers num-
ber.

The analysis of garbage collection strategies led to the question of how container sizes
a�ect the costs, as smaller containers increase the probability of removing an entire container
but also increase the number of PUT requests needed to store data initially or during container
rewriting. As shown in Fig. 5.12, for costBased strategy, the lowest average cost is with 16 MB
containers (4 MB and 64 MB are respectively 4.5% and 2% more expensive). The smallest,
1 MB containers were the most expensive, even with the onlyEmpty strategy, because of the
cost of initial container generation (Fig. 5.13). Especially in cold storage, the cost of PUT
requests is high (up to 40% of all costs with 1 MB containers).

co
ld
1
M
B

co
ld
4
M
B

co
ld
16
M
B

co
ld
64
M
B

co
ld
25
6
M
B

1

2

3

N
or
m
al
iz
ed

co
st

average max min

ho
t
1
M
B

ho
t
4
M
B

ho
t
16
M
B

ho
t
64
M
B

ho
t
25
6
M
B

1

1.1

Figure 5.12: Garbage collection with varying
container sizes.

co
ld
1
M
B

co
ld
4
M
B

co
ld
16
M
B

co
ld
64
M
B

co
ld
25
6
M
B

ho
t
1
M
B

ho
t
4
M
B

ho
t
16
M
B

ho
t
64
M
B

ho
t
25
6
M
B

0

0.5

1

N
or
m
al
iz
ed

co
st

InitialPuts Rewrite Capacity

Figure 5.13: Cost breakdown with di�erent
container sizes.

Storage Type Selection

We evaluated our storage type selection strategies in workloads with varying read frequencies.
For each experiment, there were 4 synthetically generated sets of �les, and each set has a
di�erent read frequency: once a month, once a year, once a year with 1% probability, and
once a year with 0.1% probability. All 4 sets were written together, just as in a storage system
that keeps �les with varying read frequencies. The experiments were conducted in series, and
in each series, the read frequency was scaled by a factor from 0.001 to 10. Therefore, cases in
which reads are virtually nonexistent, cases in which reads dominate the total cost, and cases

74

in-between were evaluated. A real-world ratio between backup and recovery jobs is typically
100 : 1 [28] but varies depending on the system [26]. In our experiments, the ratio of backups
to recoveries for scale factor 0.01 is 70�700:1 (mean =216:1) depending on the retention policy.
Therefore, we expect results with scale factors 0.01 and 0.1 to re�ect a typical use case.

As shown in Fig. 5.14, on average the mixed strategy gives 55% cost savings compared
to cold if there are many reads and 70% compared to hot if there are hardly any reads. The
breakdown of newly created containers (Fig. 5.15) con�rms that data ends up in cold storage
when there are hardly any reads and in hot storage reads are frequent. The cost breakdown
(Fig. 5.16) con�rms that the mixed strategy balances the high storage cost in hot and the
expensive reads in cold.

co
ld
0.
00
1

co
ld
0.
01

co
ld
0.
1

co
ld
1

co
ld
10

ho
t
0.
00
1

ho
t
0.
01

ho
t
0.
1
ho
t
1

ho
t
10

m
ix
ed
0.
00
1

m
ix
ed
0.
01

m
ix
ed
0.
1

m
ix
ed
1

m
ix
ed
10

1

2

3

4

5

N
or
m
al
iz
ed

co
st

average max min

Figure 5.14: Storage type selection depending
on the read frequency.

co
ld ho

t

m
ix
ed
0.
00
1

m
ix
ed
0.
01

m
ix
ed
0.
1

m
ix
ed
1

m
ix
ed
10

0

0.5

1

N
or
m
al
iz
ed

co
n
ta
in
er
s

hot-init. hot-after-recl.
cold-init. cold-after-recl.

Figure 5.15: Containers created initially and
after reclamation.

co
ld
0.
00
1

co
ld
0.
01

co
ld
0.
1

co
ld
1

co
ld
10

ho
t
0.
00
1

ho
t
0.
01

ho
t
0.
1
ho
t
1

ho
t
10

m
ix
ed
0.
00
1

m
ix
ed
0.
01

m
ix
ed
0.
1

m
ix
ed
1

m
ix
ed
10

0

0.5

1

N
or
m
al
iz
ed

co
st

cold-initialPuts cold-reads cold-rewrites cold-capacity
hot-initialPuts hot-reads hot-rewrites hot-capacity

Figure 5.16: Cost breakdown with varying read frequencies.

We also evaluated how the changes in the predicted reference counts a�ect the cost. Fig.
5.17 presents the normalized cost, depending on the selection of the expected reference num-
ber. Without predicting that more references will come in the future, the cost is higher on
average by 11% (worst case 289%) compared to predicting 5-10 references, so we con�rmed
that predicting the number of references brings a signi�cant cost reduction. The results with
3-10 references are very similar, so the slight inaccuracies in the expected number of references

75

do not change the results much.

The mixed strategy depends on the expected frequency of reads, which may be incorrectly
assessed. We conducted experiments with a signi�cant prediction error (the value was under-
estimated and overestimated ten times). Even with such a large estimation error, the results
are close to perfect (Fig. 5.18). Therefore, in all remaining experiments, we assumed perfect
estimation to facilitate studying other experimental parameters.

m
ix
ed
1-
re
f

m
ix
ed
3-
re
fs

m
ix
ed
5-
re
fs

m
ix
ed
10
-r
ef
s

m
ix
ed
20
-r
ef
s

m
ix
ed
10
0-
re
fs

1

2

3

4

N
or
m
al
iz
ed

co
st

average max min

Figure 5.17: Cost of storing data depending
on the expected number of references.

co
ld ho

t

m
ix
ed
0.
1-
er
ro
r

m
ix
ed
no
Er
ro
r

m
ix
ed
10
-e
rr
or

2

4

N
or
m
al
iz
ed

co
st

average max min

Figure 5.18: Cost of storing data depending
on the error of frequency prediction.

Di�erent Public Clouds

To con�rm that our strategies are generally applicable to public clouds other than AWS, we
repeated most of the experiments with the pricing models of Google Cloud and Microsoft
Azure. As our evaluation shows, mixing cold and hot storage reduces the costs for all three
major providers (Fig. 5.19). The noticeable di�erences in gain between the cloud providers
follow from the di�erent ratios of costs, especially the cost of storing data and egress tra�c.
On average, keeping data only in hot storage is 61% more expensive, and keeping data only
in cold storage is 30% more expensive than using the mixed strategy.

co
ldho

t

m
ix
ed

1

2

3

4

5

6

N
or
m
al
iz
ed

co
st

AWS

average max min

co
ldho

t

m
ix
ed

1

2

3

4

5

6

Google Cloud

co
ldho

t

m
ix
ed

1

2

3

Microsoft Azure

Figure 5.19: Storage type selection in di�erent public clouds.

76

FSL Traces

Finally, we veri�ed our strategies using Filesystem and Storage Labs (FSL) traces [292].
Speci�cally, we used all data available with 64 KB chunking in the homes snapshots dataset.
The traces contain metadata of �les chunked during writing, but they have no information
about the read pattern. Therefore, for each user, we veri�ed how our storage type selection
works with a varying number of reads (restoring each backup with a frequency from 0.0001
to 1 time a month). As shown in Fig. 5.20, for the extreme read frequencies, the mixed
strategy keeps almost all the data in the less expensive of the two storage types. However,
if the number of reads is in between, the mixed strategy works better than keeping data in
a single type of storage, because depending on the data characteristics, a di�erent decision
should be made for each block. In particular, the characterization of the reference count of
each block is important, as frequently referenced blocks are accessed more often. Therefore,
mixing storage types can outperform keeping the data in one storage type, decreasing the cost
by 26%�44%. This result shows that even when the restore frequency of each �le is known in
advance, relying on selecting one storage type can be signi�cantly more expensive than using
our mixed strategy.

co
ld
0.
00
01

ho
t
0.
00
01

m
ix
ed
0.
00
01

co
ld
0.
00
1

ho
t
0.
00
1

m
ix
ed
0.
00
1

co
ld
0.
01

ho
t
0.
01

m
ix
ed
0.
01

co
ld
0.
1

ho
t
0.
1

m
ix
ed
0.
1

co
ld
1

ho
t
1

m
ix
ed
1

1
2
3
4
5

N
or
m
al
iz
ed

co
st

average max min

Figure 5.20: Total costs in experiments with FSL traces.

5.5. Conclusions

We presented InftyDedup, a novel, cloud-native approach to tiering to cloud for a storage
system with deduplication. Compared to the state of the art, our architecture does not
impose any limit on the size of the cloud tier and supports deduplication from multiple local
tier systems. We implemented InftyDedup for a commercial storage system (HYDRAstor)
and evaluated it in a public cloud (AWS). The evaluation con�rmed the desired scalability
of deduplication: our batch algorithms, designed to reduce cloud costs and harness dynamic
resource allocation, were able to process metadata of multi-petabyte data collections for a
couple of dollars.

To further decrease the cost of cloud storage, we proposed an extension to InftyDedup
which moves blocks between hot and cold cloud stores based on their anticipated access
patterns. Its evaluation with real-world traces showed that our deduplication-speci�c heuristic
for adjusting the expected read frequency, which takes into account block reference counts,
decreased the costs on average by 11%, and the overall solution achieved 26%�44% reductions.
The algorithm requires minimal input from a system administrator and was demonstrated to
retain its cost bene�ts even when the administrator's estimations were inexact.

77

Chapter 6

Derrick: Balancer for Resilient and

E�cient Distributed Storage

The management of physical data placement across devices is a fundamental problem that
virtually any distributed system has to address. Especially distributed storage systems, which
are normally responsible for maintaining data for other tiers, have to deal with the many
intricacies of this problem. In particular, to decrease the risk of data loss and shorten failure
handling, such systems have to replicate or erasure-code data chunks and disperse them across
di�erent physical devices. To optimize capacity utilization, they have to balance the amount
of data between the devices while also accounting for the underlying network characteristic
so that the cost of keeping the redundant chunks in sync is acceptable. When new devices
are added, or existing ones fail, the systems have to move or reconstruct data chunks, ideally
in a way that minimally a�ects the performance of the core functionality. These are just a
few common examples of data placement requirements, and many applications also have their
own speci�c ones.

For these reasons, as we clarify in the next section, the problem of physical data placement
in storage systems has received considerable research attention. A lot of that attention was
focused on large-scale cloud-oriented storage systems, namely data-center-wide systems with
thousands of machines or global geo-distributed systems that can be orders of magnitude
larger. In contrast, relatively little work was dedicated to on-premise scale-out storage systems,
such as HYDRAstor [94], Ceph [320], and Swift [128]. On the one hand, given the data
deluge in today's digital societies, a market for such solutions is thriving (IDC expects a 4.7%
compound annual growth rate in External OEM Storage [136]). On the other hand, however,
managing data placement in such systems poses unique challenges, which cannot be e�ectively
addressed solely by adopting solutions developed for public clouds.

More speci�cally, these challenges stem mainly from the life cycle of on-premise scale-out
storage systems. Once deployed, such a system is controlled by the owning client. Conse-
quently, it should hardly require human intervention, instead being largely self-managed. Fur-
thermore, to accommodate the ever-accumulating data, the systems are typically expanded,
often repeatedly, which has two key implications. First, an average system comprises mul-
tiple generations of hardware that inevitably o�er di�erent performance characteristics and
capacities. Nevertheless, despite this heterogeneity, the system is expected to ensure high
utilization of all available resources. Second, it is not uncommon for a single system to grow
even by orders of magnitude. Supporting tiny con�gurations is thus as important as large
ones to provide �exible scaling. For instance, Scality [130] reduced the minimal system size
to three servers to solve the challenges of small and medium-sized enterprises. Again, the

79

performance overhead due to the growth must not be observable; on the contrary, the perfor-
mance scaling should be as close to linear as possible to justify the expansion costs. In short,
on-premise scale-out storage systems are expected to o�er what we have dubbed self-managed
continuous scalability : a single system must be capable of autonomously maintaining high re-
source utilization even when it is expanded by a few orders of magnitude with heterogeneous
hardware.

While self-managed continuous scalability may seem like a natural requirement, it is hard
to meet in practice. This observation is consistent with a common computer systems design
principle, referred to as the incommensurate scaling rule, which states that changing a param-
eter of a system by a factor of ten usually requires a new design [264]. In the context of data
placement, when formalized, many issues are NP-hard problems [108, 131]. Consequently,
algorithms for large-scale deployments are inherently heuristics that rely on probabilistic or
asymptotic properties (holding only for su�ciently large systems) while at the same time
emphasizing di�erent aspects, notably fault tolerance. In contrast, small-scale deployments
sometimes make it possible to e�ciently search the entire solution space to �nd optimal place-
ments. In other words, algorithms employed for managing data placement do vary depending
on the scale. Furthermore, as we elaborate shortly, they are heavily a�ected by practical
issues, notably con�icting requirements with respect to placement, hardware heterogeneity,
and tra�c considerations, to name just a few. Controlling data placement in systems that
ensure self-managed continuous scalability thus indeed requires special solutions.

The relevance of these issues is reinforced by a recent report by Gartner [242], which ar-
gues that scalability and �exibility (e.g., handling device additions without disrupting other
operations) with simultaneous cost reductions are the current challenges in on-premise stor-
age. New technologies, such as energy-assisted magnetic recordings HDDs [249], bring new
possibilities, but keeping up with the newest hardware requires signi�cant software changes.
According to Coughlin Associates [82], the vast majority of capacity still is�and will be in
the foreseeable future�shipped in HDDs. The problem is that the performance of HDDs does
not improve as fast as their capacity,1 resulting in fewer than 10 IOs per second per terabyte
in modern drives. High performance and �exibility are very hard to achieve with such a
limited value of I/Os, so attentive data placement across devices and thrifty data movements
are necessary when aiming at continuous self-managed scalability.

This chapter presents Derrick, an algorithm for managing data placement. We imple-
mented Derrick in our commercial backup and archival storage system, HYDRAstor, and
veri�ed it in production. A key observation behind Derrick is that data arrangement has
di�erent requirements and timing constraints depending on particular events that trigger its
changes. Therefore, aiming at self-managed continuous scalability precludes a one-size-�ts-all
approach. To better explain the trade-o�s and prioritizations due to con�icting needs, we an-
alyze common requirements on data placement in on-premise scale-out storage systems. The
study is based on: empirical data and our experience from thousands of HYDRAstor deploy-
ments worldwide, an examination of Ceph and Swift (state-of-the-art open-source systems
used in multi-petabyte-scale installations), and a survey of other scale-out storage systems
based on publicly available materials.

Instead of using a one-size-�ts-all approach, the data arrangement in Derrick involves
three sub-algorithms called Central Balancing (CentrBal), Transition Guide (TrGuide), and
Distributed Balancing (DistrBal) to handle di�erent cases. CentrBal computes a data arrange-
ment for a perfectly stable system, disregarding hardware failures. To make data migration

1Multi-actuator HDDs can improve performance considerably, but the technology is fresh, so their pricing
and availability in the next years are unclear.

80

smooth, TrGuide computes a transition plan between two arrangements provided by CentrBal.
Both CentrBal and TrGuide are allowed to run calculations for minutes or even a few hours,
as they activate only if the device population changes, which is a time-consuming operation.2

The situation is much di�erent if a hardware failure occurs and immediate action is necessary
to prevent service disruption. In such a case, DistrBal quickly �nds a new placement for data
from the failed devices. Despite the fact that each of Derrick's three sub-algorithms has a
di�erent purpose, their structure is similar, as all of them optimize data arrangement through
a hill-climbing technique. However, the assurance that each of the algorithms is able to �nd
a solution in a given amount of time is not trivial. Therefore, we present novel techniques
that are used to reduce computational complexity while giving guarantees that the outcome
meets expectations.

As our experimental evaluation shows, Derrick achieves better results than the state of
the art in meeting key data arrangement requirements that are important in most storage
systems. Moreover, Derrick can be adapted to additionally meet very speci�c requirements
of a particular storage system, as such being potentially broadly applicable.

The rest of the chapter is organized as follows. Section 6.1 surveys related work. Section
6.2 analyzes requirements on data arrangement in self-managed distributed storage and shows
how they are met in Derrick. Section 6.3 describes Derrick's algorithms, and Section 6.4
presents further key details. Section 6.5 evaluates Derrick's implementation for HYDRAstor.
Section 6.6 contains formalization of the problem and formal proofs. Section 6.7 concludes.

6.1. Data Arrangement Problems and Solutions

Each distributed storage system, to a varying extent, adjusts its data arrangement methods
to meet its needs. Some systems, such as HDFS [275] and Haystack [47], store data based on
decisions of central metadata servers, which limits scalability, robustness, and performance.
Therefore, in large-scale applications, these systems are often replaced by decentralized so-
lutions. For instance, Tectonic is used in Facebook [243] to provide superior scalability and
resource utilization. Since its workloads may require low latency or be I/O-intensive, Tectonic
arranges data dynamically to meet the speci�c performance requirements. Similarly, other
large-scale systems, like Windows Azure Storage [59] and Spanner [81], dynamically place and
move data to improve resilience and performance.

A more static approach is taken by systems that make placement decisions based on hashes
of the data. For many types of workloads, including storing content-addressable blocks in
HYDRAstor, such methods are extremely e�cient. Consequently, in our work, we focus on
this kind of data arrangement.

Some of such systems, notably OpenStack Swift with its Rings [128] and Apache Cassandra
[176], are based on consistent hashing [159], a technique that limits the number of data moves
when the number of hash buckets (e.g., storage devices) changes. There are many publications
improving consistent hashing. In particular, elastic consistent hashing [332] aims to reduce
power consumption. Aye et al. [35], in turn, describe how to better data balancing speci�cally
in GlusterFS. Consistent hashing can also be reduced to rendezvous hashing, which is a more
generic algorithm suitable for storage systems. For instance, IBM Cloud Object Storage
System utilizes so-called weighted rendezvous hashing [134].

Another state-of-the-art algorithm is CRUSH [321], employed in Ceph [320], which also
distributes data based on a hash-like function. CRUSH supports a multi-level hierarchy
of heterogeneous devices and introduces low computational overhead. Data movements in

2Device addition requires unpacking, connecting cables, moving data, etc.

81

CRUSH have been reduced with the introduction of the straw2 [72] bucket type. Furthermore,
since the arrangements calculated by CRUSH may underutilize capacity, Ceph features an
additional balancer plugin [69] that alleviates this phenomenon. Another sample improvement
of CRUSH is MapX [317], which calculates intermediate data placements to decrease the tail
latency during data movements.

Both Swift and Ceph are utilized in thousands of deployments and are actively developed,
so their algorithms are constantly improved to meet the needs of those systems. However, in
the case of our system, aimed at self-managed continuous scalability, CRUSH and consistent
hashing do not address some principal requirements, and their adequate modi�cation seems
very di�cult, if not impossible. For this reason, we have devised Derrick, an alternative
approach that is easier to extend to take into account additional constraints. Moreover, for
common requirements of storage systems, Derrick also outperforms the state of the art. The
requirements are described in Section 6.2 along with a brief comparison of Derrick, CRUSH,
and consistent hashing in real-world systems.

The main technique underlying Derrick is hill climbing. It has already been applied to
problems related to data balancing, for instance, allocating resources to tasks in a distributed
system [90] or allocating data in a system built of devices with varying reliability [91]. The
novelty of Derrick, however, comes not from the fact that it is based on hill climbing but
rather from the way it utilizes this technique. Especially, without the separation of the
aforementioned sub-algorithms and introduction of additional solutions, providing expected
results in given time bounds would be hard, if possible at all.

In general, there has been a considerable amount of research on optimizations of the
same metrics as in this chapter but using techniques other than �nding a placement for
erasure-coded or replicated fragments. To start with, there are various erasure coding schemes
aiming to improve system performance [197], decrease repair degree [132], or minimize repair
bandwidth [157]. Furthermore, there are techniques for dynamic replica management, such as
CDRM [319], including adjusting the number of replicas to availability requirements. Another
approach, adopted in HeART [155], is to decrease storage utilization by leveraging the fact
that disk reliability changes over time. Pacemaker [154] and Tiger [153] further improve this
approach by reducing the transition overload, providing further space savings, and bettering
robustness.

Because of its design, and notably, the score dimensions introduced shortly, Derrick is
prepared to support many of those requirements at the same time. Therefore, by and large, it
can be adjusted to incorporate most of the aforementioned ideas. Moreover, integrating many
of them into Derrick entails no changes at all. For instance, the LRCs [132] require storing
additional erasure coding fragments, for which Derrick can �nd a proper placement out of the
box. Likewise, Pacemaker [154] is meant to keep data in subclusters with homogeneous failure
models, and Derrick can �nd placement within such subclusters as well. Methods requiring
dynamic changes in data resilience can also be integrated, either by changing the resilience
without modifying the fragment number (e.g., from 9+3 to 10+2 codes) or by modifying the
score dimensions. In short, Derrick is truly versatile.

6.2. Requirements on Data Balancing

A recurring theme in on-premise storage systems, including Ceph, Swift, and HYDRAstor,
can be summarized as follows. Every data piece (e.g., a �le, an object, or a block) has its
identi�er (e.g., based on its pseudo-random hash). Since managing each such piece separately
is infeasible, the identi�er is used to assign the piece to a logical collection named a group. In

82

other words, groups are a means of aggregating individual data pieces into manageable units.

Furthermore, for resilience, data are replicated or erasure-coded. Therefore, each group
consists of components (e.g., a group with 3 replicas has 3 components). We denote compo-
nents as IdOfGroup : IdInGroup, so with 2 groups and 3 replicas per group, the components
are: 0:0, 0:1, 0:2, 1:0, 1:1, 1:2. The notation would be the same for erasure codes with 3 parts
in total per group (e.g., for 2+1 codes, with 2 data parts and 1 parity part).

The data arrangement problem is �nding an assignment of components to devices that
maximizes metrics entailed by the requirements of the system. A basic sample data ar-
rangement is presented in Fig. 6.1. In the rest of this section, in turn, we analyze speci�c
requirements on data arrangement that are common in scalable real-world storage systems.

Figure 6.1: Data arrangement of two groups (0,1) with thee components each (0:0, 0:1, 0:2 and
1:0, 1:1, 1:2) on thee same-capacity devices. Capacity utilization and resilience are optimal in
such a con�guration: no device has more space left than another; a failure of a device a�ects
only a single component in any group.

6.2.1. High Capacity Utilization

The most fundamental requirement on data arrangement is e�cient utilization of the available
storage capacity. We assume that data are assigned to groups evenly, as the hashing function is
fair, so all components in the system have roughly similar sizes. In systems with deduplication,
such as HYDRAstor, data are kept in small blocks, so the component sizes are naturally
balanced. However, even systems that distribute entire �les/objects, like Ceph, do not attempt
to address the potential imbalance due to varying �le/object sizes [70].

For this reason, we consider capacity utilization as maximized if the ratio of the number
of components to the available device storage bytes is equal for all devices (cf. Fig. 6.1). If,
in contrast, one device has a higher components-to-bytes ratio, the capacity of devices with
lower ratios is wasted (cf. Fig. 6.2), because, per our assumption, all components are expected
to have approximately the same size.

When the number of components is increased, the capacity waste may be decreased (as
in Fig. 6.2), but this also burdens the system more. Therefore, for instance in Ceph, the
recommended number of groups per device is 100 [71], while in HYDRAstor, we keep the
number even smaller to increase data locality. If a system encompasses devices with di�erent
storage capacities (referred to as a heterogeneous system), the e�ect of wasted capacity is
ampli�ed because the size of each component constitutes a higher percentage of the capacity
of a small device (see Fig. 6.3).

83

Figure 6.2: Data arrangement of groups with 3 components each. With only 2 groups 25% of
capacity is wasted. With the number of groups increased to 4, the capacity is fully utilized.

Figure 6.3: Data arrangement of 4 groups with 3 components each in a heterogeneous system.
Each device has at most 4 components but, system wise, more than 25% of the capacity is
wasted because there are devices with half of their capacity wasted.

6.2.2. Resilience to Failures

Another crucial requirement on data arrangement is storing components resiliently, that is,
in a way that, thanks to replication or erasure coding, they can survive device failures. To
reduce the probability of data loss in case of a hardware failure, two components of the same
group should be kept on di�erent devices. Since devices form a multi-level hierarchy (e.g.,
a server has many disks, and a rack has many servers), this rule should be followed at the
di�erent levels of the hierarchy. The highest attainable resilience depends on the particular
replication/erasure-coding scheme and the system size (see Fig. 6.4).

