
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Alina Powa la

Modeling Dialogues in Multiagent Systems:
a Paraconsistent Approach

PhD dissertation

Supervisor

prof. dr hab. Barbara Dunin-Kȩplicz

Institute of Mathematics
University of Warsaw

March 2016

2

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

March 23, 2016 .
date Alina Powa la

Supervisor’s declaration:
the dissertation is ready to be reviewed

March 23, 2016 .
date prof. dr hab. Barbara Dunin-Kȩplicz

Acknowledgements

First of all I would like to thank my supervisor prof. Barbara Dunin-
Kȩplicz for patiently directing my work, for her time and invaluable advice
during the whole of my doctoral studies, as well as for co-authoring all articles
contained in this dissertation.

I would also like to thank prof. Andrzej Sza las for his insightful comments
and discussions, which greatly influenced this work.

Special thanks go to my Husband, Mom, Dad and Grandpa for their
endless support, understanding and encouragement.

I would also like to thank colleagues from companies NuTech Solutions,
Netezza, IBM and iQor for fruitful discussions, sharing of experience and
showing understanding at the last stages of work on this dissertation.

Finally I would like to thank also my friends, including Graham Richard-
son and Rick Handt for their help in preparing the English version, and, last
but not least, Marysia Przy lucka and Irmina Jakubiak for the fact that I can
always count on you.

Modeling Dialogues in Multiagent Systems:
a Paraconsistent Approach

PhD dissertation summary
Alina Powała (formerly Strachocka)

March 23, 2016

Supervisor
prof. dr hab. Barbara Dunin-Kȩplicz

Institute of Mathematics
University of Warsaw

Contents
1 Communication in Information-Rich Multiagent Settings 2

1.1 Multiagent Settings . 2
1.2 Research Objectives . 2

2 Underpinnings 4
2.1 Theory of Speech-Acts and Theory of Dialogue 4

2.1.1 Bi-Party Dialogues . 5
2.1.2 Multi-Party Dialogues . 6

2.2 Logical Foundations of TalkLOG . 7
2.2.1 Logical Language . 7
2.2.2 Modeling Agents . 9

2.3 4QL as Implementation Tool . 10

3 Results Obtained in the Dissertation 12
3.1 Conversing Agents in 4QL . 12

3.1.1 PAS as a Part of Epistemic Profile . 12
3.1.2 Dual Definition of PAS in 4QL . 14

3.2 Communication Forms . 15
3.2.1 Elementary Communication Forms 15
3.2.2 Advanced Communication Forms . 17

3.3 Formalizing Inquiry in TalkLOG . 18
3.3.1 Better Discernment between Inquiry Types 18
3.3.2 Principles of TalkLOG Inquiry . 19
3.3.3 Architecture of Multi-Party Inquiry 20
3.3.4 Refined Inquiry Strategies . 22
3.3.5 Verified Properties . 23
3.3.6 Complexity of Inquiry . 24
3.3.7 Conclusions . 25

3.4 Formalizing Persuasion in TalkLOG . 26
3.4.1 Modeling Opinion and Motivation . 27
3.4.2 Principles of TalkLOG Persuasion . 29
3.4.3 Architecture of Multi-Party Persuasion 30
3.4.4 Verified Properties . 33
3.4.5 Complexity . 35
3.4.6 Conclusions . 35

4 Final Conclusions 36

1 Communication in Information-Rich Multiagent Settings

1.1 Multiagent Settings

This research should be considered in the context of collaboration in autonomous systems like
multiagent systems (MAS). An intelligent agent is a software program, capable of carrying
out actions in its environment via actuators, upon perceiving percepts from that environment
via sensors, in order to complete its objectives. Baring that simple definition, the perception,
reasoning, communication and action, are the four main functions an agent must implement.
In resource-bounded applications, these functions naturally compete for time, computational
power, memory, bandwidth, etc. Since some objectives are difficult to achieve single-handedly,
multiagent systems are created to exercise the synergy of agents’ collaboration. This complex
subject [16,35,52,73,97,99] inevitably faces balancing reasoning with communication. Obtaining
this balance is the focus of this research. Another essential aspect of collaboration is resolving
discrepancies arising from the clash of individual agents’ opinions and objectives. Agent theories
should acknowledge such emerging conflicts by providing agents with tools to resolve them.
Conflict and its different facets in communication is the leitmotif of this dissertation.

Typically, regardless architecture type, an agent maintains:

• an informational stance, reflecting its view of the environment, other agents and itself,

• a motivational stance, which concerns agent’s objectives and supporting motivations.

In multiagent literature informational stance is expressed in terms of beliefs (underlining the
contrast with sure, provable and invariable knowledge) while motivational stance typically en-
compasses notions such as intentions, goals or commitments. Indeed, the most studied BDI
(beliefs, desires, intentions) model of agency [20, 47, 72] originated from Bratman’s human
rational choice and action theory [11]. As (multi)modal logics allowed for expressive modeling
of intensional concepts (e.g., belief, knowledge, necessity or possibility), they became a natural
tool for formalizing individual and group informational (e.g., common belief [43]) and motiva-
tional (e.g., social/collective intention, social/collective commitments [35]) notions, providing
a deep understanding of phenomena occurring in agency. However, this came at a price of high
complexity [41]. Contemporary real-world applications call for theories which can be executed
directly. This dissertation fulfills this requirement providing expressive yet tractable solutions for
communication in multiagent settings together with an adequate methodology.

1.2 Research Objectives

Most multiagent environments are dynamic and unpredictable because sure, up-to-date and
unambiguous data is seldom available. Agents situated in these environments receive informa-
tion from multiple sources of varying significance, credibility or quality which results in an
incompleteness and inconsistency of their beliefs. These factors demand modeling agents’ belief
bases as paraconsistent (i.e., tolerating inconsistency) and paracomplete (i.e., tolerating lack of
information) ones. Thus, in realistic modeling agents are supposed to:

• reason with and communicate about contradictory and missing information,

• deal with inconsistent and incomplete conclusions (as opposed to terminating reasoning
upon obtaining such conclusions),

• apply relevant nonmonotonic techniques like default or autoepistemic reasoning, circum-
scription, (Local) Closed World Assumption ((L)CWA) to fill the missing or disambiguate
inconsistent information.

2

Since complex communication patterns are essential in agency, we relinquish rigid com-
munication protocols, and lean towards more relaxed communication forms, acknowledging
agents’ flexibility. An adequate model of agents’ reasoning is the subject of ongoing research
at Institute of Informatics at University of Warsaw, led by professors Barbara Dunin-Kȩplicz
and Andrzej Szałas (see Section 2.2). Drawing upon their solutions, the overall objective of this
dissertation was a creation of a paraconsistent, paracomplete, dynamic and tractable formal
model of communication including

G1. a formal model of communication forms:

G1.1. elementary (known as speech-acts [3, 76]), concerning beliefs [39],

G1.2. advanced, concerning reasoning schemes [28, 29],

G2. formalization of inquiry as a dialogue type aiming at knowledge acquisition [37],

G3. formalization of persuasion as a dialogue type aiming at conflict resolution [36].

Persuasion and inquiry have been selected as the two most vital dialogues in multiagent appli-
cations. The essence of this research is a deep analysis of complex phenomena appearing in
these dialogues, leading to their dynamic models and the complexity results. Importantly, the
tractability requirement guided our approach. Indeed, in our research the focus has changed
from theoretical modeling of multiagent systems in multimodal logics of high complexity [35]1

to employing tractable rule-based approach suitable for practical applications. In Sections 3.3.5
and 3.4.4 both communication and computational complexity results are summed up.

The overall outcome of this research is a methodology of complex yet computationally-
friendly dialogues in information-rich settings that can be directly implemented as a part
of multiagent application. Moreover, the dissertation provides foundation for investigating
other dialogue types and verification of their properties.

This dissertation is composed of the following five papers:
P1. Paraconsistent Semantics of Speech Acts [39], published in Neurocomputing, with

B. Dunin-Kȩplicz, A. Szałas and R. Verbrugge, 2015.
P2. Perceiving Rules under Incomplete and Inconsistent Information [28], published in

the Proceedings of 14th International Workshop on Computational Logic in Multi-Agent
Systems (CLIMA), with B. Dunin-Kȩplicz, 2013.

P3. Paraconsistent Argumentation Schemes [38], published in Web Intelligence, with B. Dunin-
Kȩplicz, 2016.

P4. Tractable Inquiry in Information-Rich Environments [37], published in the Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), with
B. Dunin-Kȩplicz, 2015.

P5. Paraconsistent Multi-party Persuasion in TalkLOG [36], published in the Proceedings
of the 18th International Conference on Principles and Practice of Multi-Agent Systems
(PRIMA), with B. Dunin-Kȩplicz, 2015.

Although the name TalkLOG has been introduced only in the last paper P5, we will use it to relate
to the whole framework.

1It was also the context of my Master’s thesis and paper [31].

3

My other publications include:

1. Deliberation Dialogues during Multiagent Planning [31], published in the Proceedings
of the 19th International Symposium on Foundations of Intelligent Systems (ISMIS), with
B. Dunin-Kȩplicz, R. Verbrugge, 2011.

2. Perceiving Speech Acts under Incomplete and Inconsistent Information [30], pub-
lished in the Proceedings of the International KES Conference on Agents Mutli-Agent
Systems: Technologies and Applications (KES-AMSTA), with B. Dunin-Kȩplicz, A. Szałas,
R. Verbrugge, 2013.

3. Computationally-Friendly Argumentation Schemes [29], published in the Proceedings
of the IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and
Intelligent Agent Technologies (IAT), with B. Dunin-Kȩplicz, 2014.

4. The Polish School of Argumentation: A Manifesto [12], published in Argumentation,
with K. Budzyńska, B. Dunin-Kȩplicz, et al., 2014.

5. Multi-Party Persuasion: a Paraconsistent Approach, submitted to Fundamenta Infor-
maticae, with B. Dunin-Kȩplicz, 2016.

2 Underpinnings

2.1 Theory of Speech-Acts and Theory of Dialogue

Contemporary approaches to communication in multiagent systems draw upon Walton and
Krabbe’s semi-formal theory of dialogue [94], adapting the normative models of human commu-
nication, including paradigmatic dialogue types (inquiry, information seeking, deliberation, per-
suasion and negotiation) to multiagent settings. See [2,6,8,13,18,25,31,35,57,60,63,64,67,74,90]
for investigations in multiagent argumentation-based dialogue, and [94] for the definitions of dia-
logue types. Each model of dialogue is defined by its initial situation, the participants’ individual
goals, and the aim of the dialogue as a whole (see Table 1).

Table 1: Types of dialogue recalled from [92]

Type of Dialogue Initial Situation Participants’ Goal Goal of Dialogue
Persuasion Conflict of Opinions Persuade Other Party Resolve or Clarify Issue

Inquiry Need to Have Proof Find and Verify Evi-
dence

Prove (Disprove) Hy-
pothesis

Negotiation Conflict of Interests Get What You Most
Want

Reasonable Settlement
Both Can Live With

Information Seeking Need Information Acquire or Give Infor-
mation Exchange Information

Deliberation Dilemma or Practical Choice Coordinate
Goals and Actions

Decide Best Available
Course of Actions

Eristics Personal Conflict Verbally Hit Out at Op-
ponent

Reveal Deeper Basis of
Conflict

In collaborative efforts [98], such as teamwork [35], agents need to communicate intensively
starting from team formation, through social planning to team action and reconfiguration.
At every stage, a different dialogue type prevails, e.g., information seeking during potential
recognition, persuasion during team formation and action allocation or deliberation during
means-end-analysis.

4

Complex dialogues are composed with the use of speech acts – the basic building blocks of
communication. Contemporary understanding of speech acts comes form the works of Austin
and Searle [3, 76] including the most popular taxonomy of speech acts, identifying:
• assertives, committing to the truth of a proposition, e.g., stating,
• directives, which get the hearer to do something, e.g., asking,
• commissives, committing the speaker to some future action, e.g., promising,
• expressives, expressing a psychological state, e.g., thanking,
• declaratives, changing reality according to the proposition e.g., baptising.

Importantly, Austin specified the effects of speech acts on the attitudes and actions of the hearer.
Thus, in computational approach, speech acts are viewed as actions ”that make you change your
mind” [87], and dialogues are viewed as communicative games between two or more agents,
who try to expand, contract, update, and revise their beliefs through communication. Indeed, the
application of speech acts and dialogue theory to communication in multiagent systems dates
back to late 20th century [19]. The semantics of dialogues (games) and speech acts (moves in the
game) was studied in multiagent literature mainly from two angles:
• mentalistic: based on modeling changes in agents’ internal mental attitudes. Speech acts

as typical actions are defined by their pre- and post-conditions [21, 39, 44, 45, 51].
• social: departing from internal mental attitudes, building upon concepts such as commit-

ment or convention, aiming at obtaining verifiable dialogue protocols [77,78] (see also [17]
and references therein).

Jason [9], an implementation of the AgentSpeak [71] language based on social commitments [78],
is an example of combining together the mentalistic and societal view of agency.

In this dissertation both approaches have been explored. The initial works (P1, P2) were
conducted in the mentalistic spirit. As mentalistic semantics does not lend itself to verification,
when defining complex dialogues we followed the social approach. In principle we adopted the
blackboard metaphor where dialogue participants are aware of both moves made in the dialogue
and dialogue rules. To this end, in TalkLOG we exercised an architecture including:
• dialogue stores, persisting the effects of participants’ moves on the state of the discussion,
• a move relevance function, relying only on the publicly available information.

2.1.1 Bi-Party Dialogues

Both inquiry and persuasion have enjoyed much attention from the researchers:

• Walton and Krabbe [94] introduced two types of semi-formal persuasion dialogues: per-
missive persuasion (PPD - everyday conversations) and rigorous persuasion (RPD - model
of reasoned argument). In these dialogues each player’s move has to pertain to the ad-
versary’s preceding move, so replies cannot be postponed. Therefore these dialogues do
not offer a more nuanced handling of the burden of proof, which is vital for flexibility of
interlocutors.
• PWA (Parsons, Wooldridge & Amgoud) protocol [64], although suffered from similar

modeling limitations (see [67] for a discussion) was a formal approach (unlike [94])
allowing to analyze the properties of termination and dialogue outcomes.
• In his system [66], Prakken first allowed alternative replies and postponing replies, permit-

ting much flexibility in persuasion. As regards conflict resolution, in [64] it hinged on the
preference relation between arguments, while in [66] on the priorities of reasoning rules.

5

• In [7] a framework for representing dialogues was given, together with models of two
subtypes of inquiry dialogues and a strategy for making moves in the dialogue. The authors
used Defeasible Logic Programming (DeLP) to deal with ignorance and inconsistency in
agents’ knowledge bases.

Only recently, Walton [54, 93] signalized the importance of the inconsistent information and
ignorance for the theory of dialogue. Currently there is a number of formalisms that do not
trivialize when inconsistent premises (for a survey see [5, 95]). In [80] the logic of multi-valued
argumentation (LMA) is used and agents argue using multi-valued knowledge base. In [68]
ASPIC+, a framework for structured argumentation with possibly inconsistent knowledge bases
and defeasible rules is given, while in [18] ALIAS agents use abductive reasoning to negotiate
over incomplete knowledge. However, none of these formalisms handles inconsistency and
ignorance the way TalkLOG’s underlying formalism does.

2.1.2 Multi-Party Dialogues

As indicated in [26, 82], several new issues arise when contemplating the plurality of dialogue
participants. In two landmark papers [26, 82], Dignum and Vreesijk, and Traum et al. discuss
related issues, like:

1. Open vs. Closed System: are all parties permanently present during the whole dialogue?

2. What are the roles of dialogue participants, are they fixed?

3. Medium and Addressing: one-to-one, one-to-many, one-to-all communication channels.

4. Coordination: turn-taking or asynchronous.

5. Termination: who decides?

6. Properties: e.g., comparing multi-party dialogue conclusions to those obtained by the
union of participants’ belief bases.

7. Internal properties of agents participating in such a dialogue.

Multi-party dialogues is a fairly young research field in Argumentation and Computational
Dialectics [8, 26, 49, 90, 96, 100] and Intelligent Virtual Agents (IVA) [83, 83, 84] domains:

• In [90] a simple multi-party inquiry dialogue has been proposed, where the participants
are equivalent (without roles) and exchange public messages via forum. Communication
happens in turns with no termination criterion.

• In [8] agents share the set of arguments, but differ on the attack relations. Although
agents were privately assigned to the two adverse groups, they independently proposed
moves to the central authority who selected the move to play. Some of the investigated
conditions include: what outcomes will be reached if agents follow the protocol; under
which conditions the debate is pre-determined; and whether the outcome coincides with
the result obtained by merging the argumentation systems of the participants.

• In [49] two protocols for regulating debates among agents based on a bi-polar argumentation
(i.e., using two types or relations between arguments: defeat and support) are proposed:
so-called category-based and cluster-based. Arguments were exchanged via a common
game board. Comparisons to merged argumentation systems were studied.

• In [96] a framework for resolving disputes concerning categorisation of particular cases
with the use of multi-party dialogues was given along with a discussion of mechanisms
and strategies used to facilitate multi-party argumentation.

6

• In [100] a distributed argumentation system was given together with a multi-party dialogue
game for computing the defensibility of an argument from consistent knowledge bases.
• In [83, 84] a model of negotiation for virtual agents, including negotiators with different

goals, negotiating over multiple options, has been proposed. Agents can dynamically
change their negotiating strategies based on the course of negotiation.

However, to our best knowledge, no complexity results for multi-party dialogues are given in
the literature. Most of the current research regards simple protocols with limitations concerning
both interlocutors (e.g., all are equivalent, with consistent belief bases) and dialogue mechanisms
(e.g., turn taking, no termination, usually one-to-all communication channel).

2.2 Logical Foundations of TalkLOG

To model phenomena such as lack and inconsistency of information, a commonly used logic is
Belnap’s four-valued logic [4], but it turned out that in multiagent settings it sometimes provides
unintuitive results (see e.g., [27]).2 The logic system underlying the realistic model of agency we
employed, encompasses and naturally treats unknown and inconsistent information and does not
share such problems (for our survey of nonmonotonic and paraconsistent techniques see P3).

2.2.1 Logical Language

In TalkLOG the solution is founded on the four-valued logic of [89], equipped with two new truth
values: unknown (u) and inconsistent (i) with the intuitive reading:
• a is true (t) if all sources claim a,
• a is false (f) if all sources claim ¬a,
• a is unknown (u) if no sources claim a nor ¬a,
• a is inconsistent (i) if some sources claim a, other claim ¬a.

The semantics of propositional connectives is summarized in Table 2. The definitions of ∧ and ∨
reflect minimum and maximum with respect to the truth ordering

f < u < i < t. (1)

The employed truth ordering 1 illustrates the degrees of truth of a proposition. While f expresses
no possibility of the proposition being true, u admits some possibility, i expresses there is at least
one witness of the truth of the proposition and t means that the proposition is definitely true.
Whenever truth values are restricted to {f, t}, the semantics is compatible with the semantics of
classical first-order logic.

In what follows all sets are finite except for sets of formulas. We deal with the classical
first-order language over a given vocabulary without function symbols. We assume that Const

2Example recalled from [89]. Assume a family owns two cars: a and b. The question, whether the family has
a safe car corresponds to the logical value of the expression safe(a) ∨ safe(b). Car a has gone through safety tests
at two different stations s1 and s2. It has passed the safety tests at s1 but failed the tests at s2. Car b has not gone
through any safety test yet. The results of the tests determine the truth values of safe(a) and safe(b): safe(a)
has the value i while safe(b) has the value u. If the join operation ∨ is defined by Belnap’s truth ordering, then
safe(a) ∨ safe(b) = i ∨ u = t. However, the safety of car a is unclear, since the results of both safety tests are
contradictory, and we know nothing about safety of car b! A more intuitive result here would be i. Asking instead, if
all cars of the family are safe, safe(a) ∧ safe(b), evaluates to f in Belnap’s logic (i ∧ u). However, actually we do
not have any information about the safety of car b. If in reality it would have failed the safety tests then the expression
above would evaluate to f. But, if car b would have passed the tests then the expression would become i. Therefore,
the above case seems to be better described by u than by the answer obtained in the Belnap’s logic.

7

Table 2: Truth tables for ∧, ∨,→ and ¬.

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

is a fixed set of constants, Var is a fixed set of variables and Rel is a fixed set of relation
symbols. Though we use classical first-order syntax, the semantics substantially differs from
the classical one as truth values t, i, u, f (true, inconsistent, unknown, false) are explicitly present.
The semantics (see Def. 2) is based on sets of ground literals rather than on relational structures.

Definition 1 A literal is an expression of the form R(τ̄) or ¬R(τ̄), τ̄ being a sequence of
parameters, τ̄ ∈ (Const ∪ V ar)k, where k is the arity of R ∈ Rel. Ground literals over Const,
denoted by G(Const), are literals without variables, with all constants in Const. If ` = ¬R(τ̄)

then ¬` def
= R(τ̄). C

Let v : Var → Const be a valuation of variables. For a literal `, by `(v) we mean the ground
literal obtained from ` by substituting each variable x occurring in ` by constant v(x).

Definition 2 The truth value `(L, v) of a literal ` w.r.t. a set of ground literals L and valuation v,
is defined by:

`(L, v)
def
=

t if `(v)∈L and (¬`(v)) 6∈L;
i if `(v)∈L and (¬`(v))∈L;
u if `(v) 6∈L and (¬`(v)) 6∈L;
f if `(v) 6∈L and (¬`(v))∈L.

C

For a formula α(x) with a free variable x and c ∈ Const, by α(x)xc we understand the formula
obtained from α by substituting all free occurrences of x by c.

Table 3: Semantics of first-order formulas.

• if α is a literal then α(L, v) is defined in Definition 2;

• (¬α)(L, v)
def
= ¬(α(L, v));

• (α ◦ β)(L, v)
def
= α(L, v) ◦ β(L, v), where ◦∈{∨,∧,→};

• (∀xα(x))(L, v) = min
a∈Const

(αxa)(L, v), where min is the minimum w.r.t. ordering (1);

• (∃xα(x))(L, v) = max
a∈Const

(αxa)(L, v), where max is the maximum w.r.t. ordering (1).

Definition 2 is extended to all formulas in Tab. 3, where α denotes a first-order formula, v is
a valuation of variables, L is a set of ground literals, and the semantics of propositional connectives
appearing at righthand sides of equivalences is given in Tab. 2 w.r.t the truth ordering 1.

8

2.2.2 Modeling Agents

The current line of research follows an important shift in perspective proposed by Dunin-Kȩplicz
and Szałas: rather than drawing conclusions from complex modal theories we reason from
paraconsistent belief bases. In this approach, the way an individual agent deals with conflicting
or lacking information is encoded in its epistemic profile [32]. This concept embodies agent’s
reasoning capabilities encompassing techniques suitable for different aspects of agent’s activities.
Technically speaking, agents’ beliefs are represented as sets of literals constituting paraconsistent
belief bases. Epistemic profiles are represented as agent-specific rules operating on possibly
complex belief structures in order to draw individual conclusions.

The definition of an epistemic profile is recalled from [33]. If S is a set, then FIN(S)
represents the set of all finite subsets of S.

Definition 3 Let C def
= FIN(G(Const)) be the set of all finite sets of ground literals over constants

in Const. Then:
• a constituent is any set C ∈ C;
• an epistemic profile is any function E : FIN(C) −→ C;
• by a belief structure over epistemic profile E is meant a structure BE = 〈C, F 〉; here C⊆C

is a nonempty set of constituents and F def
= E(C) is the consequent of BE . C

The constituents and consequents reflect the processes of agents’ belief acquisition and formation.
An agent starts with constituents, i.e., sets of beliefs acquired by perception, expert-supplied
knowledge, communication with other agents, and many other ways. Next, the constituents are
transformed into consequents according to the agent’s individual epistemic profile. Consequents
contain final, ”mature” beliefs (see Figure 1). More formally, an epistemic profile corresponds
to a function mapping finite sets of ground literals to ground literals. Therefore, the epistemic
profile, being any function, can encode any reasoning schema (especially when we disregard
complexity issues). This dissertation aims at tractable solutions, thus complexity will matter.

Figure 1: Belief formation (from [34] with permission).

The above definition of belief structures leads to a very important property: epistemic profiles
can be devised analogously for individuals and groups, ensuring a uniform treatment of individual
and group beliefs and thus facilitating reasoning in groups of complex topology. Namely, in
multiagent settings, for each group, the group epistemic profile is set up, where consequents
of group members become constituents at the group level and such constituents are further
transformed into group consequents. This way, various perspectives of agents involved are taken
into consideration and merged.

9

2.3 4QL as Implementation Tool

Many important aspects of classical agency have to be adjusted when adopting a paraconsistent
semantics. First of all, the AGM postulates for Belief Revision [14] are no longer valid3. On the
other hand, some assumptions underlying classical formalizations of agency (Dynamic Epistemic
Logic [85], intention logic [20]; BDI [47] & KARO [86] frameworks) are unpractical: real agents
do not have infinite resources (like time) available for reasoning and they are not logically perfect
reasoners. Therefore a formalism which does not require such assumptions would be preferred.

Our approach is strongly influenced by ideas underlying 4QL: a four-valued, rule-based,
paraconsistent query language introduced by Małuszyński and Szałas. 4QL4 was defined in [56],
further developed in [79] and based on a 4-valued logic of [89]. It allows for negation both in
premises and conclusions of rules. Even though openness of the world is assumed, rules can be
used to close the world locally or globally. 4QL features:
• Possibly many, perhaps distributed information sources.
• Four logical values (t, f, i, u).
• Unrestricted negation (in premises and conclusions of rules).
• Simple tools: rules, modules and multi-source formulas to formulate and enrich (lightweight

versions of) (L)CWA, autoepistemic, default, or defeasible reasoning.
• Modular architecture to deal with unknown or inconsistent conclusions without enforcing

termination of reasoning.
• PTIME complexity of computing queries while capturing all tractable queries.

The formal language underlying 4QL was introduced in Section 2.2.1.

Definition 4 A multisource formula is an expression of the form: m.A or m.A∈T , where:
• m is a module name;
• A is a first-order or a multisource formula;
• v is a valuation;
• T ⊆ {t, i, u, f}.

We write m.A = v (resp., m.A 6= v) to stand for m.A∈{v} (resp., m.A 6∈{v}). C

The intuitive meaning of a multisource formula m.A is: ”return the answer to query expressed
by formula A, computed within the context of module m”. The value of ‘m.A ∈ T ’ is:

{
t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula, X1, . . . , Xk be its all free variables and D be
a finite set of literals (a belief base). ThenA, understood as a query, returns tuples 〈d1, . . . , dk, tv〉,
where d1, . . . , dk are database domain elements and the value of A(d1, . . . , dk) in D is tv.

Definition 5
• Rules are expressions of the form: ` :- b11, . . . , b1i1 | . . . | bm1, . . . , bmim . where the

premises b11, . . . , b1i1 , . . . , bm1, . . . , bmim are multisource formulas and the conclusion
` is a positive or negative literal and ‘,’ and ‘|’ abbreviate conjunction and disjunction,
respectively. If δ is a rule, by head(δ) we mean the rule conclusion.

3But see [70, 81].
4Open-source implementation of 4QL is available at 4ql.org.

10

• A fact is a rule with empty premises (evaluated to t). If δ is a fact, head(δ) = δ.

• A module is a syntactic entity encapsulating a finite number of facts and rules.
• A 4QL program is a set of modules, without cyclic references to modules involving

multisource formulas of the form m.A∈T . C

In the sequel, Γ denotes the set of all facts; Π denotes the set of all rules.
The semantics of 4QL is defined by well-supported models, i.e., models consisting of (positive

or negative) ground literals, where each literal is a conclusion of a derivation starting from facts.
Each module can be treated as a finite set of literals. For any set of rules, such a set is uniquely
determined and computable in deterministic polynomial time O(Nk) where N is the size of
domain and k = max(s, t), where s is the maximal arity of relations and t is the maximum
number of free variables.

Thanks to the correspondence between 4QL models and finite sets of literals, and due to
the fact that 4QL captures PTIME [55], the constituents and consequents of Definition 3 being
PTIME-computable, can be directly implemented as 4QL modules [34].

The complexity of 4QL is of great importance for this dissertation. On account of 4QL,
TalkLOG dialogues are both expressive (as 4QL captures all tractable queries) and feasible (as 4QL
enjoys polynomial computational complexity of computing queries). Such features distinguish
4QL from other formalisms, e.g., Answer Set Programming (ASP) [46]. ASP is based on the
trivalent semantics (true, false, unknown), and does not admit inconsistency. Computing a so-
called ”answer set” (stable model) is NP-complete. The answer sets may contain conclusions
that are not grounded in facts, which may be suitable for ASP primary applications (specification
and computation of problems from the NP class), however is not appropriate in our case.

Definition 6 Let P be a 4QL program, A a formula, andMP the well-supported (unique) model
of P . Then, P |= A iff for any valuation v we haveMP |= v(A).

Definition 7 Let ` be a literal and P a 4QL program. The derivation of ` from P is the well-
supported modelMP .

Example 1 Consider program P = {top, su} consisting of two modules top and su5.

top = { enter(b) :- isAt(s, b),¬has(s, h).,
isAt(s, b) :- isArmed(s), hearShotsAt(b).,
isAt(s, b) :- su.isAt(s, b) ∈ {u, i, t}.,

¬has(s, h),
has(s, h),
isArmed(s)}

su = { isAt(s, b) :- see(s, b),¬conditions(fog).,
see(s, b),
¬conditions(fog)}

(2)

The literals s, b, h represent suspect, building and hostage, respectively. The program uniquely
determines the following well-supported model for module su:

Msu = {¬conditions(fog), see(s, b), isAt(s, b)} (3)

and the following well-supported model for module top:

Mtop = {enter(b),¬enter(b), isAt(s, b),
isArmed(s), has(s, h),¬has(s, h)}.

(4)

5su stands for ’surveillance’.

11

3 Results Obtained in the Dissertation

3.1 Conversing Agents in 4QL

Argumentation schemes [95], originating from Legal Argumentation, attempt to classify different
types of everyday arguments, utilizing the ideas underlying nonmonotonic formalisms. Each
scheme is accompanied by a set of critical questions, used to evaluate the argument. Although par-
ticular schemes may represent different types of reasoning (e.g., deduction, induction, abduction,
presumption), in general they aim to model plausible, thus defeasible, reasoning.

Table 4: Original Expert Opinion Scheme [95]

Original Argumentation Scheme

Sc
he

m
e

A is an expert in domain D
A asserts that X is true
X is within D
X is true

C
ri

tic
al

Q
ue

st
io

ns How credible is A as an expert source?
Is A an expert in domain D?
What did A assert that implies X?
Is A personally reliable as a source?
Is X consistent with what other experts assert?
Is A’s assertion of X based on evidence?

In principle, heterogeneity of agents w.r.t. reasoning means that when presented with the
same evidence, agents may draw different conclusions. The notion of epistemic profile directly
exposes this concept. In its abstract form, epistemic profile, being arbitrary function, conveys all
reasoning capabilities of an agent. Thanks to this generic definition, also non-deductive reasoning
methods like argumentation schemes, can be included as a part of epistemic profiles.

In this dissertation, paraconsistent argumentation schemes (PAS) have been analyzed in the
context of constructing epistemic profiles of agents. To this end, following the approach of [69],
we simplified the set of critical questions to those pointing to the specific undercutters, further
called exceptions. Next, we encoded the scheme premises, exceptions and conclusion using
four-valued literals (see Table 5 for an example of our paraconsistent adaptation of the Expert
Opinion scheme). To our best knowledge, our paraconsistent approach to argumentation schemes
is a novelty in the literature, encompassing the dual definition of PAS:

• as a part of an agent’s epistemic profile utilizing the notions of constituents, consequents
and belief structures (see Section 3.1.1),

• directly translated into 4QL, with the use of the notions of modules and well-supported
models (see Section 3.1.2).

Technically, any 4QL program presented in P3 can be implemented and interpreted using the
4QL interpreter inter4ql.

3.1.1 PAS as a Part of Epistemic Profile

In P3, paraconsistent argumentation schemes are modeled with the use of the two dedicated sets
of premises and exceptions. Intuitively, when all premises are present and none of the exceptions
is present, the conclusion of the scheme can be drawn.

12

Table 5: Paraconsistent Expert Opinion Scheme

Paraconsistent Argumentation Scheme

P-
Sc

he
m

e

isExpert(A,D)
assert(A,X,V)
inDomain(X,D)
v(is(X)) = V

E
xc

ep
tio

ns

¬isReliable(A)
¬evidenceBased(A,X,V)

Consider three sets of ground literals: Premises (P), Exceptions (E) and Conclusions (Con),
and a functionPAS({P,E}) = Con, which represents the paraconsistent argumentation scheme.
The set P contains candidates for conclusion of the scheme. They are obtained by means specific
to every argumentation scheme. The elements of E are triggers that, when present, forbid the
respective candidate conclusion from being drawn. Intuitively, a conclusion c cannot be obtained
when the exceptions indicate ¬c. Ultimately, the conclusion of the scheme is obtained as follows.
If there exists a tetravalent candidate for a conclusion c ∈ P (value of c is not u), check whether
there exists a trigger ¬ c ∈ E blocking this candidate (value of ¬c is t). If the trigger:
• does not exist, the candidate conclusion becomes the final scheme conclusion,
• exists, the scheme cannot be applied causing the value of c ∈ Con to be u.

In short, a conclusion c is established based on the supporting arguments given by the set P
(i.e., c(P, v) 6= u) and (lack of) rebutting triggers provided by the set E (i.e. ¬c(E, v) 6= t).

The definition below presents the paraconsistent argumentation scheme as a partial function:
a fragment of agent’s epistemic profile that expresses agent’s argumentative skills. The translation
of PAS to 4QL is presented in Definition 9, together with the analogy between both definitions.

Definition 8 (PAS) Recall that
• C = FIN(G(Const)) stands for the set of all finite sets of ground literals over the finite set

of constants Const,
• v : V ar −→ Const is a valuation of variables.
• by a constituent we understand any set C ∈ C.

Let
• P and E be two constituents, representing the set of premises and exceptions, respectively,
• S = {P,E} be a nonempty set of constituents (S ⊆ C),
• Con ∈ C be a finite set of ground literals, representing the conclusions.

Then, Paraconsistent Argumentation Scheme (PAS) is a partial function PAS : FIN(C)→ C,
PAS({P,E}) = Con, such that

c(Con, v)
def
=

t iff c(P, v) = t and ¬c(E, v) 6= t;
i iff c(P, v) = i and ¬c(E, v) 6= t;
u iff c(P, v) = u or ¬c(E, v) = t;
f iff c(P, v) = f and ¬c(E, v) 6= t.

By belief structure over PAS we mean BPAS = 〈S, Con〉, where:

13

• S = {P,E},S ⊆ C is a nonempty set of constituents;

• Con def
= PAS(S) is the consequent of BPAS .

We identify BPAS with the instance of a paraconsistent argumentation scheme. C

Although epistemic profiles serve as a useful abstraction for characterizing agents’ reasoning
capabilities, in the remainder of this dissertation we assume that agents’ reasoning is grounded
in belief bases, rather than in arbitrary theories. That is, in reasoning we allow rules and facts
and consider well-supported models only. The methods we apply have to be simple and effective.
Therefore the main results: inquiry and persuasion dialogues (see Sections 3.3 and 3.4) are
already directly implemented in 4QL.

3.1.2 Dual Definition of PAS in 4QL

Recall Example 1 from Section 2.3. The two modules of program P , top and su , define the
sets of ground literalsMtop (4) andMsu (3), which are the well-supported models of top and
su , respectively. Taking the epistemic profile perspective, P can be seen as a belief structure
BE = 〈Msu,Mtop〉 with one constituent su and a consequent top while the epistemic profile E
is defined by the rules of module top. Such an approach allows to encode agents’ informational
stance, expressed in the terms of belief structures, directly in the rule-based query language 4QL.

An argumentation scheme in 4QL is implemented via a dedicated Scheme module, containing
two specific rules:

is(X):- Premises.is(X),

-Exceptions.is(X) in {false,unknown,incons}.

and
-is(X):- -Premises.is(X),

-Exceptions.is(X) in {false,unknown,incons}.

The multisource formulas in the bodies of the rules pertain to two other specific sub-modules:
one corresponding to the premises and one to the exceptions. Intuitively, these rules express the
mechanism of drawing the scheme conclusions in the way described in the previous Section.
Altogether, the 3-modular 4QL architecture reflects the structure of the argumentation scheme:
• the set of premises is translated to the module Premises,
• the set of exceptions is captured in the module Exceptions,
• the conclusion (is(X)) is evaluated within the Scheme module.

Definition 9 Let L stand for the set of ground literals with constants in Const. Let Exceptions ,
Premises and Scheme be three sets of rules. A Paraconsistent Argumentation Scheme is a tuple
PAS = 〈Exceptions, Premises, Scheme〉, such that if
• MS is the well supported model of Scheme,
• MP is the well supported model of Premises,
• ME is the well supported model of Exceptions,

then ∃c ∈ L, such that

MS(c)
def
=

t iff MP (c) = t andME (¬c) 6= t;
i iff MP (c) = i andME (¬c) 6= t;
u iff MP (c) = u orME (¬c) = t;
f iff MP (c) = f andME (¬c) 6= t.

Is such a case we define c as the conclusion of the paraconsistent argumentation scheme. C

14

Def. 9 presents PAS as a tuple of specific 4QL modules (sets of rules) while Def. 8 expresses
PAS as a partial function: a fragment of an agent’s epistemic profile. The set of conclusions of
the scheme (Con) corresponds to the well-supported model of the Scheme module (MS).

Any argumentation scheme that can be represented as PAS can be translated to 4QL. Obtaining
conclusion c of the scheme is in polynomial time, as it amounts to computing the well-supported
model of the module Scheme. This complexity result allows to reason and compare conclusions
obtained with the use of multiple different argumentation schemes at once.

3.2 Communication Forms

Human communication involves building complex models of interlocutors possibly in an un-
conscious way, which then play an implicit role in human reasoning. Explicit models of others
is a necessary component in agency. Even though we cannot grasp the entire subtlety of hu-
man communication, adequate, yet complex, communication forms can be proposed, like the
following.

1. Informing about (transient) opinions helps agents to form high-level models of others,
i.e., involving expressed current beliefs.

2. Communication including revealing one’s (persistent) facts and reasoning rules permits to
create a (more adequate) model of others.

3. Finally, communicating whole reasoning/argumentation schemes resembles installing new
software packages on an intelligent agent to create the models of others or to augment its
own reasoning capabilities.

Accordingly, the research goals G1.1. and G1.2., formalization of elementary and complex
communication forms, were realized in papers P1, P2 and P3, with the focus on speech acts.
Depending on different type of their content we discerned:

• elementary communication forms concerned with (4-valued) opinions (P1),

• complex communication forms covering reasoning rules (P2) or argumentation schemes (P3).

The scope of this research covered a model of three atomic speech acts: assert, concede and
request, and a compound speech act challenge. They were modeled by specifying their:

• preconditions, including the communicative relation with the sender (authority, peer,
subordinate),

• complex post-action, covering belief revision and responding with a proper speech act.

As we concentrate on perceiving speech acts, the issue of initiating them was out of the scope.

3.2.1 Elementary Communication Forms

Communicating agents routinely adjudicate whether to adopt a new piece of information obtained
via communication. As agents are heterogeneous, even when perceiving the same news they may
draw different conclusions and react differently. In multiagent literature, there are three general
approaches to model agent’s reaction to a new piece of information:

• based on the message content ϕ,

• based on the message sender S, or

• based on both.

15

For example, in [64] the authors proposed an acceptance attitude which determines when
a message can be accepted on the basis of its content solely, identifying three such attitudes:
credulous, cautious and skeptical. They were defined with respect to agent’s ability to construct
an argument against ϕ regardless the features of the sender.

In richer communication models, also other aspects have been studied. In [91], the problem
whether agent’s statement (message) should be considered or disregarded was adjudicated with
the use of a high-level concept: credibility of an agent, expressed by a credibility function.
Qualities such as: veracity, prudence, perception, cognitive skills also played a role in judging
agent’s credibility.

In a slightly different approach of [62], the role of credibility plays trust, which is considered
to be ”a mechanism for managing the uncertainty about autonomous entities and the information
they deal with”. Indeed, trust [15] is essential in creating a team via communication [35].

In P1, to generalize various aspects of communication such as trust, credibility, power-
relations, the notion of communicative relations was introduced. Three types of such relations
were characterized in terms of the receiver’s reaction to the sender’s messages: communication
with authority, peer to peer communication, communication with subordinate. In short, commu-
nicative relations act as filters, determining when a new percept triggers belief revision or conflict
resolution.

When considering message content ϕ, due to the 4-valued approach the number of possible
disagreements concerning opinions about ϕ rises. In P1 we distinguished two such cases:

• strong disagreements (conflicts): when agents have contradictory opinions on ϕ;

• mere discrepancies: when one agent holds an inconsistent opinion about ϕ and the other
believes ϕ is true or false.

To sum up, modeling an agent’s reaction to a new piece of information in P1 hinges upon both
message content ϕ and message sender S and draws upon speech acts theory of Austin and
Searle.

In P1 we proposed a 4-valued model of speech acts assert, concede, request and challenge,
with the focus on assertions as the main concept. According to Searle and Vanderveken [76], the
sincerity conditions of assertions require that the agent believes in what it asserts. Classically,
assertions of beliefs were represented as assertS(ϕ) meaning that S asserts that ϕ holds. As
the 4-valued case required extending notation, therefore the content of speech act is a literal
together with its value. Next, the semantics of speech acts was specified by their preconditions
and complex post-actions:

{precondition}〈speech act〉[complex post− action].

The speech acts semantics has been detailed in the form of comprehensive tables in P1 .
For assertions, six new cognitive situations have been characterized from the receiver’s point

of view, based on the communicative relation with the sender, and on the message content ϕ.

1. Perceiving previously unknown information, where the receiver, ignorant about ϕ, is
informed about ϕ’s value.

2. Perceiving information that is unknown, where the sender informs the receiver that ϕ is
unknown.

3. Perceiving previously inconsistent information, where the receiver, believing ϕ is inconsis-
tent, is informed about ϕ’s value.

4. Perceiving inconsistent information, where the sender informs the receiver that ϕ is incon-
sistent.

16

5. Perceiving compatible information, where the sender and receiver agree on ϕ’s value.
6. Perceiving contradictory information, where the sender and receiver strongly disagree on
ϕ’s value.

The semantics of the remaining speech acts: concede, request and challange is given in P1.

3.2.2 Advanced Communication Forms

In P2 and P3 advanced communication forms concerning more refined content such as agents’
reasoning schemes were analyzed. These schemes were communicated via assertions.

In P2 we analyzed how agents should react to perceiving assertions about reasoning rules:
should they adopt, reject, ignore or maybe challenge the new rule? Obviously, adopting a new
reasoning rule may induce conflicts, inconsistencies and deep changes in agents’ belief structure.
This subject has hitherto received little attention. In particular, in [23], a cooperative rule learning
approach for exchanging sets of rules among agents has been presented. Formalism given
in [58] concerned acceptability of inference rules. However, none of these approaches deals
explicitly with unknown and possibly inconsistent information. Therefore the problem of rule
adoption principle for communicating agents in the paraconsistent and paracomplete approach
was investigated in G1.2. This goal was realized via a rule admissibility criterion, based on
compatibility of the rule conclusions with the current belief structure. The compatibility was
founded on the special knowledge-preserving ordering of truth values ≤k (see Figure 2) and was
a solution for mitigating possible future conflicts incurred by adopting a new rule. 1

u

i

ft

Figure 2: Knowledge ordering ≤k

Incompatible belief structures were not the only threat to the system’s stability investigated
in P2. We made an original observation that dealing with unknown information is a delicate
matter because accepting rules containing unknown literals is risky for the receiver. This problem
was solved on a meta-level via the communication relations: rules containing unknown premises
are considered only when the sender is an authority, otherwise, the unknown premises need to be
resolved first. This leads to distinguishing the following cases.
• Rule head is unknown, rule body is known. The novel assembly of literals leads to a new,

unknown beforehand conclusion and may be viewed as learning a new concept.
• Rule head is known, rule body is unknown. That case may be described as widening the

knowledge, or making it more detailed.
• Rule head is known, rule body is known. Philosophically, such situation pertains to two

different cases: the new rule is known as it is already, or the new rule combines previously
known literals as premises (Eureka!). Such case may be described as knowledge discovery.
• Rule head is unknown, rule body is unknown. In that case, the agent is overburdened with

new information and typically should start from resolving the unknown premises first.

The execution of the admissibility criterion is at the heart of the Algorithm for Perceiving As-
sertions About Rules, a generalized 4-step procedure, realized via: Filtering, Parsing, Evaluation
and Belief Revision. The impact of communicative relations is made explicit in the Algorithm:

17

• in the Parsing phase, if the rule premises are not recognized,

• in the Evaluation phase, if the rule conclusion is not recognized.

Avoiding conflicts is not a satisfactory solution when deep changes in agents’ epistemic
profiles turn out to be necessary as the rule admissibility criterion prevents them. Formalization
of several argumentation schemes in P3 allows for a more ontology-oriented approach to adjudi-
cating about admissibility of a communicated rule. Simply, if a rule belongs to a special module
encoding an argumentation scheme it should be accepted as it expresses a canonical reasoning
method. This approach can be extended to allow communication about modules (sets of rules).

To sum up, we took two approaches at defining rule admissibility: a semantic one, based on
compatibility of belief structures (in P2), and a syntactic one, based on structure/labeling of rules
or whole modules (in P3).

3.3 Formalizing Inquiry in TalkLOG

Research goal G2, i.e., formalization of inquiry: a dedicated dialogue type for knowledge
acquisition, was realized in the paper P4 [37], where a paraconsistent and paracomplete model of
inquiry dialogue was proposed. The purpose of inquiry, as formulated by Walton and Krabbe, is
to collectively solve a theoretical problem [94]. In multiagent settings, inquiry ”starts when some
agents are ignorant about the solution to some question or open problem. The main goal is the
growth of knowledge, leading to agreement about the conclusive answer of the question. This
goal may be attained in many different ways, including an incremental process of argument which
builds on established facts in drawing conclusions beyond a reasonable doubt. Both information
retrieval and reasoning may be intensively used in this process” [35]. Inquiry is not only a vital
dialogue in multiagent systems’ team formation (e.g., during action allocation or as an embedded
dialogue in task division [35]) or team action. It also offers intelligent agent interface to human
users for intelligent information retrieval through searching and collectively arriving at a final
answer/recommendation for the user.

3.3.1 Better Discernment between Inquiry Types

In its paradigmatic form, inquiry seeks to prove a statement as true or false, e.g.:

I1. is(suspect, guilty) = t,

I2. is(suspect, guilty) = f.

These options do not exhaust all possibilities in realistic modeling. To overcome the limitations
of 2-valued approach, in TalkLOG we additionally considered influence of incomplete and
contradictory information on inquiry scenarios, providing their more granular discernment:

I3. is(suspect, guilty) = i: the information about suspect’s guilt is inconsistent

I4. is(suspect, guilty) = u: is suspect guilty?