84

Figure 6.4: The size of a system a�ects its resilience to failures. With 2+1 erasure codes, a
system with 2 servers and 2 disks per server can survive a disk failure but not a server failure.
In contrast, a system with 3 servers is also resilient to server failure.

What is important, in heterogeneous systems, optimal capacity and optimal resilience
may not be achievable simultaneously (cf. Fig. 6.5). Therefore, a need arises to describe how
resiliently the data should be kept. In particular, in Ceph, crushmap rules specify how devices
at each level of the hierarchy are chosen. The rules are strictly followed, so crushmap may
need an update if the requirements on balancing change (e.g., when the system grows and the
number of components of the same group per server can be reduced). In Swift, Rings have
a con�gurable overload factor, which speci�es a fraction of additional components that can
be accepted by each device to improve system resilience. Unless the factor is high enough,
Swift may not �nd the most resilient solution, so a careful value selection is necessary, and
capacity is underutilized anyway (details in Section 6.5.1). To provide self-managed contin-
uous scalability, Derrick always �nds the most resilient solution for the maximal capacity.
However, it also allows an administrator to specify a minimal level of resilience that overrules
the decisions stemming from maximizing capacity utilization.

6.2.3. Balancing Distinguished Components

Data arrangement a�ects not only resilience and capacity but also the overall system per-
formance. In heterogeneous systems, the performance may be improved by placing more
components on faster devices (e.g., servers with SSDs or better CPUs), but storing too many
components on one device leads to underutilization of the capacity of other devices. There-
fore, in some systems, there are distinguished components (DistComps) that have additional
tasks assigned. In particular, Ceph and Ursa [181] specify 1 distinguished primary per group,
while in HYDRAstor there are 3. Overloading any device with too many DistComps should
be avoided; otherwise, a bottleneck may arise. Network utilization also depends on data
arrangement, as we describe afterwards.

85

Figure 6.5: A heterogeneous system with four devices: Device 4 is �ve times larger than
Devices 1�3. With 3+1 erasure codes, the arrangement resilient to a device failure wastes
50% of the capacity. In contrast, in the arrangement with an optimal capacity utilization,
Device 4 hosts 3 components from group 1, which precludes recovery of this group upon a
failure of this device.

6.2.4. Keeping Related Data in One Rack

With erasure codes, decoding multiple pieces is required to reconstruct failed data. Conse-
quently, placing whole groups within the same rack decreases the expensive inter-rack commu-
nication during recovery. At the same time, keeping a group in one rack precludes resilience
to rack failures, which is provided by many systems, including Ceph, Swift, and clouds [132].
However, some studies suggest that rack failures are less frequent than expected, and the
overall system resilience is higher if data are located nearby to improve reconstruction speed
[341]. Therefore, HYDRAstor gives this possibility as well. Ceph provides an option to specify
a rule that keeps whole groups within one rack, but its balancer plugin tends to move com-
ponents between racks more than necessary. Likewise, HDFS has a default policy to place
two replicas in one rack and the third replica in another, which gives some locality and also
resilience to a failure of one rack. There are also special erasure codes that trade capacity for
decreased inter-rack tra�c [129], but this con�icts with capacity maximization.

6.2.5. Limiting Data Movements

The data arrangement algorithm needs not only to calculate a good result for a stable sys-
tem but also to react to changes that are often unexpected (e.g., hardware failures) or pre-
dictable shortly in advance (e.g., additions and removals of devices). Modi�cation of a data
arrangement requires moving data between devices, and hence it is desirable to minimize such
movement as much as possible. In scale-out systems that can signi�cantly change their size
(e.g., from one to hundreds of devices), a change in the number of groups is necessary to
maintain a similar number of components per device regardless of the system size. Ceph and
HYDRAstor scale the number of groups automatically [71], while in Swift, the functionality
for altering the number of groups without cluster downtime is under development [239]. When
the number of groups changes, some components should be moved (e.g., to improve capacity
utilization as in Fig. 6.2). However, if the algorithm computes a placement for new groups

86

independently of the previous placement of data (e.g., as in CRUSH), excessive amounts of
data may be moved. A similar issue happens when other system parameters change (e.g., the
con�guration of the resilience hierarchy).

6.2.6. Limiting Non-stable Components

Another requirement related to data movement is how many components are moved at the
same time (we refer to components during movement as non-stable). In Swift, only a single
component from a group is moved at a time because the system cannot read data from non-
stable components. HYDRAstor can read data from non-stable components, but it bene�ts
from a limited number of such components in duplicate elimination, caching, and read-write
deletion [283]. Ceph provides throttling, which also limits data moved at a time but does
not limit movements per group. Keeping groups within a single rack makes maintaining
components stable more di�cult as it enforces the movements of entire groups (see Fig. 6.6).

Figure 6.6: Keeping entire groups in racks increases the number of required component move-
ments upon a change to a system. In a system with 2 racks, 1 new server is added to the 5
existing ones. In e�ect, 2 components have to be moved to balance the capacity, and a move-
ment of an entire group is needed to keep entire groups in racks. More speci�cally, Group 3
is moved. However, its two components cannot be stored on the new server because of the
resilience requirements. Therefore, component 5:1 is moved as well to create space on Server 5
for component 3:0. All in all, 3 components are moved instead of just 2.

6.2.7. Final Remarks

In Table 6.1, we summarize the discussed requirements and the way real-world implemen-
tations of the aforementioned state-of-the-art data arrangement algorithms meet them. As
visible in the table, Derrick trades computation time when devices are added or removed for
additional features and better results. As mentioned earlier, device additions and removals
are predictable and take signi�cant time anyway, so we �nd the trade-o� pro�table. In prac-
tice, the additional time spent on computations does not a�ect the system at all (i.e., the
system is fully operational during such calculations), whereas better data placement provides
considerable bene�ts.

87

Derrick CRUSH in Ceph Swift Rings

Capacity utilization The Highest
High

(with Ceph's balancer)
High

Resilience with

a multi-level hierarchy

Optimal solution for given

constraints and capacity

Only given

constraints are met

Space oversubscription

needs to be con�gured

Balancing of

distinguished components
The Best Moderate None

Groups can be kept

within one rack
Yes

Yes, but Ceph's balancer

spoils it
No

Data movement The Lowest Moderate Low

Limiting non-stable

components

Precise

(preserve resilience and capacity)
None

Simpli�ed

("move one at a time")

Computation time

during failures
Seconds Seconds Seconds

Computation time when

adding or removing devices
Minutes or hours Seconds Seconds

Table 6.1: Summary of data arrangement algorithms in real-world use cases.

6.3. Derrick's Overview

To meet all of the aforementioned requirements and provide self-managed continuous scal-
ability, Derrick arranges data using three sub-algorithms. As we describe in this section,
CentrBal, and TrGuide calculate placement for every component in the system, whereas Dis-
trBal modi�es their results in case of failures.

First, data arrangement for a healthy state is calculated using CentrBal, which is allowed
to operate for minutes or even hours until a satisfactory solution is found. During this step,
capacity utilization, resilience, balancing of distinguished components, placement of data
between racks, and data movement is optimized. The calculation uses a small fraction of
available resources (i.e., at most one core in a multi-server environment), and in practice has
no negative impact on service quality, as our system has implemented mechanisms for e�ective
resource sharing during various loads [278].

As the new data arrangement can di�er a lot from the previous one, a mechanism is
needed to prevent having too many non-stable components. Therefore, TrGuide orchestrates
e�cient component movement between two CentrBal results that preserve the stability of
components and other requirements (including capacity utilization, resilience, and managing
network tra�c). In the event of a hardware failure, an immediate change is needed, and in
such a case, DistrBal quickly overrides CentrBal/TrGuide decisions.

The results of each algorithm are distributed throughout the system to enable routing
messages to proper servers. As CentrBal and TrGuide compute a placement for all components
in the system, their result can have a signi�cant size (e.g., multiple megabytes if there are
millions of components), but the algorithms are executed occasionally. DistrBal modi�es
locations only for components a�ected by a failure, so its results are much smaller.

6.3.1. Hill Climbing in Derrick

All three subalgorithms search the space of possible arrangements, which is exponential in
system size. Therefore, a heuristic approach is taken to �nd a solution that meets many
requirements at once. To be more speci�c, Derrick uses the hill-climbing method, which is an
optimization technique that iteratively attempts to �nd a better solution by making incremen-
tal changes. To achieve this, each subalgorithm calculates a multi-dimensional score function
that describes how much a component arrangement fails to meet the given requirements. In
each iterative step, one or more components are moved at a time, using some operation, as we

88

explain shortly. If moving the components decreases the score, the operation is applied and
the procedure is repeated for a better arrangement.

Since the three subalgorithms have di�erent goals, their score functions di�er. To be
more speci�c, each score function describes component placement as a collection of score
dimensions (called ScoreDims). ScoreDims are compared in a lexicographic order, and each
ScoreDim corresponds to a single requirement on data placement. For instance, to describe
capacity utilization, a ScoreDim can contain sorted quotients of device size and a number of
components assigned to it. In a situation from Fig. 6.1, assuming each device has 1 TB, the
set is {0.5, 0.5, 0.5} and if one component were moved, the set changes to {0.33, 0.5, 1.0} (in
which capacity utilization is worse, as the component size is reduced from 0.5 TB to 0.33 TB).
Another example is a ScoreDim which describes resilience by counting components from the
same group on each device. Such a ScoreDim contains a cartesian product of all groups and
devices. For instance, in a situation from Fig. 6.1 it is {1, 1, 1, 1, 1, 1} (each of the three
devices has one component from each of the two groups), and if a component were moved,
it would be {2, 1, 1, 1, 1, 0} (one of the devices would host 2 and one of the devices would
host 0 components from one of the groups). The score function orders ScoreDims by their
priority. Therefore, if a more important ScoreDim has a higher value the score is worse, even
if a lower-priority ScoreDims improve. In other words, a more important requirement is never
violated to improve a less critical one.

To improve the score, components are moved between devices based on heuristics dubbed
operations. The very basic operation is to try the movement of each component to another
device and verify if any of such movements improves the score. Such an operation is not suf-
�cient to reach an optimal score. For instance, to reach optimal resilience without decreasing
the capacity utilization ScoreDim, movement of two components at a time may be necessary
(see Fig. 6.7). However, trying all possible component movements is O(mn) with m compo-
nents and n devices, whereas trying all possible movements of two components at a time is
O(m2n2), and three is O(m3n3). As we explain in further sections, there are cases in which
three or more components must be moved at the same time to leave a local minimum. On
the one hand, staying in a local minimum means that one of the ScoreDims is not improved
as much as possible (e.g., TrGuide can halt the transition). On the other hand, checking all
possible movements of three components at a time for a system with m = 1000 and n = 100
(which are smaller than the maximal con�guration we aim to support) requires checking more
than 1015 states, which is unacceptable. Therefore, we introduce techniques that reduce the
set of tried movements (discussed in Section 6.4).

Figure 6.7: An example in which a single movement �xes the resilience but temporarily
negatively a�ects the capacity. However, swapping allows exchanging components without
changing capacity usage, therefore such movement can improve resilience without worsening
the capacity.

89

The general idea of subalgorithms is presented in Listing 6.1. The details of each subalgo-
rithm are encapsulated in speci�c requirements, score calculation, and improvement heuristics.

Listing 6.1: Pseudocode of Derrick subalgorithm

dev i c e s = L i s t o f d e v i c e s wi th r e l e v an t d e t a i l s

prev_arr = Previous arrangement o f components

reqs = L i s t o f ordered requirements

def derr i ck_suba lg (dev ice s , prev_arr , r eqs) :
score , a r r = ca lc_score (prev_arr , r eqs) , prev_arr
while True :

o ld_score = sco r e
for req in r eqs :

new_arr = improve (arr , req)
new_score = ca lc_score (new_arr , r eqs)
i f new_score < sco r e :

score , a r r = new_score , new_arr
break

i f old_score == sco r e :
return ar r

The last remark regarding hill climbing is that, in general, such an optimization technique
can �nd a local minimum that is di�erent from the global minimum [150]. In the case of a
component arrangement problem, it means that the arrangement will not meet all require-
ments, for instance, resilience or capacity can be decreased, which is unacceptable. Therefore,
we introduced techniques that guarantee that the result always matches the global minimum
for the most important ScoreDims. We explain these techniques in detail in Section 6.4.

6.3.2. Central Balancing

CentrBal computes a component arrangement for a healthy system. Its input contains: a
list of all devices with their sizes, a current component arrangement for a healthy system
(calculated earlier or, in the case of a fresh system, generated arbitrarily), and an ordered list of
requirements. In this section, we explain a simpli�ed CentrBal, which ensures optimal capacity
and resilience while minimizing the number of transfers (advanced techniques are discussed
in Section 6.4). Three ScoreDims are necessary to meet the aforementioned requirements:

1. Capacity: whether a device has too many components for its size.

2. Resilience loss: counts components from each group per device.

3. Movements count: counts components with a changed placement.

With those ScoreDims, CentrBal tries to �nd an arrangement that �rst maximizes capacity,
then minimizes the number of components from the same group on one device. If any of the
heuristics �nd a data arrangement that is as good or better that the current one in terms
of capacity and resilience but requires fewer component movements, such an arrangement is
chosen.

In heterogeneous systems, optimal resilience and capacity may not be possible at the
same time (cf. Fig. 6.5), so an additional ScoreDim above Capacity is added: Accepted
resilience loss, which counts components from the same group per device, but only above a
given threshold. For instance, if the threshold is 2 the system capacity is optimized as long
as no device hosts more than 2 components from the same group. Moreover, the Resilience
loss ScoreDim optimizes the resilience as much as possible without capacity decrease, so if a

90

solution with the optimal capacity and at most 1 component from the same group on each
device exists, it will be found.

Distributed systems typically have a device hierarchy (disks, servers, racks, etc.), so both
resilience and capacity can have multiple ScoreDims that represent each device type. Disk
utilization is a more important ScoreDim than the utilization of servers, as disk utilization
directly a�ects the system capacity. However, the arrangement of components at other levels
of the hierarchy can also provide bene�ts (e.g., a better utilization of network links). The
ordering of such dimensions is important because, for instance, two utilization ScoreDims can
be con�icting (see an example in Table 6.2).

Server 1 Server 2
Disk 1 Disk 2 Disk 3 Disk 4

Disk size [TB] 42.9 42.9 31.25 31.25
Total server size [TB] 85.8 62.5

Case 1: A component is added to Server 2
Disk components 19 18 14 13 + 1

Machine utilization ScoreDim 2.319 2.232
Disk utilization ScoreDim 2.258 2.383 2.232 2.232

Case 2: A component is added to Server 1
Disk components 19 18 + 1 14 13
Machine utilization ScoreDim 2.258 2.315
Disk utilization ScoreDim 2.258 2.258 2.232 2.404

Table 6.2: Utilization requirements (e.g., for disks and servers) can be con�icting. In
Case 1, the disk utilization is lower than in Case 2 as {2.383, 2.258, 2.232, 2.232} <
{2.404, 2.258, 2.258, 2.232}, but for machine utilization {2.319, 2.232} > {2.315, 2.258}.

6.3.3. Transition Guide

TrGuide controls component movements from the current system state to the arrangement
calculated by CentrBal. It ensures that system requirements are met, and network usage is
balanced. Its major challenge is to keep many components stable. Just like CentrBal, TrGuide
computes the score for the entire system. ScoreDims that describe the system resilience and
capacity are the most important. After that, there are ScoreDims that count how many com-
ponents are moved: within each group (it determines the number of non-stable components)
and from each device (to balance network usage).

TrGuide needs the motivation to move components to the location calculated by CentrBal.
Therefore, ComponentsNotOnTarget is a ScoreDim which counts components not located in
their �nal location. ComponentsNotOnTarget is less important than the ScoreDim counting
components moved within each group to prevent a situation in which all components are moved
at once. It is expected that after a portion of component movements TrGuide will stop because
every possible move will violate ScoreDims more important than ComponentsNotOnTarget.
Later, when some movements are completed (and the number of non-stable components is
decreased), TrGuide will move the next portion of components. Assuring TrGuide's liveness
without moving too many components at a time is the di�cult part (explained in Section
6.4.4).

6.3.4. Distributed Balancing

DistrBal overrides CentrBal and TrGuide decisions in case of hardware failures. Its goal is to
�nd a good temporary placement for components that lost their devices. Therefore, DistrBal
moves components from failed devices but does not move components hosted on their healthy

91

CentrBal/TrGuide targets. This is because the movement of healthy data costs resources
(e.g., disk I/Os, network tra�c), which are needed to reconstruct missing data and handle
the additional load. The components return to the location calculated by CentrBal/TrGuide
when the issue is solved, so transient failures are handled e�ciently.

Unlike the other two algorithms, DistrBal improves the placement only for a subset of
components and devices, and the responsibility for calculating the arrangement is distributed
across many instances of the algorithm. Each device has its own DistrBal instance that
considers moving components to other devices. Limiting the responsibility of a single DistrBal
instance decreases its complexity and facilitates the gathering of volatile information (e.g., a
current utilization or a failure state of devices). If a device fails, its components are moved by
other DistrBal instances that host components from the same groups. Since many DistrBal
instances can make decisions about the same component, synchronization is needed. For
example, DistrBal instances that host components from the same group can conduct voting to
move only one component from their group at a time. To prevent a situation in which many
components are simultaneously moved to one device, a locking mechanism is implemented
(e.g., the device allows only one new component at a time).

6.4. Derrick's Details

As described in the previous section, Derrick's subalgorithms are based on a simple idea to
improve score functions by moving components. However, the selection of proper ScoreDims
and heuristics is non trivial. In this section, we describe details of important techniques
used in Derrick for HYDRAstor. Both theoretical lemmas, with their key ideas and practical
observations, are presented to explain that even very detailed requirements can be met to
provide self-managed continuous scalability. The methods are general and can be used in all
subalgorithms, not only the subalgorithm chosen as an example to clarify each technique.

We use the following names of operations that move components to explain the techniques
and heuristics:

Relocation(c, n) moves component c to device n.

Swap(c1, c2) swaps c1 and c2 between their devices.

Push(c1, c2, n) moves c1 to device of c2 and c2 to device n.

Cycle3(c1, c2, c3) moves c1 to device of c2, c2 to device of c3 and c3 to device of c1.

6.4.1. Capacity and Resilience in CentrBal

First, we show how the computational complexity of Derrick can be limited when heuristics
are selected properly. Trying all possible relocations is not enough to �nd a data arrangement
that has the best capacity for a given resilience target because the only possible relocation
that improves the capacity may decrease resilience. Therefore, movement of more than one
component at once may be necessary (see Fig. 6.8). In our system, the groups have equal sizes
(typically 12, so erasure codes like 9+3 and 10+2 are possible), and therefore we formalized a
Lemma 1 that limits the number of operations tried at once to improve resilience and capacity.

Lemma 1 If groups are equinumerous (in terms of components), then trying all relocations,
swaps, and pushes is su�cient to �nd an arrangement with optimal capacity within resilience
restriction.

92

Figure 6.8: Relocations are insu�cient to balance capacity with a resilience restriction. Ini-
tially, the maximal size of each component is 10, because there are 2 components on Device
3 with capacity 20. None of the possible single relocations increases the score, as they either
decrease the resilience or decrease usable capacity. After a single push, the size of the com-
ponent can be increased to 11.67 (limited by Device 4), so the capacity increases by 16.7%.

The key idea of the lemma is that if the system is not balanced, there must be a device,
n1, that accepts a component, c1, from a group, g1, and a device, n2, that has too many
components. However, because of the resilience restriction, there is a possibility that none
of the components from n2 can be accepted on n1 (and cannot be done). As the groups are
equinumerous, in such case there must be a third device, n3, which accepts a component from
n2 and has a component from group g1. The formalized version of the lemma with a proof
is presented in Chapter 6.6. The situation is much di�erent if groups can have di�erent sizes
(cf. Fig. 6.9).

6.4.2. Multiple ScoreDims in CentrBal

CentrBal optimizes capacity and resilience but also tries to meet all other requirements of
a speci�c system. In our case, the device hierarchy consists of three levels: racks, physical
servers, and logical servers (which host a �xed number of disks). Therefore, to meet all
of the requirements described in Section 6.2, our CentrBal score function consists of over
20 ScoreDims. The most important 12 of them are explained in Table 6.3, but there are
some other system-speci�c ScoreDims which, for example, balance DistComps even further.
However, the exact selection and order of ScoreDims depend on a speci�c system design. In
our case, we �nd the optimization of system capacity very important for storing backups,
but we can think of a theoretical system in which optimization of DistComps (and therefore
throughput) would be more important than the maximal utilization of disk space.

Having so many dimensions enables optimizing resources e�ectively. For instance, Dist-
Comps are �rst optimized across logical servers, as each logical servers can handle a similar
number of I/Os per second. After that, DistComps are also optimized across physical servers.
After ScoreDim #8 is optimized, a possible situation is that one physical server hosts logical
servers with 7 DistComps each, and the other server has 8 DistComps per logical server.
In the described situation, CentrBal would try to move DistComps to further optimize the
utilization of resources shared between the servers, so each of the physical servers has 15

93

Figure 6.9: If the groups have a di�erent number of components (group 0 � 4, group 1 �
3, group 2 � 1, and group 3 � 2 in the �gure), more than two simultaneous operations can
be required to balance capacity with a resilience restriction. Device 4 has enough free space
to get an additional component, but cannot host any additional component from Device 1
or Device 2 without decreasing resilience. Relocating component 2:0 to Device 4 without
performing other operations does not improve the score, so it is not done alone.

DistComps in total. However, having that many ScoreDims also has signi�cant consequences
as we explain next.

First of all, the arrangement that optimizes all ScoreDims typically does not exist, and
more important ScoreDims impact less important ScoreDims in a non obvious way. For
instance, the ScoreDim for keeping entire groups in racks can spoil the balance of DistComps
(Fig. 6.10), which may be somewhat of a surprise. Second, the calculation of the entire
score function for all dimensions is expensive, as each score requires its data structure of a
signi�cant size (e.g., it keeps information per device). Therefore, we implemented auxiliary
data structures that are su�cient to verify how each ScoreDim changes after a single operation.
Only when the best operation is selected, the full score is recalculated.

Finally, sometimes to improve a ScoreDim without spoiling another one, many operations
need to be done at once (see Fig. 6.11), which increases the complexity. Therefore, a possible
solution to reduce the complexity is to greedily select an operation when it improves the score,
without checking if there are any better options, but then an operation that also improves
less important ScoreDims can be missed. Therefore, in our implementation, we often try a
few improvements and choose the best. Another technique is to limit the components and
devices that are considered for each heuristic. For example, when the resilience is not optimal,
the component movement can be initially limited to components from devices that host most
components from one group. Only when all heuristics related to system resilience have been
tried, are heuristics optimizing other ScoreDims started.

6.4.3. DistrBal ScoreDims

DistrBal tries to �nd a placement for components from failed devices, which is as good as
the placement that would be computed by CentrBal. In fact, DistrBal score consists of very
similar ScoreDims as these of CentrBal. However, the time constraints for the computing time
of both algorithms are di�erent. Therefore, the �rst di�erence is that the set of heuristics
used by DistrBal is limited to the least complicated ones. Moreover, the set of components
that are even tried to be moved is limited only to components from the failed devices.

As DistrBal communicates with other devices hosting components from a group, it has ac-
cess to additional information, like the very recent capacity utilization of each device. There-

94

Figure 6.10: An example in which placing whole groups in racks spoils the balance of Dist-
Comps. Components with IdInGroup=0 are distinguished. Rack 2 has servers with larger
devices, so it receives more groups (3,4,5,6,7, and 8) than Rack 1 (0,1,2). As the result, 6
DistComps need to be placed on 5 servers, and hence in this case Server 6 ens up with 2
DistComps.

Figure 6.11: An example in which two simultaneous swaps are required to limit the num-
ber of DistComps of the same group on one device. In that example, components with
IdInGroup=0,1,2 are distinguished. Operations that move fewer components would decrease
resilience, capacity, or the number of DistComps per device.

95

Score Dimension Description

1 Accepted resilience loss Ensures target resiliency in heterogeneous systems

2 System capacity Optimizes system capacity

3 Resilience (logical server)

Decreases the number of components from

the same group on each logical server.

4 Resilience (physical server)

Decreases the number of components from

the same group on each server.

5 Num. components to the size of physical server

Balances components per physical server

for even consumption of server resources.

6 Num. components to the size of logical server

Balances components per physical server

for even consumption of logical server resources.

7 Keeping groups within a single rack Reduces the number of racks among which each group is spread.

8 DistComps distribution across logical server
Balances distribution of DistComps across di�erent levels of

the hierarchy to balance unequal resource consumption.
9 DistComps distribution across physical servers

10 DistComps distribution across racks

11 DistComps from the same group (logical server)

Decreases the number of DistComps

from the same group on one logical server.

12 Number of transfers

Decreases the number of transfers required

to optimize all of the above.

Table 6.3: Major ScoreDims of CentrBal in HYDRAstor

fore, if a device currently has some additional capacity (because the system has some free
space), a component can be placed there. If the device becomes full before the failed device
is restored, the recovered component will be moved to a di�erent location, which has free
capacity but is worse in terms of other ScoreDims.

6.4.4. Component Stability in TrGuide

The goal of TrGuide is to move all components to their target locations calculated by CentrBal
while keeping requirements on data arrangement. In HYDRAstor one of the requirements is
to not exceed 3 non stable components within each group. Therefore, a transition plan is
generated that does not move more than 3 components from each group at a time. After the
maximal possible number of components is moved, TrGuide waits until any of the components
is fully transferred (and therefore stable again). The operation is repeated until all of the
components reach their �nal locations provided by CentrBal.

The transition plan is prepared based on the following TrGuide_Score:

TrGuide_Score

1. Servers with too many components (exceeding the capacity)

2. Groups with decreased resilience

3. Groups with more than 3 non-stable components

4. Components not in their target locations

TrGuide is capable of moving all components to their targets, without violating resilience
and capacity restrictions, while moving at most three components of one group at a time.
Therefore, it is guaranteed that the algorithm can progress without making more than 3 non-
stable components within each group. The fact that TrGuide can move forward by moving
3 components also limits its computational complexity, as fewer component movements need
to be tried at a time.

96

The key idea of why moving only three components at a time is su�cient is based on a
construction of a component arrangement in which relocations, swaps, and cycle3 violate
resilience restrictions, as swaps and cycle3 do not change the capacity. Such an arrangement
must contain a cycle longer than 3 but we found two ways of e�ectively breaking such a long
cycle into a smaller one (see Fig. 6.12). One of the methods requires keeping a reserve for
one additional component on each server, which decreases the system capacity. Therefore,
we introduced another method that breaks the long cycle into parts. Such breaking of the
cycle is always possible (an example is presented in Fig. 6.13), as we explained in the proof
of Lemma 2, Lemma 3, and Lemma 4 in Section 6.6.

Figure 6.12: Moving longer cycles at once can violate the stability of components. A possible
solution is to keep an additional reserve for one component on each device, but it decreases
system capacity. Therefore, we break longer cycles into smaller ones with a di�erent technique.

Figure 6.13: If a cycle of length 4 can be done without worsening resilience or capacity, then
a swap or cycle3 can be done; otherwise, the Device 1 does not accept a component D:? from
the Device 4 which is a contradiction, as a longer cycle is assumed to be possible.

6.4.5. Stability of DistComps in TrGuide

An extreme example of meeting requirements by Derrick is maximizing the system perfor-
mance by ensuring that at most one (out of three) DistComps is non-stable in each group.
TrGuide is able to ensure such requirements. However, additional ScoreDims are needed to
make TrGuide progressing. This is because there is a di�cult case in which two DistComps

97

from the same group need to be swapped. Such a swap cannot be done without making
both components unstable. Therefore, TrGuide needs to make three swap operations with
non-distinguished components (as presented in Fig. 6.14). To enforce such an operation,
an additional Unwanted Distinguished Components dimension was needed, that counts Dist-
Comps that are placed on the device that according to CentrBal will host another DistComp
from the same group. In this way, TrGuide has the motivation to swap the DistComp with
a non-distinguished component to improve that ScoreDim. Additionally, Components not on
the �nal target of components from its group ScoreDim, that counts components that occupy
place for a di�erent component from the same group, enforces that the swap is done with
another component of the same group.

Figure 6.14: Additional operations are needed to swap two DistComps from the same group
without making both of them non-stable at the same time.

To sum up, the �nal score function for TrGuide looks as follows:

TrGuide_Score_Extended

1. Servers with too many components (i.e., too much data)

2. Groups with decreased resilience

3. Groups with more than one non-stable distinguished component

4. Groups with more than 3 non-stable components

5. Components not on the �nal target of components from its group

6. Unwanted Distinguished Components

7. Distinguished Components not in their �nal target

8. Components not in their target location

98

6.4.6. Final Remarks

Derrick is �exible and, as explained hitherto, it can meet diverse system requirements. Using
our techniques, we were able to express every needed requirement in adequate ScoreDims.
Typically, an addition of a single straightforward ScoreDim is enough, but in some cases, a
more complex design needs to be used (as in our TrGuide). Similarly, the basic operations or
their compositions are typically enough to implement heuristics that �nd data arrangement
meeting each requirement. We evaluate the performance of Derrick in the next section.

6.5. Evaluation

The evaluation is divided into three parts. First, Derrick is compared with the state-of-the-art
algorithms used in Ceph and Swift in terms of meeting the requirements from Section 6.2.
Second, we analyze the di�erences between DistrBal and CentrBal. Lastly, we measure the
computation time of our implementation.

6.5.1. Comparison with Ceph and Swift

To ensure self-managed continuous scalability, a system needs to meet many requirements on
data placement, so we compare data arrangements generated by Derrick, CRUSH in Ceph,
and Swift Rings. We conducted a series of experiments to show how the algorithms di�er in
optimizing capacity and resilience, limiting the number of transfers required after changes in
the system, keeping groups within racks, and balancing DistComps.

In most experiments, we used average-sized, heterogeneous con�gurations, which are typi-
cal for on-premise storage. They are additionally easy to understand. However, in the relevant
cases, we present the results from larger con�gurations to show how the algorithms behave
during scaling. Many experiments used a variable number of groups, as the number often
a�ects the results. The number of components per group in the presented experiments was
12, which is the default value for both the erasure-code scheme in Ceph documentation and
for HYDRAstor, but we did not observe any meaningful di�erences between experiments with
2�15 components per group. In our system, each logical device internally manages its disks
in a manner similar to RAID0, while the other systems assign components per disk. Our ap-
proach improves capacity utilization when the number of components does not equally divide
the number of disks. However, we decided to ignore this di�erence in the presented results to
avoid favoring our system.

The �rst two experiments were conducted using actual multi-server installations and real
data being written. In these experiments, we evaluated the three algorithms in terms of
integration with the entire system and its practical behavior. In further experiments, we only
used tools that calculate the placement of the components o�ine, as it saved us from setting
up a new testbed for each experiment. The tools that can compute component placement are
already provided with Ceph (osdmaptool) and Swift (swift-ring-builder), and we implemented
a similar tool for Derrick. All three tools share code with the production systems.

In all of the experiments involving Ceph, CRUSH was con�gured to use the straw2 bucket
type, which minimizes component movement. In relevant cases, the CRUSH result was further
improved by Ceph's balancer (noted as CRUSH_bal). Swift required modi�cation of the
overload parameter in some experiments (noted as SWIFT_overl).

99

Deployed Systems Evaluation

In the �rst experiment, we used fully deployed systems to compare how each system is balanced
initially and how failures are handled by each algorithm. We built one of the smallest possible
heterogeneous con�gurations capable of storing data resiliently with 9+3 codes and up to three
device failures. Therefore, the system consisted of 16 servers with the following con�guration.
Each of the servers had two disks formatted to have equal sizes. In 14 of the servers, the
devices had 10 GB (denoted largeServer), and in 2 the devices had 5 GB smallServer, as
Ceph does not allow devices below 5 GB. We intentionally decreased the size of HDDs, as
conducting the same experiments with original, multi-terabyte disk size would increase time
of each experiments to hundreds of hours, whereas from the perspective of the balancing
algorithm only the ratio between device sizes is important (what we con�rmed by conducting
selected experiments with larger disk sizes). The system hosted 384 groups. The servers
used Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz and Intel(R) Xeon(R) CPU E5-2430 @
2.20GHz.

In the beginning, the systems had no data, and all of the servers were up and running.
Therefore, Derrick placed all components just as computed by CentrBal, as there was no need
to make any adjustments with DistrBal. Similarly, Ceph's balancer and Swift Rings placed
components for the stable system. Already at this stage, the di�erence is considerable, as
each algorithm placed a di�erent number of components on small servers (Fig. 6.15). On
devices of small servers (5 GB), Derrick placed at most 6 components, Swift placed 7 and
Ceph's balancer placed 8. On devices of large servers (10 GB), each algorithm allowed at
most 13 components. Therefore, according to the placement, the maximal component size for
Swift is 5/7 GB, for Ceph's balancer 5/8 GB, and for Derrick 10/13 GB (as 10/13 < 5/6).
We elaborate on the utilization of capacity by Swift and Ceph in Section 6.5.1, as di�erences
occur in other cases as well.

Sm
al
lS
er
ve
r_
m
in

Sm
al
lS
er
ve
r_
m
ax

La
rg
eS
er
ve
r_
m
in

La
rg
eS
er
ve
r_
m
ax

0

5

10

15

C
om

p
on
en
ts
p
er

d
ev
ic
e Initial component placement

Swift CRUSH_bal DistrBal

Figure 6.15: Minimal and maximal number of components at the beginning.

Failure Handling in Deployed Systems

In the next step, we simulated a hardware failure of two large servers, one after another. First,
we killed processes responsible for handling storage on one server. After a minute, we killed
processes on the other server. The systems responded as follows:

100

Sm
al
lS
er
ve
r_
m
in

Sm
al
lS
er
ve
r_
m
ax

La
rg
eS
er
ve
r_
m
in

La
rg
eS
er
ve
r_
m
ax

0

5

10

15

20

C
om

p
on
en
ts
p
er

d
ev
ic
e

Component placement
after two failures

Swift CRUSH_bal DistrBal

(a) Minimal and maximal number of components
after two failures.

In
iti
al
st
at
e

A
fte
r
tw
o
fa
ilu
re
s

0

1

2

3

4

A
ll
ow

ed
se
rv
er

fa
il
u
re
s Resilience of newly written data

(b) After two server failures, new data are placed
with resilience to three server failures.

Figure 6.16: Deployed system evaluation in a heterogeneous system with 16 servers.

� Derrick started DistrBal computations to adjust the component placement. In both
cases, components ended up in locations optimal in terms of capacity (Fig. 6.16a) and
resilience (Fig. 6.16b). In the wall-clock time, the computations took in total just
below 3.5s, but during that time the CPU consumption of the service which conducts
the DistrBal computation (and implements some other functionalities) was below 10%
of a single core on each server.

� Swift does not remove failed devices from Rings automatically but uses pre-computed
hando� locations [238]. We experimented with the hando� locations, but they did not
balance load perfectly and, as a result, writing data to the system using hando� locations
resulted in having some server without any free capacity, while other server had over 30%
of free space. Therefore, we assumed that Ring rebuilding can be handled automatically
after a failure, and included such an operation in our experiment. Rebuilding of the
Ring after each failure took 2.2s but the component placement was not optimal in terms
of capacity. Moreover, changing the Ring twice causes problems. Since Swift cannot
read objects while they are moved, and does not implement any mechanism similar to
our TrGuide, it requires waiting for transfers and reconstructions to be �nished before
the next balancing can be started. In fact, it is implemented by a timer which prevents
changing the system balance until a given number of hours. Therefore, safe handling of
two consecutive failures that happen shortly after each other is di�cult.

� Ceph detects failed services promptly, but by default it waits for 10 minutes3 before
the service is considered down and removed from the CRUSH map. When a service is
removed from the map, the computations take milliseconds, but typically the balancer
needs to be executed a few times before it reaches its �nal results. As the balancer is

3The value is con�gurable with mon_osd_down_out_interval setting.

101

triggered by a timeout (which is by default 60 seconds), some time is required before it
reaches its �nal state. Nevertheless, in terms of capacity, the placement was the worst
of the three, as 9 components were placed on the small servers.

Finally, we started to write data. Data were written in small (512 KB) �les / objects, to
minimize the impact of uneven distribution of objects to components. All systems were able
to accept the amount of data proportional to their component sizes, without any negative
impact on data resilience (Fig. 6.16b): it was possible to restore the data even after three
additional server failures.

This experiment leads to the following conclusions. First of all, despite the simple scenario,
each algorithm delivered di�erent usable capacity and Derrick provided the best result of the
three. In a stable system, DistrBal bases on CentrBal results, and during a failure DistrBal
moves components from failed devices to optimal locations. However, this does not mean that
CentrBal can be entirely replaced with DistrBal, as we evaluate di�erences between CentrBal
and DistrBal further in Section 6.5.2.

Furthermore, the model of handling failures in each system is di�erent. Despite the fact
that algorithms used in Ceph and Swift are able to compute results within seconds, their
default use cases rely on a manual intervention or are delayed by minutes.

Finally, all considered algorithms provided resilient component placement. However, as
we will describe shortly, it is not always the case.

Capacity Utilization and Resilience

Using the aforementioned tools, we veri�ed capacity utilization and system resilience in a
con�guration that contained 17 servers: 14 with 1 TB disks, 2 with 6 TB disks, and 1 with
8 TB disks. In such a con�guration, with 12 components per group, two components of the
same group were never on the same server and almost all available disk space was consumed
(<0.0005 of space was not available because the 4 TB disk was not exactly 2x smaller than
the 8 TB disk).

Nevertheless, data arrangements calculated by each algorithm di�ered signi�cantly (see
Fig. 6.17a). First of all, only CentrBal and Swift Rings optimally utilized the capacity.
CRUSH was 1%�40% o�, depending on the total number of groups and whether Ceph's
balancer was used. For instance, with 256 groups, one of the servers with 4 TB disks received
150 components, which is 22 over the optimal result. Therefore, the component size (and so
the capacity of the whole system) was decreased by 15%.

Swift Rings did failed to provide optimal resiliency, placing two components from the same
group on one server. In heterogeneous systems, Swift allows changing the overload factor,
which is a �oat value x that determines whether up x to additional device capacity can be
used to improve system resilience. Although it was theoretically possible to �nd a perfect
arrangement without overloading any server, Swift required a change of the overload factor to
0.0002 to �nd an arrangement that provided optimal resilience, but it decreased the capacity
by 1%-11%.

Underutilization of the capacity is at odds with with the market demand for cost reduction
in scalable storage. Moreover, Swift Rings requires additional attention to make sure that the
data are kept resiliently. To clarify, we present the results of another experiment (Fig. 6.17b),
which uses a system with 4x1.2 TB servers, 1x2.0 TB server, and 1x3.5 TB server (an analogue
of Example 1 from Fig. 6.8 for 12 components per group). In that experiment, our goal was
to keep at most 4 components per group on each server, which is more than in the most
resilient solution (2 components per group), but allows much better capacity. For 192 groups,

102

192 384 768 1536 3072
0.6

0.8

1

Number of components

C
ap
ac
it
y
u
ti
li
za
ti
on

14xN4 + 2xN6 + 1xN8

SWIFT SWIFT_overl CRUSH CRUSH_bal CentrBal

192 384 768 1536 3072
0

50

100

Number of components

G
ro
u
p
s
w
it
h

lo
w
er

re
si
li
en
ce

14xN4 + 2xN6 + 1xN8

(a) Capacity utilization and resilience violation in a heterogenous system with 17 servers total.

192 384 768 1536 3072
0.85

0.9

0.95

1

Number of components

C
ap
ac
it
y
u
ti
li
za
ti
on

4xN12 + 1xN20 + 1xN35

(b) Capacity utilization in a heterogeneous system
with 6 servers.

192 384 768 1536 3072
0.85

0.9

0.95

1

Number of components

4xN12 + 1xN20 + 1xN35
With a reserve for components

(c) Lowered capacity utilization with an addi-
tional reserve for one component on each device.

Figure 6.17

the optimal solution in terms of capacity allows at most 4 components per group, but Swift
may not �nd such an arrangement unless the overload is increased to a proper value (e.g., 0.01
overload was too small). When the overload was set to the smallest value that guaranteed
the expected resilience, 2.6%�4.1% of the capacity was wasted compared to CentrBal with
the same resilience. The aforementioned experiments show that CRUSH exactly follows the
resilience requirements, but it achieves the lowest capacity utilization. Swift Rings does not
�nd a resilient arrangement unless the overload value is set higher than it is really necessary.
CentralBal results had an optimal capacity for the given resilience requirements in every
experiment. The di�erences in capacity utilization were 1%�40%.

The reason for the capacity utilization di�erences is as follows. CRUSH depends on prob-
ability distribution, so its results are the worst due to variance. Therefore, Ceph's balancer
improves the CRUSH results, but both the balancer and algorithms of Swift Rings are imple-
mented in a way that allows one or two components o� the perfect result, mostly to speed up
the calculations. Therefore, the capacity loss depends on how many components are on each
device: from a fraction of a percent if there are hundreds of components per device, to even
tens of percents if there are few. Especially, if the di�erence between the largest and smallest
devices is high, the capacity loss on each misplaced component increases (Fig 6.3). When a
20 TB disk hosts 100 components, 0.5 TB hosts only 3 and misplacing two components makes

103

a big di�erence.
In the end, to con�rm a need for TrGuide that does not require a reserve of one component

per device (as described in Section 6.4.4), we veri�ed how such a reserve a�ects the capacity.
Fig. 6.17c presents how such a reserve decreases the system capacity by up to 4%.

Transfers Required During Transition

In the next group of experiments, we veri�ed how many components need to be transferred
when a data arrangement changes. Limiting the transfers is important, because component
movement consumes resources, especially network and disks, as data need to be read, sent, and
written. In the presented results, we checked how many components needed to be transferred,
which can be converted to the amount of data that need to be moved by multiplying the
number of transferred components by the total system capacity, then dividing by the total
number of components in the system. For instance, if a 100 TB system has 3072 components
(256 groups), performing 400 transfers requires reading, sending, and writing 13 TB.

We compared CRUSH, CRUSH_bal, and Swift Rings with two versions of CentrBal to
show how additional requirements a�ect the number of transfers: CentrBal_full optimizes all
requirements, including DistComps and in-rack placement, and CentrBal_min only optimizes
resilience, capacity, and the number of transfers (as in Section 6.3.2).

The simplest experiment adds servers one by one to a homogeneous system that starts
with 12 servers (where there is exactly one component of each group on each of the servers).
The system had a single rack and 256 groups. Swift Rings and CentrBal_min required the
same number of transfers, and CentrBal_full required on average 2.3% additional movements
to optimize the placement of DistComps (Fig. 6.18). CRUSH required on average 25% more
transfers, and like in the previous experiments, the capacity was underutilized, so CRUSH_bal
required even more. Therefore, in the basic experiment, CRUSH required many more transfers
than necessary.

12 14 16 18 20 22 24 26 28
100

200

300

400

Number of servers

N
u
m
b
er

of
tr
an
sf
er
s

Server additions in a homogeneous system

Swift CRUSH CRUSH_bal CentrBal_min CentrBal_full

Figure 6.18: Number of transfers required when adding one server to a homogeneous system
with a single rack and 256 groups.

In a multi-rack heterogeneous system, the results were more diverse. We veri�ed the num-
ber of transfers needed during the addition of entire racks (15 servers) of randomly selected
servers with 4/6/8 TB disks and 512 groups (Fig. 6.19). Swift Rings and CentrBal_min
required almost identical numbers of transfers. As Swift Rings �nds only an approximate so-
lution, on average its result had 1.9% lower capacity and a manual4 improvement to maximize

4In that experiment, Swift Rings could not �nd an optimal placement even when the force option was set.

104

75 90 105 120 135 150
600

800

1,000

1,200

1,400

Number of servers

N
u
m
b
er

of
tr
an
sf
er
s

Rack additions in a homogeneous system

Swift CRUSH CRUSH_bal CentrBal_min CentrBal_full

Figure 6.19: Number of transfers required when adding racks (15 servers) in a heterogeneous
system with 512 groups.

the capacity required on average 3.5% more transfers.

Furthermore, in Swift Rings and CentrBal_min there is no option to keep components
from one group in the same rack. Such a requirement can be described in CRUSH, but
the balancer plugin spoils it. With CentrBal_full the distribution of groups across racks
can be imperfect as well because there are more important requirements such as capacity,
but CRUSH_bal gave 27%�45% worse results (Fig. 6.20). In terms of data movement,
CRUSH_bal needed on average 18% more transfers than CentrBal_min and CentrBal_full
required 30% more to improve a lot of placement of groups within racks.

75 90 105 120 135 150
0

0.2

0.4

0.6

0.8

1

Number of servers

F
ra
ct
io
n
of

al
l
gr
ou
p
s

Groups entirely in a single rack

Swift CRUSH_bal CentrBal_full

Figure 6.20: CRUSH_bal keeps fewer groups entirely in one rack in comparison to Centr-
Bal_full.

Finally, we compared data movement in three scenarios in which not only the number
of servers changes. If the number of groups is doubled in a homogeneous system with 32
servers Swift Rings and CentrBal_min require no changes, CentrBal_full moves a handful of
components to optimize DistComps, but CRUSH moves half of the data (Fig. 6.21). Similarly,
when changing whether capacity or resilience is more important in a system with 3x 4 TB and
1x 6 TB servers, Swift Rings requires 36% more transfers than CentrBal_full, and CRUSH

In other experiments, we observed that sometimes using the force �ag helps to �nd an optimal result, but it
also dramatically increases the number of transfers, as the algorithm moves many components unnecessarily.

105

moves far more components (Fig. 6.22). When a requirement for server-level resilience is
changed, because the size of a homogeneous system is doubled, Swift Rings requires 13%�
30% more transfers than CentrBal_full, and CRUSH requires 86%�89% more (Fig. 6.23).

32 64 128

0

0.5

1
·105

Number of servers

T
ra
n
sf
er
s
re
q
u
ir
ed

Transfers after split

Swift CRUSH CentrBal_full

Figure 6.21: Transfers after a group split (�rst from 1024 to 2048, last from 4096 to 8192).

128 256 512

0

2,000

4,000

Number of groups

T
ra
n
sf
er
s
re
q
u
ir
ed

3×N4+1×N6

Swift CRUSH CentrBal_full

Figure 6.22: Transfers when started favoring capacity instead of resilience.

128 256 512

0

2,000

4,000

6,000

Number of groups

T
ra
n
sf
er
s
re
q
u
ir
ed

6×N6→12×N6

Swift CRUSH CentrBal_full

Figure 6.23: Transfers when changing server resilience during expansion.

106

To sum up, CentrBal_min not only ensures superior capacity utilization and resilience
but also requires the lowest number of transfers. The main reason for the di�erences in
the number of transfers is that CentrBal can spend additional time seeking solutions that
provide the same results with the reduced number of data movements. CentrBal always uses
a previous component placement as a starting point and with each moved component, it tries
to improve as many metrics as possible. For comparison, in the other algorithms, a change of
requirements such as desired resilience means practically balancing data from scratch. This
is why even CentrBal_full, which additionally optimizes other metrics, moves less data than
the other algorithms.

Distinguished Components Placement

Balancing of DistComps is important to evenly utilize system resources, which leads to im-
proved performance. In our system, the �rst three components of each group are distinguished,
and in Ceph the �rst component is distinguished, so we evaluated balancing of 1 or 3 Dist-
Comps (Fig. 6.24). In both CRUSH and CRUSH_bal, some servers have up to 15%-40%
more DistComps than necessary, because neither of the algorithms tries to balance the dis-
tinguished components more than based on a probabilistic distribution. Swift does not use
DistComps, so Swift Rings can even put all components with indexes 0 or 0,1,2 on the same
servers (such server gets several times more DistComps than others). CentrBal_full �nds a
perfect or almost perfect distribution of DistComps in every case, which allows the highest
resource utilization.

256 1024 4096
0

5

10

Number of groups

M
ax

D
is
tC
om

p
s

1 DistComp

256 1024 4096

1

2

3

4

Number of groups

M
ax

D
is
tC
om

p
s

3 DistComps

Swift CRUSH CentrBal_full

Figure 6.24: Maximal number of DistComps per server, normalized to the value in optimal
components arrangement.

6.5.2. Evaluation of Distributed Balancing

In a stable system (without recent failures or changes in the number of devices), DistrBal
simply uses the results already computed by CentrBal. In case of failures, DistrBal quickly
adjusts the results provided by CentrBal. Therefore, we evaluate DistrBal by comparing its
results with results computed by CentralBal in longer calculations. We randomly chose 25
heterogeneous con�gurations. In each con�guration, we removed 1, 2, or 3 logical servers in
two ways. First, we killed the chosen servers, so DistrBal moves the components from the
removed servers. Then, we completely removed these servers from the system, so CentrBal
could calculate its data arrangement. In 84% of cases, CentrBal found a better arrangement
in terms of requirements on data arrangement, and in the remaining 16% the arrangement

107

was equivalent to DistrBal result. As DistrBal does not try to move as many components
as CentrBal, it cannot �nd every improvement. Therefore, there were frequent di�erences on
less important ScoreDims. For example. in 56% of cases the maximal number of DistComps
per server was higher (not plotted).