A scenario where the subject s of inquiry is unknown resembles a so-called discovery
dialogue, where ”the question whose truth is to be ascertained may only emerge in the course of
the dialogue itself” [59]. In TalkLOG, it is just another variation of inquiry (see Definition 13):

• Inquiry-WHAT: when initial value of s is u,

• Inquiry-THAT: when initial value of s is t, f or i.

18

As a group activity (in contrast to information seeking dialogue), inquiry aims at obtaining the
common belief (C-BELG(s), see [35] for the definition) in the group G about the dialogue topic
s [35]. Unlike common knowledge, C-BELG(s) does not entail that s is true. Indeed, rather than
proving a statement to be true or false, in TalkLOG, the goal of inquiry is, technically speaking,
to jointly find a proof of s. Such a commonly believed proof implies commonly believed s.

Inquiry-THAT can be viewed as a collaborative proof-searching process which starts from
a working hypothesis and aims at confirming it. Thus, Inquiry-THAT succeeds if the final value
vf is equal to the initial value vi of s (see Table 6 and Definition 13). When the initial subject
value vi is unknown, in the lack of a working hypothesis, any final valuation different from u is
a success. Thus Inquiry-WHAT succeeds if vf 6= u (see Table 6 and Definition 13).

Table 6: Summarised view of Inquiry-WHAT and Inquiry-THAT.

Inquiry-WHAT Inquiry-THAT
Initial Topic Value u t, i, f
Final Topic Value u t, i, f Same as Initial Otherwise

Outcome failure success success failure

Although the primary outcome of TalkLOG inquiry is the proof of the goal, for simplicity
(and to maintain compatibility with other approaches) we formalize the inquiry outcome as a pair:
the final value of the goal and the proof of it (where the proof is the primary notion and the value
of the goal is a derivative).6

3.3.2 Principles of TalkLOG Inquiry

In the literature there are different approaches to dialogue: some people assume that dialogue
protocols should only enforce coherence of dialogues, others also assume rationality and trust-
worthiness of the agents involved in a dialogue [66]. We lean towards an approach where ”the
idea is to have protocols specify the minimum rules the agents should respect. Agents need to
be free to do whatever they want as long as the main rules are respected” [17]. Although, as
mentioned by Dignum [17], being flexible probably means being computationally expensive, our
research shows that does not necessarily has to be true as shown in Section 3.3.6.

TalkLOG inquiry is governed by the following principles.

[Cooperativeness] We deal with a finite set of n cooperative agents who do not withhold information7. Agents’
belief bases are encoded as finite, ground 4QL programs P1, . . . , Pn, that share a common
ontology8. Agents communicate one-to-all without coordination9 and their final beliefs are
expressed by the well-supported modelsMP1 , . . . ,MPn of their programs.

[Activeness] In between joining and leaving a dialogue an agent must make at least one relevant move.

[Compliance] Agents’ programs do not change during dialogue10.

[Sincerity] Agents do not lie about their beliefs nor contents of their programs.

[Pragmatism] Agents cannot repeat assertions.

6Recall that computing the value of the goal is in polynomial time wrt. the size of the proof, thus storing the
pre-computed value greatly reduces lookup time.

7This implicitly constraints the number of queries to dialogue stores per one locution as agents would not query
a dialogue store when they can provide input.

8Practical realization of common ontology assumption is non-trivial, see [53].
9Cp. [90] where agents act, i.e., listen, reason and speak, in turns, for a fixed number of rounds.

10This requirement can be relaxed as discussed in Section 3.3.5.

19

Inquiry starts when an initiator opens the dialogue on topic s. This topic becomes the root of
the backward chaining tree. All participants may contribute to the dialogue by providing their
(partial) proofs of s constructed via backward chaining. Next, the elements of the proofs uttered
by the agents are added to the scope of the dialogue allowing all participants to further provide
the (partial) proofs for these elements. Agents cannot retract their locutions nor repeat them.
Since their programs are finite, we finally get to a point where no agent has a move to make and
dialogue terminates naturally.

Due to [17], dialogue evaluation criteria should consider not only the communication mecha-
nism (the protocols), but also agents’ argumentative attitudes, which express their preference
to give support or to attack, when multiple moves are possible. Accordingly, in TalkLOG we
distinguish the following attitudes:

1. compliant, when agent attacks only as a last resort,

2. offensive, when agent seizes each opportunity to attack immediately.

Agent’s attitude is indefinite when it exhibits no clear preference for attacks or supports. In the
sequel we postulate this attitude. Unlike other approaches, we do not assume that the distributed
knowledge of the group is complete. If the statement s cannot be proved by the agents, the
conclusion would simply be u.

3.3.3 Architecture of Multi-Party Inquiry

Typically dialogues are modeled by specifying the format and semantics of permissible messages.
As inquiry is a joint search for a proof, the relevant speech acts are: assertions and questions (or
requests, see Table 7). Sequences of locutions uttered by the same sender are called moves. Recall
that according to the speech acts theory, the sincerity condition of assertions states that an agent
is committed to the truth of the communicated proposition. As a novelty in TalkLOG, assertions
about 4-valued facts and 2-valued rules are admitted. Naturally, this yields additional questions
as compared to the classical case, e.g., regarding accepting or rejecting perceived information
(see Section 3.2 for a summary). In general, these issues can be investigated from the individual
and from the group perspective.

On the individual level, a common technique is to equip agents with an ’attitude’, which
determines how to ’behave’ in the dialogue (i.e., when to accept a proposition or to utter one, see
e.g., acceptance and assertion attitudes of [64]). However, such an attitude-based solution is not
satisfactory as we focus on the conversing group. In TalkLOG, group’s behavior is regulated by
the dialogue rules where the group-level equivalents of the ’acceptance’ and ’assertion’ attitudes
are specified within the dialogue protocol.

Table 7: Formats and intended meaning of permissible locutions in inquiry.

Speech Act Format Intended Meaning
assert assert(Si, r, d) Participant Si asserts a fact or rule r in dialogue d.

request requestAll(Si, d) Participant Si requests all open questions in dialogue d.

A commonly accepted model of inquiry [7, 77] hinges upon two stores:

• Query Store (QS), containing current open questions (associated with the dialogue),

• Commitment Store (CS), containing the statements (commitments) expressed in the dia-
logue (associated with each individual agent).

20

To guard focus and coherence of dialogues, typically a move relevance function [65] is given, to
determine, on the basis of the move and Query Store content, which statements can be added
to the Commitment Store. In TalkLOG, there is a single Query Store (QSd) associated with the
dialogue (d) as usual (see Definition 12). Initially it contains the dialogue goal s as a single entry.
The manner of adding new and removing old questions is the essence of QSd definition. In this
respect, the novelty in TalkLOG is that the issue when questions should be added to or removed
from QS is studied deeper due to the 4-valued approach. Section 3.3.4 is dedicated to this matter.

However, to satisfy both the social postulates [17] and requirements of the 4-valued approach,
we had to redefine the notion of the Commitment Store (see Definition 11). Therefore, in contrast
to the existing approaches, we do not consider particular individual agents’ Commitment Stores
but maintain a single, associated with dialogue, Commitment Store (CSd). CSd is created empty
when the dialogue begins (as no locutions have been uttered yet) and updated with every relevant
assertion. In short, the inquiry Commitment Store is just an evolving 4QL program (see also [1]).

Arguably, TalkLOG’s inquiry architecture can be viewed as an adaptation of blackboard
metaphor (like [26]’s forum or newsgroup) rather than exact blackboard architecture [22, 42].

Definition 10 (Locution Relevance) Locution mt is relevant to inquiry dialogue d at time t iff.

mt = assert(S,Mi.` :- b, d) and (¬)Mi.` ∈ QStd,

where QStd is the Query Store of d at time t. We alternate between the notions of locution,
message and utterance. C

Definition 11 (Commitment Store) Commitment Store of a dialogue d at time t is a 4QL pro-
gram denoted as CStd =

〈
M t

1, . . . ,M
t
k

〉
:

• CS0
d = ∅

• CStd = CSt−1
d ∪ {Mi.` :- b}, such that

mt = assert(S,Mi.` :- b, d) is relevant to d at time t,

• CStd = CSt−1
d otherwise. C

Definition 12 (Query Store) Let:

• CStd be the Commitment Store of dialogue d at time t,

• mt be the message received at time t,

• close : FIN(C) × FIN(C) → FIN(C) be a method for removing entries from the Query
Store,

• open : FIN(C)× FIN(C)→ FIN(C) be a method for adding entries to Query Store.

Then, Query Store of an inquiry dialogue d on subject s at time t is a finite set of literals denoted
as QStd such that:

• QS0
d = {s}

• QStd = (QSt−1
d ∪ B′) \ B′′, if mt = assert(S,Mi.` :- b, d), where

B′ = open(b, CStd),

B′′ = close(QSt−1
d ∪B′, CStd),

• QStd = QSt−1
d otherwise. C

21

Definition 13 (Inquiry Types) For an inquiry terminating at time t, with the goal s of initial
valuation vi, the value of the dialogue conclusion is vf = v(s,MCSt

d
), where MCSt

d
is the

well-supported model of CStd. Dialogue is:
• successful iff

– vi = u ∧ vf 6= u [Inquiry-WHAT], or
– vi 6= u ∧ vf = vi [Inquiry-THAT],

• unsuccessful otherwise. C

3.3.4 Refined Inquiry Strategies

TalkLOG provides a possibility to develop various strategies for conducting inquiry. Technically,
an inquiry strategy (ST) is a pair of methods for adding (method open) and removing (method
close) entries from the Query Store (ST = 〈open, close〉).

The precise definition of open and close methods may be custom and may originate from
various approaches, among others, numerical (e.g., restricting the number of simultaneously open
threads w.r.t. current CS size), semantic (e.g., opening threads based on the truth value of the
literal representing the thread) or based on social choice theory (e.g., voting). In TalkLOG we
adopted the semantic approach, concerning the way of dealing with inconsistent or unknown
information. Intuitively, a new thread can be opened (or closed) based on its current truth value.

In TalkLOG we distinguished two methods for adding (ADD1, ADD2) and two methods for
removing (REM1, REM2) literals from QS, leading to four inquiry strategies (see Table 8), which
were thoroughly analyzed in P4.

Table 8: Inquiry strategies as pairs of methods for updating QS.

REM1 REM2
ADD1 narrow-minded pragmatic
ADD2 forgetful open-minded

Implementation and analysis of our inquiry dialogues required a formal specification of
concepts of dependence set and proof in 4QL. A dependence set of a literal ` from a program
P consists of literals reachable via backward chaining on P from `. Thus, TalkLOG inquiry is
a paraconsistent and paracomplete distributed version of backward chaining.

Definition 14 Let ` be a literal and P a 4QL program. A dependence set of ` from P , denoted
DP,` is a set of literals such that:

• ¬`, ` ∈ DP,`,
• if there is a rule `′ :- b11, . . . , b1i1 | . . . | bm1, . . . , bmim in P , such that `′ ∈ DP,` then
∀j∈1..m∀k∈1..ij bjk,¬bjk ∈ DP,`. C

A proof of a literal ` from a program P is a subprogram S of P generated from the dependence set
DP,` by taking all rules and facts of P whose conclusions are in DP,`. We also formally specified
the size of proof and size of proof domain, concepts needed for complexity considerations.

Definition 15 Let ` be a literal, P a 4QL program. A proof of l from P is a 4QL program
S ⊆ P such that δ ∈ S iff head(δ) ∈ DP,`, where δ is a fact or a rule. The size of the proof
S is the size of the program S. The size of domain of the proof S is the size of the dependence
set DP,`. C

22

3.3.5 Verified Properties

There are several typically investigated dialogue properties.
• Termination:

– guaranteed (regardless of the sequence of messages) or
– possible (in at least one sequence of messages)

• Computational complexity of terminating dialogues: how quickly do they terminate?
• Convergence to the merged outcome:

– necessary - if regardless the sequence of messages each dialogue converges to the
merged outcome?

– possible - is there at least one sequence of messages, s.t. the dialogue converges to
the merged outcome?

• Winning strategies of participants - if, regardless of other participants’ moves, an agent can
execute a sequence of dialogue moves which guarantees the preferred outcome?
• Soundness and completeness.

As in inquiry we did not define conditions for an agent to win or loose in the dialogue, we
were not interested in investigating strategies of individual agents, but rather the properties of
designed dialogues. In this regard, soundness of a strategy means that whenever a dialogue
terminates with a given conclusion, the same result would be obtained from the union of all
the agents’ belief bases. In other words, sound dialogues necessarily converge to the merged
outcome.

Definition 16 A strategy ST is sound iff whenever dialogue d on subject s conducted under this
strategy terminates at t with conclusion k, then:

if v(s,MCSt
d
) = k then v(s,M⋃

i∈1..n Pi
) = k.

If a solution is obtainable from the union of agents beliefs, an inquiry under a complete strategy
will reach it.

Definition 17 A strategy ST is complete iff whenever dialogue d on subject s conducted under
this strategy terminates at t with conclusion k, then:

if v(s,M⋃
i∈1..n Pi

) = k then v(s,MCSt
d
) = k.

Properties of soundness and completeness are the most important ones in research on dialogue
as they relate the outcomes of dialogues to the merged belief bases of participants. However,
choosing a correct merging operator is not trivial. Merging operators investigated in the dialogue
and argumentation literature cover the range from simple union of agents’ beliefs [7] to complex
consensual merges with expansion [24]. Selecting a merging operator not suitable for the problem
at hand is a common hindrance in proving soundness and completeness of protocols (e.g., [8]).
We postulate that the definition of merging operator should reflect the nature of dialogue. In case
of TalkLOG inquiry, it is a simple union of all the agents’ belief bases. In this respect, the main
results from P4 are the following.

Theorem 1 Narrow-minded strategy is neither sound nor complete. Moreover, it is type 1
nondeterministic.11

11Type 1 nondeterminism in logic programs means freedom to choose the rule to apply [75].

23

Theorem 2 Forgetful and narrow-minded strategies are equal.

Theorem 3 Pragmatic and open-minded strategies are equal.

Theorem 4 Open-minded strategy is sound and complete.

Although in P4 we assumed that agents’ programs do not change during dialogue, this
requirement is superfluous. Indeed, the move relevance function admits to CS all communicated
facts and rules whose heads match the entries in QS syntactically, without considering their
current truth values in CS. The manner of adding/removing entries to QS depends on the
dialogue strategy. Adding new facts and rules from CS to an agent’s program cannot reduce the
dependence set of the dialogue topic s from the program. In open-minded strategies QS grows
monotonically. It’s easy to see that in such strategies, at a given timepoint t, the union of the
dependence sets of the entries in QSt from an agent’s program P t equals the dependence set of
the dialogue topic from P t ∪ CSt:

⋃

`∈QSt

DP t,` ≡ DP t∪CSt, s

This follows from the definition of dependence set and QS under open-minded strategy:
• ∀t s ∈ QSt
• if Mi.l :- b ∈ CSt, s.t. b = b11, . . . , b1i1 | . . . | bm1, . . . , bmim , then
{bjk |j ∈ 1..m, k ∈ 1..ij} ⊂ QSt

3.3.6 Complexity of Inquiry

The ultimate elements of the proposed solution are complexity considerations. This happens to
be yet another distinguishing feature of our research. In related works, precise complexity results
are usually:
• high, e.g., ”since the protocols are based in logic we know that the complexity will be

high” [64] or [17], or
• not given, e.g., when ”system is complicated and involves many interacting compo-

nents” [6].

However, some approaches try to tackle these problems, e.g., [40, 64]. Although, due to [17],
flexibility in dialogues comes at a price of high computational complexity, our research proves
differently.

When analyzing complexity of dialogues, several aspects come to play, such as:
1. the complexity of selecting optimal locution at each step of the dialogue,
2. how many dialogue steps are needed for dialogue to terminate, and
3. what is the complexity of obtaining conclusion of a terminated dialogue.

In general, the complexity measures of inquiry are divided into two sorts:
• communication complexity, concerning only the amount of communication among agents

(who have unlimited computational power) [50],
• computational complexity (data complexity), concerning the amount of computation (when

communication is free) required to:
– achieve dialogue termination,

24

– obtain a conclusion of a terminated dialogue.

Computational complexity of both problems is expressed in terms of data complexity [61,88],
i.e., complexity of evaluating a fixed query (here: inquiry goal) on an arbitrary database (here:
Commitment Store of the dialogue). Thus data complexity is given as a function of the size
of Commitment Store, which is an evolving 4QL program. Recall that the semantics of 4QL is
defined by well-supported models [56,79], i.e., models consisting of (positive or negative) ground
literals, where each literal is a conclusion of a derivation starting from facts. For any set of rules,
such a model is uniquely determined and computable in deterministic polynomial time O(Nk)
where N is the size of domain and k = max(s, t) where s is the maximal arity of relations and
t is the maximum number of free variables. As in our research we deal with ground programs,
t = 0. When s is a bound constant, which is the case in practical applications of 4QL (qualitative
not quantitative reasoning), we achieve tractability.

Below, the complexity results from P4 are recalled and summarized in Table 9..

Theorem 5 If the size of the domain of the proof of s is N , then the size |QS| of the Query Store
at the end of the open-minded inquiry is N/2 ≤ |QS| ≤ N .

Theorem 6 If the size of the proof of s is M , then the size |CS| of the Commitment Store at the
end of the open-minded inquiry is |CS| = M .

Theorem 7 Communication complexity of inquiry is O(nM).

Theorem 8 Computational complexity of a narrow-minded inquiry is M ×O(Nk).

Theorem 9 Computational complexity of termination of open-minded inquiry is O(1).

Theorem 10 Obtaining the conclusion of a terminated open-minded inquiry is O(Nk).

Table 9: Results for open- and narrow-minded inquiries

Characteristics Open-minded Narrow-minded
Open vs. Closed System open (at least one assert per join)
Addressing one-to-all
Coordination asynchronous
Properties sound and not sound and

complete not complete
Communication Complexity O(nM) O(nM)
Computational Complexity (Termination) O(1) O(MNk)
Computational Complexity (Obtaining Conclusion) O(Nk) O(1)
Total Store Size M +N

3.3.7 Conclusions

To meet the requirements of information-rich environments as well as demands of realistic
modeling of agency, we presented a formalization of multi-party, paraconsistent and paracomplete
inquiry in nonmonotonic, dynamic TalkLOG setting, concluding the following.

1. The spectrum of situations in which TalkLOG inquiry is applicable was widened comparing
to the existing approaches.

2. Two additional logical values ensure a better discernment between inquiry types.

25

3. TalkLOG inquiry architecture builds upon the existing standard solutions with the following
novel elements:

• Commitment Store is associated with the dialogue and not with the particular agents,

• both facts and rules are admitted to Commitment Store, which is a monotonically
growing 4QL program,

• definition of Query Store relies on two generic methods for adding and removing
entries to the store, together interpreted as an inquiry strategy,

• inquiry strategies can be instantiated to fit the circumstances in question.

4. Specifically, TalkLOG architecture allowed to obtain a protocol with public semantics,
suitable for an arbitrary number of participants holding possibly different initial opinions
regarding the statement to prove.

5. The concept of TalkLOG inquiry strategy permits to calibrate the depth of inquiry.

6. Our methodology allows one to provide:

• new inquiry strategies and evaluate their relationships (e.g., (in)equality),

• analysis of termination, soundness and completeness of inquiry under given strategies,

• communication and complexity results of inquiry,

• limitations on the dialogue store sizes.

7. In TalkLOG inquiry agents’ beliefs may change in the course of dialogue according to the
state of Commitment Store.

3.4 Formalizing Persuasion in TalkLOG

Research goal G3, aiming at a formal model of persuasion as a dedicated dialogue type for conflict
resolution, was realized in the paper P5 [36]12, covering a paraconsitent and paracomplete model
of persuasion dialogue.

Classically, the initial situation of Walton and Krabbe’s persuasion is a conflict of opinions.
The goal of the dialogue is ”a resolution of the initial conflict by verbal means” [94]. Typical
approaches to modeling persuasion are based on 2-valued logic and polarized the set of partici-
pants into two parties: the proponents (PRO) of a proposition ϕ (a group of agents believing ϕ
is t) and the opponents (OPP, sometimes also called CON, a group of agents believing ϕ is f).
Both parties fight to persuade the others to change their opinions. As a novelty, within TalkLOG,
we investigated multi-party persuasion in the new 4-valued modeling perspective. Indeed, in
TalkLOG a dialogue party is a group of dialogue participants holding the common goal: to bring
about the preferred state of the world.

Walton and Krabbe characterize three types of opinions: positive, negative and one of doubt.
The classical understanding of conflict of opinions is based on the dichotomy of truth and falsity.
Such an approach is not informative enough in the 4-valued logical settings. Thus in TalkLOG:

• the ’doubtful’ case is expanded, distinguishing situations when the doubt results from
ignorance or from inconsistency,

• the opinions are represented as 4-valued literals and the conflict of opinions is defined as
inequality of these literals’s truth values (see Definition 19).

12This Section is based on an extended version of P5 submitted to Fundamenta Informaticae.

26

Therefore the whole spectrum of persuasion scenarios has been widened.
Although classical persuasion deals with conflicts of opinions, in multiagent settings the

conflict may concern also other attitudes, like intentions [35]. This inspired us to deepen the study
of persuasion towards the reasons underlying the conflict of opinions. In reality it often happens
that the same opinion may be motivated by different, in extreme cases even antithetic, reasons. In
autonomous systems such a situation may lead to unintended/unintuitive results, especially in
cooperation, when reconciling motivational attitudes is vital. Heretofore no method allowing to
isolate and separately analyze the cases of conflicts of opinions and their motivations existed. To
reveal such cases we introduce Deep Persuasion, which:
• can commence even when opinions agree,
• aims at resolving conflicts of motivations of opinions (see Definition 19).

Like for inquiry, soundness and completeness of persuasion was evaluated by comparing the
outcomes of an n-agent dialogue with the outcomes obtained by merging knowledge of these n
agents. The key point was a proper construction of the merge operator. Moreover, termination
and some complexity results were given.

3.4.1 Modeling Opinion and Motivation

In classical logical formalizations of multiagent systems, beliefs (or opinions) are modeled via an
epistemic modal operator BEL. Thus, BEL(i, ϕ) stands for agent i believes that ϕ holds. In
TalkLOG, agent A is associated with a 4QL program PA and beliefs are represented by 4-valued
literals from the well-supported model. In order to account for two additional truth values, an
opinion will be represented as a pair o = 〈ϕ, v〉, where ϕ ∈ G(Const) is a literal and v ∈ T is
a truth value with the intended meaning that o is an opinion v on ϕ (or: o is a belief that ϕ is v).

As regards motivation of an opinion v on ϕ, we identify them with an explanation or
justification for ϕ being v. Such justification may express how the value v for ϕ has been reached.
In logical systems it simply means a proof for ϕ. In TalkLOG, the motivation of the opinion,
called the proper proof of the literal representing the opinion (Definition 18), hinges upon:
• the dependence set of a literal ` from a program P (introduced in P4, see Definition 14),

which consists of literals reachable via backward chaining on P from `,
• the proof of a literal ` from a program P , containing rules (facts) whose conclusions are

elements of the dependence set. Note that the proof may contain rules whose premises
evaluate to f or u, thus do not influence the value of `. The definition of proper proof in P5
disregards such rules.

Definition 18 (Proof, Proper Proof) Let
• ` be a literal,
• P be a 4QL program, δ ∈ Γ ∪Π be a fact or a rule,
• Sl,P be the proof of l from P ,
• MSl,P

be the well-supported model of the proof.

The proper proof (p-proof) of l from P denoted Φl,P , is a subset of Sl,P such that δ ∈ Φl,P iff
body(δ)(MSl,P

) ∈ {t, i}. C

We define a conflict of opinions as inequality of truth values of the literals representing the
opinions. By a conflict of motivation of opinion, we understand unequal p-proofs for the literal
representing the opinion. Obviously, equality of p-proofs entails equality of opinions, but not the
other way around.