The data arrangement calculated by CentrBal is superior to the one provided by Distr-
Bal. However, the fact that DistrBal does not perform more complex operations is also its
advantage, as it only computes a temporary state during failures. More complex operations
require additional data movement, and thus also higher resource consumption, but there are
already fewer resources due to missing devices and data reconstructions, so it is likely better
to avoid such operations.

6.5.3. Computational Overhead

CentrBal and TrGuide Performance

The computational overhead was evaluated on a server with Intel Xeon E5640 Westmere
2.66GHz and 20GB of RAM (experiments needed even less memory). Fig. 6.25 presents the
computation time of CentrBal when the size of a one server system (starting with 8 groups)
is increased one server at a time. Initially, the computations take around 1 second, but as the
number of groups is doubled each time the system size doubles. The �nal computation (with
256 groups total) took over 2 minutes. Fig. 6.26 shows the execution time of CentrBal_full
during rack additions (15 servers) in a heterogeneous system (randomly selected servers with
4/6/8 TB disks) and 512 groups.

The computation time does not increase with the number of servers because with more
servers, fewer components require movement. Another experiment shows how the execution
time depends on the number of groups (Fig. 6.27). In all experiments, CentrBal_full �nishes
within 5 hours.

1 3 5 7 9 11 13 15

10−1

100

101

102

Number of servers

T
im
e
(s
ec
on
d
s)

Addition of one server

CentrBal_full TrGuide TrGuide_worst

Figure 6.25: Computation time after addition one server in a small heterogeneous con�gura-
tion. Number of groups scales with the system from 8 to 256.

TrGuide typically moves most components using relocations, so the computations take
less than a few minutes. The very worst case (TrGuide_worst in Fig. 6.25, 6.26, and 6.27)
is a theoretical situation in which there are a lot of components to move because the system
size was increased a lot and immediately the system was entirely �lled. In such a case,
TrGuide must exceed the limit of non-stable components to avoid reaching out of space, and

108

30 60 90 120 150

102

103

104

Number of servers

T
im
e
(s
ec
on
d
s)

Addition of one rack

CentrBal_full TrGuide TrGuide_worst

Figure 6.26: Computation time after addition of a rack (15 servers) with 512 groups.

4 16 64 256 1024
10−3

100

103

Number of groups

T
im
e
(s
ec
on
d
s)

Splits in a heterogenous system

CentrBal_full TrGuide TrGuide_worst

Figure 6.27: Computation time of splits in a heterogeneous system with 150 servers.

more computations are needed to �nd an optimal plan in terms of resilience and non-stable
components.

Our implementations of CentrBal and TrGuide were tuned to �nd a solution within hours
using a single core, and the goal was achieved. Moreover, both algorithms work much quicker
in smaller systems, where there are typically fewer CPU resources. Therefore, in every con-
ducted experiment, the execution of all three algorithms consumed far below 1% of daily
CPU resources available in the system (considering computation time divided by the number
of cores in all servers).

Speed-Up Considerations

We �nd the computation time of Derrick good enough, but the execution time can be further
reduced by orders of magnitude. First of all, we expect that our implementation of Derrick still
has room for optimizations. Second, the number of heuristics used to improve less signi�cant
ScoreDims can be reduced. As we will describe shortly, our evaluation of CentrBal_min
con�rms that �nding a solution that uses only basic heuristics can be very quick. Finally, in
large systems, the computation can be parallelized. In a larger system, two racks typically
do not share any groups. Therefore, a system can be divided into smaller parts which can be
balanced separately and then merged into one system.

109

To evaluate the parallelisation idea, we randomly selected 10 heterogeneous con�gurations
with 4 racks in total and executed CentrBal_full as follows. First, we divided the system into
two parts (2 racks each). Second, we calculated a component arrangement using CentrBal_full
for each part. Finally, we executed CentrBal_full for the entire system with 4 racks, starting
with the arrangement computed for the system parts. Such a method reduced the computation
time on average by 31%. For instance, in one of the experiments, the computation of an
arrangement for each part took 61s, and merging the results took 73s, while computing the
arrangement for the entire system at once took 199s. Therefore, the total amount of work
was similar (195s vs 199s), but the wall-clock time was reduced to 134s.

CentrBal_min Performance

We evaluated CentrBal_min, to verify the computational overhead with the limited number of
requirements. CentrBal_min can promptly compute its result even in a massive system with
thousands of servers and 3M components (Fig. 6.28). The computation after an addition of
15 machines took only 26 minutes, and in a theoretical scenario when the initial arrangement
is random, the computing took under 10 hours.

214 216 218

100

102

104

Number of groups

T
im
e
(s
ec
on
d
s)

A random arrangement

214 216 218
100
101
102
103

Number of groups

T
im
e
(s
ec
on
d
s)

Addition of one rack

1000 servers 5000 servers 10000 server

Figure 6.28: Computation time of CentrBal_min.

Query Time in Derrick's Results

In the end, we also evaluated what is the overhead of �nding a component location in a result
generated by Derrick (Fig. 6.29). As components are represented by two numbers, a hash map
representation of Derrick's result is e�cient. Our evaluation showed that even with millions
of components and thousands of servers, performing a million queries using a single core does
not even take half a second.

214 216 218
0

2

4

6
·10−7

Number of groups

T
im
e
(s
ec
on
d
s)

Query time in component map

1000 servers 5000 servers 10000 server

Figure 6.29: Query time in Derrick's result.

110

6.6. Formalization

This section contains a formalization of proofs using a mathematical notation. First, we
formalize the problem of �nding a speci�c component arrangement. Then, we formulate
Lemma 1, Lemma 2, Lemma 3, and Lemma 4 using the notation and prove them.

6.6.1. Problem Statement

The problem of �nding a speci�c arrangement is selecting a particular ai ∈ A for a given
system

system =< S,G,C,A, group, capacity >: System (6.1)

where

S = {s0, s1, ..., sx} is a �nite set of servers. (6.2)

G = {g0, g1, ..., gy} is a �nite set of groups. (6.3)

C = {c0, c1, ..., cz} is a �nite set of components. (6.4)

group : C → G is a function that maps each component to a group. (6.5)

capacity : S → N maps each server to its capacity (in bytes). (6.6)

ax : C → S maps each component to a server. We call ax an arrangement. (6.7)

A = {a0, a1, ..., an} is a �nite set of all possible arrangements. (6.8)

6.6.2. Auxiliary Functions, De�nitions and Corollaries

Function 1 Function components provides a subset of components for a given arrangement
and a server:

components : A× S → 2C ; (6.9)

components(ax, s) = {c ∈ C|ax(c) = s} (6.10)

Function 2 Function componentSize computes a quotient of a server's capacity and its
number of components:

componentSize : A× S → N; (6.11)

componentSize(ax, s) = capacity(s)/|components(ax, s)| (6.12)

Function 3 Function componentSize' computes a quotient of a server's capacity and its
number of components increased by 1, which equals componentSize after the server accepts an
additional component:

componentSize′ : A× S → N; (6.13)

componentSize′(ax, s) = capacity(s)/(|components(ax, s)|+ 1) (6.14)

Function 4 Function systemCapacity computes the capacity available in the system for a
given arrangement:

systemCapacity : A → N; (6.15)

systemCapacity(ax) = |C| ∗min
s∈S

({componentSize(ax, s)}) (6.16)

111

De�nition 1 Arrangement ax has an optimal capacity if and only if

systemCapacity(ax) = max
a∈A

(systemCapacity(a)) (6.17)

Function 5 Function con�icts returns the number of components for a given group on a
server:

conflicts : A× S ×G → N; (6.18)

conflicts(ax, s, g) = |{c ∈ C|group(c) = g ∧ c ∈ components(ax, s)}| (6.19)

Function 6 Function maxCon�icts returns the maximal number of con�icts in the system:

maxConflicts : A → N; (6.20)

maxConflicts(ax) = max
s∈S,g∈G

(conflicts(ax, s, g)) (6.21)

De�nition 2 ax is an arrangement with an optimal resilience if and only if

maxConflicts(ax) = min
a∈A

(maxConflicts(a)) (6.22)

De�nition 3 ax meets a resilience restriction of r ∈ N if and only if

maxConflicts(ax) <= r (6.23)

De�nition 4 ax has an optimal capacity within a resilience restriction of r ∈ N i�

maxConflicts(ax) <= r and (6.24)

systemCapacity(ax) = max
{a∈A|maxConflicts(a)<=r}

(systemCapacity(a)) (6.25)

Corollary 1 If ax meets a resilience restriction of r ∈ N then

∀s ∈ S |components(ax, s)| <= r ∗ |G| (6.26)

Function 7 Function groupSize returns the number of components in a group:

groupSize : G → N; (6.27)

groupSize(g) = |{c ∈ C|group(c) = g}| (6.28)

De�nition 5 All groups in the system are equinumerous if and only if

∃n∈N∀g∈G|groupSize(g)| = n (6.29)

Function 8 Function sumCon�icts returns the sum of con�icts for one group in total (i.e.,
on all servers):

sumConflicts : A×G → N; (6.30)

sumConflicts(ax, g) =
∑
s∈S

conflicts(ax, s, g) (6.31)

Corollary 2

∀a1, a2 ∈ A ∀g ∈ G sumConflicts(a1, g) = sumConflicts(a2, g) = groupSize(g) (6.32)

112

6.6.3. Operations

Derrick solves the problem of �nding an arrangement by moving components between servers.
Therefore, Derrick has a set of possible operations that move components between servers.
Each operation is a partial function that is de�ned only if the components are indeed located
on their initial servers. We specify the following operations:

Operation 1 Relocation is an operation that moves a component from its initial location
to a di�erent server:

relocation : C × S × S ×A ↛ A; (6.33)

relocation(ca, sinitial, snew, ax) = ay ⇔ ay(c) =

{
snew if c = ca ∧ ax(ca) = sinitial

ax(c) if c ̸= ca ∧ ax(ca) = sinitial
(6.34)

Operation 2 Push is an operation that moves a component from its initial location to a
di�erent server, then takes a di�erent component from that servers and moves it somewhere
else:

push : C × C × S × S × S ×A ↛ A; (6.35)

push(ca, cb, sa, sb, sc, ax) = ay ⇔ ay(c) =

sb if c = ca ∧ ax(ca) = sa ∧ ax(cb) = sb

sc if c = cb ∧ ax(ca) = sa ∧ ax(cb) = sb

ax(c) otherwise

(6.36)

De�nition 6 A composition ϕ of operations o1, o2, ..., on is an operation that arises from
combining the operations, i.e. ϕ(ax) = ay ⇔ on(...o2(o1(ax))...) = ay

De�nition 7 Arrangement ax can be reached from arrangement ay using operations o1, o2, ..., on,
i� there exists a composition of operations ϕ for which ϕ(ax) = ay.

6.6.4. Lemma 1

Lemma 1 Assume a system and r ∈ N for which an arrangement meeting resilience restric-
tion r exists. If groups are equinumerous, for every arrangement ax there exists an arrange-
ment ay with an optimal capacity and within resilience restriction r, such that ay can be
reached from ax using relocations and pushes.

Proof: The proof consists of two steps. First, we show that there exists an arrangement ar
that meets a resilience restriction r and can be reached from ax by using only relocations.
Then, we show that ay can be reached from ar using relocations and pushes.

If ax meets resilience restriction r, then ax = ar. Otherwise, from De�nition 3, at least
one server sa and would one group ga exist for which conflicts(ax, sa, ga) > r. Moreover,
for at least one server sb, conflicts(ax, sb, ga) < r, otherwise sumConflicts(ax, ga) > r ∗ |S|
that contradicts the existence of an arrangement meeting a resilience restriction r (from
Corollary 1). Therefore a following relocation of a component ca from sa can be done:

ai = relocation(ca, sa, sb, ax) (6.37)

conflicts(ai, sb, ga) <= r (6.38)

conflicts(ai, sa, ga) = conflicts(ax, sa, ga)− 1 (6.39)

113

Repeating such steps, for every server and group that does not meet resilience restriction r
leads to ar.

If ar has the optimal capacity within resilience restriction r, then ay = ar. Otherwise,
at least one server, sa, which lowers the system capacity exists (componentSize(ar, sa) <
systemCapacity(ay)

|C|). Capacity(sa) is given but the usable component size can be increased by
moving a component out of sa.

As capacity of ar is not optimal within resilience restriction r, there must also be a server
sb satisfying the two following formulas:

componentSize′(ar, sb) >=
systemCapacity(ay)

|C|
(6.40)

∃gb conflicts(ar, sb, gb) < r (6.41)

The existence of sb can be explained as follows. As sa underutilizes the capacity, another
server must be able to take at least one additional component without negatively a�ecting
the system capacity. Therefore, at least one server can accept additional component in terms of
the capacity. Assume that for every server, sf , being able to accept the additional component
for each gb ∈ G, conflicts(ar, sf , gb) = r. It would mean that there are |S|∗|G|∗r components
in the system, and hence each of the servers hosts exactly r∗ |G| components, so none of these
servers can accept any component. This is a contradiction, as it means that no arrangement
meeting the resilience restriction r exists in which sa hosts fewer components (as none of the
other servers can accept it).

Therefore, sb can take a component in terms of capacity and we want to move one of the
components from sa. If any component ca on sa with group(ca) = gb exists, then ca can be
moved to sb with the relocation. Otherwise, placing any ca such that g(ca) = ga on sb would
break the resilience restriction r. Therefore, conflicts(ar, sa, ga) > conflicts(ar, sa, gb) = 0
(as there are no components from gb), and conflicts(ar, sb, ga) > conflicts(ar, sb, gb) (as sb
accepts gb but not ga). However, the groups are equinumerous, so there must be at least
one server sc for which conflicts(ar, sc, gb) > conflicts(ar, sc, ga) (there are two servers with
more components from ga, we need to place components from gb somewhere). Therefore, sc
hosts component cb with group(cb) = gb, so push(ca, cb, sa, sc, sb, ax) can be done (see Fig.
6.30).

Figure 6.30: An example of a push that improves capacity. A concrete example of such
situation is presented in Fig. 6.8.

The reasoning can be repeated until the optimal capacity with resilience restriction r is
reached QED.

114

6.6.5. TrGuide De�nitions

To formalize Lemma 2, Lemma 3, Lemma 4 additional de�nitions and operations related to
TrGuide are introduced:

Operation 3 Swap is an operation that exchanges the location of two components between
servers:

swap : C × C × S × S ×A ↛ A; (6.42)

swap(ca, cb, sa, sb, ax) = ay ⇔ ay(c) =

sa if c = cb ∧ ax(ca) = sa ∧ ax(cb) = sb

sb if c = ca ∧ ax(ca) = sa ∧ ax(cb) = sb

ax(c) otherwise

(6.43)

Operation 4 Cyclen is a generalization of a swap to more than two components:

cyclen : C × ...× C︸ ︷︷ ︸
n

×S × ...× S︸ ︷︷ ︸
n

×A ↛ A; (6.44)

cyclen(c0, ..., cn−1, s0, ..., sn−1, ax) = ay ⇔ (6.45)

ay(c) =

s1 if c = c0 ∧ ∀i ∈ {0, ..., n− 1} ax(ci) = si

...

s0 if c = cn−1 ∧ ∀i ∈ {0, ..., n− 1} ax(ci) = si

ax(c) otherwise

(6.46)

De�nition 8 Each operation moves at a time a number of components equal to the number
of components that change their position as a result of the operation. Relocation moves 1
component at a time, swap and push move 2 at a time, and cyclen moves n components at a
time.

De�nition 9 For any two arrangements ax and ay, nextBalancingStep(ax, ay) is an ar-
rangement, az, meeting all of the following criteria:

crit. #1: |{c ∈ C|ax(c) = ay(c)}| < |{c ∈ C|az(c) = ay(c)}| (6.47)

crit. #2: max(maxConflicts(ax),maxConflicts(ay)) >= maxConflicts(az) (6.48)

crit. #3: min(systemCapacity(ax), systemCapacity(ay)) <= systemCapacity(az) (6.49)

The intuition behind the three criteria is as follows. Crit. #1 ensures that az has more
components on their locations from ay than ax, so the arrangement moves towards ay. Crit. #2
ensures that the system resilience is not worsen. Crit. #3 ensures that the system capacity is
not worsen.

6.6.6. Lemma 2

Lemma 2 For any given arrangements ax and ay, and a component, ca, such that ax(ca) =
sa ∧ ay(ca) = sb, if relocation(ca, sa, sb, ax) violates crit.#2, then there is a component, cb,
such that ax(cb) = sb and swap(ca, cb, sa, sb, ax) is nextBalancingStep(ax, ay).

Proof: If relocating ca to sb violates crit.#2 (on sb), then sb already hosts the maximal
number of components of group(ca), which is max(maxConflicts(ax),maxConflicts(ay)).
This implies that a component, cb, with group(ca) = group(cb) for which ay(cb) ̸= sb exists,

115

because ca is guaranteed to be allowed on sb in ay (see Fig. 6.31). Swaps can always be
done without violating crit.#3, as a swap does not change the number of components on
any machine. Moreover, crit.#1 is improved, as ca reaches its location from ay, whereas cb
has a di�erent location in ax than in ay (i.e. moving cb has no negative impact on crit.#1).
Therefore swap(ca, cb, sa, sb, ax) can be the nextBalancingStep(ax, ay).

Figure 6.31: An example of swap that is possible when there is crit.#2 violation on sb.

6.6.7. Lemma 3

Lemma 3 For any given arrangements ax and ay, if a cycle, p, of length n > 3, formed
by components c0, c2, ..., c(n−1) for which ay(c0) = ax(c1) ∧ ... ∧ ay(c(n−1)) = ax(c0) exists,
TrGuide can �nd the nextBalancingStep(ax, ay) = az by moving at most three components
at a time.

Proof: First, consider the situation that ∃i, j ∈ {0...n− 1}((i < j) ∧ (ax(ci) = ax(cj))). In
such a case, reduce the considered cycle to ci, ..., cj . If the length of the cycle is 2 or 3, use
swap or cycle3 as nextBalancingStep. Otherwise, repeat the reasoning with the reduced
cycle (ci, ..., cj). Using this approach multiple times we can eliminate all sub-cycles of lengths
at most 3.

At this point, we can thus assume that the length of the cycle is n > 3 and ax(c1), ..., ax(cn)
are pairwise di�erent. Using cyclen(c0, ..., cn−1, ax(c0), ..., ax(cn−1), ax) does not change the
capacity but moves more than three components at a time. If possible for any i, one of the
following operations should be selected as nextBalancingStep(ax, ay):

relocation(ci, ax(ci), ay(ci), ax) (6.50)

swap(ci, c(i+1)%n, ax(ci), ax(c(i+1)%n), ax) (6.51)

cycle3(ci, c(i+1)%n, c(i+2)%n, ax(ci), ax(c(i+1)%n), ax(c(i+2)%n), ax) (6.52)

If none of the three operations is allowed for any i, cyclen does not violate crit.#2, otherwise
a swap would be possible (from Lemma 2 applied to every relocation that comprises the
cycle). Therefore, cyclen could be the nextBalancingStep(ax, ay) but it moves too many
components.

We can prove that if all possible swap and cycle3 operations violate crit.#2, then cyclen
violates it as well, which leads to a contradiction (as we already concluded that cyclen does
not violate crit.#2). For every j < n, ax(cj) hosts the maximal allowed number of compo-
nents from the group(c(j+1)%n), otherwise swap(cj , c(j+1)%n, ax(cj), ax(c(j+1)%n), ax) would
possible. Alike, for every j < n, ax(cj) hosts the maximal allowed number of components
from the group(c(j+2)%n), otherwise the cycle3(cj , c(j+1)%n, c(j+2)%n, ax(cj),
ax(c(j+1)%n), ax(c(j+2)%n), ax) would be possible. Moreover, as such cycle3 moves the compo-
nents cj , c(j+1)%n to their ay location, moving any of the components from server ax(c(j+2)%n)

116

(even the one already on its ay location) does not violate crit.#1. Therefore, any of ax(c(j+2)%n)
components can be moved to ax(c(j)) without violating crit.#1. Since both crit.#1 and
crit.#3 cannot be violated by such a cycle3, it means it violates the crit.#2 and ax(cj) must
host the maximal allowed number of components from every group hosted on ax(c(j+2)%n).
For the same reason, ax(c(j+2)%n) must host the maximal allowed number of components from
every group hosted on ax(c(j+4)%n), which also implies that they are also hosted on ax(c(j)%n).
In general, ax(cj%n) must host host the maximal allowed number of components from every
group hosted on ax(c(j+2∗m)%n) for m ∈ N.

As we already stated, ax(cj) hosts the maximal allowed number of components from
the group(c(j+1)%n) (swap violates crit.#2), just as ax(c(j−1)%n) hosts the maximal allowed
number of components from the group(c(j+1)%n) (cycle3 violates crit.#2). Therefore, the
limit of allowed components from group(c(j+1)%n) is reached on every server (see Fig. 6.32)
because the limit is reached for both ax(c(j+2∗m)%n) and ax(c(j−1+2∗m)%n) for m ∈ N. It
contradicts the fact that cyclen is possible (because crit.#2 would be violated) QED.

Figure 6.32: An example where component ci is not allowed on s1 (contradiction).

6.6.8. Lemma 4

Lemma 4 For any given arrangements ax and ay, TrGuide can �nd
nextBalancingStep(ax, ay) = az by moving at most three components at a time.

Proof: Let us select a component ca for which ax(ca) = sa ∧ ay(ca) = sb ∧ sa ̸= sb. If sb
can accept ca without violating crit.#2 and crit.#3, then the nextBalancingStep(ax, ay) is
relocation(ca, sa, sb, ax).

If relocating ca to sb violates crit.#2 (on sb), then Lemma 2 can be used to do a swap.

If relocating ca to sb violates crit.#3 but does not violate crit.#2, a component, cb, exists
for which ay(cb) ̸= sb ∧ ax(cb) = sb (because in ax there is no space on sb for ca but there is
in ay). If cb can be swapped with ca without violating crit.#2 (by relocating cb to sa when
swapping ca and sb), then swap(ca, cb, sa, sb, ax) is nextBalancingStep(ax, ay).

If none of the relocations or swaps introduced to this point are possible for ca, then repeat
the steps for every other component, ci, for which ax(ci) = si ∧ ay(ci) = sj ∧ si ̸= sj . If none
of the relocations or swaps are possible for any of such components, it means there is a cycle,
because each of the components has its target on a server where there is no additional space
(crit.#3 violated when relocating), so each target server also hosts at least one component
that will change its location. Cycles of length 2 and 3 can be trivially solved by moving up
to three components. If the cycle is longer than 3 components, Lemma 3 can be used to �nd
the nextBalancingStep(ax, ay) within the cycle.

In this way, all cases have been examined QED.

117

6.7. Conclusions

We examined the challenges in providing self-managed continuous scalability in heteroge-
neous distributed storage systems. As a solution, we presented Derrick, which is a novel
algorithm for �nding data arrangements that meet multiple requirements. We implemented
Derrick in HYDRAstor and evaluated it against existing state-of-the-art solutions in Ceph and
Swift. A deployment of the described techniques in production also con�rmed their e�ective-
ness. Our approach guarantees maximal resilience, higher capacity utilization, and less data
movement. For speci�c requirements, such as balancing distinguished components or keeping
groups within racks, Derrick achieves respectively 15%�40% and 27%�45% better results than
the state of the art. Moreover, to ensure �exible scalability, it introduces the changes in data
arrangement gradually, without super�uous disruption of system operations.

Derrick �nds satisfactory solutions in systems from a few to thousands of devices within the
given time. The general idea can be adapted to systems with a di�erent set of requirements.

118

Chapter 7

Conclusions and Future Work

E�cient implementation of distributed storage systems with deduplication is challenging, and
adaptation of such systems to the requirements of the cloud computing era is a broad research
topic. In this dissertation, we proposed ObjDedup, InftyDedup, and Derrick, which introduce
novel solutions to three important research problems in the area. Each of the three solutions
brings a signi�cant improvement over the state of the art. They have been or will be deployed
in HYDRAstor, a commercial PBBA utilized by many organizations. In e�ect, our work
betters actual backup and archival storage systems.