27

Definition 19 (Initial Conflict on Topic) Let
• ϕ ∈ G(Const) be a ground literal, representing the topic of the dialogue,
• 〈ϕ, v〉: v ∈ T be an opinion v on ϕ,
• P1 and P2 be two 4QL programs of agents A1 and A2,
• MP1 andMP2 be the well-supported models of P1 and P2 respectively,
• Φϕ,P1 and Φϕ,P2 be the p-proofs of ϕ from P1 and P2 respectively.

Then
• an initial conflict on topic ϕ between A1 and A2 occurs when:

– ϕ(MP1) 6= ϕ(MP2), or [conflict of opinion]

– Φϕ,P1 6= Φϕ,P2 [conflict of motivation]

• A1 and A2 share a common opinion on ϕ if ϕ(MP1) = ϕ(MP1),

• A1 and A2 share a common motivation on ϕ if Φϕ,P1 = Φϕ,P2 . C

When dealing with an arbitrary number of dialogue participants, defining success condition
of a multi-party persuasion is a subject of different potential formulations. In TalkLOG:
• Classical Persuasion is successful if a common opinion is obtained, i.e., all agents share

the same opinion v on the topic. This robust success criterion requires a consensus, while
there may me other possible solutions built upon single-winner voting methods, e.g., Borda
count or Approval voting.
• Deep Persuasion is successful if a common motivation is obtained. This means, that in

addition to the common opinion, all participants’ p-proofs for that opinion must equal.

Similarly to inquiry, the conclusion of persuasion is a pair: the final value of the topic and the
motivation (p-proof) for that value, obtained in the dialogue.

Communication about Opinion and Motivation In TalkLOG persuasion we discern between
defeasible beliefs (opinions) and persistent pieces of evidence (building blocks of motivation).
While beliefs are literals from the well-supported model, pieces of evidence are the facts and
rules from agent’s 4QL program. We introduce a membership function µ (see Definition 20)
expressing the degree of membership of a piece of evidence to a program.

Definition 20 Let P be a 4QL program, δ ∈ Γ ∪Π be a fact or a rule and Lab = {t, f, b, n} be
the set of labels. Then µP (δ) : Γ ∪Π→ Lab encodes the membership of δ to P :

µP (δ)
def
=

t when δ ∈ P ∧ ¬δ 6∈ P ;
f when δ 6∈ P ∧ ¬δ ∈ P ;
b when δ,¬δ ∈ P ;
n otherwise.

To sum up, in TalkLOG persuasion, the content of a locution is of two sorts:
• an opinion (belief) o = 〈ϕ, v〉,
• a piece of evidence: a fact/rule δ together with µ(δ).

Conflicts of evidence are distinguished when membership functions disagree. In TalkLOG,
we provided considerably different conflict resolution mechanisms.
• Conflicts of opinions are resolved via argumentation (and embedded 4QL mechanisms),

utilizing approaches known from deductive argumentation [5, 7, 64, 67, 68]. Importantly,
all three types of attack known from Argumentation Theory, i.e., on the premises, on the
conclusions and on the inference step, are realized in TalkLOG persuasion.

28

• Conflicts of evidence are adjudicated upon via dedicated conflict resolution methods, like
social choice theory methods [10] selected here (particularly, voting).

As persuasion is a much more complex dialogue than inquiry, the list of permissible locutions
was extended (Table 10) to allow for:

• questioning statements of other agents,

• expressing change of opinion via retraction,

• expressing change in motivation via retraction or adoption,

Table 10: Intended meaning of permissible locutions in TalkLOG persuasion.

Speech Act Format Intended Meaning
assert assertdx〈δ, µ(δ)〉 asserting attitude towards evidence δ

concede concededx〈δ, µ(δ)〉 conceding/agreeing with evidence δ
assertBel assertBeldx〈ϕ, v〉 asserting opinion 〈ϕ, v〉
assertBel assertBeldx〈B, v〉 asserting opinion 〈B, v〉

why whydx〈ϕ, v′〉 questioning opinion 〈ϕ, v′〉, v′ 6= u
retract retractdx〈δ〉 retracting evidence δ
adopt adoptdx〈δ〉 adopting evidence δ

retractBel retractBeldx〈ϕ, v〉 retracting opinion 〈ϕ, v〉

3.4.2 Principles of TalkLOG Persuasion

TalkLOG persuasion is governed by the following principles.

[Cooperativeness] The setting consists of a finite set of n cooperative agents who do not withhold informa-
tion13. Agents’ belief bases are encoded as finite, ground 4QL programs P1, . . . , Pn, that
share a common ontology. Agents communicate one-to-all without coordination; their final
beliefs are expressed by the well-supported modelsMP1 , . . . ,MPn of the programs.

[Activeness] In between joining and leaving a dialogue an agent must make at least one relevant move.

[Compliance] Agents’ programs change during dialogue according to the group decisions.

[Sincerity] Agents do not lie about their beliefs nor contents of their programs.

[Pragmatism] Particular agents cannot repeat assert and concede locutions, however, they can repeat
assertBel locutions (if separated by retractBel) as in the light of new evidence agents’
beliefs may change.

To allow maximum flexibility only the above principles restrict agents communicating in
TalkLOG. Persuasion starts when agent initiator asserts its initial opinion vi about the dialogue
topic s. This assertion becomes the subject of attacks and defenses for all participants who can:

• question the belief (why),

• attack the belief by asserting a different opinion (assertBel),

• support the belief by providing evidence and beliefs (assert, assertBel),

• attack the belief by providing evidence and beliefs (assert, assertBel).

13This implicitly constraints the number of queries to dialogue stores per one locution.

29

The details of particular moves are presented in P5 in Section 4.
Notice that when outlining differences between Classical and Deep persuasion, we followed

a prescriptive methodology, where we looked at initial conflicts and main dialogue goals from
an omniscient outside observer perspective. Obviously this is not a perspective of agents in
TalkLOG. Indeed, unlike P4 where the discernment between Inquiry-WHAT and Inquiry-THAT
can be done at the dialogue opening on the basis of initial topic value, here, distinguishing Deep
from Classical persuasion cannot be made at the beginning. The formal model of both persuasion
types differs only on the definition of the dialogue conclusion (cp. Definition 23 and 22).

3.4.3 Architecture of Multi-Party Persuasion

TalkLOG persuasion architecture follows the social approach [17] and was built upon TalkLOG
inquiry, sharing the following features:

• single Query Store and Commitment Store associated with dialogue,

• Commitment Store as an evolving (monotonically) 4QL program,

• move relevance function to ensure focus and coherence of dialogues.

TalkLOG persuasion features four dialogue stores: Query Store (QS), Dispute Store (DS),
Resolved Dispute Store (RDS) and Commitment Store (CS). QS and DS are defined through
the auxiliary Store Update and One-step Update functions for specifying the effects of moves and
particular locutions, respectively, on the stores’ content. RDS and CS are defined in a straight-
forward way. Stores’ definitions are included in P5; in this Section we provide explanations and
intuitions. The format and meaning of entries in particular stores are recalled in Table 11.

Table 11: Formats and intended meaning of entries in TalkLOG persuasion stores.

Dialogue Store Format of Entries Intended Meaning
Query Store 〈bel, ϕ, v, A〉 Agent A asserted belief 〈ϕ, v〉.

〈why, ϕ, v,⊥〉 Some agent questioned belief 〈ϕ, v〉.
Dispute Store 〈δ, nt, nf , nb, nn〉 There are nt votes for accepting δ, nf votes

for accepting ¬δ, nb votes for accepting
both δ and ¬δ and nn votes for rejecting
both δ and ¬δ.

Resolved Dispute Store 〈(¬)δ, i〉 (¬)δ was accepted
〈(¬)δ, o〉 (¬)δ was rejected

Commitment Store δ An accepted fact or a rule

Query Store The original functionality of Query Store in TalkLOG inquiry is here realized by
two separate stores: Query Store and Dispute Store, each concerned with the different sort of
locution content: belief or evidence, respectively. Agents may inspect QS to find:

• questions that need answering (why-tuples, see Table 11), or

• beliefs of others that can be questioned (bel-tuples).

Why-tuples do not persist the sender of the question about 〈ϕ, v〉. Due to the public character of
the Query Store, any response to a question is visible to all participants, therefore who asked the
question is irrelevant.

30

Dispute Store DS contains pieces of evidence δ that are put forward by agents to support
a belief or respond to a question in QS. Agents query DS to find δ submitted by another agent,
which they can support or dispute.

DS contains tuples of form 〈δ, nt, nf , nb, nn〉 : (Γ ∪Π)× N4 where nk is so-called support
counter for label k of δ indicating how many votes for/against δ have been casted. In P5 we
introduced notation shortcuts for manipulating DS, which are elaborated on here. Importantly,
there is only one entry for δ or ¬δ in DS. The exact form of the tuple depends on which issue
(δ or ¬δ) was first asserted in the dialogue.

1. We use the following notation concerning labels k ∈ Lab:

¬t = f ;¬f = t; ¬b = b;¬n = n

Simply, nt for δ is treated as nf for ¬δ. Moreover nb and nn for δ are the same as the
respective values for ¬δ.

2. We use DS[δ, k] to access the value of the support counter for k of δ:

DS[δ, k]
def
= nk, DS[¬δ, k]

def
= DS[δ,¬k].

3. We use DS[δ] to test if an entry for δ exists in DS:

DS[δ]
def
=

{
t iff 〈δ, nt, nf , nb, nn〉 ∈ DS;
f iff 〈δ, nt, nf , nb, nn〉 6∈ DS;

4. We use DS[δ, k]++ to increment the support counter for k of δ:

DS[δ, k]++ def
= {〈x, nt, nf , nb, nn〉 ∈ DS|x 6= δ} ∪
{〈δ, xt, xf , xb, xn〉 ∈ DS : xk = DS[δ, k] + 1}

DS Update Function defines the way DS is updated after each move:

• assert〈δ, µ(δ)〉 results in creating a new tuple for δ (unless already exist) and increasing
the support counter for µ(δ),

• concede〈δ, µ(δ)〉 increases the support counter for µ(δ) if the relevant tuple exist in DS.

Figure 3 illustrates serving an assertion of evidence by persuasion dialogue stores.

m is
relevant?

m =

DS[] IS
TRUE?

YES

YES

DS[] ++

NO add new tuple
< , 0,0,0,0>

 to DS

YES
voting

DS[, t] +
DS[, f] +
DS[, u] +

DS[, i] = n ?

<s1,s2>

add to RDS:
< , s1> and

 < , s2>

s1 = ‘i’?

YES

s2 = ‘i’?

YES
add to CS

Resolved Dispute Store Commitment StoreDispute StoreQuery
Store

<why, head(), X, Y> in QS
or DS[] is TRUE

add to CS

Figure 3: Serving an assertion of evidence.

31

Voting When a particular entry in DS received enough votes, the voting function (see Defini-
tion 21) is executed, determining the status (i or o) of the piece of evidence in question:
• if accepted (in): status i,
• if rejected (out): status o.

Notation-wise, if 〈a, b〉 is the outcome of voting for δ, then a is the status of δ and b of ¬δ. For
example, if 〈o, o〉 is the outcome of voting for δ then neither δ nor ¬δ are accepted. The voting
mechanism is customizable, with the following restrictions:
• all votes have to be casted to obtain the voting outcome,
• antithetic rules cannot be accepted.

The first condition is required to obtain important properties of persuasion dialogues. The second
condition reflects our modeling decision to avoid meta-level conflicts.

Definition 21 (Voting Function) Let Status = {i, o}, δ ∈ Γ ∪Π, and n ∈ N be the number of
dialogue participants. Then, a voting function VF is any function V F : (Γ ∪Π)× N5 → Status2,
such that
• V F (δ, nt, nf , nb, nn, n) = ∅ iff nt + nf + nb + nn 6= n, and
• if δ ∈ Π (a rule) then V F (δ, nt, nf , nb, nn, n) 6= 〈i, i〉. C

Resolved Dispute Store The elements of RDS are tuples of the form 〈(¬)δ, s〉 : (Γ ∪ Π) ×
Status, encoding the outcomes of voting over (¬)δ. This way, we can discern between a situation
where (¬)δ was considered but rejected (entry 〈(¬)δ, o〉) and a situation where (¬)δ was not yet
even considered (no entry for (¬)δ in RDS). RDS is publicly available for participants to query
it to learn the status of pieces of evidence. Agents are required to comply with the decisions
encoded in RDS:
• adopt a piece of evidence with status i (and inform others using adopt), or
• abandon a piece of evidence with status o (and inform others using retract).

Monitoring these acknowledgments helps to verify agents’ compliance with the dialogue protocol.

Commitment Store The elements of CS are facts or rules accepted by voting, i.e., the entries
from RDS with status ”in” (i). Like in inquiry, once accepted, entries are never removed
from CS. Unlike inquiry, final CS contains statements to which all dialogue participants are
committed to. Importantly, the current well-supported model of CS contains the beliefs that are
currently justifiable on the grounds of accepted evidence. Obviously, the well-supported model
changes non-monotonically, according to the course of discussion.

In TalkLOG, conclusion of persuasion on topic s with initial value vi is the final value vf of s,
together with the motivation (p-proof) Φs,CSt

d
for that value, obtained in the dialogue. The final

value of Deep Persuasion topic is obtained from the well-supported model of CS after dialogue
termination (see Definition 22).

Definition 22 (Deep Persuasion Conclusion) Let CStd be the Commitment Store of Deep Per-
suasion d terminating at t, with the topic s of initial value vi. Then, the conclusion of d is
c = 〈vf , S〉 where
• vf = s(MCSt

d
), whereMCSt

d
is the well-supported model of CStd,

• S = Φs,CSt
d
, i.e., S is the p-proof of s from CStd.

32

However, for termination of Classical Persuasion, it suffices that all agents share the same
belief about the topic (see Definition 23). Thus, the final value of Classical Persuasion is obtained
from the Query Store and so it does not have to agree with the value following from the p-
proof (Φs,CSt

d
). The manner of obtaining dialogue conclusion is definitely different in Deep and

Classical Persuasion.

Definition 23 (Classical Persuasion Conclusion) Let QStd be the Query Store and CStd be the
Commitment Store of Classical Persuasion d terminating at t with n participants A1, . . . , An,
with the topic s of initial value vi. Then, the conclusion of d is c = 〈vf , S〉 where

• n = |〈bel, s, vf , X〉 ∈ QStd : X ∈ {A1, . . . An}|,
• S = Φs,CSt

d
, i.e., S is the p-proof of s from CStd.

Move Relevance Function The final element of TalkLOG persuasion architecture is move
relevance function [65]. It is provided to guide coherence and focus of dialogues. As move is
a sequence of locutions, relevance of each locution is verified on the basis of dialogue stores’
content at the given timepoint t, and the locution content. For ease of presentation, dialogue
stores are updated after each relevant locution, so that locution relevance can be defined without
reference to preceding locutions in the move. Relevant locutions are listed below.

1. Assertions assertBeldS〈ψ, v〉 of a belief if it concerns

(a) the topic of the dialogue,

(b) a belief asserted by another agent,

(c) body or head of a rule present in DS, or a fact present in DS.

2. Questions whydS〈ϕ, v〉 if the belief 〈ϕ, v〉: v ∈ {t, f, i} is in QS.

3. Assertions assertdS〈δ, vl〉 of a fact or rule if

(a) a question about a belief concerning head(δ) is in QS,

(b) it is present in DS (an assertion works as a concession then).

4. Concessions concededS〈δ, vl〉 of a fact or a rule present in DS.

5. Retractions retractBeldS〈ϕ, v〉 of a belief if it is in QS.

6. Adoptions adoptdS〈δ〉 of a fact or a rule if 〈δ, i〉 ∈ RDS.

7. Rejections rejectdS〈δ〉 of a fact or a rule if 〈δ, o〉 ∈ RDS.

3.4.4 Verified Properties

To analyze termination of dialogues, we distinguished two termination conditions

• Impasse: when no agent has a relevant move to make,

• Common Opinion: when all agents agree on the value of the topic,

and investigated their relationship with the two persuasion types.

Theorem 11 Persuasion terminating on Impasse is a Deep Persuasion.

Theorem 12 Persuasion terminating on Common Opinion is a Classical Persuasion.

Theorem 13 Persuasion dialogues terminate.

33

Next, we went on to analyze the outcomes of dialogues. Informally, soundness of persuasion
means that any conclusion obtained in the dialogue equals the conclusion obtained by a sin-
gle agent reasoning from a merged belief bases of dialogue participants. On the other hand,
completeness of persuasion means that any conclusion obtained by reasoning from merged
belief bases of participants is obtainable by persuasion carried out by these agents. The merging
operator

∑
(s) reflects the nature of dialogue and is a consensual merge (see [24]) exploiting

a voting mechanism (see Definition 21) for conflict resolution.

Definition 24 Persuasion dialogue d on subject s is sound iff whenever it terminates at t with
conclusion c = 〈vf , S〉, then if s(MCSt

d
) = vf then s(M(

∑n
i=1 Pi)(s)) = vf .

Definition 25 Persuasion dialogue d on subject s is complete iff whenever it terminates at t with
conclusion c = 〈vf , S〉, then if s(M(

∑n
i=1 Pi)(s)) = vf then s(MCSt

d
) = vf .

Merging is an iterative procedure, achieved by joining p-proofs of the merge parameter s
and resolving conflicts on the way. The result of merging is a 4QL program defined as follows:

(
n∑

i=1

Pi

)
(s)

def
=

ITMAX⋃

IT=0

 ⋃

δ∈⋃ΦIT

IN(δ)

 ,

where for IT ≥ 0, k ∈ Lab
• ⋃ΦIT def

=
⋃
i=1..n Φs,P IT

i
, meaning the union of all agents’ p-proofs for s from their

current program in iteration IT ;

• ITMAX
def
= IT : ∀i=1..n : P IT+1

i = P ITi , meaning the final iteration after which all
agents’ programs stop changing;
• P IT+1

i = P ITi ∪
⋃
δ∈⋃ΦIT IN(δ) \⋃δ∈⋃ΦIT OUT (δ), meaning agent’s i program in the

next iteration is its program from the previous iteration changed in a way that:
– those facts and rules from the union of all agents’ p-proofs of s from the previous

iterations which were accepted are added and
– those facts and rules from the union of all agents’ p-proofs of s from the previous

iterations which were rejected are removed;

• IN(δ) = {δ[a = i],¬δ[b = i] : 〈a, b〉 ∈ V F (δ, nδt , n
δ
f , n

δ
b , n

δ
n, n)}, is the set of facts or

rules (¬)δ to be added to agents’ programs;
• OUT (δ) = {δ[a = o],¬δ[b = o] : 〈a, b〉 ∈ V F (δ, nδt , n

δ
f , n

δ
b , n

δ
n, n)} is the set of facts or

rules (¬)δ to be removed from agents’ programs;
• nδk = |{i ∈ 1..n : µP IT

i
(δ) = k}|, meaning the value of support counter for label k for δ

in iteration IT .

We define the merge (4QL program) by imitating the creation of the Commitment Store: by
adding entries (elements of the union of all agents’ p-proofs for the persuasion topic s) as they
get accepted via voting. In each iteration, the conflicts in the union of all agents’ p-proofs are
resolved by voting14, whose outcomes (sets IN and OUT) are then used to update the programs.
The procedure stops naturally when agents’ programs stop changing. The proof of s from such
a merge is Φs,(

∑
i=1..n Pi)(s) while the value of the topic s is s(M(

∑n
i=1 Pi)(s)).

Theorem 14 Classical Persuasion is not sound and not complete.

14Note P not Φ in the subscript µP IT
i

(δ), since one may vote for δ even if absent from the p-proof.

34

Theorem 15 Iterated Deep Persuasion is sound and complete.

Theorem 16 Deep and Classical Persuasion possibly converges to the merged outcome.

A possible way to extend this research is an investigation of dialogue strategies of individual
agents in the spirit of [48].

3.4.5 Complexity

Like inquiry, the complexity measures of persuasion are divided into two sorts:
• communication complexity, concerning only the amount of communication among agents

(who have unlimited computational power) [50],
• computational complexity (data complexity), concerning the amount of computation (when

communication is free) required to:
– achieve dialogue termination,

– obtain a conclusion of a terminated dialogue.

Obtaining conclusion of terminated Deep Persuasion is expressed in terms of data complex-
ity [61, 88], i.e., complexity of evaluating a fixed query (here: persuasion goal) on an arbitrary
database (here: Commitment Store). It amounts to computing the well-supported model of CStd
just once, at the end of dialogue. Thus, this problem is in O(Nk) where N is the size of domain
and k is the maximal arity of relations.

Obtaining conclusion of terminated Classical Persuasion amounts to counting the occurrences
of agents’ beliefs concerning the dialogue topic in Query Store, which holds agents’ expressed
opinions, thus it is in O(nN) = |QStd| (as QStd may possibly contain all beliefs of all n agents at
termination time). When implemented with a dedicated data structure it can be in O(1)15.

3.4.6 Conclusions
To meet the requirements of information-rich environments as well as demands of realistic
modeling of agency, we presented a formalization of multi-party, paraconsistent and paracomplete
persuasion in nonmonotonic, dynamic TalkLOG setting, concluding the following.

1. Two additional logical values ensure a better discernment between initial opinions.
2. Paraconsistent framework admits a new interpretation of conflict of opinion, based on the

inequality of truth values of literals representing the opinion, rather than on inconsistency.
3. In our Classical Persuasion the novelty lies in more refined types of initial conflicts of

opinion and in permitting an arbitrary number of participants.
4. Reaching to motivations of opinions in our Deep Persuasion allows to study semantically

deeper conflicts. This new type of persuasion, when successful, leads to a common
motivation entailing a common opinion in the group.

5. TalkLOG framework permits to obtain a uniform treatment of both persuasion types, which
are differentiated by the termination criterion solely.

6. Conflict of opinion is typically a subject of argumentation, while as a novelty in TalkLOG:
• agents argue about beliefs with the use of pieces of evidence,
• when conflict of evidence appears, solutions from different scientific fields can be of

help (like different voting mechanisms from computational social choice theory).
15For example, when maintaining counters for each type of opinion (truth value) on the dialogue subject, it suffices

to test whether all counters but one are 0 and one equals to the number of dialogue participants.

35

7. TalkLOG persuasion architecture builds upon TalkLOG inquiry architecture and deals with
four dialogue stores, retaining the effects of agents’ dialogue moves and resolved conflicts.

8. TalkLOG architecture allowed to obtain a protocol with public semantics, suitable for an
arbitrary number of participants holding possibly different initial opinions or motivations.

9. Our methodology allows one to provide:
• a dedicated voting mechanism as a method for information fusion in persuasion,
• customization of the complex merge operator with the designed voting mechanism,

for analyzing important properties of dialogues,
• analysis of termination, soundness and completeness of persuasion,
• communication and complexity results of persuasion,
• limitations on the dialogue store sizes.

10. The dynamic model of TalkLOG’s persuasion encompasses agents’ beliefs change in the
course of dialogue according to the state of the Resolved Dispute Store.

4 Final Conclusions

This research was set out to explore the fundamental problems occurring in communication in
multiagent systems situated in information-rich settings with an emphasis on:
• realistic modeling,
• low computational complexity,
• obtaining desirable, provable properties of proposed solutions,
• dynamism of communication as an inherent element of dialogue.
Indeed, in practical applications agents do not freeze their beliefs when engaging in commu-

nication: they acquire information from and about interlocutors, which may be further exploited
in the course of dialogue. Verifying properties of dialogues is important for several reasons. First,
it allows to verify properties of larger agents systems that use the proposed dialogues at various
phases of team formation or group action. Next, it proves whether the theoretical solutions are
suitable for practical applications. Therefore, when creating models of complex dialogues, such
as inquiry and persuasion, it is important to obtain protocols with proven properties as opposed
to ad-hoc dialogues. Indeed, soundness and completeness relate the dialogue outcomes to the
conclusions reached by well-defined merging of interlocutors’ belief bases.