ObjDedup, an object storage layer for backup systems with block-level deduplication,
achieves a 1.8�3.93x higher write throughput than object storage without in-line deduplica-
tion. Compared to object storage on top of a state-of-the-art �le-based backup system, it
also processes 5.26�11.34x more object put operations per time unit. Since, to the best of our
knowledge, ObjDedup is the �rst object storage layer of that kind, we expect it to change how
PBBA systems can be employed to implement cloud-oriented functionality and how PBBA
systems can interact with cloud applications.

InftyDedup, unlike other tiering to cloud solutions, maximizes scalability by utilizing cloud
services not only for storage but also for computation to deduplicate multi-petabyte backups
from multiple sources at costs on the order of a couple of dollars. The design of InftyDedup
allows scaling it without restrictions, and hence, deduplicated data can be moved to the
cloud on an unprecedented scale. Moreover, InftyDedup dynamically selects between hot
and cold cloud storage based on the characteristics of each data chunk to reduce the costs
further. As deduplicated data are kept in small blocks (which are not well-suited for cold
cloud storage) without our technique, storing deduplicated data in cold cloud storage might
drastically increase the overall costs. Again, we are not aware of any prior solution that would
e�ectively combine the characteristics of deduplicated data and the cold cloud storage pricing
model, and hence our work can open up new research directions.

Derrick is a data balancer designed to make its decisions quickly in case of failures, yet
to be allowed to take extra time to �nd a nearly optimal data arrangement and a plan
for reaching it when the device population changes. Compared to balancing algorithms in
two other state-of-the-art systems, Derrick provides better capacity utilization, reduced data
movement, and improved performance. Moreover, it can be easily adapted to meet custom
placement requirements. Data balancing in distributed storage is a general problem that
exists in various systems, including those without deduplication. Therefore, not only does
Derrick signi�cantly improve systems that implement ObjDedup and InftyDedup, but it can
also be adapted to many other distributed storage systems.

When it comes to future research directions, history shows that backup workloads evolve

119

in time [6]. Therefore, detailed quantitative research on how ObjDedup, InftyDedup, and
Derrick work over longer periods of time is such important future work. For all three, we
made numerous assumptions based on modern use cases of backup systems. The quantitative
analysis would not only verify if our assumptions were correct but would also examine if new
possibilities introduced by our work changed the behavior of the systems' users.

Furthermore, clouds are constantly evolving as well, and our research was primarily in-
spired by changes introduced in recent years. For instance, the fact that multiple backup
applications implement writing to object storage with peculiar workloads necessitated e�-
cient metadata handling in ObjDedup. In turn, cold archive cloud storage with instant access
facilitated mixing storage types in InftyDedup. We expect that in the future, both cloud
providers and applications that utilize clouds will o�er new features. Consequently, new re-
search will be needed to take advantage of the emerging technologies. Similarly, future data
carriers, such as the aforementioned DNA storage, quartz glass, or HDDs one hundred times
greater than today, can change the way storage systems organize their data, and hence our
methods might require adjustments (or even a redesign).

Finally, novel ideas appear in storage research regularly, and many of them can be used
to further improve storage systems with deduplication. In particular, as explained in Sec-
tion 5.1.4, security in cloud storage with deduplication has received signi�cant research atten-
tion recently, and hence, the integration of new methods with our solutions is an interesting
challenge. Similarly, we think it is possible to improve our systems by applying recently
developed methods of increasing reliability mentioned in Section 6.1. Overall, based on my
conversations with experts met during the leading storage conferences, deduplication increas-
ingly seems to be a desired feature in cloud storage systems, and thus further work on the
topic will likely follow.

120

Bibliography

[1] ABCSI. Dell EMC PowerEdge R740xd 2U Rack Server, 2023. https://abcsistore.
com/products/dell-emc-poweredge-r740xd-2u-rack-server.

[2] Acronis. Retention rules: how and when they work, 2022. https://kb.acronis.com/
content/68304.

[3] Agarwala, A., Singh, P., and Atrey, P. K. DICE: A dual integrity convergent
encryption protocol for client side secure data deduplication. In 2017 IEEE international
conference on systems, man, and cybernetics (SMC) (2017), IEEE, pp. 2176�2181.

[4] Ajdari, M., Park, P., Kim, J., Kwon, D., and Kim, J. CIDR: A cost-e�ective
in-line data reduction system for terabit-per-second scale SSD arrays. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA) (2019),
IEEE, pp. 28�41.

[5] Alibaba Cloud. Alibaba Cloud Object Storage Service, 2021. https://

alibabacloud.com/product/oss.

[6] Allu, Y., Douglis, F., Kamat, M., Prabhakar, R., Shilane, P., and Ugale,
R. Can't we all get along? redesigning protection storage for modern workloads. In 2018
USENIX Annual Technical Conference (USENIX ATC 18) (Boston, MA, July 2018),
USENIX Association.

[7] Allu, Y., Douglis, F., Kamat, M., Shilane, P., Patterson, H., and Zhu, B.
Backup to the future: How workload and hardware changes continually rede�ne data
domain �le systems. Computer 50, 7 (2017), 64�72.

[8] Almeida, J. B., Barbosa, M., Barthe, G., Campagna, M., Cohen, E., Gre-
goire, B., Pereira, V., Portela, B., Strub, P.-Y., and Tasiran, S. A machine-
checked proof of security for AWS key management service. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (2019), pp. 63�
78.

[9] Alon, B. MezzFS � mounting object storage in Net�ix's media processing plat-
form, 2021. https://netflixtechblog.com/mezzfs-mounting-object-storage-in-

netflixs-media-processing-platform-cda01c446ba.

[10] Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W., Alyami, H., and Ayaz,
M. A systematic literature review on cloud computing security: Threats and mitigation
strategies. IEEE Access 9 (2021), 57792�57807.

[11] Alzahrani, H. A brief survey of cloud computing. Global Journal of Computer Science
and Technology: Cloud and Distributed, Global Journals Inc.(USA) (2016), 0975�4172.

121

https://abcsistore.com/products/dell-emc-poweredge-r740xd-2u-rack-server
https://abcsistore.com/products/dell-emc-poweredge-r740xd-2u-rack-server
https://kb.acronis.com/content/68304
https://kb.acronis.com/content/68304
https://alibabacloud.com/product/oss
https://alibabacloud.com/product/oss
https://netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-processing-platform-cda01c446ba
https://netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-processing-platform-cda01c446ba

[12] Amazon Web Services Inc. Amazon Simple Storage Service User Guide, 2021.
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-userguide.pdf.

[13] Amazon Web Services Inc. Pinterest on AWS, 2021. https://aws.amazon.com/

solutions/case-studies/innovators/pinterest/.

[14] Amazon Web Services, Inc. Amazon EBS pricing, 2023. https://aws.amazon.

com/ebs/pricing/.

[15] Amazon Web Services, Inc. Amazon EFS, 2023. https://aws.amazon.com/efs/.

[16] Amazon Web Services, Inc. Amazon Elastic Container Service pricing, 2023. https:
//aws.amazon.com/ecs/pricing/.

[17] Amazon Web Services, Inc. Amazon S3 pricing, 2023. https://aws.amazon.com/
s3/pricing/.

[18] Amazon Web Services, Inc. Amazon S3 storage classes, 2023. https://aws.

amazon.com/s3/storage-classes/.

[19] Amazon Web Services, Inc. AWS Direct Connect Locations, 2023. https://aws.

amazon.com/directconnect/locations/.

[20] Amazon Web Services, Inc. AWS Lambda - FAQs, 2023. https://aws.amazon.

com/lambda/faqs/.

[21] Amazon Web Services, Inc. AWS Snow Family FAQs, 2023. https://aws.amazon.
com/snow/faqs/.

[22] Amazon Web Services, Inc. Best practices for cluster con�guration,
2023. https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-

instances-guidelines.html.

[23] Amazon Web Services, Inc. Billing for interrupted spot instances,
2023. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/billing-for-

interrupted-spot-instances.html.

[24] Amazon Web Services, Inc. General purpose instances - network perfor-
mance, 2023. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-

purpose-instances.html#general-purpose-network-performance.

[25] Amazon Web Services, Inc. Link aggregation groups, 2023. https://docs.aws.

amazon.com/directconnect/latest/UserGuide/lags.html.

[26] Amvrosiadis, G., and Bhadkamkar, M. Identifying trends in enterprise data pro-
tection systems. In 2015 USENIX Annual Technical Conference (USENIX ATC 15)
(Santa Clara, CA, July 2015), USENIX Association.

[27] Amvrosiadis, G., and Bhadkamkar, M. Getting back up: Understanding how
enterprise data backups fail. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16) (Denver, CO, June 2016), USENIX Association.

[28] Amvrosiadis, G., and Bhadkamkar, M. Getting back up: Understanding how
enterprise data backups fail. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16) (Denver, CO, June 2016), USENIX Association.

122

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-userguide.pdf
https://aws.amazon.com/solutions/case-studies/innovators/pinterest/
https://aws.amazon.com/solutions/case-studies/innovators/pinterest/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/efs/
https://aws.amazon.com/ecs/pricing/
https://aws.amazon.com/ecs/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/directconnect/locations/
https://aws.amazon.com/directconnect/locations/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/snow/faqs/
https://aws.amazon.com/snow/faqs/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-instances-guidelines.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-instances-guidelines.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/billing-for-interrupted-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/billing-for-interrupted-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/directconnect/latest/UserGuide/lags.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/lags.html

[29] Anderson, P., Black, R., Cerkauskaite, A., Chatzieleftheriou, A., Clegg,
J., Dainty, C., Diaconu, R., Drevinskas, R., Donnelly, A., Gaunt, A. L.,
Georgiou, A., Diaz, A. G., Kazansky, P. G., Lara, D., Legtchenko, S.,
Nowozin, S., Ogus, A., Phillips, D., Rowstron, A., Sakakura, M., Ste-
fanovici, I., Thomsen, B., Wang, L., Williams, H., and Yang, M. Glass: A
new media for a new era? In 10th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 18) (Boston, MA, July 2018), USENIX Association.

[30] Andrew Smith, Research Manager; Archana Venkatraman, A. R. D. En-
terprise data growth and adoption of cloud applications challenge traditional data pro-
tection strategies, 2021. https://afi.ai/r/US48310921.pdf.

[31] Arcserve. Arcserve UDP 8.0 is now available, 2021. support.arcserve.com/s/

article/Arcserve-UDP-8-0-Is-Now-Available.

[32] Armknecht, F., Boyd, C., Davies, G. T., Gjøsteen, K., and Toorani, M. Side
channels in deduplication: Trade-o�s between leakage and e�ciency. In Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security (2017).

[33] Aronovich, L., Asher, R., Bachmat, E., Bitner, H., Hirsch, M., and Klein,
S. T. The design of a similarity based deduplication system. In Annual Haifa Experi-
mental Systems Conference (2009).

[34] Athanassoulis, M., and Idreos, S. Design tradeo�s of data access methods. In Pro-
ceedings of the 2016 International Conference on Management of Data (2016), pp. 2195�
2200.

[35] Aye, K. N., and Thein, T. A data rebalancing mechanism for gluster �le system.
https://meral.edu.mm/record/3572/files/12046.pdf.

[36] Backblaze. Backblaze b2, 2021. https://backblaze.com/b2/cloud-storage.html.

[37] Backblaze. Backblaze drive stats for q1 2023, 2023. https://www.backblaze.com/

blog/backblaze-drive-stats-for-q1-2023/.

[38] Bacs, A., Musaev, S., Razavi, K., Giuffrida, C., and Bos, H. DUPEFS: Leaking
data over the network with �lesystem deduplication side channels. In 20th USENIX
Conference on File and Storage Technologies (FAST 22) (Santa Clara, CA, Feb. 2022),
USENIX Association.

[39] Bairagi, S. I., and Bang, A. O. Cloud computing: History, architecture, security
issues. In National Conference �CONVERGENCE" (2015), vol. 2015, p. 28.

[40] Balaji, S., Krishnan, M. N., Vajha, M., Ramkumar, V., Sasidharan, B., and
Kumar, P. V. Erasure coding for distributed storage: An overview. Science China
Information Sciences 61 (2018), 1�45.

[41] Balmau, O., Dinu, F., Zwaenepoel, W., Gupta, K., Chandhiramoorthi, R.,
and Didona, D. SILK: Preventing latency spikes in log-structured merge key-value
stores. In 2019 USENIX Annual Technical Conference (USENIX ATC 19) (Renton,
WA, July 2019), USENIX Association.

[42] Bareos. Bareos droplet storage backends, 2021. https://docs.bareos.org/

TasksAndConcepts/StorageBackends.html.

123

https://afi.ai/r/US48310921.pdf
support.arcserve.com/s/article/Arcserve-UDP-8-0-Is-Now-Available
support.arcserve.com/s/article/Arcserve-UDP-8-0-Is-Now-Available
https://meral.edu.mm/record/3572/files/12046.pdf
https://backblaze.com/b2/cloud-storage.html
https://www.backblaze.com/blog/backblaze-drive-stats-for-q1-2023/
https://www.backblaze.com/blog/backblaze-drive-stats-for-q1-2023/
https://docs.bareos.org/TasksAndConcepts/StorageBackends.html
https://docs.bareos.org/TasksAndConcepts/StorageBackends.html

[43] Barr, J. New Amazon S3 Storage Class � Glacier Deep Archive, 2019. https://aws.
amazon.com/blogs/aws/new-amazon-s3-storage-class-glacier-deep-archive/.

[44] Barr, J. AWS Nitro SSD � High Performance Storage for your I/O-Intensive
Applications, 2021. https://aws.amazon.com/blogs/aws/aws-nitro-ssd-high-

performance-storage-for-your-i-o-intensive-applications/.

[45] Barr, J. Celebrate 15 years of Amazon S3, 2021. https://aws.amazon.com/

blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-

100-trillion-objects/.

[46] Basu, A., Sampson, J., Qian, Z., and Jaeger, T. Unsafe at any copy: Name
collisions from mixing case sensitivities. In 21st USENIX Conference on File and Storage
Technologies (FAST 23) (Santa Clara, CA, Feb. 2023), USENIX Association.

[47] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and Vajgel, P. Finding a nee-
dle in Haystack: Facebook's photo storage. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10) (Vancouver, BC, Oct. 2010), USENIX
Association.

[48] Belady, L. A., Nelson, R. A., and Shedler, G. S. An anomaly in space-time
characteristics of certain programs running in a paging machine. Communications of
the ACM 12, 6 (1969), 349�353.

[49] Bellare, M., Keelveedhi, S., and Ristenpart, T. Message-locked encryption and
secure deduplication. In Annual international conference on the theory and applications
of cryptographic techniques (2013).

[50] Bertrand, C. ESG research report: The evolution of data protection cloud
strategies, 2021. https://www.esg-global.com/research/esg-research-report-

the-evolution-of-data-protection-cloud-strategies.

[51] Bhata, S. Introducing azure cool blob storage, 2016. https://azure.microsoft.com/
en-us/blog/introducing-azure-cool-storage/.

[52] Black, J. Compare-by-hash: A reasoned analysis. In 2006 USENIX Annual Technical
Conference (USENIX ATC 06) (Boston, MA, May 2006), USENIX Association.

[53] Bögelsack, A., Chakraborty, U., Kumar, D., Rank, J., Tischbierek, J., and
Wolz, E. Introduction to Public Cloud and Hyperscalers. Apress, Berkeley, CA, 2022,
pp. 1�27.

[54] Bolosky, W. J., Corbin, S., Goebel, D., and Douceur, J. R. Single instance
storage in Windows 2000. In Proceedings of the 4th USENIX Windows Systems Sympo-
sium (2000), Seattle, WA, pp. 13�24.

[55] Bolosky, W. J., Douceur, J. R., Ely, D., and Theimer, M. Feasibility of a
serverless distributed �le system deployed on an existing set of desktop pcs. ACM
SIGMETRICS Performance Evaluation Review 28, 1 (2000), 34�43.

[56] Bose, M. Data protection fundamentals: How to backup an Amazon S3 bucket, 2021.
https://nakivo.com/blog/how-to-backup-an-amazon-s3-bucket/.

124

https://aws.amazon.com/blogs/aws/new-amazon-s3-storage-class-glacier-deep-archive/
https://aws.amazon.com/blogs/aws/new-amazon-s3-storage-class-glacier-deep-archive/
https://aws.amazon.com/blogs/aws/aws-nitro-ssd-high-performance-storage-for-your-i-o-intensive-applications/
https://aws.amazon.com/blogs/aws/aws-nitro-ssd-high-performance-storage-for-your-i-o-intensive-applications/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://www.esg-global.com/research/esg-research-report-the-evolution-of-data-protection-cloud-strategies
https://www.esg-global.com/research/esg-research-report-the-evolution-of-data-protection-cloud-strategies
https://azure.microsoft.com/en-us/blog/introducing-azure-cool-storage/
https://azure.microsoft.com/en-us/blog/introducing-azure-cool-storage/
https://nakivo.com/blog/how-to-backup-an-amazon-s3-bucket/

[57] Brett, B. Memory performance, 2023. https://www.intel.com/content/www/us/

en/developer/articles/technical/memory-performance-in-a-nutshell.html.

[58] Buyya, R., Broberg, J., and Goscinski, A. M. Cloud computing: Principles and
paradigms. John Wiley & Sons, 2010.

[59] Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie,
S., Xu, Y., Srivastav, S., Wu, J., Simitci, H., et al. Windows azure storage:
a highly available cloud storage service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (2011), pp. 143�157.

[60] Camacho-Rodríguez, J., Chauhan, A., Gates, A., Koifman, E., O'Malley,
O., Garg, V., Haindrich, Z., Shelukhin, S., Jayachandran, P., Seth, S.,
et al. Apache hive: From mapreduce to enterprise-grade big data warehousing. In
Proceedings of the 2019 International Conference on Management of Data (2019).

[61] Cao, Z., Liu, S., Wu, F., Wang, G., Li, B., and Du, D. H. Sliding Look-Back
window assisted data chunk rewriting for improving deduplication restore performance.
In 17th USENIX Conference on File and Storage Technologies (FAST 19) (Boston, MA,
Feb. 2019), USENIX Association.

[62] Cao, Z., Wen, H., Wu, F., and Du, D. H. ALACC: Accelerating restore performance
of data deduplication systems using adaptive look-ahead window assisted chunk caching.
In 16th USENIX Conference on File and Storage Technologies (FAST 18) (Oakland,
CA, Feb. 2018), USENIX Association.

[63] Carlson, J. Redis in action. Simon and Schuster, 2013.

[64] Carver, B., Han, R., Zhang, J., Zheng, M., and Cheng, Y. lambdaFS: A
scalable and elastic distributed �le system metadata service using serverless functions.
arXiv preprint arXiv:2306.11877 (2023).

[65] Caulk, P. M. The design of a petabyte archive and distribution system for the NASA
ECS project. In NASA. Goddard Space Flight Center, Fourth NASA Goddard Confer-
ence on Mass Storage Systems and Technologies (1994).

[66] Ceph. Erasure coded placement groups, 2016. https://docs.ceph.com/en/mimic/

dev/osd_internals/erasure_coding/.

[67] Ceph. Ceph object gateway, 2021. https://docs.ceph.com/en/latest/radosgw/.

[68] Ceph. Rados gateway data layout, 2021. https://docs.ceph.com/en/latest/

radosgw/layout/.

[69] Ceph. Balancer plugin, 2022. https://docs.ceph.com/en/mimic/mgr/balancer/.

[70] Ceph. Chapter 3. placement groups (PGS). https://access.redhat.com/

documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_

guide/placement_groups_pgs.

[71] Ceph. Placement groups, 2022. https://docs.ceph.com/en/latest/rados/

operations/placement-groups/.

[72] Ceph. V0.94.10 HAMMER, 2022. https://docs.ceph.com/docs/master/releases/
hammer/.

125

https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://docs.ceph.com/en/mimic/dev/osd_internals/erasure_coding/
https://docs.ceph.com/en/mimic/dev/osd_internals/erasure_coding/
https://docs.ceph.com/en/latest/radosgw/
https://docs.ceph.com/en/latest/radosgw/layout/
https://docs.ceph.com/en/latest/radosgw/layout/
https://docs.ceph.com/en/mimic/mgr/balancer/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_guide/placement_groups_pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_guide/placement_groups_pgs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/storage_strategies_guide/placement_groups_pgs
https://docs.ceph.com/en/latest/rados/operations/placement-groups/
https://docs.ceph.com/en/latest/rados/operations/placement-groups/
https://docs.ceph.com/docs/master/releases/hammer/
https://docs.ceph.com/docs/master/releases/hammer/

[73] Chatzieleftheriou, A., Stefanovici, I., Narayanan, D., Thomsen, B., and
Rowstron, A. Could cloud storage be disrupted in the next decade? In 12th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 20) (July 2020),
USENIX Association.

[74] Cheng, G., Guo, D., Luo, L., Xia, J., and Gu, S. Lofs: A lightweight online �le
storage strategy for e�ective data deduplication at network edge. IEEE Transactions
on Parallel and Distributed Systems (TPDS) 33, 10 (2021), 2263�2276.

[75] Chervenak, A., Vellanki, V., and Kurmas, Z. Protecting �le systems: A survey
of backup techniques. In Joint NASA and IEEE Mass Storage Conference (1998).

[76] Ciurana, E. Developing with google app engine. Apress, 2009.

[77] CockroachLabs. CockroachDB backup, 2021. https://cockroachlabs.com/docs/

dev/backup.

[78] Commvault. Public cloud architecture guide for Microsoft Azure, 2020.
https://documentation.commvault.com/commvault/v11/others/pdf/public-

cloud-architecture-guide-for-microsoft-azure11-19.pdf.

[79] Constantinescu, C., Glider, J., and Chambliss, D. Mixing deduplication and
compression on active data sets. In 2011 Data Compression Conference (2011), IEEE,
pp. 393�402.

[80] Cooper, P. One of tech's most elusive mysteries: The secret of Ama-
zon Glacier. https://www.itpro.com/cloud/367950/one-of-techs-most-elusive-

mysteries-the-secret-of-amazon-glacier.

[81] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J.,
Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., et al. Spanner:
Google's globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1�22.

[82] Coughlin, T. C1Q 2021 HDD Update. https://forbes.com/sites/tomcoughlin/

2021/05/04/c1q-2021-hdd-update/.

[83] Dagnaw, G., Hua, W., and Zhou, K. SSD assisted caching for restore optimization
in distributed deduplication environment. In 2020 International Conference on High
Performance Big Data and Intelligent Systems (HPBD&IS) (2020), IEEE, pp. 1�8.

[84] Dai, Y., Xu, Y., Ganesan, A., Alagappan, R., Kroth, B., Arpaci-Dusseau,
A., and Arpaci-Dusseau, R. From WiscKey to bourbon: A learned index for Log-
Structured merge trees. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20) (Nov. 2020), USENIX Association.

[85] De Guise, P. Data protection: Ensuring data availability. CRC Press, 2020.

[86] Debnath, B., Sengupta, S., and Li, J. Chunkstash: Speeding up inline stor-
age deduplication using �ash memory. In 2010 USENIX Annual Technical Conference
(USENIX ATC 10) (June 2010), USENIX Association.

[87] DELL EMC. Data Domain deduplication storage systems, 2018. https:

//delltechnologies.com/asset/en-us/products/data-protection/technical-

support/h11340-datadomain-ss.pdf.

126

https://cockroachlabs.com/docs/dev/backup
https://cockroachlabs.com/docs/dev/backup
https://documentation.commvault.com/commvault/v11/others/pdf/public-cloud-architecture-guide-for-microsoft-azure11-19.pdf
https://documentation.commvault.com/commvault/v11/others/pdf/public-cloud-architecture-guide-for-microsoft-azure11-19.pdf
https://www.itpro.com/cloud/367950/one-of-techs-most-elusive-mysteries-the-secret-of-amazon-glacier
https://www.itpro.com/cloud/367950/one-of-techs-most-elusive-mysteries-the-secret-of-amazon-glacier
https://forbes.com/sites/tomcoughlin/2021/05/04/c1q-2021-hdd-update/
https://forbes.com/sites/tomcoughlin/2021/05/04/c1q-2021-hdd-update/
https://delltechnologies.com/asset/en-us/products/data-protection/technical-support/h11340-datadomain-ss.pdf
https://delltechnologies.com/asset/en-us/products/data-protection/technical-support/h11340-datadomain-ss.pdf
https://delltechnologies.com/asset/en-us/products/data-protection/technical-support/h11340-datadomain-ss.pdf

[88] DELL EMC. Storage S3 in backup, 2021. https://dellemc.com/content/dam/

uwaem/production-design-assets/pl-pl/events/forum/2017/presentations/

cloud_lanscape4.pdf.