To our best knowledge this dissertation is the first such advanced research on agent com-
munication in the paraconsistent and paracomplete 4-valued setting. The obtained results allow
to conclude that exploration of this new direction was fruitful. Importantly, as the tractability
requirement guided our approach, flexible and expressive dialogues that are not computationally
complex were obtained. As modeling the environment and phenomena appearing in multiagent
systems in the new perspective proved to be legitimate, contemporary, reverting to the 2-valued
logics seems unreasonable.

36

References
[1] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In Proceedings of JELIA 2002,

volume 2424 of LNCS, pages 50–61. Springer, 2002.

[2] K. Atkinson, T. Bench-Capon, and P. McBurney. Computational representation of practical argument. Synthese,
152:157–206, 2005.

[3] J. L. Austin. How to Do Things with Words. Clarendon Press, Oxford, second edition, 1975. Edited by J. O.
Urmson and M. Sbisa.

[4] N. Belnap. A useful four-valued logic. In G. Epstein and J. Dunn, editors, Modern Uses of Many Valued Logic,
pages 8–37. Reidel, 1977.

[5] P. Besnard and A. Hunter. Elements of Argumentation. The MIT Press, 2008.

[6] E. Black. A generative framework for argumentation-based inquiry dialogues. PhD thesis, University College
London, 2007.

[7] E. Black and A. Hunter. An inquiry dialogue system. Autonomous Agents and Multi-Agent Systems, 19(2):173–
209, 2009.

[8] E. Bonzon and N. Maudet. On the outcomes of multiparty persuasion. In P. McBurney, S. Parsons, and
I. Rahwan, editors, Argumentation in Multi-Agent Systems, volume 7543 of LNCS, pages 86–101. Springer
Berlin Heidelberg, 2012.

[9] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Systems in AgentSpeak Using
Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.

[10] F. Brandt, V. Conitzer, and U. Endriss. Computational social choice. Multiagent systems, pages 213–283, 2012.

[11] M. Bratman. Intention, plans, and practical reason. Harvard University Press, Cambridge, MA, 1987.

[12] K. Budzyńska, B. Dunin-Kȩplicz, A. Strachocka, et al. The polish school of argumentation: A manifesto.
Argumentation, 28(3):267–282, 2014.

[13] K. Budzyńska, M. Kacprzak, and P. Rembelski. Perseus. software for analyzing persuasion process. Funda-
menta Informaticae, 93(1-3):65–79, 2009.

[14] P. G. C. Alchourrón and D. Makinson. On the logic of theory change: Partial meet functions for contraction
and revision. Journal of Symbolic Logic, 50:510–530, 1985.

[15] C. Castelfranchi. The social nature of information and the role of trust. International Journal of Cooperative
Information Systems, 11(3):381–403, 2002.

[16] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberate normative agents: Principles and architecture,
1999.

[17] A. K. Chopra, A. Artikis, J. Bentahar, M. Colombetti, F. Dignum, N. Fornara, A. J. I. Jones, M. P. Singh, and
P. Yolum. Research directions in agent communication. ACM TIST, 4(2):20, 2013.

[18] A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and competition in alias: a logic
framework for agents that negotiate. Annals of Mathematics and Artificial Intelligence, 37(1-2):65–91, 2003.

[19] P. R. Cohen and H. J. Levesque. Rational interaction as the basis for communication. Technical Report 433, AI
Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, Apr 1988.

[20] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence, 42(2-3):213–261,
1990.

[21] P. R. Cohen and H. J. Levesque. Performatives in a rationally based speech act theory. In In Meeting of the
Association for Computational Linguistics, pages 79–88, 1990.

[22] D. D. Corkill. Blackboard systems. AI Expert, 6:40–47, 1991.

[23] S. Costantini and A. Tocchio. Learning by knowledge exchange in logical agents. In Proc. of WOA 2005:
Dagli, 2005.

[24] S. Coste-Marquis, C. Devred, S. Konieczny, M. Lagasquie-Schiex, and P. Marquis. On the merging of dung’s
argumentation systems. Artif. Intell., 171(10-15):730–753, 2007.

[25] F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Creating collective intention through dialogue. Logic Journal
of the IGPL, 9:145–158, 2001.

[26] F. Dignum and G. Vreeswijk. Towards a testbed for multi-party dialogues. In F. Dignum, editor, Workshop on
Agent Communication Languages, volume 2922 of LNCS, pages 212–230. Springer, 2003.

37

[27] D. Dubois. On ignorance and contradiction considered as truth-values. Logic Journal of the IGPL, 16(2):195–
216, 2008.

[28] B. Dunin-Kȩplicz and A. Strachocka. Perceiving rules under incomplete and inconsistent information. In Com-
putational Logic in Multi-Agent Systems, volume 8143 of LNCS, pages 256–272. Springer Berlin Heidelberg,
2013.

[29] B. Dunin-Kȩplicz and A. Strachocka. Computationally-friendly argumentation schemes. In International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM,
volume 3, pages 167–174, Aug 2014.

[30] B. Dunin-Kȩplicz, A. Strachocka, A. Szałas, and R. Verbrugge. Perceiving speech acts under incomplete and
inconsistent information. In KES-AMSTA, volume 252 of Frontiers in Artificial Intelligence and Applications,
pages 255–264. IOS Press, 2013.

[31] B. Dunin-Kȩplicz, A. Strachocka, and R. Verbrugge. Deliberation dialogues during multi-agent planning. In
Foundations of Intelligent Systems - 19th International Symposium, ISMIS 2011, Warsaw, Poland, June 28-30,
2011. Proceedings, volume 6804 of LNCS, pages 170–181. Springer, 2011.

[32] B. Dunin-Kȩplicz and A. Szałas. Epistemic profiles and belief structures. In 6th KES AMSTA International
Conference on Agent and Multi-Agent Systems. Technologies and Applications, volume 7327 of LNCS, pages
360–369. Springer-Verlag, 2012.

[33] B. Dunin-Kȩplicz and A. Szałas. Taming complex beliefs. Transactions on Computational Collective
Intelligence XI, LNCS 8065:1–21, 2013.

[34] B. Dunin-Kȩplicz, A. Szałas, and R. Verbrugge. Tractable reasoning about group beliefs. In 2nd international
Workshop on Engineering Multi-Agent Systems (EMAS 2014), LNAI. Springer Berlin Heidelberg, 2014.

[35] B. Dunin-Kȩplicz and R. Verbrugge. Teamwork in Multi-Agent Systems: A Formal Approach. Wiley, Chichester,
2010.

[36] B. Dunin-Kȩplicz and A. Strachocka. Paraconsistent multi-party persuasion in TalkLOG. In PRIMA 2015:
Principles and Practice of Multi-Agent Systems - 18th International Conference, Bertinoro, Italy, October
26-30, 2015, Proceedings, volume 9387 of LNCS, pages 265–283. Springer, 2015.

[37] B. Dunin-Kȩplicz and A. Strachocka. Tractable inquiry in information-rich environments. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 53–60. AAAI Press, 2015.

[38] B. Dunin-Kȩplicz and A. Strachocka. Paraconsistent argumentation schemes. In Web Intelligence, volume 14,
pages 43–65. IOS Press, 2016.

[39] B. Dunin-Kȩplicz, A. Strachocka, A. Szałas, and R. Verbrugge. Paraconsistent semantics of speech acts.
Neurocomputing, 151:943–952, 2015.

[40] P. E. Dunne and P. McBurney. Optimal utterances in dialogue protocols. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’03, pages 608–615,
New York, NY, USA, 2003. ACM.

[41] M. Dziubiński, R. Verbrugge, and B. Dunin-Kȩplicz. Complexity issues in multiagent logics. Fundamenta
Informaticae, 75(1-4):239–262, 2007.

[42] R. Englemore and A. Morgan. Blackboard Systems; Edited by Robert Engelmore, Tony Morgan (the Insight
Series in Artificial Intell. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1988.

[43] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. The MIT Press, 1995.

[44] FIPA, 2002. http://www.fipa.org/.

[45] M. Fisher. Representing and executing agent-based systems. In Proceedings of the ECAI- 94 Workshop on
Agent Theories, Architectures, and Languages, pages 307–324, 1994.

[46] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design of Intelligent Agents - The
Answer-Set Programming Approach. Cambridge University Press, 2014.

[47] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-intention model of
agency. In Proceedings of the 5th International Workshop on Intelligent Agents V, Agent Theories, Architectures,
and Languages, ATAL ’98, pages 1–10, London, UK, UK, 1999. Springer-Verlag.

[48] M. Kacprzak, M. Dziubiński, and K. Budzyńska. Strategies in dialogues: A game-theoretic approach. In
Computational Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands,
UK, September 9-12, 2014, volume 266 of Frontiers in Artificial Intelligence and Applications, pages 333–344.
IOS Press, 2014.

38

[49] D. Kontarinis, E. Bonzon, N. Maudet, and P. Moraitis. Regulating multiparty persuasion with bipolar arguments:
Discussion and examples. In Modles Formels de l’interaction (MFI’11), 2011.

[50] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, New York, NY, USA,
1997.

[51] Y. Labrou and T. Finin. Semantics and conversations for an agent communication language. In M. N. Huhns
and M. P. Singh, editors, Readings in Agents, pages 235–242. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998.

[52] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In AAAI, pages 94–99. AAAI Press / The
MIT Press, 1990.

[53] W. Lorkiewicz, R. Kowalczyk, R. Katarzyniak, and Q. Bao Vo. On topic selection strategies in multi-agent
naming game. In 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pages 499–506. IFAAMAS, 2011.

[54] F. Macagno and D. Walton. Reasoning from paradigms and negative evidence. Pragmatics & Cognition,
19(1):92–116, 2011-01-01T00:00:00.

[55] J. Małuszyński and A. Szałas. Logical foundations and complexity of 4QL, a query language with unrestricted
negation. Journal of Applied Non-Classical Logics, 21(2):211–232, 2011.

[56] J. Małuszyński and A. Szałas. Partiality and inconsistency in agents’ belief bases. In KES-AMSTA, volume 252
of Frontiers in Artificial Intelligence and Applications, pages 3–17. IOS Press, 2013.

[57] P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of deliberation dialogue. International Journal
of Intelligent Systems, 22(1):95–132, 2007.

[58] P. Mcburney and S. Parsons. Tenacious tortoises: A formalism for argument over rules of inference. In
Computational Dialectics (ECAI 2000 Workshop, 2000.

[59] P. McBurney and S. Parsons. Chance discovery using dialectical argumentation. In New Frontiers in Artificial
Intelligence, volume 2253 of LNCS, pages 414–424. Springer, 2001.

[60] P. McBurney and S. Parsons. A denotational semantics for deliberation dialogues. In AAMAS ’04: Proceedings
of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pages 86–93,
Washington, DC, USA, 2004. IEEE Computer Society.

[61] C. H. Papadimitriou and Y. Mihalis. On the complexity of database queries. In Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. ACM, 1997.

[62] S. Parsons, K. Atkinson, K. Z. Haigh, K. N. Levitt, P. McBurney, J. Rowe, M. P. Singh, and E. Sklar.
Argument schemes for reasoning about trust. In COMMA, volume 245 of Frontiers in Artificial Intelligence
and Applications, pages 430–441. IOS Press, 2012.

[63] S. Parsons and P. McBurney. Argumentation-based dialogues for agent coordination. Group Decision and
Negotiation, 12:415–439, 2003.

[64] S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of some formal inter-agent dialogues.
J. Log. Comput., 13(3):347–376, 2003.

[65] H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation,
15:1009–1040, 2005.

[66] H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review, 21(2):163–188,
2006.

[67] H. Prakken. Models of persuasion dialogue. In Argumentation in Artificial Intelligence, pages 281–300.
Springer US, 2009.

[68] H. Prakken. An abstract framework for argumentation with structured arguments. Argument and Computation,
1(2):93–124, 2010.

[69] H. Prakken. On the nature of argument schemes. In Dialectics, Dialogue and Argumentation. An Examination
of Douglas Walton’s Theories of Reasoning. College Publications, 2010.

[70] G. Priest. Paraconsistent belief revision. Theoria, 67(3):214–228, 2001.

[71] A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable language. In Proceedings of the 7th
European Workshop on Modelling Autonomous Agents in a Multi-agent World : Agents Breaking Away: Agents
Breaking Away, MAAMAW ’96, pages 42–55, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

[72] A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-architecture, 1991.

39

[73] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A preliminary report, 1992.

[74] C. Reed and D. Walton. Towards a formal and implemented model of argumentation schemes in agent
communication. Autonomous Agents and Multi-Agent Systems, 11(2):173–188, 2005.

[75] U. Schöning. Logic for Computer Scientists. Modern Birkhäuser Classics. Birkhäuser Boston, 2008.

[76] J. Searle and D. Vanderveken. Foundations of Illocutionary Logic. Cambridge University Press, Cambridge,
1985.

[77] M. P. Singh. Agent communication languages: Rethinking the principles. Computer, 31(12):40–47, Dec. 1998.

[78] M. P. Singh. A social semantics for agent communication languages. In Proceedings of the IJCAI Workshop on
Agent Communication Languages. Springer-Verlag, 2000.

[79] A. Szałas. How an agent might think. Logic J. IGPL, 21(3):515–535, 2013.

[80] T. Takahashi and H. Sawamura. A logic of multiple-valued argumentation. In AAMAS, pages 800–807. IEEE
Computer Society, 2004.

[81] K. Tanaka. The AGM theory and inconsistent belief change. Logique Et Analyse, 48(189-192):113–150, 2005.

[82] D. Traum. Issues in multiparty dialogues. Advances in Agent Communication, 2004.

[83] D. Traum, J. Gratch, A. Hartholt, S. C. Marsella, and J. Lee. Multi-party, multi-issue, multi-strategy negotiation
for multi-modal virtual agents. In Proceedings of the 8th International Conference on Intelligent Virtual Agents,
pages 117–130, Tokyo, Japan, Sept. 2008.

[84] D. Traum and J. Rickel. Embodied agents for multi-party dialogue in immersive virtual worlds. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), Bologna, Italy, July 2002.

[85] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer Publishing Company,
Incorporated, 1st edition, 2007.

[86] B. van Linder, W. van der Hoek, and J.-C. Meyer. Formalizing abilities and opportunities of agents. Fundamenta
Informaticae, 34(1-2):53–101, 1998.

[87] B. van Linder, W. van der Hoek, and J.-J. Meyer. Actions that make you change your mind. In KI-95: Advances
in Artificial Intelligence, volume 981 of LNCS, pages 185–196. Springer Berlin Heidelberg, 1995.

[88] M. Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82, pages 137–146, New York, NY, USA, 1982.
ACM.

[89] A. Vitória, J. Małuszyński, and A. Szałas. Modeling and reasoning with paraconsistent rough sets. Fundamenta
Informaticae, 97(4):405–438, 2009.

[90] G. Vreeswijk and J. Hulstijn. A free-format dialogue protocol for multi-party inquiry. In In Proc. of the Eighth
Int. Workshop on the Semantics and Pragmatics of Dialogue (Catalog ’04), pages 273–279, 2004.

[91] D. Walton. Ethotic arguments and fallacies: The credibility function in multi-agent dialogue systems. Pragmat-
ics and Cognition, 7(1):177–203, 1999.

[92] D. Walton. Types of dialogue and burdens of proof. In Proceedings of the 2010 Conference on Computa-
tional Models of Argument: Proceedings of COMMA 2010, pages 13–24, Amsterdam, The Netherlands, The
Netherlands, 2010. IOS Press.

[93] D. Walton. Reasoning about knowledge using defeasible logic. Argument & Computation, 2(2-3):131–155,
2011.

[94] D. Walton and E. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. State
University of New York Press, Albany (NY), 1995.

[95] D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge University Press, 2008.

[96] M. Wardeh, T. J. M. Bench-Capon, and F. Coenen. Multi-party argument from experience. In Argumentation in
Multi-Agent Systems, 6th International Workshop, ArgMAS 2009, Budapest, Hungary, May 12, 2009. Revised
Selected and Invited Papers, pages 216–235, 2009.

[97] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing, 2nd edition, 2009.

[98] M. Wooldridge and N. Jennings. The cooperative problem-solving process. Journal of Logic and Computation,
9(4):563–592, 1999.

[99] M. Wooldridge and N. R. Jennings. The cooperative problem solving process. Journal of Logic and Computa-
tion, 9(4):563–592, 1999.

[100] J. Yuan, L. Yao, Z. Hao, F. Liu, and T. Yuan. Multi-party dialogue games for distributed argumentation system.
In IAT, pages 329–332. IEEE Computer Society, 2011.

40

Paraconsistent Semantics of Speech Acts

Barbara Dunin-Kȩplicza, Alina Strachockaa, Andrzej Szałasa,b,
Rineke Verbruggec

aInstitute of Informatics, Warsaw University, Poland
bDept. of Computer and Information Science, Linköping University, Sweden
cInstitute of Artificial Intelligence, University of Groningen, The Netherlands

Abstract

This paper discusses an implementation of four speech acts: assert, concede,
request and challenge in a paraconsistent framework. A natural four-valued model
of interaction yields multiple new cognitive situations. They are analyzed in the
context of communicative relations, which partially replace the concept of trust.
These assumptions naturally lead to six types of situations, which often require
performing conflict resolution and belief revision.

The particular choice of a rule-based, DATALOG¬¬-like query language 4QL
as a four-valued implementation framework ensures that, in contrast to the stan-
dard two-valued approaches, tractability of the model is achieved.

Keywords: paraconsistent modeling, communication, speech acts, tractable
models, four-valued logic, conflict resolution

1. A Four-valued Formalism in Modeling Speech Acts

The development of multiagent systems (MAS) demands an adequate model-
ing of the environment and agents involved. Suitable knowledge representation
methods should be selected on an application-specific basis. When confining to
logic-based approaches and formalisms, traditionally two-valued logics prevail.
They fail, however, to express in a natural manner richer modeling aspects when
some values or properties are simply unknown, or when the available information
is inconsistent. A natural remedy for such situations is introducing four logical
values. This work aligns with a whole line of research concerning logical model-
ing, reasoning and communicating about the surrounding environment, under the
assumption that we deal with four types of situations, encoded in the four logical

Preprint submitted to Elsevier March 4, 2016

values: (i) fact a holds, (ii) fact a does not hold, (iii) it is unknown whether a
holds, (iv) information about a is inconsistent.

This paper continues our research program on paraconsistent modeling of
communication in the four-valued framework. In real-world systems with many
information sources, lack and inconsistency of information is a rule rather than
exception. To model such phenomena, a commonly used logic is the four-valued
logic proposed in [4]. However, as discussed, e.g., in [11, 34], the approach of [4]
is problematic. In fact, in areas we focus on it often delivers results deviating
from intuitions (see [11, 34] and Example 1 for details). Our approach is strongly
influenced by ideas underlying the 4QL query language [23, 24] which does not
share such problems.

We consider argumentation-based dialogues as communicative games between
two or more agents and treat the sender and the receiver as two independent in-
formation sources, which try to expand, update, and revise their beliefs through
communication. Instead of adopting the computationally hard theory of trust [8],
we consider three communicative relations between the agents involved: com-
munication with authority, peer to peer communication and communication with
subordinate.

The complex dialogues that we investigate, such as persuasion, deliberation,
information seeking, negotiation or inquiry are composed of so-called speech acts
(see [1, 7, 10, 13, 18, 27, 29] for investigations in multi-agent argumentation-
based dialogue, and [35] for the definitions of various dialogue types). Austin’s
observation that some utterances cannot be verified as true or false [2] led to
the first division of speech acts into constatives, which can be assigned a logi-
cal truth value, and the remaining group of performatives. Searle created their
most popular taxonomy, identifying: assertives, directives, commissives, expres-
sives and declaratives [30]. Austin specified also their effects on the attitudes and
actions of the hearer. Various speech acts, viewed as typical actions, can be rep-
resented in dynamic logic, by characterizing their pre- and post-conditions. We
define them in terms of the changes in agents’ beliefs and actions (see also [10,
18, 13]).

There have been many approaches to defining semantics of speech acts [27,
1], some based on Belnap’s four-valued logic [21]. Still, some researchers view
them as primitive notions [28]. Within the most popular mentalistic approach,
reflected in languages such as KQML and FIPA ACL, speech acts are defined
through their impact on agents’ mental attitudes. The current paper clearly falls
in that approach.

The four-valued, natural model of interaction yields multiple new cognitive

2

situations. Therefore we distinguish six interaction types and analyze them one
by one, providing a semantics of four selected speech acts: assert, concede, re-
quest and challenge. Our semantics is expressed in terms of triples consisting of
preconditions, speech acts and complex post actions. Along with defining rules
for perceiving speech acts, we indicate their detailed impact on the receiver’s in-
formational stance.

To demonstrate perceiving speech acts in the four-valued framework, through-
out this paper we use a running example that concerns a rescue-agent (receiver)
capable of putting out fire and detoxicating an area (see the 4QL module illus-
trated in Figure 1 which reflects the situation, where the agent is aware of the fire
but due to faulty sensors cannot sense the heat). For simplicity, we will focus on
the case when the sender S is an authority and the receiver R is a subordinate.

This paper is an extended version of our conference paper [12]. Comparing
to [12], we:

– elaborate on the group beliefs achieved via communication;

– expand upon belief revision in 4QL;

– more directly integrate our approach with belief structures;

– revise and extend discussions and examples.

The paper is structured as follows. Section 2 is devoted to a four-valued logic
used throughout the paper and provides basic information on 4QL. Section 3
discusses preliminary solution details. Section 4 contains the main technical con-
tribution, illustrated by an example in Section 5. Section 6 concludes the paper.

2. 4QL: an Implementation Tool

In what follows all sets are finite except for sets of formulas.
We deal with the classical first-order language over a given vocabulary without

function symbols and assume that Const is a fixed set of constants, Var is a fixed
set of variables and Rel is a fixed set of relation symbols. We shall use this notation
in the following definitions.

Definition 1. A literal is an expression of the form R(τ̄) or ¬R(τ̄), with
τ̄ ∈ (Const∪Var)k, where k is the arity of R. Ground literals over Const, de-
noted by G (Const), are literals without variables, with all constants in Const. C

3

If ` = ¬R(τ̄) then ¬` def
= R(τ̄). Let v : Var −→ Const be a valuation of vari-

ables. For a literal `, by `(v) we mean the ground literal obtained from ` by
substituting each variable x occurring in ` by constant v(x). The semantics of
propositional connectives is summarized in Table 1.

Table 1: Truth tables for ∧, ∨,→ and ¬ (see [34, 23, 24]).

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

Note that the definitions of ∧ and ∨ reflect minimum and maximum w.r.t. the
ordering:

f< u< i< t. (1)

The ordering (1) differs from orderings used in Belnap-like approaches. The
following example of [34] shows that in application areas we deal with these ap-
proaches lead to conclusions deviating from intuitions.

Example 1. Assume a family owns two cars: c1 and c2. The question, whether
the family has a safe car corresponds to the logical value of the expression

sa f e(c1)∨ sa f e(c2).

Car c1 has gone through safety tests at two different stations s1 and s2. It has
passed the safety tests at s1 but failed the tests at s2. Car c2 has not gone through
any safety test yet. The results of the tests determine the truth value of sa f e(c1)
to be i while of sa f e(c2) to be u. If the join operation ∨ is defined by Belnap’s
truth ordering, then

sa f e(c1)∨ sa f e(c2) = i∨u= t.
However, the safety of car c1 is unclear, since the results of both safety tests are
contradictory, and we know nothing about safety of car c2! A more intuitive result
here would be i.