[89] DELL Technologies. PowerProtect DP Series, 2023. https://www.

delltechnologies.com/partner/pl-pl/partner/powerprotect-dp.htm.

[90] Distante, F., and Piuri, V. Hill-climbing heuristics for optimal hardware dimen-
sioning and software allocation in fault-tolerant distributed systems. IEEE transactions
on reliability 38, 1 (1989), 28�39.

[91] Douceur, J. R., and Wattenhofer, R. P. Large-scale simulation of replica place-
ment algorithms for a serverless distributed �le system. InMASCOTS 2001, Proceedings
Ninth International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (2001).

[92] Douglis, F., Duggal, A., Shilane, P., Wong, T., Yan, S., and Botelho, F.
The logic of physical garbage collection in deduplicating storage. In 15th USENIX
Conference on File and Storage Technologies (FAST 17) (Santa Clara, CA, Feb. 2017),
USENIX Association.

[93] Druva. What is backup retention policy? how is it implemented? https:

//docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_

Retention_Policy%3F_How_is_it_implemented%3F.

[94] Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzel-
czak, P., Szczepkowski, J., Ungureanu, C., and Welnicki, M. HYDRAstor: A
scalable secondary storage. In 7th USENIX Conference on File and Storage Technologies
(FAST 09) (San Francisco, CA, Feb. 2009), USENIX Association.

[95] Duggal, A., Jenkins, F., Shilane, P., Chinthekindi, R., Shah, R., and Kamat,
M. Data Domain Cloud Tier: Backup here, backup there, deduplicated everywhere!
In 2019 USENIX Annual Technical Conference (USENIX ATC 19) (Renton, WA, July
2019), USENIX Association.

[96] Ekwe-Ekwe, N., and Barker, A. Location, location, location: exploring Ama-
zon EC2 spot instance pricing across geographical regions. In 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2018).

[97] Elias, N., Shilane, P., Sheinvald, S., and Yadgar, G. Dedupsearch: Two-phase
deduplication aware keyword search. In 20th USENIX Conference on File and Storage
Technologies (FAST 22) (Santa Clara, CA, Feb. 2022), USENIX Association.

[98] Emma Haruka Iwao, R. M. Introducing open saves: Open-source cloud-
native storage for games, 2021. https://cloud.google.com/blog/products/media-

entertainment/introducing-open-saves.

[99] Eric Burgener, J. R. High data growth and modern applications
drive new storage requirements in digitally transformed enterprises, 2022.
https://www.delltechnologies.com/asset/en-my/products/storage/industry-

market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf.

127

https://dellemc.com/content/dam/uwaem/production-design-assets/pl-pl/events/forum/2017/presentations/cloud_lanscape4.pdf
https://dellemc.com/content/dam/uwaem/production-design-assets/pl-pl/events/forum/2017/presentations/cloud_lanscape4.pdf
https://dellemc.com/content/dam/uwaem/production-design-assets/pl-pl/events/forum/2017/presentations/cloud_lanscape4.pdf
https://www.delltechnologies.com/partner/pl-pl/partner/powerprotect-dp.htm
https://www.delltechnologies.com/partner/pl-pl/partner/powerprotect-dp.htm
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F
https://docs.druva.com/Knowledge_Base/inSync/Client/010_FAQ/What_is_Backup_Retention_Policy%3F_How_is_it_implemented%3F
https://cloud.google.com/blog/products/media-entertainment/introducing-open-saves
https://cloud.google.com/blog/products/media-entertainment/introducing-open-saves
https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf
https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf

[100] Färber, F., May, N., Lehner, W., Groÿe, P., Müller, I., Rauhe, H., and
Dees, J. The SAP HANA database�an architecture overview. IEEE Data Eng. Bull.
35, 1 (2012), 28�33.

[101] Fu, M., Han, S., Lee, P. P., Feng, D., Chen, Z., and Xiao, Y. A simulation anal-
ysis of redundancy and reliability in primary storage deduplication. IEEE Transactions
on Computers 67, 9 (2018), 1259�1272.

[102] Fu, Y., Jiang, H., Xiao, N., Tian, L., and Liu, F. Aa-dedupe: An application-
aware source deduplication approach for cloud backup services in the personal comput-
ing environment. In 2011 IEEE International Conference on Cluster Computing (2011),
IEEE, pp. 112�120.

[103] Garfinkel, S. The cloud imperative. Technology Review 114, 6 (2011), 74�76.

[104] Gervasi, B. Will carbon nanotube memory replace DRAM? IEEE Micro 39, 2 (2019),
45�51.

[105] Gholami Taghizadeh, R., Gholami Taghizadeh, R., Khakpash, F., Bi-
nesh Marvasti, M., and Asghari, S. A. CA-Dedupe: Content-aware deduplication
in SSDs. The Journal of Supercomputing 76 (2020), 8901�8921.

[106] Global Data Vault. Data backup: Developing an e�ective data re-
tention. https://www.globaldatavault.com/blog/data-retention-policy-and-

scheduled-backups/.

[107] Goda, K., and Kitsuregawa, M. The history of storage systems. Proceedings of the
IEEE 100, Special Centennial Issue (2012), 1433�1440.

[108] Golab, L., Hadjieleftheriou, M., Karloff, H., and Saha, B. Distributed data
placement via graph partitioning. arXiv preprint arXiv:1312.0285 (2013).

[109] Google Cloud. Migrating from Amazon S3 to Cloud Storage, 2021. https://cloud.
google.com/storage/docs/migrating.

[110] Google Cloud. Request rate and access distribution guidelines, 2021. https://

cloud.google.com/storage/docs/request-rate.

[111] Google Cloud. Cloud storage pricing, 2023. https://cloud.google.com/storage/
pricing#north-america.

[112] Google Cloud. Disk pricing, 2023. https://cloud.google.com/compute/disks-

image-pricing#disk.

[113] Google Cloud. Storage classes, 2023. https://cloud.google.com/storage/docs/

storage-classes#descriptions.

[114] Goyal, S. Public vs private vs hybrid vs community-cloud computing: a critical review.
International Journal of Computer Network and Information Security 6, 3 (2014), 20�
29.

[115] Graefe, G., et al. Modern b-tree techniques. Foundations and Trends® in Databases
3, 4 (2011), 203�402.

128

https://www.globaldatavault.com/blog/data-retention-policy-and-scheduled-backups/
https://www.globaldatavault.com/blog/data-retention-policy-and-scheduled-backups/
https://cloud.google.com/storage/docs/migrating
https://cloud.google.com/storage/docs/migrating
https://cloud.google.com/storage/docs/request-rate
https://cloud.google.com/storage/docs/request-rate
https://cloud.google.com/storage/pricing#north-america
https://cloud.google.com/storage/pricing#north-america
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/storage/docs/storage-classes#descriptions
https://cloud.google.com/storage/docs/storage-classes#descriptions

[116] Gray, J. Computer technology forecast for virtual observatories. https:

//www.microsoft.com/en-us/research/publication/computer-technology-

forecast-for-virtual-observatories/.

[117] Guidi, G., Ellis, M., Buluç, A., Yelick, K., and Culler, D. 10 years later:
Cloud computing is closing the performance gap. In Companion of the ACM/SPEC
International Conference on Performance Engineering (2021), pp. 41�48.

[118] Guo, F., and Efstathopoulos, P. Building a high-performance deduplication sys-
tem. In 2011 USENIX Annual Technical Conference (USENIX ATC 11) (Portland,
OR, June 2011), USENIX Association.

[119] Hamandawana, P., Khan, A., Lee, C.-G., Park, S., and Kim, Y. Crocus: En-
abling computing resource orchestration for inline cluster-wide deduplication on scalable
storage systems. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31, 8
(2020), 1740�1753.

[120] Han, S., Lee, P. P. C., Xu, F., Liu, Y., He, C., and Liu, J. An in-depth study of
correlated failures in production SSD-based data centers. In 19th USENIX Conference
on File and Storage Technologies (FAST 21) (Feb. 2021), USENIX Association.

[121] Hanushevsky, A., and Nowak, M. Pursuit of a scalable high performance multi-
petabyte database. In 16th IEEE Symposium on Mass Storage Systems in cooperation
with the 7th NASA Goddard Conference on Mass Storage Systems and Technologies
(Cat. No. 99CB37098) (1999), IEEE, pp. 169�175.

[122] Harari, E. Flash memory � the great disruptor! In 2012 IEEE International Solid-
State Circuits Conference (2012), pp. 10�15.

[123] Harnik, D., Hershcovitch, M., Shatsky, Y., Epstein, A., and Kat, R. Sketch-
ing volume capacities in deduplicated storage. In 17th USENIX Conference on File and
Storage Technologies (FAST 19) (Boston, MA, Feb. 2019), USENIX Association.

[124] Haynes, T. Network �le system (NFS) version 4 minor version 2 protocol. Tech. rep.,
2016.

[125] Henson, V. An analysis of compare-by-hash. In 9th Workshop on Hot Topics in
Operating Systems (HotOS IX) (Lihue, HI, May 2003), USENIX Association.

[126] Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., and Humphrey, M. Early observa-
tions on the performance of Windows Azure. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing (2010), pp. 367�376.

[127] Hoeck, M., Simpson, N., Rozeman, J., and Donham, J. Magic quadrant for
enterprise backup and recovery software solutions, 2022. https://www.gartner.com/

en/documents/4017101.

[128] Holt, G. Building a consistent hashing ring, 2011. https://docs.openstack.org/

swift/latest/ring_background.html.

[129] Hou, H., Lee, P. P., Shum, K. W., and Hu, Y. Rack-aware regenerating codes for
data centers. IEEE Transactions on Information Theory 65, 8 (2019), 4730�4745.

129

https://www.microsoft.com/en-us/research/publication/computer-technology-forecast-for-virtual-observatories/
https://www.microsoft.com/en-us/research/publication/computer-technology-forecast-for-virtual-observatories/
https://www.microsoft.com/en-us/research/publication/computer-technology-forecast-for-virtual-observatories/
https://www.gartner.com/en/documents/4017101
https://www.gartner.com/en/documents/4017101
https://docs.openstack.org/swift/latest/ring_background.html
https://docs.openstack.org/swift/latest/ring_background.html

[130] HPE. Storageexperts what's new with HPE scalable object storage with Scality
RING? https://community.hpe.com/t5/Around-the-Storage-Block/What-s-new-

with-HPE-Scalable-Object-Storage-with-Scality-RING/ba-p/7008183.

[131] Hsiao, H.-C., Chung, H.-Y., Shen, H., and Chao, Y.-C. Load rebalancing for
distributed �le systems in clouds. IEEE transactions on parallel and distributed systems
(TPDS) 24, 5 (2012), 951�962.

[132] Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J.,
and Yekhanin, S. Erasure coding in windows azure storage. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12) (Boston, MA, June 2012), USENIX Associa-
tion.

[133] Hughes, J. P. Economics of information storage: The value in storing the long tail.
In 2019 35th Symposium on Mass Storage Systems and Technologies (MSST) (2019),
pp. 185�192.

[134] IBM. IBM Cloud Object Storage System�, storage pool expansion guide. https:

//www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_

bookmap.pdf.

[135] IDC. Data creation and replication will grow at a faster rate than installed storage
capacity, 2021. https://idc.com/getdoc.jsp?containerId=prUS47560321.

[136] IDC. Enterprise storage systems market share, 2022. https://idc.com/promo/

enterprise-storage-systems.

[137] IDC. Worldwide quarterly purpose built backup appliance tracker, 2023. https://

www.idc.com/getdoc.jsp?containerId=IDC_P23469.

[138] IEEE. Ieee standard for information technology�portable operating system interface
(posix(tm)) base speci�cations, issue 7. IEEE Std 1003.1-2017 (Revision of IEEE Std
1003.1-2008) (2018), 1�3951.

[139] IEEE. IEEE Xplore search results, 2023. https://ieeexplore.ieee.org/search/

searchresult.jsp?queryText=distributed%20data%20storage&highlight=true&

returnType=SEARCH&matchPubs=true&pageNumber=1&ranges=2018_2023_Year&

returnFacets=ALL.

[140] Im, J., Bae, J., Chung, C., Arvind, and Lee, S. Pink: High-speed in-storage
key-value store with bounded tails. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20) (July 2020), USENIX Association.

[141] Inc., M. High performance object storage for veeam backup and recov-
ery, 2020. https://blog.min.io/minio-high-performance-object-storage-for-

veeam-backup-and-recovery/.

[142] Inc., M. MinIO object storage, 2021. https://min.io.

[143] Intel. Intel® Optane� business update: What does this mean for warranty and sup-
port. https://www.intel.com/content/www/us/en/support/articles/000091826/

memory-and-storage.html.

130

https://community.hpe.com/t5/Around-the-Storage-Block/What-s-new-with-HPE-Scalable-Object-Storage-with-Scality-RING/ba-p/7008183
https://community.hpe.com/t5/Around-the-Storage-Block/What-s-new-with-HPE-Scalable-Object-Storage-with-Scality-RING/ba-p/7008183
https://www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_bookmap.pdf
https://www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_bookmap.pdf
https://www.ibm.com/docs/en/STXNRM_3.14.1/coss.doc/pdfs/storagePoolExpansion_bookmap.pdf
https://idc.com/getdoc.jsp?containerId=prUS47560321
https://idc.com/promo/enterprise-storage-systems
https://idc.com/promo/enterprise-storage-systems
https://www.idc.com/getdoc.jsp?containerId=IDC_P23469
https://www.idc.com/getdoc.jsp?containerId=IDC_P23469
https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=distributed%20data%20storage&highlight=true&returnType=SEARCH&matchPubs=true&pageNumber=1&ranges=2018_2023_Year&returnFacets=ALL
https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=distributed%20data%20storage&highlight=true&returnType=SEARCH&matchPubs=true&pageNumber=1&ranges=2018_2023_Year&returnFacets=ALL
https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=distributed%20data%20storage&highlight=true&returnType=SEARCH&matchPubs=true&pageNumber=1&ranges=2018_2023_Year&returnFacets=ALL
https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=distributed%20data%20storage&highlight=true&returnType=SEARCH&matchPubs=true&pageNumber=1&ranges=2018_2023_Year&returnFacets=ALL
https://blog.min.io/minio-high-performance-object-storage-for-veeam-backup-and-recovery/
https://blog.min.io/minio-high-performance-object-storage-for-veeam-backup-and-recovery/
https://min.io
https://www.intel.com/content/www/us/en/support/articles/000091826/memory-and-storage.html
https://www.intel.com/content/www/us/en/support/articles/000091826/memory-and-storage.html

[144] Intel. Intel® Optane� SSD DC P4800X Series. https://www.intel.com/content/
www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-

5in-pcie-x4-3d-xpoint/specifications.html.

[145] Jackowski, A., Gryz, L., Weªnicki, M., Dubnicki, C., and Iwanicki, K. Der-
rick: A three-layer balancer for self-managed continuous scalability. ACM Transaction
on Storage 19, 3 (jun 2023). https://doi.org/10.1145/3594543.

[146] Jackowski, A., �lusarczyk, �., Lichota, K., Weªnicki, M., Wijata, R.,
Kielar, M., Kope¢, T., Dubnicki, C., and Iwanicki, K. Objdedup: High-
throughput object storage layer for backup systems with block-level deduplication.
IEEE Transactions on Parallel and Distributed Systems (TPDS) 34, 7 (2023), 2180�
2197, © 2023 IEEE.

[147] Jaffer, S., Mahdaviani, K., and Schroeder, B. Improving the reliability of next
generation SSDs using WOM-v codes. In 20th USENIX Conference on File and Storage
Technologies (FAST 22) (Santa Clara, CA, Feb. 2022), USENIX Association.

[148] Jayapandian, N., and Md Zubair Rahman, A. Secure deduplication for cloud stor-
age using interactive message-locked encryption with convergent encryption, to reduce
storage space. Brazilian Archives of Biology and Technology 61 (2018).

[149] Ji, X., Yang, B., Zhang, T., Ma, X., Zhu, X., Wang, X., El-Sayed, N., Zhai,
J., Liu, W., and Xue, W. Automatic, application-aware i/o forwarding resource
allocation. In 17th USENIX Conference on File and Storage Technologies (FAST 19)
(Boston, MA, Feb. 2019), USENIX Association.

[150] Johnson, A. W., and Jacobson, S. H. On the convergence of generalized hill
climbing algorithms. Discrete applied mathematics 119, 1-2 (2002), 37�57.

[151] Kaczmarczyk, M., Barczynski, M., Kilian, W., and Dubnicki, C. Reducing
impact of data fragmentation caused by in-line deduplication. In Proceedings of the 5th
Annual International Systems and Storage Conference (SYSTOR) (2012), pp. 1�12.

[152] Kaczmarczyk, M., and Dubnicki, C. Reducing fragmentation impact with for-
ward knowledge in backup systems with deduplication. In Proceedings of the 8th ACM
International Systems and Storage Conference (SYSTOR) (2015), pp. 1�12.

[153] Kadekodi, S., Maturana, F., Athlur, S., Merchant, A., Rashmi, K. V., and
Ganger, G. R. Tiger: Disk-Adaptive redundancy without placement restrictions. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)
(Carlsbad, CA, July 2022), USENIX Association.

[154] Kadekodi, S., Maturana, F., Subramanya, S. J., Yang, J., Rashmi, K. V.,
and Ganger, G. R. PACEMAKER: Avoiding HeART attacks in storage clusters with
disk-adaptive redundancy. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20) (Nov. 2020), USENIX Association.

[155] Kadekodi, S., Rashmi, K. V., and Ganger, G. R. Cluster storage systems gotta
have HeART: improving storage e�ciency by exploiting disk-reliability heterogeneity.
In 17th USENIX Conference on File and Storage Technologies (FAST 19) (Boston, MA,
Feb. 2019), USENIX Association.

131

https://www.intel.com/content/www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://doi.org/10.1145/3594543

[156] Kadekodi, S., Silas, S., Clausen, D., and Merchant, A. Practical design con-
siderations for wide locally recoverable codes (LRCs). In 21st USENIX Conference on
File and Storage Technologies (FAST 23) (2023).

[157] Kamath, G. M., Prakash, N., Lalitha, V., and Kumar, P. V. Codes with local
regeneration and erasure correction. IEEE Transactions on information theory 60, 8
(2014), 4637�4660.

[158] Kang, Q., Lee, S., Hou, K., Ross, R., Agrawal, A., Choudhary, A., and Liao,
W.-k. Improving mpi collective i/o for high volume non-contiguous requests with intra-
node aggregation. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31,
11 (2020), 2682�2695.

[159] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., and
Lewin, D. Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing (1997), pp. 654�663.

[160] Keelveedhi, S., Bellare, M., and Ristenpart, T. Dupless: Server-aided encryp-
tion for deduplicated storage. In 22nd USENIX Security Symposium (USENIX Security
13) (2013).

[161] Khan, A., Hamandawana, P., and Kim, Y. A content �ngerprint-based cluster-
wide inline deduplication for shared-nothing storage systems. IEEE Access 8 (2020),
209163�209180.

[162] Khan, A., Lee, C.-G., Hamandawana, P., Park, S., and Kim, Y. A robust fault-
tolerant and scalable cluster-wide deduplication for shared-nothing storage systems. In
IEEE MASCOTS (2018).

[163] Khan, R. I. S., Yazdani, A. H., Fu, Y., Paul, A. K., Ji, B., Jian, X., Cheng,
Y., and Butt, A. R. SHADE: Enable fundamental cacheability for distributed deep
learning training. In 21st USENIX Conference on File and Storage Technologies (FAST
23) (Santa Clara, CA, Feb. 2023), USENIX Association.

[164] Khattar, R. K., Murphy, M. S., Tarella, G. J., and Nystrom, K. E. Introduc-
tion to Storage Area Network, SAN. IBM Corporation, International Technical Support
Organization, 1999.

[165] Kim, J., Campes, C., Hwang, J.-Y., Jeong, J., and Seo, E. Z-journal: Scalable
per-core journaling. In 2021 USENIX Annual Technical Conference (USENIX ATC 21)
(July 2021), USENIX Association.

[166] KIOXIA. EDSFF - a new form factor for next gen servers and storage. https://

europe.kioxia.com/en-europe/business/ssd/solution/edsff.html.

[167] Kisous, R., Kolikant, A., Duggal, A., Sheinvald, S., and Yadgar, G. The
what, the from, and the to: The migration games in deduplicated systems. In 20th
USENIX Conference on File and Storage Technologies (FAST 22) (Santa Clara, CA,
Feb. 2022), USENIX Association.

[168] Kotka, T., Kask, L., Raudsepp, K., Storch, T., Radloff, R., and Liiv, I.
Policy and legal environment analysis for e-government services migration to the public

132

https://europe.kioxia.com/en-europe/business/ssd/solution/edsff.html
https://europe.kioxia.com/en-europe/business/ssd/solution/edsff.html

cloud. In Proceedings of the 9th International Conference on Theory and Practice of
Electronic Governance (2016), pp. 103�108.

[169] Kotlarska, I., Jackowski, A., Lichota, K., Welnicki, M., Dubnicki, C., and
Iwanicki, K. InftyDedup: Scalable and cost-e�ective cloud tiering with deduplication.
In 21st USENIX Conference on File and Storage Technologies (FAST 23) (Santa Clara,
CA, Feb. 2023), USENIX Association.

[170] Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N. The case
for learned index structures. In Proceedings of the 2018 international conference on
management of data (2018), pp. 489�504.

[171] Krishnaprasad, P., and Narayamparambil, B. A. A proposal for improving data
deduplication with dual side �xed size chunking algorithm. In 2013 Third International
Conference on Advances in Computing and Communications (2013), IEEE, pp. 13�16.

[172] Kruus, E., and Ungureanu, C. Bimodal content de�ned chunking for backup
streams. In 8th USENIX Conference on File and Storage Technologies (FAST 10) (San
Jose, CA, Feb. 2010), USENIX Association.

[173] Kumar, P., and Huang, H. H. Graphone: A data store for real-time analytics on
evolving graphs. ACM Transactions on Storage (TOS) 15, 4 (2020), 1�40.

[174] Kwon, H., Cho, Y., Khan, A., Park, Y., and Kim, Y. DeNOVA: Deduplica-
tion extended nova �le system. In 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (2022), IEEE, pp. 1360�1371.

[175] Kwon, M., Lee, S., Choi, H., Hwang, J., and Jung, M. Vigil-kv: Hardware-
software co-design to integrate strong latency determinism into log-structured merge
Key-Value stores. In 2022 USENIX Annual Technical Conference (USENIX ATC 22)
(Carlsbad, CA, July 2022), USENIX Association.

[176] Lakshman, A., and Malik, P. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44, 2 (2010), 35�40.

[177] Learn, M. Understand data store models, 2023. https://learn.microsoft.com/en-
us/azure/architecture/guide/technology-choices/data-store-overview#

keyvalue-stores.

[178] Lee, C., Sim, D., Hwang, J., and Cho, S. F2FS: A new �le system for �ash storage.
In 13th USENIX Conference on File and Storage Technologies (FAST 15) (Santa Clara,
CA, Feb. 2015), USENIX Association.

[179] Leesakul, W., Townend, P., and Xu, J. Dynamic data deduplication in cloud
storage. In 2014 IEEE 8th International Symposium on Service Oriented System Engi-
neering (2014), IEEE, pp. 320�325.

[180] Leibovici, T. Hierarchical storage from NVMe to tapes. In Proceedings of the 2022
Workshop on Emerging Open Storage Systems and Solutions for Data Intensive Com-
puting (2022), pp. 3�4.

[181] Li, H., Zhang, Y., Li, D., Zhang, Z., Liu, S., Huang, P., Qin, Z., Chen, K.,
and Xiong, Y. Ursa: Hybrid block storage for cloud-scale virtual disks. In Proceedings
of the Fourteenth EuroSys Conference 2019 (2019), pp. 1�17.

133

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview#keyvalue-stores
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview#keyvalue-stores
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview#keyvalue-stores

[182] Li, J., Qin, C., Lee, P. P. C., and Li, J. Rekeying for encrypted deduplication stor-
age. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (2016).

[183] Li, P., Hua, Y., Zuo, P., Chen, Z., and Sheng, J. ROLEX: A scalable RDMA-
oriented learned key-value store for disaggregated memory systems. In 21st USENIX
Conference on File and Storage Technologies (FAST 23) (Santa Clara, CA, Feb. 2023),
USENIX Association.

[184] Li, Q., Xiang, Q., Wang, Y., Song, H., Wen, R., Yao, W., Dong, Y., Zhao,
S., Huang, S., Zhu, Z., et al. More than capacity: performance-oriented evolution
of Pangu in Alibaba. In 21st USENIX Conference on File and Storage Technologies
(FAST 23) (2023).