4

Asking instead, if all cars of the family are safe, sa f e(c1)∧sa f e(c2), evaluates
to f in Belnaps logic (i∧ u). However, actually we do not have any information
about the safety of car c2. If in reality it would have failed the safety tests then the
expression above would evaluate to f. But, if car c2 would have passed the tests
then the expression would become i. Therefore, the above case seems to be better
described by u than by the answer obtained in the Belnaps logic. C

Definition 2. The truth value of a literal ` w.r.t. a set of ground literals L and
valuation v, denoted by `(L,v), is defined as follows:

`(L,v) def
=

t if `(v)∈L and (¬`(v)) 6∈L;
i if `(v)∈L and (¬`(v))∈L;
u if `(v) 6∈L and (¬`(v)) 6∈L;
f if `(v) 6∈L and (¬`(v))∈L. C

For a formula α(x) with a free variable x and c ∈ Const, by α(x)x
c we under-

stand the formula obtained from α by substituting all free occurrences of x by c.
Definition 2 is extended to all formulas in Table 2, where α denotes a first-order
formula, v is a valuation of variables, L is a set of ground literals, and the seman-
tics of propositional connectives appearing at righthand sides of equivalences is
given in Table 1.

Table 2: Semantics of first-order formulas.

– if α is a literal then α(L,v) is defined in Definition 2;

– (¬α)(L,v) def
= ¬(α(L,v));

– (α ◦β)(L,v) def
= α(L,v)◦β (L,v), where ◦∈{∨,∧,→};

– (∀xα(x))(L,v) = min
a∈Const

(αx
a)(L,v),

where min is the minimum w.r.t. ordering (1);

– (∃xα(x))(L,v) = max
a∈Const

(αx
a)(L,v),

where max is the maximum w.r.t. ordering (1).

5

It is worth noting that whenever truth values are restricted to {f, t}, the seman-
tics we consider is compatible with the semantics of classical first-order logic.

From several languages designed for programming BDI agents (for a survey
see, e.g., [25]), none directly addresses belief formation, in particular nonmono-
tonic or defeasible reasoning techniques. 4QL enjoys tractable query computation
and captures all tractable queries. It supports a modular and layered architecture,
providing simple, yet powerful constructs for expressing nonmonotonic rules re-
flecting “lightweight” versions of many known formalisms [23]. 4QL applies the
Open World Assumption, however the world can be (locally or globally) closed
using rules.

In 4QL rules are distributed among modules, where a layered architecture is
required.1 A layer is a set of modules. We also assume a partial order � on
modules, where m� n means that m is in a layer lower than n. An external literal
is an expression of one of the forms:

m.R, ¬m.R, m.R IN T , ¬m.R IN T ,
where m is a module name, R is a positive literal and T ⊆ {f,u, i, t}. The intended
meaning of m.R IN T is that the truth value of m.R is in the set T . If R is not
defined in the module m then the value of m.R is u. The use of external literals is
restricted by the following requirement:

an external literal m.`′ may only appear in a module n, provided that
m� n.

Definition 3. By a rule we mean any expression of the form:

` :– b11, . . . ,b1i1 | . . . | bm1, . . . ,bmim. (2)

where ` is a (positive or negative) literal, called conclusion of the rule and rule’s
premisses b11, . . . ,b1i1 , . . . ,bm1, . . . ,bmim are (positive or negative) literals or exter-
nal literals or truth values. C

In rules ‘,’ and ‘|’ abbreviate conjunction and disjunction, respectively. By
a fact, denoted by ‘`.’, we mean a rule of the form ‘` :– t.’.

A 4QL program is a finite set of modules, each of which contains a finite
number of rules.

1The layered architecture can be relaxed as in [31].

6

Definition 4. Let a set of constants, Const, be given. A set of ground literals L
with constants in Const is a model of a set of rules S iff for each rule (2) and any
valuation v mapping variables into constants in Const, we have that:

(
((b11∧ . . .∧b1i1)∨ . . .∨ (bm1∧ . . .∧bmim))→ `

)
(L,v) = t,

where it is assumed that the empty antecedent is t in any interpretation. C

The semantics of 4QL is defined by well-supported models [23, 24]. Intu-
itively, a model is well-supported if it consists of ground literals such that each lit-
eral in the model is supported by a reasoning grounded in facts. For any 4QL mod-
ule there is a unique such model and it can be computed in polynomial time [24].
That is, any set of 4QL rules and facts can be understood as its well-supported
model being a finite set of ground literals.

module r:
relations: is(literal).

do(literal).
rules:
is(risky) :- is(poison) | is(heat).
-is(risky) :- -is(poison), -is(heat).
is(heat) :- is(fire).
-is(poison) :- is(safe).
is(busy) :- do(detox) | do(extinguish).
-do(detox) :- is(heat).
-is(heat) :- is(lowtemp).
-is(fire) :- is(lowtemp).
is(X) :- perceived.is(X).
-is(X) :- -perceived.is(X).
do(extinguish) :- is(heat) | is(fire).
-do(extinguish) :- -is(heat), -is(fire).

end.

module perceived:
relations: is(literal).
facts:
is(fire).
-is(heat).

end.

Figure 1: Example of a 4QL program.

To illustrate 4QL, consider Figure 1, where we use self-explanatory syntax
of the 4QL interpreter inter4QL.2 The program shown in Figure 1 consists of two

2The interpreter, initiated by P. Spanily and further developed by Ł. Białek, can be downloaded
from http://www.4ql.org/ .

7

modules: r and perceived3. The program uniquely determines the following well-
supported model for module perceived:

{is(f ire),¬is(heat)} (3)

and the following well-supported model for module r:

{is(heat),¬is(heat), is(f ire), is(busy), is(risky),
do(detox),¬do(detox),do(extinguish)}. (4)

3. Introductory Solution Details

3.1. Epistemic Profiles and Communicative Relations
An essential question is how to realize heterogeneity of agents in multiagent

systems. Clearly, being different, when seeing the same thing the agents may
draw different conclusions. A notion of epistemic profile [14] explicitly models
this problem.4 First, it defines the way an agent reasons (e.g., by the use of rules).
Second, it permits expressing the granularity of reasoning (e.g., by varying the
level of certain attributes or accuracy of rules expressing the modeled phenom-
ena). Third, it also characterizes the manner of dealing with conflicting or lacking
information by combining various forms of reasoning, including belief fusion,
disambiguation of conflicting beliefs or completion of lacking information. The
following definitions are adapted from [14], where also more intuition and exam-
ples can be found.

If S is a set then by FIN(S) we understand the set of all finite subsets of S.

Definition 5. Let C def
= FIN(G (Const)) be the set of all finite sets of ground literals

over the set of constants Const. Then:

– by a constituent we understand any set C ∈ C;

– by an epistemic profile we understand any function E : FIN(C)−→ C;

– by a belief structure over an epistemic profile E we mean BE = 〈C ,F〉,
where:

– C ⊆ C is a nonempty set of constituents;

3For a detailed discussion of this example see Section 5.
4Belief structures are further developed in [16] but here we use the deterministic version.

8

– F def
= E (C) is the consequent of BE . C

For example, Figure 1 presents two modules: r and perceived. These modules
define sets of ground literals (3) and (4) and can be seen as a belief structure with
one constituent perceived and consequent r. The epistemic profile is defined by
rules of module r.
As well-supported models are sets of ground literals (represented by 4QL pro-
grams with deterministic polynomial time data complexity), we alternate between
the notions of the set of consequents of 4QL programs and well-supported models.

To express beliefs we introduce operator Bel().

Definition 6. Let E be an epistemic profile. The truth value of formula α w.r.t.
belief structure BE = 〈C ,F〉 and valuation v, denoted by α(BE ,v), is defined by

α(BE ,v) def
= α(

⋃

C∈C
C,v). Beliefs are evaluated in F : Bel(α)(BE ,v) def

= α(F,v). C

Note that the semantics of Bel() differs from the one given in [14, 15]. Namely,
In [14, 15], Bel(u) = f, while in Definition 6 we assume that Bel(u) = u. The
choice we made here is better suited to model nuances of agent communication
and the general matter of our paper.

Of course, in the case of many agents and groups, we may have separate belief
structures for these agents/groups and, consequently, we may have many Bel()
operators related to belief structures. We do not introduce them formally, as in
the rest of the paper we only deal with agents’ beliefs, and to simplify notation
we skip belief operators, assuming that they are implicitly present and the context
will always uniquely indicate respective consequents.

Agents may react variously to the perceived information. We distinguish three
types of communicative relations, considered from the receiver’s perspective:

1. communication with authority: an agent (receiver) is prone to adopt the
interlocutor’s (sender, authority) theses. In strong disagreement, instead of
abandoning its beliefs totally, it would rather investigate the reasons of the
conflict, but in case of a mere discrepancy of opinions it would give up on
its prior beliefs;

2. peer to peer communication: both parties are viewed as equally credible and
important information sources, therefore nobody’s opinion prevails a priori.
This shows up when dealing with inconsistent information, which taints
everything: whenever one party believes a proposition is inconsistent, the

9

other party’s prior beliefs do not matter. The peer, upon receiving informa-
tion that introduces inconsistency to its beliefs, is obliged to comply with it.
Therefore every discrepancy of opinions boils down to inconsistency,

3. communication with subordinate: when dealing with a less reliable source
of information, the receiver with authority would not be willing to aban-
don its beliefs in favor of the interlocutor’s. It would value its observations
higher and protect true and false propositions from being infected by incon-
sistency. However, in case of strong disagreements, it engages in conflict
resolution.

3.2. Belief Revision
Introducing inconsistency as a first-class citizen entails a need of conflict res-

olution. Namely, perceiving new information, whether it is some previously un-
known fact or a new valuation of a proposition, may require revising beliefs. The
communicative relation functions as a filter, determining when a new percept trig-
gers belief revision. Importantly, such a belief revision, when expressed in 4QL,
can be performed in polynomial time. We distinguish two types of conflicts:

– strong disagreements: when agents have contradictory opinions;

– mere discrepancies: when one agent believes that an opinion is inconsistent,
and the other believes it is true or false.

Although a broader treatment of general belief revision properties in 4QL is
needed, here we intend to address the particular topics raised in this article. From
the speech acts treated here, only two may cause agents to make some changes in
their beliefs: assertions and concessions. The first one triggers a change in agent’s
individual beliefs, while the second in agent’s group beliefs (see Section 3.3).

In case of assertions, the receiver agent might need to change it’s valuation of
a literal according to the rules outlined in Section 4.1. The valuation of the literal
in question is obtained from the set of consequents, here implemented via the well-
supported model of the 4QL program. Belief revision strategies, as expressed in
4QL, may vary from conservative to more drastic ones. In all cases, belief revision
amounts to computing a new well-supported model on the basis of a refreshed set
of facts and rules.

Assume that we want literal ` to become true (recall that ` may be positive as
well as negative). The conservative approach depends on adding ` as a fact and
temporarily blocking rules contradicting `. These changes affect all constituents
and the consequent of the revised belief structure. In short, the procedure looks as

10

follows, where we assume that all rules containing variables are replaced by their
ground instances (but see Remark 1):

1. adding ` to the set of facts (if not already there);
2. removing the fact contradicting the new valuation of ` from the set of facts

(if any);
3. blocking rules contradicting the new valuation of ` (if such rules exist);
4. recomputing the well-supported model.

The details for the steps 1, 2 and 3 are presented in the Table 3. The original
valuations of literal ` are in the first column, in the first row are the new valuations
for the literal `. Notice, that in our framework we do not allow for known literals to
become unknown, therefore there are only three columns for the new valuations.

Table 3: Revising beliefs (G represents constituents and consequent of a revised belief structure)

` t f i

t - G′← G∪{¬`} G′← G∪{¬`}
G′← G−{`}

block rules with
conclusion `

f G′← G∪{`} - G′← G∪{`}
G′← G−{¬`}
block rules with
conclusion ¬`

i G′← (G−{¬`})∪{`} G′← (G−{`})∪{¬`} -
block rules with
conclusion ¬`

block rules with
conclusion `

u G′← G∪{`} G′← G∪{¬`} G′← G∪{¬`,`}
block rules with
conclusion ¬`

block rules with
conclusion `

The drastic strategy depends on removing the contradicting rule rather than
blocking it. Note that removing the rule with, for example, ¬` as its conclusion
is harmless for possible further belief revisions making ¬` true. In such cases
one adds ¬` to the set of facts (step 1. above), so the rule with the conclusion
¬` becomes redundant. Of course, the original knowledge expressed by rules is
partly lost.

Thanks to the flexibility of 4QL, one can combine conservative and drastic
strategies. For example, in particular circumstances one can disallow removing

11

module r:
relations: is(literal).

do(literal).
rules:
is(risky) :- is(poison) | is(heat).
-is(risky) :- -is(poison), -is(heat).
is(heat) :- is(fire).
-is(poison) :- is(safe).
is(busy) :- do(detox) | do(extinguish).
-do(detox) :- is(heat).
-is(fire) :- is(lowtemp).
is(X) :- perceived.is(X).
-is(X) :- -perceived.is(X).
do(extinguish) :- is(heat) | is(fire).
-do(extinguish) :- -is(heat), -is(fire).

end.

module perceived:
relations: is(literal).
facts:
is(heat).
is(fire).

end.

Figure 2: The 4QL program shown in Figure 1 after belief revision.

certain rules, for example those representing “hard” beliefs, and allow for remov-
ing other ones having a weaker status, for example because they have been ma-
chine learned and temporarily assumed to be valid.

To illustrate the idea consider again rules in Figure 1. Assume that we want
to revise beliefs so that is(heat) becomes t. For simplicity we use the drastic
approach and obtain the module as illustrated in Figure 2 where, comparing to
Figure 1, we removed:

-is(heat) :- is(lowtemp). (from module r)
-is(heat). (form module perceived)

and added:
is(heat). (to module perceived).

Note that the addition of is(heat) is superfluous, since is(heat) follows from
is(f ire) using one of rules. The obtained 4QL program determines the following
well-supported model for perceived:

{is(heat), is(f ire)} (5)

and the following well-supported model for r:

{is(heat), is(f ire), is(busy), is(risky),¬do(detox),do(extinguish)}. (6)

12

module blocked:
relations: item(literal).
facts:
item(heat).
item(fire).

end.

Figure 3: A 4QL module for blocking conclusions as to heat and fire.

Remark 1. In the description of belief revision techniques we dealt with ground
instances of rules. Of course, this is only a technical assumption. In actual im-
plementations one can still have rules with variables. A simple way of blocking
unwanted conclusions is to indicate items to be blocked and exclude them in pre-
misses of rules. For example, if we have the rule:

is(X) :- perceived.is(X). (7)

and we want to exclude some of its conclusions, then we can replace (7) with the
following rule:

is(X) :- perceived.is(X), -(blocked.item(X) IN {true}).

where blocked is a separate module containing blocked items.
Now blocking certain conclusions can be done by adding to module blocked

facts about items to be blocked. An example module blocked is illustrated in
Figure 3. C

3.3. Shared Beliefs
When two agents first engage in communication they form a virtual group,

for which we can define epistemic profiles as well. A broader treatment of be-
liefs shared by a group of agents can be found in [14], from where the following
definition originates.

Definition 7. Let agents Ag1, . . . ,Agm be equipped with belief structures
BE1 = 〈C1,F1〉 , . . . ,BEm = 〈Cm,Fm〉, respectively. A belief structure of the group
of agents G = {Ag1, . . . ,Agm} is a belief structure BE

G = 〈CG,FG〉, where con-
stituents of G are CG = {F1, . . . ,Fm} and EG is an epistemic profile transforming
{F1, . . . ,Fm} into FG. C

Consequents of group members (Fik) become constituents of a group (CG).
The group then builds group beliefs via its epistemic profile EG and reaches its
consequent FG. For complexity reasons, it is reasonable to assume that only
formed groups are equipped with belief structures and epistemic profiles. When

13

a group is not formed, we assume that its belief structure BE
G is “empty”, i.e.,

CG = { /0} and FG = /0.
Information acquired via speech acts is then stored in the set of group level

constituents, which are naturally transformed into consequents according to the
epistemic profile of the group (see Figure 4). They represent the beliefs shared
by the agents via communication.

Group Level

Receiver Sender

agreement through
dialogue (concession)

‘
‘

‘

''

''

''

Figure 4: Belief formation at a (virtual) group level, incorporating interlocutors’ concessions as
the group constituents. Updated after [17] with permission.

Whenever a concession is sent by the receiver, it means that an agreement with
the sender about the valuation of the literal has been achieved. In the Figure 4,
an agreement between the Sender and Receiver about a common valuation of the
literal originating from the set of consequents (F in case of the Sender and F ′ in
case of the Receiver) has been obtained. In such cases, we may consider those two

14

agents form a virtual group, which establishes some common valuations of liter-
als. The conceded literal is then automatically added to the set of consitituents on
the group level (C′′ in the Figure 4). Technically for every such group a separate
4QL program must be kept, which defines the way the group performs. Impor-
tantly, each agent composing the group should have a same copy of the group
program. The belief revision on the group level is the same as on the individual
level. Here, instead of starting from the individual agent’s constituents, we start
from their consequents and make changes (updates, block or remove rules) to the
group epistemic profile and group consequents (see Section 5.1).

4. A Four-valued Characterization of Speech Acts

We define speech acts by specifying their preconditions and complex post-
actions. By:

{precondition}〈speech act〉[complex post-action] (8)

we mean that performing a speech act in the presence of the precondition trig-
gers the complex post-action. We detail their semantics in the form of tables, in
which, depending on the type of communicative relation and the preconditions,
the shape of the speech act and the resulting complex post-action is determined.
For simplicity, we number the respective communicative relation types, where: A
signifies communication with an authority, P signifies peer to peer communica-
tion, and S communication with subordinate.

The precondition is in this case the receiver’s valuation of the proposition in
question. For clarity, throughout this section we employ the following notation,
where BE = 〈C ,F〉 is agent R’s belief structure and E is its epistemic profile and
primed expressions refer to its belief structure and epistemic profile after perform-
ing belief revision:

vR(α)
def
= α(F,v); v′R(α)

def
= α(F ′,v). (9)

It is important to note that this way the considered formulas reflect beliefs. In fact,
formula α in (9) is evaluated in the consequent F (respectively, F ′). Therefore
formula α is evaluated as Bel(α) (see Definition 6).

4.1. Assertions
assertS,R(α,x) stands for agent S (sender) telling agent R (receiver) that its val-
uation of α is x. Let us focus on different configurations, taking into account both
communicative relations between the agents and their valuations of α:

15

1. Perceiving inconsistent information, where agents engaged in peer-to-peer
communication or communication with authority relations, adopt the inter-
locutors’ theses about inconsistent information. Authorities, however, adopt
such a thesis only if it was already inconsistent or unknown. In both cases
a concede is sent as an acknowledgement, but only in the latter case, belief
revision takes place.

2. Perceiving previously unknown information, which leads to adopting it by
the receiver regardless the communicative relation. Unless the new informa-
tion is also unknown (see below), belief revision takes place and a concede
is sent.

3. Perceiving information that is unknown, which is ignored regardless the
communicative relation, because by default all information is unknown.
Therefore, taking action under such circumstances would be redundant.

4. Perceiving previously inconsistent information, which depends on the com-
municative relation. In communication with authority, the sender’s belief
(unless unknown) overrides the receiver’s. A belief revision takes place if
necessary, that is, unless their beliefs are equal, and a concede is sent. In
the two remaining cases the message is ignored, unless it is also inconsis-
tent. If so, a concede is sent.

5. Perceiving compatible information, where “compatible” means that both
agents have exactly the same valuation of the proposition. This yields no
belief revision, but in all cases but one, the assertion is acknowledged by
sending a concede. In the one case of unknown information such a percep-
tion is ignored.

6. Perceiving contradictory information, where, regardless communicative re-
lation, whenever one agent believes a proposition is true and the other be-
lieves the contrary, they must come to an agreement using a challenge

speech act. This may succeed, leading to adopting the sender’s thesis, or
fail, with no direct effect on the interlocutors. Notice, that upon receiving
assertS,R(α,x), the speech act challengeR,S(α,x) stands for agent R ask-
ing agent S: “why does your valuation of α equal x?”. For more details on
the semantics of challenges see Subsubection 4.4 at the end of this subsec-
tion.

In Table 4, all complex post-actions of assertions discussed in cases 1-6 are sum-
marized.

16

Table 4: Perceiving information.

Type Precondition Speech Act Complex Post-Action5

A, P vR(α) = f assertS,R(α, i) v′R(α) = i;concedeR,S(α, i)
S vR(α) = f assertS,R(α, i) -
A, P, S vR(α) = u assertS,R(α, i) v′R(α) = i;concedeR,S(α, i)
A, P, S vR(α) = i assertS,R(α, i) concedeR,S(α, i)
A, P vR(α) = t assertS,R(α, i) v′R(α) = i;concedeR,S(α, i)
S vR(α) = t assertS,R(α, i) -
A, P, S vR(α) = u assertS,R(α, f) v′R(α) = f;concedeR,S(α, f)
A, P, S vR(α) = u assertS,R(α,u) -
A, P, S vR(α) = u assertS,R(α, i) v′R(α) = i;concedeR,S(α, i)
A, P, S vR(α) = u assertS,R(α, t) v′R(α) = t;concedeR,S(α, t)
A, P, S vR(α) = f assertS,R(α,u) -
A, P, S vR(α) = u assertS,R(α,u) -
A, P, S vR(α) = i assertS,R(α,u) -
A, P, S vR(α) = t assertS,R(α,u) -
A vR(α) = i assertS,R(α, f) v′R(α) = f;concedeR,S(α, f)
P, S vR(α) = i assertS,R(α, f) −
A, P, S vR(α) = i assertS,R(α,u) -
A, P, S vR(α) = i assertS,R(α, i) concedeR,S(α, i)
A vR(α) = i assertS,R(α, t) v′R(α) = t;concedeR,S(α, t)
P, S vR(α) = i assertS,R(α, t) −
A, P, S vR(α) = f assertS,R(α, f) concedeR,S(α, f)
A, P, S vR(α) = u assertS,R(α,u) -
A, P, S vR(α) = i assertS,R(α, i) concedeR,S(α, i)
A, P, S vR(α) = t assertS,R(α, t) concedeR,S(α, t)
A, P, S vR(α) = t assertS,R(α, f) challengeR,S(α, f)
A, P, S vR(α) = f assertS,R(α, t) challengeR,S(α, t)

4.2. Requests
requestS,R(α) stands for agent S requesting agent R to provide information about
α . After such a request, the sender must wait for a reply, while the receiver should
reply with what it knows about α:

{vR(α) = x} 〈requestS,R(α)〉 [assertR,S(α,x)].

17

The sender, after receiving the response, behaves according to the rules for asser-
tions.

Table 5: Requests, concessions and challenges. Cases not included in the table are ignored.
Type Precondition Speech Act Complex Post-Action
A, P, S vR(α) = f requestS,R(α) assertR,S(α, f)
A, P, S vR(α) = u requestS,R(α) assertR,S(α,u)
A, P, S vR(α) = i requestS,R(α) assertR,S(α, i)
A, P, S vR(α) = t requestS,R(α) assertR,S(α, t)
A, P, S vR(α) = f concedeS,R(α, f) add α to groupa constituentsb

A, P, S vR(α) = u concedeS,R(α,u) add α to group constituents
A, P, S vR(α) = i concedeS,R(α, i) add α to group constituents
A, P, S vR(α) = t concedeS,R(α, t) add α to group constituents
A, P, S vR(α) = f challengeS,R(α, t) assertR,S(PROOF(α, t))
A, P, S vR(α) = t challengeS,R(α, f) assertR,S(PROOF(α, f))

aThe virtual group consisting of R and S.
bAdding facts to the set of constituents may trigger belief revision on the virtual group level.