[185] Li, X., Li, R., Lee, P. P. C., and Hu, Y. OpenEC: Toward uni�ed and con�gurable
erasure coding management in distributed storage systems. In 17th USENIX Confer-
ence on File and Storage Technologies (FAST 19) (Boston, MA, Feb. 2019), USENIX
Association.

[186] Li, X., Lillibridge, M., and Uysal, M. Reliability analysis of deduplicated and
erasure-coded storage. ACM SIGMETRICS Performance Evaluation Review 38, 3
(2011), 4�9.

[187] Liang, J. Government cloud: enhancing e�ciency of e-government and providing better
public services. In 2012 International Joint Conference on Service Sciences (2012),
IEEE, pp. 261�265.

[188] Lillaney, K., Tarasov, V., Pease, D., and Burns, R. The case for dual-access
�le systems over object storage. In 11th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 19) (Renton, WA, July 2019), USENIX Association.

[189] Lillibridge, M., Eshghi, K., and Bhagwat, D. Improving restore speed for backup
systems that use inline chunk-based deduplication. In 11th USENIX Conference on File
and Storage Technologies (FAST 13) (San Jose, CA, Feb. 2013), USENIX Association.

[190] Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., and
Camble, P. Sparse indexing: Large scale, inline deduplication using sampling and
locality. In 7th USENIX Conference on File and Storage Technologies (FAST 09) (San
Francisco, CA, Feb. 2009), USENIX Association.

[191] Lim, H., Andersen, D. G., and Kaminsky, M. Towards accurate and fast evaluation
of Multi-Stage log-structured designs. In 14th USENIX Conference on File and Storage
Technologies (FAST 16) (Santa Clara, CA, Feb. 2016), USENIX Association.

[192] Lin, L., Xiao, K., and Liu, W. Utilizing SSD to alleviate chunk fragmentation in
de-duplicated backup systems. In 2016 IEEE 22nd International Conference on Parallel
and Distributed Systems (ICPADS) (2016), IEEE, pp. 616�624.

[193] Lin, X., Douglis, F., Li, J., Li, X., Ricci, R., Smaldone, S., and Wallace, G.
Metadata considered harmful to deduplication. In 7th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 15) (Santa Clara, CA, July 2015), USENIX
Association.

134

[194] Liu, L., Dou, X., and Chen, Y. Intelligent resource scheduling for co-located latency-
critical services: A multi-model collaborative learning approach. In 21st USENIX Con-
ference on File and Storage Technologies (FAST 23) (Santa Clara, CA, Feb. 2023),
USENIX Association.

[195] Liu, Z., Bai, Z., Liu, Z., Li, X., Kim, C., Braverman, V., Jin, X., and Stoica,
I. Distcache: Provable load balancing for large-scale storage systems with distributed
caching. In 17th USENIX Conference on File and Storage Technologies (FAST 19)
(Boston, MA, Feb. 2019), USENIX Association.

[196] Lu, R., Xu, E., Zhang, Y., Zhu, F., Zhu, Z., Wang, M., Zhu, Z., Xue, G., Shu,
J., Li, M., et al. Perseus: A fail-slow detection framework for cloud storage systems.
In 21st USENIX Conference on File and Storage Technologies (FAST 23) (2023).

[197] Luby, M., Watson, M., Gasiba, T., Stockhammer, T., and Xu, W. Raptor
codes for reliable download delivery in wireless broadcast systems. In CCNC (2006),
vol. 6, pp. 192�197.

[198] Luke Stone. Bringing Pokémon GO to life on Google Cloud, 2016.
https://cloud.google.com/blog/products/containers-kubernetes/bringing-

pokemon-go-to-life-on-google-cloud.

[199] Luo, C., and Carey, M. J. Lsm-based storage techniques: a survey. The VLDB
Journal 29, 1 (2020), 393�418.

[200] Ma, J., Wang, G., and Liu, X. Dedupeswift: object-oriented storage system based
on data deduplication. In IEEE Trustcom/BigDataSE/ISPA (2016).

[201] Malhotra, J., and Bakal, J. A survey and comparative study of data deduplication
techniques. In 2015 International Conference on Pervasive Computing (ICPC) (2015),
IEEE, pp. 1�5.

[202] Mandagere, N., Zhou, P., Smith, M. A., and Uttamchandani, S. Demysti-
fying data deduplication. In Proceedings of the ACM/IFIP/USENIX Middleware'08
Conference Companion (2008), pp. 12�17.

[203] Maneas, S., Mahdaviani, K., Emami, T., and Schroeder, B. A study of ssd
reliability in large scale enterprise storage deployments. In 18th USENIX Conference
on File and Storage Technologies (FAST 20) (Santa Clara, CA, Feb. 2020), USENIX
Association.

[204] Mao, B., Zhou, J., Wu, S., Jiang, H., Chen, X., and Yang, W. Improving
�ash memory performance and reliability for smartphones with i/o deduplication. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 6 (2018),
1017�1027.

[205] Maruti, M. V., and Nighot, M. K. Authorized data deduplication using hybrid
cloud technique. In 2015 International Conference on Energy Systems and Applications
(2015), IEEE, pp. 695�699.

[206] Matah, P. Minecraft Earth and Azure Cosmos DB part 1, 2021. https:

//azure.microsoft.com/pl-pl/blog/minecraft-earth-and-azure-cosmos-db-

part-1-extending-minecraft-into-our-real-world/.

135

https://cloud.google.com/blog/products/containers-kubernetes/bringing-pokemon-go-to-life-on-google-cloud
https://cloud.google.com/blog/products/containers-kubernetes/bringing-pokemon-go-to-life-on-google-cloud
https://azure.microsoft.com/pl-pl/blog/minecraft-earth-and-azure-cosmos-db-part-1-extending-minecraft-into-our-real-world/
https://azure.microsoft.com/pl-pl/blog/minecraft-earth-and-azure-cosmos-db-part-1-extending-minecraft-into-our-real-world/
https://azure.microsoft.com/pl-pl/blog/minecraft-earth-and-azure-cosmos-db-part-1-extending-minecraft-into-our-real-world/

[207] McKusick, D. M. K. Keynote address: A brief history of the BSD fast �lesystem.
USENIX Association.

[208] Meghan Rimol, G. Gartner forecasts worldwide public cloud end-user spending to
reach nearly $500 billion in 2022, 2022. https://www.gartner.com/en/newsroom/

press-releases/2022-04-19-gartner-forecasts-worldwide-public-cloud-end-

user-spending-to-reach-nearly-500-billion-in-2022.

[209] Meister, D., and Brinkmann, A. dedupv1: Improving deduplication throughput
using solid state drives (SSD). In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST) (2010).

[210] Merenstein, A., Tarasov, V., Anwar, A., Guthridge, S., and Zadok, E.
F3: Serving �les e�ciently in serverless computing. In Proceedings of the 16th ACM
International Conference on Systems and Storage (SYSTOR) (2023), pp. 8�21.

[211] Meyer, D. T., and Bolosky, W. J. A study of practical deduplication. ACM
Transactions on Storage (ToS) 7, 4 (2012), 1�20.

[212] Mhalagi, S. R. Performance evaluation of cloud object storage for big data. PhD
thesis, The University of Texas at San Antonio, 2016.

[213] Microsoft. Azure Blob Storage, 2021. https://azure.microsoft.com/en-us/

services/storage/blobs/.

[214] Microsoft. Data deduplication overview, 2022. https://learn.microsoft.com/en-
us/windows-server/storage/data-deduplication/overview.

[215] Microsoft. Motivations and business risks in the cost management discipline,
2022. https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/

govern/cost-management/business-risks.

[216] Microsoft. Azure storage pricing, 2023. https://azure.microsoft.com/en-us/

pricing/details/storage/blobs/#pricing.

[217] MinIO Inc. MinIO surpasses one billion cumulative docker downloads as busi-
ness surges, 2022. https://www.globenewswire.com/news-release/2022/09/22/

2521051/0/en/MinIO-Surpasses-One-Billion-Cumulative-Docker-Downloads-as-

Business-Surges.html.

[218] Mohamed, S. M., and Wang, Y. A survey on novel classi�cation of deduplication
storage systems. Distributed and Parallel Databases 39 (2021), 201�230.

[219] Mosley, D. Seagate analyst day. https://s24.q4cdn.com/101481333/files/doc_

downloads/2021/2/2021-Seagate-Analyst-Day.pdf.

[220] Muthitacharoen, A., Chen, B., and Mazieres, D. A low-bandwidth network
�le system. In Proceedings of the Eighteenth ACM symposium on Operating systems
principles (2001), pp. 174�187.

[221] Nachman, A., Yadgar, G., and Sheinvald, S. Goseed: Generating an optimal
seeding plan for deduplicated storage. In 18th USENIX Conference on File and Storage
Technologies (FAST 20) (Santa Clara, CA, Feb. 2020), USENIX Association.

136

https://www.gartner.com/en/newsroom/press-releases/2022-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-500-billion-in-2022
https://www.gartner.com/en/newsroom/press-releases/2022-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-500-billion-in-2022
https://www.gartner.com/en/newsroom/press-releases/2022-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-500-billion-in-2022
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://learn.microsoft.com/en-us/windows-server/storage/data-deduplication/overview
https://learn.microsoft.com/en-us/windows-server/storage/data-deduplication/overview
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/cost-management/business-risks
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/cost-management/business-risks
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#pricing
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#pricing
https://www.globenewswire.com/news-release/2022/09/22/2521051/0/en/MinIO-Surpasses-One-Billion-Cumulative-Docker-Downloads-as-Business-Surges.html
https://www.globenewswire.com/news-release/2022/09/22/2521051/0/en/MinIO-Surpasses-One-Billion-Cumulative-Docker-Downloads-as-Business-Surges.html
https://www.globenewswire.com/news-release/2022/09/22/2521051/0/en/MinIO-Surpasses-One-Billion-Cumulative-Docker-Downloads-as-Business-Surges.html
https://s24.q4cdn.com/101481333/files/doc_downloads/2021/2/2021-Seagate-Analyst-Day.pdf
https://s24.q4cdn.com/101481333/files/doc_downloads/2021/2/2021-Seagate-Analyst-Day.pdf

[222] Nakivo. Ransomware protection with NAKIVO backup & replication, 2021. https:

//nakivo.com/ransomware-protection/.

[223] Neal, I., Zuo, G., Shiple, E., Khan, T. A., Kwon, Y., Peter, S., and Kasikci,
B. Rethinking �le mapping for persistent memory. In 19th USENIX Conference on File
and Storage Technologies (FAST 21) (Feb. 2021), USENIX Association.

[224] NEC. 10 reasons to choose NEC HYDRAstor, 2016. https://www.nec.com/

en/global/prod/storage/product/backup/file/pdf/10_Reason_To_Choose_

Hydrastor.pdf.

[225] NEC. HYDRAstor® HS8-50S, 2020. https://www.necam.com/docs/?id=dcb67490-
2973-443a-b81c-13c6600f4627.

[226] NEC. HYDRAstor® OpenStorage Suite, 2021. https://www.nec-

enterprise.com/documents/hydrastor-openstorage-suite?id=1525&hash=

3da9b8e521d26b75f7e0ac93d06360e860e300e1bb5feb31edb19e4d8e86bfd7.

[227] NEC. FAQ: NEC Storage HS, 2023. https://www.nec.com/en/global/prod/

storage/product/backup/hs/faq/index.html.

[228] NEC. NEC Global, 2023. https://www.nec.com/.

[229] NEC. NEC Storage HS: Storage, 2023. https://www.nec.com/en/global/prod/

storage/product/backup/index.html.

[230] NEC. NEC Storage HYDRAstor Virtual Appliance, 2023. https://www.

nec-enterprise.com/documents/infosheet-hydrastor-va?id=1023&hash=

84074cd8aee9ff5501cd03502995693a47192110083b3669588e5e626839fd97.

[231] NetApp Inc. Dreamworks takes imagination to new heights, 2022. https://www.

netapp.com/media/72414-CSS-7241_DreamWorks-Hybrid-Cloud_Case-Study.pdf.

[232] Netapp Inc. Cloud tiering documentation. https://docs.netapp.com/us-en/cloud-
manager-tiering/pdfs/fullsite-sidebar/Cloud_Tiering_documentation.pdf.

[233] Oh, J., Yoo, S. W., Nam, H., Min, C., and Won, Y. CJFS: Concurrent journaling
for better scalability. In 21st USENIX Conference on File and Storage Technologies
(FAST 23) (Santa Clara, CA, Feb. 2023), USENIX Association.

[234] Oh, M., Park, S., Yoon, J., Kim, S., Lee, K.-w., Weil, S., Yeom, H. Y.,
and Jung, M. Design of global data deduplication for a scale-out distributed storage
system. In 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS) (2018), IEEE, pp. 1063�1073.

[235] OpenStack Foundation. Con�gure object storage with the S3 API,
2021. https://docs.openstack.org/mitaka/config-reference/object-storage/

configure-s3.html.

[236] OpenStack Foundation. OpenStack Object Storage, 2021. https://wiki.

openstack.org/wiki/Swift.

[237] OpenStack Foundation. S3/Swift REST API comparison matrix, 2021. https:

//docs.openstack.org/swift/latest/s3_compat.html.

137

https://nakivo.com/ransomware-protection/
https://nakivo.com/ransomware-protection/
https://www.nec.com/en/global/prod/storage/product/backup/file/pdf/10_Reason_To_Choose_Hydrastor.pdf
https://www.nec.com/en/global/prod/storage/product/backup/file/pdf/10_Reason_To_Choose_Hydrastor.pdf
https://www.nec.com/en/global/prod/storage/product/backup/file/pdf/10_Reason_To_Choose_Hydrastor.pdf
https://www.necam.com/docs/?id=dcb67490-2973-443a-b81c-13c6600f4627
https://www.necam.com/docs/?id=dcb67490-2973-443a-b81c-13c6600f4627
https://www.nec-enterprise.com/documents/hydrastor-openstorage-suite?id=1525&hash=3da9b8e521d26b75f7e0ac93d06360e860e300e1bb5feb31edb19e4d8e86bfd7
https://www.nec-enterprise.com/documents/hydrastor-openstorage-suite?id=1525&hash=3da9b8e521d26b75f7e0ac93d06360e860e300e1bb5feb31edb19e4d8e86bfd7
https://www.nec-enterprise.com/documents/hydrastor-openstorage-suite?id=1525&hash=3da9b8e521d26b75f7e0ac93d06360e860e300e1bb5feb31edb19e4d8e86bfd7
https://www.nec.com/en/global/prod/storage/product/backup/hs/faq/index.html
https://www.nec.com/en/global/prod/storage/product/backup/hs/faq/index.html
https://www.nec.com/
https://www.nec.com/en/global/prod/storage/product/backup/index.html
https://www.nec.com/en/global/prod/storage/product/backup/index.html
https://www.nec-enterprise.com/documents/infosheet-hydrastor-va?id=1023&hash=84074cd8aee9ff5501cd03502995693a47192110083b3669588e5e626839fd97
https://www.nec-enterprise.com/documents/infosheet-hydrastor-va?id=1023&hash=84074cd8aee9ff5501cd03502995693a47192110083b3669588e5e626839fd97
https://www.nec-enterprise.com/documents/infosheet-hydrastor-va?id=1023&hash=84074cd8aee9ff5501cd03502995693a47192110083b3669588e5e626839fd97
https://www.netapp.com/media/72414-CSS-7241_DreamWorks-Hybrid-Cloud_Case-Study.pdf
https://www.netapp.com/media/72414-CSS-7241_DreamWorks-Hybrid-Cloud_Case-Study.pdf
https://docs.netapp.com/us-en/cloud-manager-tiering/pdfs/fullsite-sidebar/Cloud_Tiering_documentation.pdf
https://docs.netapp.com/us-en/cloud-manager-tiering/pdfs/fullsite-sidebar/Cloud_Tiering_documentation.pdf
https://docs.openstack.org/mitaka/config-reference/object-storage/configure-s3.html
https://docs.openstack.org/mitaka/config-reference/object-storage/configure-s3.html
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Swift
https://docs.openstack.org/swift/latest/s3_compat.html
https://docs.openstack.org/swift/latest/s3_compat.html

[238] OpenStack Foundation. Administrator's guide, 2022. https://docs.openstack.

org/swift/latest/admin_guide.html.

[239] OpenStack Foundation. Increasing partition power, 2022. https://specs.

openstack.org/openstack/swift-specs/specs/in_progress/increasing_

partition_power.html.

[240] Oracle. Oracle® ZFS storage appliance administration guide, 2014.
https://docs.oracle.com/cd/E37831_01/html/E52872/shares__shares__general_

_data_deduplication.html.

[241] Oracle. Backing up �le-system data. https://docs.oracle.com/cd/E91325_01/

OBADM/osb_filesystem_backup.htm.

[242] Palmer, J., Rozeman, J., Mukhyala, C., and Vogel, J. Magic quadrant for
distributed �le systems and object storage, 2021. ID: G00738148.

[243] Pan, S., Stavrinos, T., Zhang, Y., Sikaria, A., Zakharov, P., Sharma, A., P,
S. S., Shuey, M., Wareing, R., Gangapuram, M., Cao, G., Preseau, C., Singh,
P., Patiejunas, K., Tipton, J., Katz-Bassett, E., and Lloyd, W. Facebook's
Tectonic Filesystem: E�ciency from exascale. In 19th USENIX Conference on File and
Storage Technologies (FAST 21) (Feb. 2021), USENIX Association.

[244] Park, D., Fan, Z., Nam, Y. J., and Du, D. H. A lookahead read cache: improving
read performance for deduplication backup storage. Journal of Computer Science and
Technology 32, 1 (2017), 26�40.

[245] Patterson, D. A., Gibson, G., and Katz, R. H. A case for redundant arrays
of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD international
conference on Management of data (1988), pp. 109�116.

[246] Patterson, S. Learn AWS Serverless Computing: A Beginner's Guide to Using AWS
Lambda, Amazon API Gateway, and Services from Amazon Web Services. Packt Pub-
lishing Ltd, 2019.

[247] Paul, M. Cloud object storage deep dive � part two, implementation, 2021. https:

//www.veeam.com/blog/cloud-object-storage-implementation.html.

[248] Paulo, J., and Pereira, J. A survey and classi�cation of storage deduplication
systems. ACM Computing Surveys (CSUR) 47, 1 (2014), 1�30.

[249] Paulsen, J. Energy assisted magnetic recording will solve the need for
capacity. https://blog.seagate.com/enterprises/energy-assisted-magnetic-

recording-will-solve-the-need-for-capacity/.

[250] Pooranian, Z., Chen, K.-C., Yu, C.-M., and Conti, M. RARE: Defeating side
channels based on data-deduplication in cloud storage. In IEEE INFOCOM 2018-IEEE
conference on computer communications workshops (INFOCOM wkshps) (2018), IEEE,
pp. 444�449.

[251] Przybylski, S. A. Cache and memory hierarchy design: a performance directed ap-
proach. Morgan Kaufmann, 1990.

138

https://docs.openstack.org/swift/latest/admin_guide.html
https://docs.openstack.org/swift/latest/admin_guide.html
https://specs.openstack.org/openstack/swift-specs/specs/in_progress/increasing_partition_power.html
https://specs.openstack.org/openstack/swift-specs/specs/in_progress/increasing_partition_power.html
https://specs.openstack.org/openstack/swift-specs/specs/in_progress/increasing_partition_power.html
https://docs.oracle.com/cd/E37831_01/html/E52872/shares__shares__general__data_deduplication.html
https://docs.oracle.com/cd/E37831_01/html/E52872/shares__shares__general__data_deduplication.html
https://docs.oracle.com/cd/E91325_01/OBADM/osb_filesystem_backup.htm
https://docs.oracle.com/cd/E91325_01/OBADM/osb_filesystem_backup.htm
https://www.veeam.com/blog/cloud-object-storage-implementation.html
https://www.veeam.com/blog/cloud-object-storage-implementation.html
https://blog.seagate.com/enterprises/energy-assisted-magnetic-recording-will-solve-the-need-for-capacity/
https://blog.seagate.com/enterprises/energy-assisted-magnetic-recording-will-solve-the-need-for-capacity/

[252] Puzak, T. R. Analysis of cache replacement-algorithms. University of Massachusetts
Amherst, 1985.

[253] Quantum Corporation. DXi-Series backup appliances, 2021. https://cdn.

allbound.com/iq-ab/2021/04/DXi-DS00549A.pdf.

[254] Quantum Corporation. Why Quantum DXi purpose-built appliance?, 2021. https:
//cdn.allbound.com/iq-ab/2020/02/ST02281A-v01.pdf.

[255] Quinlan, S., and Dorward, S. Venti: A new approach to archival data storage. In
Conference on File and Storage Technologies (FAST 02) (Monterey, CA, Jan. 2002),
USENIX Association.

[256] Rabin, M. O. Fingerprinting by random polynomials. Technical report (1981).

[257] Research, I. G. Global Purpose-built Backup Appliance (PBBA) Market (2023-
2028) by Components, Enterprise, System, Industry Vertical, and Geography, Competi-
tiv Analysis, Impact of Covid19, Impact of Economic Slowdown & Impending Recession
with Anso� Analysis. 2023.

[258] researchandmarkets.com. Public cloud market by service model. https://www.

researchandmarkets.com/reports/5739332/public-cloud-market-service-model.

[259] Roma«ski, B., Heldt, �., Kilian, W., Lichota, K., and Dubnicki, C. Anchor-
driven subchunk deduplication. In Proceedings of the 4th Annual International Confer-
ence on Systems and Storage (SYSTOR) (2011), pp. 1�13.

[260] Rupprecht, L., Zhang, R., Owen, B., Pietzuch, P., and Hildebrand, D. Swif-
tanalytics: Optimizing object storage for big data analytics. In 2017 IEEE International
Conference on Cloud Engineering (IC2E) (2017), IEEE, pp. 245�251.

[261] Rydning, D. R.-J. G.-J., Reinsel, J., and Gantz, J. The digitization of the world
from edge to core. Framingham: International Data Corporation 16 (2018).

[262] Ryu, J., Lee, D., Shin, K. G., and Kang, K. Fast application launch on personal
computing/communication devices. In 21st USENIX Conference on File and Storage
Technologies (FAST 23) (Santa Clara, CA, Feb. 2023), USENIX Association.

[263] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., and Al-Hammadi,
Y. Performance comparison between container-based and vm-based services. In 2017
20th Conference on Innovations in Clouds, Internet and Networks (ICIN) (2017), IEEE,
pp. 185�190.

[264] Saltzer, J., and Kaashoek, M. F. Principles of computer system design: An
introduction. Morgan Kaufmann, 2009.

[265] Sam Fineberg, Thomas Rivera, B. R. 100-year archive survey results: 2007-2017.
SNIA. https://www.brighttalk.com/webcast/663/335255.

[266] Samsung. Samsung introduces world's largest capacity (15.36tb) SSD for enterprise
storage systems. https://news.samsung.com/global/samsung-now-introducing-

worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems.

139

https://cdn.allbound.com/iq-ab/2021/04/DXi-DS00549A.pdf
https://cdn.allbound.com/iq-ab/2021/04/DXi-DS00549A.pdf
https://cdn.allbound.com/iq-ab/2020/02/ST02281A-v01.pdf
https://cdn.allbound.com/iq-ab/2020/02/ST02281A-v01.pdf
https://www.researchandmarkets.com/reports/5739332/public-cloud-market-service-model
https://www.researchandmarkets.com/reports/5739332/public-cloud-market-service-model
https://www.brighttalk.com/webcast/663/335255
https://news.samsung.com/global/samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems
https://news.samsung.com/global/samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems

[267] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design
and implementation of the sun network �lesystem. In Proceedings of the summer 1985
USENIX conference (1985), pp. 119�130.

[268] Satyanarayanan, M., Howard, J. H., Nichols, D. A., Sidebotham, R. N.,
Spector, A. Z., and West, M. J. The ITC distributed �le system: Principles and
design. ACM SIGOPS Operating Systems Review 19, 5 (1985), 35�50.

[269] Server Direct. NGD Systems SSD NVMe 16TB EDSFF (NE1S10-160T1-
C). https://www.serverdirect.nl/en/components/solid-state-drives/nvme/

edsff/ngd-systems-ssd-nvme-16tb-edsff-ne1s10-160t1-c/8997.

[270] Shah, M., Shaikh, M., Mishra, V., and Tuscano, G. Decentralized cloud storage
using blockchain. In 2020 4th International conference on trends in electronics and
informatics (ICOEI)(48184) (2020).