4.3. Concessions
concedeS,R(α,x) stands for agent S’s communicating its agreement about the val-
uation of α . Importantly, only concessions about compatible valuations are con-
sidered, others are ignored, as indicated in Table 5. Concession is more of an
acknowledgement, as no belief revision on the individual level takes place here.
Instead, α with a valuation x is added to the agents’ virtual group’s set of con-
stituents (see Subsection 3.1) and (possibly) a belief revision on the virtual group’s
level occurs.

4.4. Challenges
challengeS,R(α,x) stands for S’s communicating its contradictory stance with
respect to R’s opinions regarding α (x is either t or f here). Inspired by [35],
a challenge is in fact a request to provide a proof of the receiver’s stance towards
α together with an implicit assertion of the contradictory stance towards α . To
restrict emitting redundant information we make this assertion implicit.

challengeS,R(α, t)≡ requestS,R(assertR,S(PROOF(α, t)))
challengeS,R(α, f)≡ requestS,R(assertR,S(PROOF(α, f)))

18

The proof in question depends on the structure of α and might represent just
the last rule used to derive α (or a choice of rules if there were several ways to
achieve α). If, for an atomic α , its negation ¬α is a fact, there is no way to
prove that α is true, and the challenged agent who received challengeS,R(α, t)
should reply with a special symbol assertR,S(α,⊥) for “I give up” (cf. [35]).
This counts as agent’s R failure to prove α . An agent who receives a challenge

should react according to the rules for requests. Challenges per se do not yield
belief revision, the true impact on agents’ beliefs is achieved by the assertions
initiated by them. However, when a (possibly deeply nested) challenge folds,
if it was successful, an acknowledgement must be sent. Therefore whenever an
agent sends challengeS,R(α,x), if at some point α becomes x it triggers sending
a concede by S. This is a sign of a challenge ending successfully for R. Otherwise
a challenge fails. Notice that even a failed challenge might have caused some
belief revision if some of the assertions have been acknowledged.

5. An Example

To demonstrate perceiving speech acts in the four-valued framework, consider
a rescue-agent (receiver) capable of putting out fire and detoxicating an area. Sup-
pose at the moment it is aware of the fire but due to faulty sensors cannot sense the
heat. The situation is reflected by the 4QL module illustrated in Figure 1 (where
lowtemp is an output of the sensor in the vicinity of the suspect fire). Let us recall
that for simplicity, we focus on the case when the sender S is an authority and the
receiver R a subordinate. Let BR1 be the well-supported model (4) determined by
this program.

On the basis of BR1 we know that agent R is inconsistent about is(heat) and
do(detox). Literals is(f ire), is(risk), is(busy) and do(extinguish) are true. Liter-
als absent in the model are unknown.

The dialogue starts when agent S, an authority, asserts to R that heat is true
(see (a) in Figure 5). In R’s belief base BR1 , is(heat) is inconsistent. Therefore,
after perceiving this assertion, according to the belief revision rules (see Table 4),
agent R adopts S’s belief. In the course of belief revision, the program shown in
Figure 1 is changed into the one shown in Figure 2 so the new well-supported
model BR2 is the one given by (6).

Finally, agent R answers with a concession (see (b) in Figure 5), acknowledg-
ing that it shares a belief about is(heat) being true. Notice, that if R’s valuation
of is(heat) would have been false in the first place (in BR1), it would have to chal-
lenge the sender’s assertion. Then, S would have to provide a proof.

19

Sender Receiver

BS1
BR1(a)

vR(is(heat)) = i

BelRev(BR1
, BR2

)(b) BS1
BR2

assertS,R(is(heat), t)

concedeR,S(is(heat), t)

1

Figure 5: Perceiving compatible information.

Let us continue with the example from above but now consider a case of con-
flict resolution by means of a challenge. Now the sender makes an assertion that
do(extinguish) is false (see (a) in Figure 6), which is contradictory with the re-
ceiver’s beliefs. In our scenario, regardless the communicative relation, R must
challenge the sender, as it should abandon do(extinguish) only if entirely con-
vinced. Therefore, R sends a challenge (see (b) in Figure 6), to which S must
answer with a proof. As indicated in the description of the challenge speech
act, we focus on the request part. The additional assertion is omitted to keep the
picture clear. Assume that the relevant rules that the sender agent will be using to
prove it’s statements are the following:

-do(extinguish) :- -is(fire).
-is(fire) :- is(lowtemp), -is(heat).

(10)

As explained in Subsection 4 in the part about challenges, agent S must pro-
vide a proof for the assertion about ¬do(extinguish) it has made before. In our
example, the last rule in the derivation of ¬do(extinguish) determines the proof
(see (10)). In order for ¬do(extinguish) to hold, is(f ire) must be false. Therefore,
S answers with an assertion (see (c) in Figure 6) about is(f ire). Now we analyze
what impact this assertion has on agent R. The assertion about is(f ire) being false,
made by agent S, causes another challenge (see (d) in Figure 6), because is(f ire)
was true in BR1 . Luckily, again S knows how to prove this (see (10)) and answers
with a sequence of assertions (see (e) and (g) in Figure 6): one about is(lowtemp)
and one about ¬is(heat).

The first assertion causes R to revise its beliefs (because is(lowtemp) is absent
(unknown) from the model) and acknowledge (see (f) in Figure 6). There are no
rules with conclusion ¬is(lowtemp), so belief revision amount here to adding the

20

Sender Receiver

(a) BS1
BR2

(b) BS1
BR2

vR(do(extinguish)) = t ©

(c) BS1
BR2

vR(is(fire)) = t ©

(d) BS1 BR2

(e) vR(is(lowtemp)) = u
BelRev(BR2 , BR3)

(f)

(g)

BS1
BR2

vR(is(heat)) = i
BelRev(BR3 , BR4)

(h)

BS1 BR3

(i)

BS1
BR3

(j)

BS1
BR4 vR(is(fire)) = u

BelRev(BR4
, BR5

)
BS1

BR5

vR(do(extinguish)) = fBS1 BR5

assertS,R(do(extinguish), f)

challengeR,S(do(extinguish), f)

assertS,R(is(fire), f)

challengeS,R(is(fire), f)

assertS,R(is(lowtemp), t)

concedeS,R(is(lowtemp), t)

assertS,R(is(heat), f)

concedeS,R(is(heat), f)

concedeS,R(is(fire), f)

concedeS,R(do(extinguish), f)

1

Figure 6: Perceiving contradictory information.

new fact ¬is(lowtemp) to the perceived module and computing the new well-
supported model. This results in its subsequent belief base BR3 :

{is(heat),¬is(heat), is(f ire),¬is(f ire), is(busy),¬is(busy), is(risky),
is(lowtemp),do(extinguish),¬do(extinguish),do(detox),¬do(detox)}. (11)

The second assertion also causes belief revision (S is an authority and is(heat) is
inconsistent in BR3). This time, according to the belief revision rules in Table 3,
the receiver should remove:

is(heat) :- is(fire). (from module r)
is(heat). (form module perceived)

and add:
-is(heat). (to module perceived).

21

The resulting new belief base BR4 is:

{¬is(heat), is(f ire),¬is(f ire), is(lowtemp),
do(extinguish),¬do(extinguish)}. (12)

In the changed belief base, the receiver agent can now reconsider¬is(f ire). As
is(f ire) is inconsistent in BR4 , agent R performs belief revision anew and obtains
belief base BR5 , which is the final set of R’s consequents:

{is(lowtemp),¬is(heat),¬is(f ire),¬do(extinguish)}. (13)

module r:
relations: is(literal).

do(literal).
rules:
is(risky) :- is(poison) | is(heat).
-is(risky) :- -is(poison), -is(heat).
-is(poison) :- is(safe).
is(busy) :- do(detox) | do(extinguish).
-do(detox) :- is(heat).
-is(fire) :- is(lowtemp).
is(X) :- perceived.is(X).
-is(X) :- -perceived.is(X).
do(extinguish) :- is(heat) | is(fire).
-do(extinguish) :- -is(heat), -is(fire).

end.

module perceived:
relations: is(literal).
facts:
-is(heat).
-is(fire).
is(lowtemp).

end.

Figure 7: The 4QL program shown in Figure 2 after communication.

Agent R concedes that is(f ire) is false (see (i) in Figure 6), at which point the
second challenge folds. Since agent R has been convinced that do(extinguish) is
false as well (13), it replies with another concession (see (j) in Figure 6). That
causes the first challenge to fold and we may conclude that agent S has success-
fully convinced R that do(extinguish) no longer holds. The final module repre-
senting agent’s R epistemic profile and constituents after this communication is
presented in Figure 7.

Notice, that although the above scenario partially resembles a persuasion dia-
logue, it should not be considered as an example of such. As mentioned before, in
this work we provide a basis for building more complex dialogues by analyzing

22

what happens when agents perceive speech acts, the reactional layer of commu-
nication. In true persuasion dialogues, various interesting aspects come into play,
among others the motivation of agents and their pro-activeness when choosing to
utter a speech act, which clearly is outside of the scope of this paper (but see [35]
and [18, Chapter 8]).

5.1. Building a Shared Belief Base
In the course of the dialogue above, the agents exchange their beliefs and

acknowledge the common ones. Agents which engage in communication for the
first time, form a virtual group, which by definition is empty: the set of group
constituents contains only an empty set and the are no group consequents. In
addition, the epistemic profile in such cases is an identity function. This situation
and can be represented in 4QL trivially, by one module with no rules, only facts
obtained by communication. In this case, this singular module represents both
constituents and consequents.

Whenever a concession is sent, it means an agreement has been made, there-
fore the conceded literals should be added to the agents’ shared knowledge base,
at the level of constituents.

Adding new facts may, similarly as in the case of individual agents, lead to
belief revision. In our example this happened, e.g., after the first assertion (see
(a) in Figure 5), agent R conceded that is(heat) was true. Then, in the course of
the challenge, S managed to convince him that is(heat) was not the case anymore
(see (h) in Figure 6). Therefore, at first is(heat) was in the shared belief base but
ultimately ¬is(heat) took its place.

Because the group’s epistemic profile is empty (this virtual group has just
emerged through communication), the set of constituents is transformed into the
set of consequents by an identity transformation (in our forthcoming paper, adding
also rules to the group’s epistemic profile will become possible).

In summary, after the process of exchanging information, the belief base of
the virtual group consisting of S and R includes the following facts:

{ is(lowtemp),¬is(f ire),¬is(heat),¬do(extinguish)}. (14)

6. Conclusions and Discussion

Agents need to act in uncertain and dynamic environments, where they receive
information from multiple sources. A new four-valued paraconsistent logic [23,
24] appears to be cut out for this situation. Nonmonotonic logic, in turn, allows

23

for drawing conclusions that typically hold, but not necessarily always. Their
combination, implemented in 4QL, has already been shown to model agents’ in-
dividual and group beliefs. Agents’ reasoning schemas are formalized in terms of
rules in the chosen four-valued knowledge-based framework, belief structures and
epistemic profiles [14]. A great bonus of 4QL is that queries can be computed in
polynomial time. This tractability stands in stark contrast to the usual two-valued
approaches to group interactions, where EXPTIME completeness of satisfiability
problems is a common hindrance [19].

Notice, that such features distinguish 4QL from other formalisms, e.g., An-
swer Set Programming (ASP)[20], where computing a so-called ”answer set” (sta-
ble model) is NP-complete. Further, ASP is based on the trivalent semantics (true,
false, unknown), and does not admit inconsistency. The answer sets may contain
conclusions that are not grounded in facts, which may be suitable for ASP pri-
mary applications (specification and computation of problems from the NP class),
however is not appropriate in our case.

Dealing with paraconsistency in dialogue is not a new subject (see Chapter 6
in [33] for general nonmonotonic/defeasible reasoning techniques and e.g., [5, 6,
9] for paraconsistent reasoning techniques). For example, in classical logic, one
of the mechanisms preventing the logic from trivialization is employing consis-
tent subsets of the knowledge [22]. However, instead of restricting oneself to such
methods, a full-fledged paraconsistent logic can be exploited. In [32], the authors
proposed a logic of multiple-valued argumentation (LMA), in which agents can
argue using multi-valued knowledge base in the extended annotated logic pro-
gramming (EALP). Such an approach was next applied in [26]. Although this
work shows the most congenial approach, our solution uses the 4QL logic while
EALP provides a framework for arbitrary many-valued logics. When tailored to
four-valued paraconsistent logics, ELAP ususally uses a Belnap-like approach.
As discussed in Example 1, in our application areas the 4QL logic delivers more
intuitive results.

This paper is a first step in a research program that combines dialogue theory
and argumentation theory with the new four-valued approach to modeling multi-
agent interactions. We consider three types of communication: from an authority,
from a peer, and from a subordinate. In each type of communication, the speech
acts are considered from the mentalistic perspective, as expressed in the triple:
precondition, speech act, complex post-action. Along with defining rules for per-
ceiving speech acts, we indicated how communication influences agents’ beliefs.

Our example of a simple dialogue between a rescue-agent and its boss shows
how speech acts and agents’ reasoning rules naturally combine in the framework

24

of 4QL, leading to intuitive conclusions while maintaining tractability. Thus,
a foundation has been laid for extending the four-valued approach to modeling
more complex dialogues and argumentations between agents reasoning in uncer-
tain and dynamic environments. This will be the subject of the forthcoming paper.

7. Acknowledgements

This work has been supported by the Polish National Science Centre grant
2011/01/B/ST6/02769. The authors would like to thank anonymous reviewers for
their comments which greatly improved this paper.

References

[1] K. Atkinson, T. Bench-Capon, and P. McBurney. Computational representa-
tion of practical argument. Synthese, 152:157–206, 2005.

[2] J. L. Austin. How to Do Things with Words. Clarendon Press, Oxford,
second edition, 1975. Edited by J. O. Urmson and M. Sbisa.

[3] D. Barbucha, M.T. Le, R.J. Howlett, and L.C. Jain, editors. Advanced Meth-
ods and Technologies for Agent and Multi-Agent Systems, Proceedings of
the 7th KES Conference on Agent and Multi-Agent Systems - Technologies
and Applications (KES-AMSTA 2013), volume 252 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2013.

[4] N.D. Belnap. A useful four-valued logic. In G. Epstein and J.M. Dunn,
editors, Modern Uses of Many Valued Logic, pages 8–37. Reidel, 1977.

[5] J.-Y. Beziau, W. Carnielli, and D.M. Gabbay. Handbook of Paraconsistency.
College Publications, 2007.

[6] H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming.
Theor. Comput. Sci., 68(2):135–154, October 1989.

[7] K. Budzynska, M. Kacprzak, and P. Rembelski. Perseus. software for ana-
lyzing persuasion process. Fundamenta Informaticae, 93(1-3):65–79, 2009.

[8] C. Castelfranchi. The social nature of information and the role of trust.
International Journal of Cooperative Information Systems, 11(3):381–403,
2002.

25

[9] Carlos Viegas Damsio and Lus Moniz Pereira. A survey of paraconsistent
semantics for logic programs. In Handbook of Defeasible Reasoning and
Uncertainty Management Systems, pages 241–320. Kluwer Academic Pub-
lishers, 1998.

[10] F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Creating collective inten-
tion through dialogue. Logic Journal of the IGPL, 9:145–158, 2001.

[11] D. Dubois. On ignorance and contradiction considered as truth-values. Logic
Journal of the IGPL, 16(2):195–216, 2008.

[12] B. Dunin-Kȩplicz, A. Strachocka, A. Szałas, and R. Verbrugge. Perceiving
speech acts under incomplete and inconsistent information. In Barbucha
et al. [3], pages 255–264.

[13] B. Dunin-Kȩplicz, A. Strachocka, and R. Verbrugge. Deliberation dialogues
during multi-agent planning. In M. Kryszkiewicz, H. Rybinski, A. Skowron,
and Z. W. Ras, editors, ISMIS, volume 6804 of LNCS, pages 170–181.
Springer, 2011.

[14] B. Dunin-Kȩplicz and A. Szałas. Epistemic profiles and belief structures.
In G. Jezic, M. Kusek, N.T. Nguyen, R.J. Howlett, and L.C. Jain, editors,
Proc. 6th KES AMSTA International Conference on Agent and Multi-Agent
Systems. Technologies and Applications, volume 7327 of LNCS, pages 360–
369. Springer-Verlag, 2012.

[15] B. Dunin-Kȩplicz and A. Szałas. Taming complex beliefs. Transactions on
Computational Collective Intelligence XI, LNCS 8065:1–21, 2013.

[16] B. Dunin-Kȩplicz and A. Szałas. Indeterministic belief structures. In Proc.
KES-AMSTA 2014: Agents and Multi-agent Systems: Technologies and Ap-
plications, volume 296 of Advances in Intelligent and Soft Computing, pages
57–66. Springer, 2014.

[17] B. Dunin-Kȩplicz, A. Szałas, and R. Verbrugge. Tractable reasoning about
group beliefs. In 2nd international Workshop on Engineering Multi-Agent
Systems (EMAS 2014), Lecture Notes in Artificial Intelligence. Springer
Berlin Heidelberg, 2014.

[18] B. Dunin-Kȩplicz and R. Verbrugge. Teamwork in Multi-Agent Systems: A
Formal Approach. Wiley, Chichester, 2010.

26

[19] M. Dziubiński, R. Verbrugge, and B. Dunin-Kȩplicz. Complexity issues in
multiagent logics. Fundamenta Informaticae, 75(1-4):239–262, 2007.

[20] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the De-
sign of Intelligent Agents - The Answer-Set Programming Approach. Cam-
bridge University Press, 2014.

[21] H. Lebbink, C. Witteman, and J.-J. Meyer. Dialogue games for inconsistent
and biased information. Electronic Notes in Theoretical Computer Science,
85(2):134–151, 2004.

[22] R. Malouf. Maximal consistent subsets. Comput. Linguist., 33(2):153–160,
2007.

[23] J. Małuszyński and A. Szałas. Living with inconsistency and taming non-
monotonicity. In O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors,
Datalog Reloaded, volume 6702 of LNCS, pages 384–398. Springer-Verlag,
2011.

[24] J. Małuszyński and A. Szałas. Partiality and inconsistency in agents’ belief
bases. In Barbucha et al. [3], pages 3–17.

[25] V. Mascardi, D. Demergasso, and D. Ancona. Languages for programming
BDI-style agents: an overview. In F. Corradini, F. De Paoli, E. Merelli, and
A. Omicini, editors, WOA 2005 - Workshop From Objects to Agents, pages
9–15, 2005.

[26] K. Matsunaga and H. Sawamura. Aaslma: An automated argument system
based on logic of multiple-valued argumentation. In Knowledge-Based Intel-
ligent Information and Engineering Systems, volume 3684 of Lecture Notes
in Computer Science, pages 830–838. Springer, 2005.

[27] Simon Parsons and Peter McBurney. Argumentation-based dialogues for
agent coordination. Group Decision and Negotiation, 12:415–439, 2003.

[28] H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engi-
neering Review, 21(2):163–188, 2006.

[29] C. Reed and D. Walton. Towards a formal and implemented model of argu-
mentation schemes in agent communication. Autonomous Agents and Multi-
Agent Systems, 11(2):173–188, 2005.

27

[30] J. R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.

[31] A. Szałas. How an agent might think. Logic J. IGPL, 21(3):515–535, 2013.

[32] T. Takahashi and H. Sawamura. A logic of multiple-valued argumentation.
In AAMAS, pages 800–807. IEEE Computer Society, 2004.

[33] F. van Harmelen, V. Lifschitz, and B. Porter. Handbook of Knowledge Rep-
resentation. Elsevier Science, San Diego, USA, 2007.

[34] A. Vitória, J. Małuszyński, and A. Szałas. Modeling and reasoning with
paraconsistent rough sets. Fundamenta Informaticae, 97(4):405–438, 2009.

[35] D.N. Walton and E.C.W. Krabbe. Commitment in Dialogue: Basic Concepts
of Interpersonal Reasoning. State University of New York Press, Albany
(NY), 1995.

28

Perceiving Rules under Incomplete and Inconsistent
Information?

Barbara Dunin-Kȩplicz, Alina Strachocka

Institute of Informatics, University of Warsaw, Poland

Abstract. The overall goal of this research program is a construction of a para-
consistent model of agents’ communication, comprising two building blocks:
speaking about facts and speaking about reasoning rules. To construct complex
dialogues, such as persuasion, deliberation, information seeking, negotiation or
inquiry, the speech acts theory provides the necessary building material. This paper
extends the implementation of the speech act assert in the paraconsistent frame-
work, presented in our previous paper, by providing means for agents to perceive
and learn not only facts, but also rules. To this end the admissibility criterion for
a rule to be accepted has been defined and the Algorithm for Perceiving Assertions
About Rules has been proposed. A natural four-valued model of interaction yields
multiple new cognitive situations. Epistemic profiles encode the way agents reason,
and therefore also deal with inconsistent or lacking information. Communicative
relations in turn comprise various aspects of communication and allow for the
fine-tuning of applications.
The particular choice of a rule-based, DATALOG¬¬-like query language 4QL as
a four-valued implementation framework ensures that, in contrast to the standard
two-valued approaches, tractability of the model is maintained.

1 Communication under Uncertain and Inconsistent Information

The traditional approaches to modeling Agent Communication Languages settled for
the two-valued logics despite their natural modeling limitations: inability to properly
deal with lacking and inconsistent information. This work continues the subject-matter
of the paraconsistent approach to formalizing dialogues in multiagent systems in a
more realistic way [5]. The underpinning principle of this research is the adequate
logical modeling of the dynamic environments in which artifacts like agents are situated.
Agents, viewed as heterogenous and autonomous information sources, may perceive the
surrounding reality differently while building their informational stance. Even though
consistency of their belief structures is a very desirable property, in practice it is hard to
achieve: inevitably, all these differences result in the lack of consistency of their beliefs.
However, instead of making a reasoning process trivial, we view inconsistency as a
first-class citizen trying to efficiently deal with it.

There is a vast literature on logical systems designed to cope with inconsistency (see
for example [28, 33]). However none of them turned out to be suitable in all cases. As
? Supported by the Polish National Science Centre grants 2011/01/B/ST6/02769 and CORE

6505/B/T02/2011/40

2 B. Dunin-Kȩplicz and A. Strachocka

inconsistency is an immanent property of realistic domains, we lean towards a more
pragmatic and flexible solution. Assuming that we have various disambiguation methods
at hand, the flexible approach allows for an application-, situation- or context-specific
choice that does not have to be made a priori. Furthermore, there might be a benefit from
postponing the related decision as long as possible, as the new information may come
up or the agent being the cause of the conflict may change its mind.

We base our solution on a four-valued logic [12] and the ideas underlying the 4QL
query language [11, 12] which major win is that queries can be computed in polynomial
time. Tractability of 4QL stands in stark contrast to the usual two-valued approaches to
group interactions, where EXPTIME completeness of satisfiability problems is a com-
mon hindrance [7, 8]. This way an important shift in perspective takes place: rather than
drawing conclusions from logical theories we reason from paraconsistent knowledge
bases. As a great benefit, the belief revision methods turned out to be dramatically
simplified. 4QL was designed in such a way that the inconsistency is tamed and treated
naturally in the language. The application developer has a selection of uniform tools to
adequately deal with inconsistencies in their problem domain.

Building upon the 4-valued logic of 4QL, we deal with four types of situations:
– fact a holds,
– fact a does not hold,
– it is not known whether a holds,
– information about a is inconsistent.

They are confined in the four logical values: t, f, u and i, respectively (Sec. 3). In
such settings, maintaining truth or falsity of a proposition, in the presence of multiple
information sources, is challenging. Furthermore, the two additional logical values allow
to model complex interactions between agents in a more intuitive and subtle manner.

The way the individual agents deal with conflicting or lacking information is encoded
in their epistemic profile (Sec. 4) which embodies their reasoning capabilities, embracing
the diversity of agents and providing a complete agent’s characteristics. Moreover,
epistemic profiles specify agents’ communicative strategies realized with regard to
the three communicative relations between the agents involved: communication with
authority, peer to peer communication and communication with subordinate as proposed
in [5]. These in turn influence the agent’s reasoning processes and finally affect the
agents’ belief structures, i.e., their informational stance [6] (Sec. 4). In principle, various
agents may reason in completely different ways, as well as apply diverse methods of
information disambiguation.