[271] Shannon, C. E. A mathematical theory of communication. The Bell system technical
journal 27, 3 (1948), 379�423.

[272] Sharma, P., Jindal, R., and Borah, M. D. Blockchain-based decentralized archi-
tecture for cloud storage system. Journal of Information Security and Applications 62
(2021), 102970.

[273] Shilane, P., Chitloor, R., and Jonnala, U. K. 99 deduplication problems. In
8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 16)
(Denver, CO, June 2016), USENIX Association.

[274] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The hadoop distributed
�le system. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST) (2010).

[275] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The hadoop distributed
�le system. In 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST) (2010), Ieee, pp. 1�10.

[276] Singh, G. Leader election in the presence of link failures. IEEE Transactions on
Parallel and Distributed Systems (TPDS) 7, 3 (1996), 231�236.

[277] Sivasubramanian, S. Amazon dynamoDB: a seamlessly scalable non-relational
database service. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data (2012), pp. 729�730.

[278] Skowron, P., Biskup, M. T., Heldt, �., and Dubnicki, C. Fuzzy adaptive control
for heterogeneous tasks in high-performance storage systems. In Proceedings of the 6th
International Systems and Storage Conference (SYSTOR) (2013), pp. 1�11.

[279] Soni, M. Practical AWS Networking: Build and manage complex networks using ser-
vices such as Amazon VPC, Elastic Load Balancing, Direct Connect, and Amazon Route
53. Packt Publishing Ltd, 2018.

[280] Srinivasan, K., Bisson, T., Goodson, G. R., and Voruganti, K. idedup:
Latency-aware, inline data deduplication for primary storage. In 10th USENIX Confer-
ence on File and Storage Technologies (FAST 12) (San Jose, CA, Feb. 2012), USENIX
Association.

140

https://www.serverdirect.nl/en/components/solid-state-drives/nvme/edsff/ngd-systems-ssd-nvme-16tb-edsff-ne1s10-160t1-c/8997
https://www.serverdirect.nl/en/components/solid-state-drives/nvme/edsff/ngd-systems-ssd-nvme-16tb-edsff-ne1s10-160t1-c/8997

[281] storage experts, H. P. E. HPE Cloud Bank Storage: A data protection solution
you can bank on. https://community.hpe.com/t5/Around-the-Storage-Block/HPE-
Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903.

[282] Strunk, J. D., Goodson, G. R., Scheinholtz, M. L., Soules, C. A., and
Ganger, G. R. Self-securing storage: Protecting data in compromised systems. In
OSDI (2000).

[283] Strzelczak, P., Adamczyk, E., Herman-Izycka, U., Sakowicz, J., Slusar-
czyk, L., Wrona, J., and Dubnicki, C. Concurrent deletion in a distributed
content-addressable storage system with global deduplication. In 11th USENIX Confer-
ence on File and Storage Technologies (FAST 13) (San Jose, CA, Feb. 2013), USENIX
Association.

[284] Su, Y., Jin, H., Liu, F., and Li, W. SACache: Size-aware load balancing for
large-scale storage systems. In Advances in Arti�cial Intelligence and Security: 7th
International Conference, ICAIS 2021, Dublin, Ireland, July 19-23, 2021, Proceedings,
Part II 7 (2021), Springer, pp. 89�105.

[285] Sun, Z., Kuenning, G., Mandal, S., Shilane, P., Tarasov, V., Xiao, N., et al.
A long-term user-centric analysis of deduplication patterns. In 2016 32nd Symposium
on Mass Storage Systems and Technologies (MSST) (2016).

[286] Sun, Z. J., Kuenning, G., Mandal, S., Shilane, P., Tarasov, V., Xiao, N.,
and Zadok, E. Cluster and single-node analysis of long-term deduplication patterns.
ACM Transactions on Storage (TOS) (2018).

[287] Surbiryala, J., and Rong, C. Cloud computing: History and overview. In 2019
IEEE Cloud Summit (2019), pp. 1�7.

[288] Suttisirikul, K., and Uthayopas, P. Accelerating the cloud backup using gpu
based data deduplication. In 2012 IEEE 18th International Conference on Parallel and
Distributed Systems (ICPADS) (2012), IEEE, pp. 766�769.

[289] Synergy Research Group. Huge cloud market still growing at 34%
per year; amazon, microsoft and google now account for 65% of the total.
https://www.srgresearch.com/articles/huge-cloud-market-is-still-growing-

at-34-per-year-amazon-microsoft-and-google-now-account-for-65-of-all-

cloud-revenues.

[290] Takahashi, C. N., Nguyen, B. H., Strauss, K., and Ceze, L. Demonstration of
end-to-end automation of DNA data storage. Scienti�c reports 9, 1 (2019), 4998.

[291] Tang, L., and Jain, N. Join strategies in Hive. Hive Summit (2011).

[292] Tarasov, V., Mudrankit, A., Buik, W., Shilane, P., Kuenning, G., and
Zadok, E. Generating realistic datasets for deduplication analysis. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12) (Boston, MA, June 2012), USENIX
Association.

[293] Teradata. Teradata using Amazon S3 storage as the backup target, 2021. https:

//docs.teradata.com/r/CCZ_TZJngXILEsdDOzUoAw/WOt0MU3umZEx7P7mcKH8Eg.

[294] Tichy, W. F., and Ruan, Z. Towards a distributed �le system.

141

https://community.hpe.com/t5/Around-the-Storage-Block/HPE-Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903
https://community.hpe.com/t5/Around-the-Storage-Block/HPE-Cloud-Bank-Storage-A-Data-Protection-Solution-You-Can-Bank/ba-p/6965903
https://www.srgresearch.com/articles/huge-cloud-market-is-still-growing-at-34-per-year-amazon-microsoft-and-google-now-account-for-65-of-all-cloud-revenues
https://www.srgresearch.com/articles/huge-cloud-market-is-still-growing-at-34-per-year-amazon-microsoft-and-google-now-account-for-65-of-all-cloud-revenues
https://www.srgresearch.com/articles/huge-cloud-market-is-still-growing-at-34-per-year-amazon-microsoft-and-google-now-account-for-65-of-all-cloud-revenues
https://docs.teradata.com/r/CCZ_TZJngXILEsdDOzUoAw/WOt0MU3umZEx7P7mcKH8Eg
https://docs.teradata.com/r/CCZ_TZJngXILEsdDOzUoAw/WOt0MU3umZEx7P7mcKH8Eg

[295] Tsuchiya, Y., and Watanabe, T. Dblk: Deduplication for primary block storage. In
2011 IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST) (2011),
IEEE, pp. 1�5.

[296] Tulloch, M. Introducing Windows Azure for IT Professionals. Microsoft Press, 2013.

[297] Ultrium LTO. Roadmap. https://www.lto.org/roadmap/.

[298] Ungureanu, C., Atkin, B., Aranya, A., Gokhale, S., Rago, S., Caªkowski,
G., Dubnicki, C., and Bohra, A. HydraFS: A high-throughput �le system for the
hydrastor content-addressable storage system. In 8th USENIX Conference on File and
Storage Technologies (FAST 10) (San Jose, CA, Feb. 2010), USENIX Association.

[299] Varma, A., Sahai, V., and Bryant, R. Performance evaluation of a high-speed
switching system based on the �bre channel standard. In [1993] Proceedings The 2nd
International Symposium on High Performance Distributed Computing (1993), pp. 144�
151.

[300] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M.,
Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., et al. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing (2013).

[301] Veeam. Object storage repository, 2021. https://helpcenter.veeam.com/docs/

backup/vsphere/object_storage_repository.html.

[302] Veeam Software. Step 7. con�gure long-term retention, 2021. https://helpcenter.
veeam.com/docs/backup/vsphere/backup_job_gfs_vm.html?ver=110.

[303] Veeam Software. 2022 data protection trends, 2022. https://go.veeam.com/wp-

data-protection-trends-2022.

[304] Veeam Software. De�ne job schedule, 2022. https://helpcenter.veeam.com/

docs/backup/vsphere/backup_job_schedule_vm.html.

[305] Veeam Software. Short-term retention policy, 2022. https://helpcenter.veeam.

com/docs/backup/vsphere/backup_copy_simple_retention.html.

[306] Veeam Software. Data protection trends report 2023, 2023. https://www.veeam.

com/wp-data-protection-trends-report-2023.html?wpty.

[307] Veeam Software. Restore operator activity, 2023. https://helpcenter.veeam.

com/docs/one/reporter/restore_operator_activity.html?ver=110.

[308] Veritas Netbackup. Veritas NetBackup� cloud administrator's guide, 2019.
https://veritas.com/content/support/en_US/doc/58500769-135186602-

0/v126619409-135186602.

[309] Veritas NetBackup. About NetBackup WORM storage support for immutable
and indelible data. https://www.veritas.com/support/en_US/doc/25074086-

143197427-0/v143250065-143197427.

[310] Veritas NetBackup. Veritas NetBackup� deduplication guide. https://www.

veritas.com/support/en_US/doc/25074086-146020141-0/v145698641-146020141.

142

https://www.lto.org/roadmap/
https://helpcenter.veeam.com/docs/backup/vsphere/object_storage_repository.html
https://helpcenter.veeam.com/docs/backup/vsphere/object_storage_repository.html
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_gfs_vm.html?ver=110
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_gfs_vm.html?ver=110
https://go.veeam.com/wp-data-protection-trends-2022
https://go.veeam.com/wp-data-protection-trends-2022
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_schedule_vm.html
https://helpcenter.veeam.com/docs/backup/vsphere/backup_job_schedule_vm.html
https://helpcenter.veeam.com/docs/backup/vsphere/backup_copy_simple_retention.html
https://helpcenter.veeam.com/docs/backup/vsphere/backup_copy_simple_retention.html
https://www.veeam.com/wp-data-protection-trends-report-2023.html?wpty
https://www.veeam.com/wp-data-protection-trends-report-2023.html?wpty
https://helpcenter.veeam.com/docs/one/reporter/restore_operator_activity.html?ver=110
https://helpcenter.veeam.com/docs/one/reporter/restore_operator_activity.html?ver=110
https://veritas.com/content/support/en_US/doc/58500769-135186602-0/v126619409-135186602
https://veritas.com/content/support/en_US/doc/58500769-135186602-0/v126619409-135186602
https://www.veritas.com/support/en_US/doc/25074086-143197427-0/v143250065-143197427
https://www.veritas.com/support/en_US/doc/25074086-143197427-0/v143250065-143197427
https://www.veritas.com/support/en_US/doc/25074086-146020141-0/v145698641-146020141
https://www.veritas.com/support/en_US/doc/25074086-146020141-0/v145698641-146020141

[311] Veritas NetBackup. AWS Cloud Storage with Veritas NetBackup.
https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_

aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf.

[312] Veritas NetBackup. NetBackup: #1 in enterprise backup solutions, 2023. https:

//www.veritas.com/protection/netbackup.

[313] Villalba, M. Amazon s3 glacier is the best place to archive your data � intro-
ducing the s3 glacier instant retrieval storage class, 2021. https://aws.amazon.

com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-

introducing-the-s3-glacier-instant-retrieval-storage-class/.

[314] Waldspurger, C. A. Memory resource management in VMware ESX server. ACM
SIGOPS Operating Systems Review 36, SI (2002), 181�194.

[315] Wallace, G., Douglis, F., Qian, H., Shilane, P., Smaldone, S., Chamness,
M., and Hsu, W. Characteristics of backup workloads in production systems. In 10th
USENIX Conference on File and Storage Technologies (FAST 12) (San Jose, CA, Feb.
2012), USENIX Association.

[316] Wang, J., Wang, Y., Wang, H., Ye, K., Xu, C., He, S., and Zeng, L. Towards
cluster-wide deduplication based on ceph. In 2019 IEEE International Conference on
Networking, Architecture and Storage (NAS) (2019), IEEE, pp. 1�8.

[317] Wang, L., Zhang, Y., Xu, J., and Xue, G. Mapx: Controlled data migration in the
expansion of decentralized object-based storage systems. In 18th USENIX Conference
on File and Storage Technologies (FAST 20) (Santa Clara, CA, Feb. 2020), USENIX
Association.

[318] Wei, J., Jiang, H., Zhou, K., and Feng, D. MAD2: A scalable high-throughput ex-
act deduplication approach for network backup services. In 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST) (2010), IEEE, pp. 1�14.

[319] Wei, Q., Veeravalli, B., Gong, B., Zeng, L., and Feng, D. CDRM: A cost-
e�ective dynamic replication management scheme for cloud storage cluster. In 2010
IEEE international conference on cluster computing (2010), IEEE, pp. 188�196.

[320] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C.
Ceph: A scalable, High-Performance distributed �le system. In 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 06) (Seattle, WA, Nov. 2006),
USENIX Association.

[321] Weil, S. A., Brandt, S. A., Miller, E. L., and Maltzahn, C. CRUSH: Con-
trolled, scalable, decentralized placement of replicated data. In SC'06: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing (2006), IEEE, pp. 31�31.

[322] Western Digital. WD Gold Enterprise Class SATA Hard Drive Up To
22TB. https://www.westerndigital.com/products/internal-drives/wd-gold-

sata-hdd#WD221KRYZ.

[323] Woo, H., Han, D., Ha, S., Noh, S. H., and Nam, B. On stacking a persistent
memory �le system on legacy �le systems. In 21st USENIX Conference on File and
Storage Technologies (FAST 23) (Santa Clara, CA, Feb. 2023), USENIX Association.

143

https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf
https://www.veritas.com/content/dam/www/en_us/documents/white-papers/WP_aws_cloud_storage_with_netbackup_long_term_retention_solution_V1259.pdf
https://www.veritas.com/protection/netbackup
https://www.veritas.com/protection/netbackup
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://aws.amazon.com/blogs/aws/amazon-s3-glacier-is-the-best-place-to-archive-your-data-introducing-the-s3-glacier-instant-retrieval-storage-class/
https://www.westerndigital.com/products/internal-drives/wd-gold-sata-hdd#WD221KRYZ
https://www.westerndigital.com/products/internal-drives/wd-gold-sata-hdd#WD221KRYZ

[324] Wu, F., Fan, Z., Yang, M.-C., Zhang, B., Ge, X., and Du, D. H. Performance
evaluation of host aware shingled magnetic recording (HA-SMR) drives. IEEE Trans-
actions on Computers 66, 11 (2017), 1932�1945.

[325] Wu, K., Tu, K., Patel, Y., Sen, R., Park, K., Arpaci-Dusseau, A., and
Arpaci-Dusseau, R. Nyxcache: Flexible and e�cient multi-tenant persistent mem-
ory caching. In 20th USENIX Conference on File and Storage Technologies (FAST 22)
(Santa Clara, CA, Feb. 2022), USENIX Association.

[326] Wu, S., Mao, B., Jiang, H., Luan, H., and Zhou, J. PFP: improving the reliabil-
ity of deduplication-based storage systems with per-�le parity. IEEE Transactions on
Parallel and Distributed Systems 30, 9 (2019), 2117�2129.

[327] Wulf, F., Lindner, T., Strahringer, S., and Westner, M. IaaS, PaaS, or SaaS?
The why of cloud computing delivery model selection: Vignettes on the post-adoption
of cloud computing. In Proceedings of the 54th Hawaii International Conference on
System Sciences, 2021 (2021), pp. 6285�6294.

[328] Xia, N., Tian, C., Luo, Y., Liu, H., and Wang, X. UKSM: Swift memory dedupli-
cation via hierarchical and adaptive memory region distilling. In 16th USENIX Confer-
ence on File and Storage Technologies (FAST 18) (Oakland, CA, Feb. 2018), USENIX
Association.

[329] Xia, W., Jiang, H., Feng, D., Douglis, F., Shilane, P., Hua, Y., Fu, M.,
Zhang, Y., and Zhou, Y. A comprehensive study of the past, present, and future of
data deduplication. Proceedings of the IEEE 104, 9 (2016), 1681�1710.

[330] Xia, W., Jiang, H., Feng, D., Tian, L., Fu, M., and Zhou, Y. Ddelta: A
deduplication-inspired fast delta compression approach. Performance Evaluation 79
(2014), 258�272.

[331] Xia, W., Zhou, Y., Jiang, H., Feng, D., Hua, Y., Hu, Y., Liu, Q., and Zhang,
Y. Fastcdc: A fast and e�cient content-de�ned chunking approach for data deduplica-
tion. In 2016 USENIX Annual Technical Conference (USENIX ATC 16) (Denver, CO,
June 2016), USENIX Association.

[332] Xie, W., and Chen, Y. Elastic consistent hashing for distributed storage systems.
In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(2017), IEEE, pp. 876�885.

[333] Xu, E., Zheng, M., Qin, F., Xu, Y., and Wu, J. Lessons and actions: What we
learned from 10k SSD-related storage system failures. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19) (Renton, WA, July 2019), USENIX Association.

[334] Yang, T.-Y., Liang, Y., and Yang, M.-C. Practicably boosting the processing
performance of bfs-like algorithms on semi-external graph system via i/o-e�cient graph
ordering. In 20th USENIX Conference on File and Storage Technologies (FAST 22)
(Santa Clara, CA, Feb. 2022), USENIX Association.

[335] Yu, C.-M. Counteracting side channels in cross-user client-side deduplicated cloud
storage. IEEE Internet of Things Journal (2023).

144

[336] Yuan, H., Chen, X., Li, J., Jiang, T., Wang, J., and Deng, R. H. Secure
cloud data deduplication with e�cient re-encryption. IEEE Transactions on Services
Computing 15, 1 (2019), 442�456.

[337] Zerto. Maximize recovery achieve your best RTOs and RPOs. https:

//www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-

Industry_Guide.pdf.

[338] Zerto. Deploy & con�gure Zerto long-term retention Amazon S3. https://www.zerto.
com/page/deploy-configure-zerto-long-term-retention-amazon-s3/.

[339] Zhang, H., Chen, G., Ooi, B. C., Tan, K.-L., and Zhang, M. In-memory big
data management and processing: A survey. IEEE Transactions on Knowledge and
Data Engineering 27, 7 (2015), 1920�1948.

[340] Zhang, J., Lin, M., Pan, Y., and Xu, Z. Crftl: cache reallocation-based page-level
�ash translation layer for smartphones. IEEE Transactions on Consumer Electronics
(2023).

[341] Zhang, M., Han, S., and Lee, P. P. A simulation analysis of reliability in erasure-
coded data centers. In 2017 IEEE 36th Symposium on Reliable Distributed Systems
(SRDS) (2017), IEEE, pp. 144�153.

[342] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., and Zhou, Y. AE:
An asymmetric extremum content de�ned chunking algorithm for fast and bandwidth-
e�cient data deduplication. In 2015 IEEE Conference on Computer Communications
(INFOCOM) (2015), IEEE, pp. 1337�1345.

[343] Zhang, Y., Xia, W., Feng, D., Jiang, H., Hua, Y., and Wang, Q. Finesse: Fine-
grained feature locality based fast resemblance detection for post-deduplication delta
compression. In 17th USENIX Conference on File and Storage Technologies (FAST 19)
(Boston, MA, Feb. 2019), USENIX Association, pp. 121�128.

[344] Zhao, N., Albahar, H., Abraham, S., Chen, K., Tarasov, V., Skourtis,
D., Rupprecht, L., Anwar, A., and Butt, A. R. DupHunter: Flexible high-
performance deduplication for docker registries. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20) (July 2020), USENIX Association.

[345] Zheng, Q., Chen, H., Wang, Y., Zhang, J., and Duan, J. Cosbench: Cloud object
storage benchmark. In Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering (2013), pp. 199�210.

[346] Zheng, S., Hoseinzadeh, M., and Swanson, S. Ziggurat: A tiered �le system
for Non-Volatile main memories and disks. In 17th USENIX Conference on File and
Storage Technologies (FAST 19) (Boston, MA, Feb. 2019), USENIX Association.

[347] Zhou, S., Xu, E., Wu, H., Du, Y., Cui, J., Fu, W., Liu, C., Wang, Y., Wang,
W., Sun, S., Wang, X., Feng, B., Zhu, B., Tong, X., Kong, W., Liu, L., Wu,
Z., Wu, J., Luo, Q., and Wu, J. SMRSTORE: A storage engine for cloud object
storage on hm-smr drives. In 21st USENIX Conference on File and Storage Technologies
(FAST 23) (Santa Clara, CA, Feb. 2023), USENIX Association.

145

https://www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-Industry_Guide.pdf
https://www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-Industry_Guide.pdf
https://www.zerto.com/wp-content/uploads/2020/08/Fastest-RTO-and-RPO-in-the-Industry_Guide.pdf
https://www.zerto.com/page/deploy-configure-zerto-long-term-retention-amazon-s3/
https://www.zerto.com/page/deploy-configure-zerto-long-term-retention-amazon-s3/

[348] Zhu, B., Li, K., and Patterson, H. Avoiding the disk bottleneck in the data domain
deduplication �le system. In 6th USENIX Conference on File and Storage Technologies
(FAST 08) (San Jose, CA, Feb. 2008), USENIX Association.

[349] Zissis, D., and Lekkas, D. Securing e-government and e-voting with an open cloud
computing architecture. Government Information Quarterly 28, 2 (2011), 239�251.

[350] Zou, Q., and Mao, B. Revisiting temporal storage i/o behaviors of smartphone appli-
cations: Analysis and synthesis. In 2022 IEEE International Symposium on Workload
Characterization (IISWC) (2022), IEEE, pp. 215�227.

[351] Zuo, P., Hua, Y., Zhao, M., Zhou, W., and Guo, Y. Write deduplication and
hash mode encryption for secure nonvolatile main memory. IEEE Micro 39, 1 (2018),
44�51.

146

	Introduction
	Deduplication in Data Storage
	Challenges in Systems with Data Deduplication
	Data Chunking
	Fingerprint Generation
	Fingerprint Indexing
	Data Fragmentation
	Data Removal
	Inline and Offline Deduplication
	Reliability
	Security
	Higher-Level Abstractions
	Resource Efficiency
	Final Remarks

	Applications of Deduplication
	HYDRAstor
	Global System Assumptions

	Relevant Work on Distributed Storage and Clouds
	Evolution of Storage Technologies
	Modern Data Carriers
	Cloud Computing and Storage
	Object Storage Interface
	Final Remarks

	ObjDedup: Backup Appliances with Deduplication as Object Stores
	Background and Related Work
	Global In-Line Block-Level Deduplication
	Deduplicated Data Organization
	Deduplication in Object Storage

	Preliminary Study
	Object Storage API Analysis
	Backup Data Pattern Analysis
	Main Lessons Learned

	The Design of ObjDedup
	Problem Statement
	Principal Ideas
	Object Metadata Log (OML)
	Object Metadata Tree (OMT)
	Metadata Merge
	Metadata Merge Prefetch
	Distributing Metadata Merge
	Final Remarks

	Implementation
	Overall Architecture
	Object Driver Architecture
	Additional Issues

	Experimental Evaluation
	Assessment of the Main Performance Goals
	Comparison with Existing Solutions
	Microbenchmarks

	Conclusions

	InftyDedup: Effective Cloud Tiering with Deduplication
	Background
	Lifecycle of Backups
	Cloud Storage
	Cloud Computing
	Data Security in Cloud
	Cloud Tiering with Deduplication

	Architecture of InftyDedup
	Cloud Cost Considerations
	Assumptions and Design Decisions
	Data and Metadata in Cloud
	Communication between Tiers
	Batch Deduplication
	Batch Garbage Collection
	File Restore

	Cold Storage Utilization
	Evaluation
	Performance Evaluation
	Evaluation of the Strategies

	Conclusions

	Derrick: Balancer for Resilient and Efficient Distributed Storage
	Data Arrangement Problems and Solutions
	Requirements on Data Balancing
	High Capacity Utilization
	Resilience to Failures
	Balancing Distinguished Components
	Keeping Related Data in One Rack
	Limiting Data Movements
	Limiting Non-stable Components
	Final Remarks

	Derrick's Overview
	Hill Climbing in Derrick
	Central Balancing
	Transition Guide
	Distributed Balancing

	Derrick's Details
	Capacity and Resilience in CentrBal
	Multiple ScoreDims in CentrBal
	DistrBal ScoreDims
	Component Stability in TrGuide
	Stability of DistComps in TrGuide
	Final Remarks

	Evaluation
	Comparison with Ceph and Swift
	Evaluation of Distributed Balancing
	Computational Overhead

	Formalization
	Problem Statement
	Auxiliary Functions, Definitions and Corollaries
	Operations
	Lemma 1
	TrGuide Definitions
	Lemma 2
	Lemma 3
	Lemma 4

	Conclusions

	Conclusions and Future Work