The ultimate aim of our research program is a paraconsistent model of agents’
communication. To construct complex dialogues, such as persuasion, deliberation, in-
formation seeking, negotiation or inquiry (see [18]), the speech acts theory provides
the necessary building material. We initiated our research program [5], by proposing
a paraconsistent framework for perceiving new facts via four different speech acts: assert,
concede, request and challenge. They enable the agents to discuss their informational
stance, i.e.,:

– inform one another about their valuations of different propositions via assertions,
– ask for other agents’ valuations via requests,
– acknowledge the common valuations via concessions and
– question the contradictory valuations via challenges.

Perceiving Rules under Incomplete and Inconsistent Information 3

In the current paper the next step is taken. We allow the agents to perceive not only
new facts but also reasoning rules, which make up the epistemic profiles. To our best
knowledge, approaches to modeling communication in MAS, as a legacy of Austin
and Searle, settled for frameworks where propositions were the only valid content of
speech acts. On the other hand, argumentation about reasoning rules has been well
studied in the legal reasoning domain (see for example [26, 27, 34]). Here we intend
to bring together these two worlds by leveraging the legal argumentation theory in our
paraconsistent communication framework and therefore by allowing the agents to discuss
their reasoning rules. We attack this complex problem from analyzing how agents react
to perceiving assertions about reasoning rules: should they adopt, reject, ignore or maybe
challenge the new rule? Consequently, the paramount issue here is the formulation of the
admissibility criterion of the incoming rule (Sec. 5) as a basis to formulate the Algorithm
for Perceiving Assertions about Rules.

As we view complex dialogues as communicative games between two or more agents,
the dialogue participants, being independent information sources, try to expand, contract,
update, and revise their beliefs through communication [25]. The great advantage of our
approach is the possibility to revise the belief structures in a very straightforward way,
what will be presented in the sequel.

The paper is structured as follows. First, in Section 2, we introduce the building
blocks of our approach. Section 3 is devoted to a four-valued logic which is used
throughout the paper and to basic information on 4QL. Section 4 introduces epistemic
profiles and belief structures, whereas Section 5 outlines the communicative relations
and rule admissibility conditions. Section 6 discusses the main technical contribution of
the paper, followed by an example in Section 7. Finally, Section 8 concludes the paper.

2 Perceiving Rules

Our goal is to allow agents to communicate flexibly in the paraconsistent world. We will
equip agents with various dialogical tools for conversing about rules: from informing
or requesting information about a rule head or body, through challenging legitimacy of
a rule, to rejecting or conceding acceptance of a new rule. These all can be performed
with the use of dedicated speech acts: assert, request, challenge, reject and concede
respectively and later will be used to construct complex dialogues.

In this paper, we take the first basic step, namely, how should agents react upon
perceiving assertions (assertS,R) regarding rules (l :– b) of inference. As these are
”actions that make you change your mind” [25], we explain the process of adopting the
new rules and specifically put a spotlight on the easiness of the belief revision phase in
our approach. Therefore we ask:

– In what cases can the rules be added to the agent’s epistemic profile without
harming the existing structures?

– How does the agent’s belief structure change in response?
The merit of the rule base update in traditional approaches lies in solving inconsis-

tency that the new rule might introduce to the logical program. When creating 4QL,
the biggest effort was to ease the way we deal with inconsistency. We will exploit this
when defining the admissibility criterion for a rule to be accepted. Informally, it is meant

4 B. Dunin-Kȩplicz and A. Strachocka

to express compatibility of the rule conclusions with the current belief structure. This
compatibility is founded on the special ordering of truth values, by which we try to
achieve two goals:

– protect true and false propositions from being flooded by inconsistency and
– protect already possessed knowledge from unknown.

The execution of the admissibility criterion is the heart of the Algorithm for Perceiving
Assertions About Rules, a generalized 4-step procedure, realized via: filtering, parsing,
evaluation and belief revision. In a perfect case, agents communicate successfully, ex-
tending and enriching their knowledge. In more realistic scenarios, some communicative
actions fail, calling for a system consistency ensuring mechanism. Also, at each stage of
the algorithm, agents must know how to proceed in the lack of response.

3 A Paraconsistent Implementation Environment

In order to deal with perceiving rules, we need to introduce several definitions (in
Sections 3, 4 and 5):

– the 4-valued logic we build upon,
– the implementation tool: a rule-based query language 4QL,
– the notions of epistemic profiles and belief structures, which embody the agents’

informational stands and reasoning capabilities,
– the preserving knowledge truth ordering,
– the rule admissibility criterion.

In what follows all sets are finite except for sets of formulas. We deal with the
classical first-order language over a given vocabulary without function symbols. We
assume that Const is a fixed set of constants, Var is a fixed set of variables and Rel is
a fixed set of relation symbols. A literal is an expression of the form R(τ̄) or ¬R(τ̄),
with τ̄ ∈ (Const∪V ar)k, where k is the arity of R. Ground literals over Const, denoted
by G(Const), are literals without variables, with all constants in Const. If ` = ¬R(τ̄)

then ¬` def
= R(τ̄). Let v : V ar −→ Const be a valuation of variables.

For a literal `, by `(v) we mean the ground literal obtained from ` by substituting each
variable x occurring in ` by constant v(x). The semantics of propositional connectives is
summarized in Table 1.

Table 1. Truth tables for ∧, ∨,→ and ¬ (see [11, 12, 17]).

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

Perceiving Rules under Incomplete and Inconsistent Information 5

Definition 3.1. The truth value of a literal ` w.r.t. a set of ground literals L and valua-
tion v, denoted by `(L, v), is defined as follows:

`(L, v)
def
=

t if `(v)∈L and (¬`(v)) 6∈L;
i if `(v)∈L and (¬`(v))∈L;
u if `(v) 6∈L and (¬`(v)) 6∈L;
f if `(v) 6∈L and (¬`(v))∈L. C

For a formula α(x) with a free variable x and c ∈ Const, by α(x)xc we understand
the formula obtained from α by substituting all free occurrences of x by c. Definition 3.1
is extended to all formulas in Table 2, where α denotes a first-order formula, v is
a valuation of variables, L is a set of ground literals, and the semantics of propositional
connectives appearing at righthand sides of equivalences is given in Table 1. Observe
that the definitions of ∧ and ∨ reflect minimum and maximum w.r.t. the ordering

f < u < i < t. (1)

Table 2. Semantics of first-order formulas.

– if α is a literal then α(L, v) is defined in Definition 3.1;

– (¬α)(L, v) def
= ¬(α(L, v));

– (α ◦ β)(L, v) def
= α(L, v) ◦ β(L, v), where ◦∈{∨,∧,→};

– (∀xα(x))(L, v) = min
a∈Const

(αx
a)(L, v),

where min is the minimum w.r.t. ordering (1);
– (∃xα(x))(L, v) = max

a∈Const
(αx

a)(L, v),

where max is the maximum w.r.t. ordering (1).

From several languages designed for programming BDI agents (for a survey see,
e.g., [13]), none directly addresses belief formation, in particular nonmonotonic or de-
feasible reasoning techniques. 4QL enjoys tractable query computation and captures all
tractable queries. It supports a modular and layered architecture, providing simple, yet
powerful constructs for expressing nonmonotonic rules reflecting default reasoning, au-
toepistemic reasoning, defeasible reasoning, the local closed world assumption, etc. [11].
The openness of the world is assumed, which may lead to lack of knowledge. Negation
in rule heads may lead to inconsistencies.

Definition 3.2. By a rule we mean any expression of the form:

` :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim . (2)

where `, b11, . . . , b1i1 , . . . , bm1, . . . , bmim are (negative or positive) literals and ‘,’ and
‘|’ abbreviate conjunction and disjunction, respectively. Literal ` is called the head of
the rule and the expression at the righthand side of :– in (2) is called the body of the
rule. By a fact we mean a rule with an empty body. Facts ‘` :– .’ are abbreviated to ‘`.’.
A finite set of rules is called a program. C

6 B. Dunin-Kȩplicz and A. Strachocka

Definition 3.3. Let a set of constants, Const , be given. A set of ground literals L with
constants in Const is a model of a set of rules S iff for each rule (2) and any valuation v
mapping variables into constants in Const , we have that:

(
((b11 ∧ . . . ∧ b1i1) ∨ . . . ∨ (bm1 ∧ . . . ∧ bmim))→ `

)
(L, v) = t,

where it is assumed that the empty body takes the value t in any interpretation. C

To express nonmonotonic/defeasible rules we need the concept of modules and
external literals. In the sequel, Mod denotes the set of module names.

Definition 3.4. An external literal is an expression of one of the forms:

M.R,−M.R,M.R IN T,−M.R IN T, (3)

where M ∈Mod is a module name, R is a positive literal, ‘−’ stands for negation and
T ⊆ {f, u, i, t}. For literals of the form (3), module M is called the reference module.C

The intended meaning of “M.R IN T ” is that the truth value of M.R is in the set
T . External literals allow one to access values of literals in other modules. If R is not
defined in the module M then the value of M.R is assumed to be u.

Assume a strict tree-like order ≺ on Mod dividing modules into layers. An external
literal with reference module M1 may appear in rule bodies of a module M2, provided
that M1 ≺M2.

The semantics of 4QL is defined by well-supported models generalizing the idea
of [9]. Intuitively, a model is well-supported if all derived literals are supported by
a reasoning that is grounded in facts. It appears that for any set of rules there is a unique
well-supported model and this can be computed in polynomial time.

4 Epistemic Profiles and Belief Structures

An essential question is how to realize heterogeneity of agents in multiagent systems.
Clearly, being different, when seeing the same thing, agents may perceive it differently
and then may draw different conclusions. In order to define the way an agent reasons
(e.g., by the use of rules) and to express the granularity of their reasoning (e.g., by varying
the level of certain attributes or accuracy of rules expressing the modeled phenomena) we
introduce a notion of epistemic profile. Epistemic profiles also characterize the manner of
dealing with conflicting or lacking information by combining various forms of reasoning
(also ”light” forms of nonomonotonic reasoning), including belief fusion, disambiguation
of conflicting beliefs or completion of lacking information. Especially dealing with
inconsistency is important for us. Particular agents may adopt different general methods
of the disambiguation (like minimal change strategy) or just implement their own local,
application-specific methods via rules encoding knowledge on an expert in the field. This
way the flexibility of dealing with inconsistency is formally implemented.

As inconsistency is one of the four logical values, it naturally appears on different
reasoning levels. It may be finally disambiguated when the necessary information is in
place. This is an intrinsic property of 4QL supported by its modular architecture. As an

Perceiving Rules under Incomplete and Inconsistent Information 7

example, consider a rescue agent trying to save people from the disaster region. However
it cannot work in high temperatures. Suppose it has inconsistent information about the
temperature there. In the classical approach it would stop him from acting immediately,
while in our approach, it may proceed till the moment the situation is clarified.

Tough decisions about conflicting or missing information may be solved by the
system designer (application developer) based on their expert knowledge. For instance a
rule might say that if some external literal is inconsistent or unknown (M.l ∈ {u, i}) a
specific authority source should be consulted (alternatively, the rule cannot be applied).

The following definitions are adapted from [6], where more intuition, explanation
and examples can be found. If S is a set then by FIN(S) we understand the set of all
finite subsets of S.

Definition 4.1. Let C def
= FIN(G(Const)) be the set of all finite sets of ground literals

over the set of constants Const. Then:
– by a constituent we understand any set C ∈ C;
– by an epistemic profile we understand any function E : FIN(C) −→ C;
– by a belief structure over an epistemic profile E we mean BE = 〈C, F 〉, where:
• C ⊆ C is a nonempty set of constituents;
• F def

= E(C) is the consequent of BE . C

We alternate between the notions of the set of consequents and well-supported models.
Epistemic profile is realized via 4QL program, which may consist of several modules.

Definition 4.2. Let E be an epistemic profile. The truth value of formula α w.r.t. belief
structure BE = 〈C, F 〉 and valuation v, denoted by α(BE , v), is defined by:1

α(BE , v)
def
= α(

⋃

C∈C
C, v). C

5 Communicative Relations and Rule Admissibility Conditions

In multiagent domains many different aspects of inter-agent relations have been studied,
e.g., trust, reputation, norms, commitments. They all have a greater scope of influ-
ence than just communication. The communicative relations we propose below, can
be viewed as selective lens, through which we can see only these parts of the relations
involved, which affect communication. They were introduced in [5] for guarding agents’
informational stance. Now we extend our perspective to cover also reasoning rules:
1. communication with authority: an agent (receiver) is willing to evaluate the interlocu-

tor’s (sender, authority) rules even if they contain unknown premises or unknown
conclusions,

2. peer to peer communication: both parties are viewed as equally credible and im-
portant information sources, therefore nobody’s opinion prevails a priori. Unknown
premises should be resolved before checking the admissibility of the rule. Whereas
to recognize unknown conclusions, different application-specific solutions might be
applied (see Algorithm 1).

1 Since
⋃

C∈C
C is a set of ground literals, α(S, v) is well-defined by Table 2.

8 B. Dunin-Kȩplicz and A. Strachocka

3. communication with subordinate: when dealing with a less reliable source of in-
formation, the receiver with an authority would not be willing to risk his beliefs’
and epistemic profile consistency. He would evaluate the new rule only when the
conclusions are known (i.e. he would not learn new concepts from the subordinates).

In all cases, whenever the rule makes through to Evaluation and the admissibility
criterion holds, the agents accept the new rule regardless the communicative relation.
Otherwise, when the rule is not admissible, the interested agents engage in conflict
resolution via challenge. Recall, that during the complex communication processes, we
intend to protect the already possessed knowledge from unknown and ensure that true
or false propositions are abandoned for good reasons solely. This is reflected in the
knowledge preserving ordering ≤k on the truth values (Fig. 1).

1

u

i

ft

Fig. 1. Knowledge ordering ≤k

Dealing with unknown information is a delicate matter. Indeed, accepting rules
with unknown literals is risky for the receiver. If the valuation of the unknown literal
is finally established as the sender intended, the receiver’s resulting belief structure
might no longer be compatible. We solve this problem on a meta-level utilizing the
communication relations: rules containing unknown premises are evaluated only when
the sender is an authority. Otherwise, the unknown premises need to be resolved first.

As epistemic profiles are 4QL programs, adding a rule to an epistemic profile amounts
to adding that rule to the specific module in the program.

Definition 5.1. We define an operation of adding a ruleMi.` :– b to an epistemic profile
E = {M1, ...,Mn} as follows:

E ′ = E ∪ {Mi.` :– b} = {M1, ...,Mi−1,Mi ∪ ` :– b,Mi+1, ...,Mn}
Definition 5.2. Let v be a valuation, l a literal, Ci the set of constituents, Fi the set of
consequents, Ei the epistemic profile and Bi the belief structure for i ∈ {a, b}. Belief
structure BEbb = 〈Cb, Fb〉 is compatible with belief structure BEaa = 〈Ca, Fa〉 iff.

∀` ∈ Fa ∩ Fb `(BEaa , v) ≤k `(BEbb , v).

Definition 5.3. Let C be a set of constituents, F, F ′ sets of consequents, E , E ′ the
epistemic profiles. Rule ` :– b is compatible with belief structure BE = 〈C, F 〉, where
F = E(C) iff. belief structure BE is compatible with belief structure BE′ = 〈C, F ′〉,
such that: E ′ = E ∪ {` :– b}, F ′ = E ′(C).

We will allow for a rule to be added into agent’s epistemic profile only if it is
compatible with the agent’s current belief structure.

Perceiving Rules under Incomplete and Inconsistent Information 9

6 Perceiving Assertions About Rules: the Algorithm

In our framework we deal with five different speech acts: assert, concede, request, reject
and challenge (see Table 3), which allow us to characterize the way the 4QL agents
communicate. Below, we present the Algorithm of Perceiving Assertions About Rules.
The algorithm, viewed as a complex action, determines what move should an agent make
after perceiving an assertion about a reasoning rule. It comprises four phases: filtering
(Subsection 6.1), parsing (Subsection 6.2), evaluation (Subsection 6.3) and belief revision
(Subsection 6.4). Filtering restricts the amount of incoming information, Parsing, in
addition, provides means for investigating the message’s content. In Evaluation the new
rule is examined against the admissibility criterion and in Belief Revision, the resulting
belief structure is computed on the basis of the new set of rules.

Filtering and Parsing are more tied to a specific application. In the case of Filtering,
the implementations may vary from no filtering at all, to advanced solutions where both
properties of the message and the current beliefs of the agent are considered. In the
Parsing phase we intended to accent the general concepts, like the importance of the
proper treatment of the unknown literals, and leave some space to application dependent
decisions. In this spirit we have investigated rules in four conceptual groups depending
on the location of the unknown literals in the rule head or body, and proposed a specific
solution for dealing with unknown with the use of communicative relations.

In the case of Evaluation and Belief Revision, the solution has a general flavor. As
explained in Section 5, the special truth ordering serves as a means to adequately identify
possible conflicts or threats to the system, which the new rule might introduce. Thanks
to the properties of 4QL, the evaluation of the admissibility criterion is straightforward
and the conflicting region can be easily determined by comparing the original and the
resulting belief structures. Then, the agent knows if it can harmlessly add the new rule or
whether it should engage in a conflict resolution dialogue. Finally, the Belief Revision,
as advocated before, is also a general procedure that, based on the Evaluation result,
should generate a new belief structure, compatible with the previous one.

Table 3. Speech acts and their intended meaning.

assertS,R(l :– b) Sender S tells the Receiver R the rule l :– b
concedeS,R(l :– b) Sender S tells the Receiver R that it agrees with the rule l :– b
rejectS,R(l :– b) Sender S tells the Receiver R that it could not accept the rule l :– b
challengeS,R(l :– b) Sender S tells the Receiver R that it disagrees with the rule l :– b and

asks for its justification
requestS,R(l) Sender S asks the Receiver R information about l

6.1 Filtering

The aim of the filtering phase is to restrict the amount of incoming information and to
guard its significance. During this step, the agent filters out noise, unimportant, resource-
consuming, or harmful messages. To this end, different properties of the perceived
message play a role: the sender, the type of the speech act, the context of the message,
etc. Accordingly, different filtering mechanisms can be implemented in 4QL as separate
modules, e.g., a module for communicative-relations-based filtering.

10 B. Dunin-Kȩplicz and A. Strachocka

If a message makes through Filtering barrier to the Parsing phase, that means it is
relevant and significant enough for the agent to consume its resources for handling it.

6.2 Parsing

The goal of parsing is to dissolve a rule into literals and to identify the unknown literals.
Then, the receiver’s reaction depends both on the communicative relation with the sender
and on the rule itself, distinguishing the cases presented below.

Rule head is unknown, rule body is known This means, that the agent recognizes all
the premises separately: all the literals in the rule body are either true, false or inconsistent.
The novel assembly of literals leads to a new, unknown beforehand conclusion and may
be viewed as learning the new concept.

Example 6.1. Let module Tom contain only the following facts: use(hammer, nail),
nail, hammer, painting, and a rule: hanger :– nail, hammer, use(hammer, nail).
In other words, Tom has a nail, a hammer and a painting, and he can use the hammer and
the nail. The rule signifies that Tom can make a hanger if he has a nail and a hammer
and he can use them. Suppose Bob has uttered a new rule:

hangingPainting :– hanger, painting.

The rule states that that one can achieve a hanging painting if he has a painting and a
hanger. For Tom, the rule body is known (literals painting and hanger are true in
Tom’s belief structure), but the rule head is unknown. If Tom accepts the new rule he
would learn how to hang a painting.

Rule head is known, rule body is unknown This situation relates to the case when
some of the premises are unknown, but the conclusion is known. That may be described
as widening the knowledge, or making it more detail. Depending on the communication
relation, the unknown literals in the rule body can be treated as a possible threat to the
consistency of the agent’s beliefs (if the sender is a peer or a subordinate) and therefore
need further investigation. Alternatively, in case of communication with an authority,
the unknowns need not to be resolved a priori (the sender might for example want to
communicate some regulations regarding upcoming events, for which some literals’
valuations cannot be known beforehand). Here we follow the philosophy of exploiting
communicative relations as explained in Section 5.

Example 6.2. Continuing the example from above, the module now contains the follow-
ing two rules (one known before, one just learnt):

hanger :– nail, hammer, use(hammer, nail).

hangingPainting :– hanger, painting.

Suppose Bob has uttered another rule:
hanger :– nail, hammer | borrow(hammer), use(hammer, nail).

The rule states, that in order to build a hanger one must have a nail, must know how to use
the hammer and the nail, as well as must have a hammer or borrow one. In this case, the
rule head is known (hanger is true), but the rule body is not known (borrow(hammer)).
If Tom accepts this rule, he would learn another way to build a hanger.

Perceiving Rules under Incomplete and Inconsistent Information 11

Rule head is known, rule body is known Philosophically, such situation pertains
to two different cases: the incoming rule is known already, or the incoming rule
combines previously known literals as premises (Eureka!). That may be described
as knowledge discovery.

Example 6.3. If Bob says: hammer :– hanger, nail, use(hammer, nail), both the
head and the body of the rule are known to Tom, which of course does not mean Tom
should adopt this rule immediately.

Rule head is unknown, rule body is unknown In that case, the agent is overburdened
with new information and, when communicating with a peer or subordinate, should start
from resolving the unknown premises first. However, if the sender was an authority, such
a rule may get through Parsing to Evaluation.

Example 6.4. If Bob says: pancake :– flour, egg, milk, pan, stove, Tom does not
know any of the literals.

Searching for the meaning of the unknown premises requires a sort of information
seeking phase (dialogue). This in turn may fail, leading to the rejection of the rule
in question. In the course of dialogue the belief structures could evolve, calling for
a repetition of the whole procedure, for example, when the sender turned out to be
unreliable it is important to perform filtering anew.

If a message makes through Parsing to Evaluation, that means, the agent has all the
means to properly evaluate the rule in its belief structure.

6.3 Evaluation

The evaluation stage is the one when the decision about adopting the new rule is made.
The agent needs to verify if it can harmlessly add the rule in question to its epistemic
profile. The outcome of this process can be twofold:

– if the rule provides conclusions compatible with current beliefs: admit it,
– if the rule provides conclusions incompatible with current beliefs: if possible, try to

resolve the contradictions and otherwise reject the rule.

The rule is compatible with the current beliefs, if when added to agent’s current epis-
temic profile, makes the resulting belief structure compatible with the current structure
(see Definition5.3). Thus, all literals that were true or false, remain true or false, respec-
tively. Literals that were inconsistent may become true, false, or remain inconsistent.
Literals that were unknown may become true, false, inconsistent or remain unknown.

Similarly to the Filtering phase, the possibility of challenging the sender about the
rule in question opens the doors for failures. In case of communication problems, or
system-specific parameters such as timeouts, the challenge might fail forcing the agent
to reject the rule in question. However, a successful completion of a challenge is always
a one-side victory:

– either the challenging agent won (the receiver of the rule), and therefore the rule
was not legitimate to accept,

12 B. Dunin-Kȩplicz and A. Strachocka

– or the opponent won (the sender of the rule) and the receiver has been convinced to
accept the rule.

The messages exchanged in this process might have changed the belief structures of
communicating agents. In case the challenging agent won, it may terminate the process,
even without explicitly rejecting the rule, as the opponent is perfectly clear of the defeat.
In case the challenging agent lost, it means that for its new belief structure the rule
in question is no longer incompatible. It may proceed to the Belief Revision phase.
Challenges about the rules are subject of the upcoming article, but see [5].

If a message makes through Evaluation to Belief Revision, it means the admissibility
criterion is met.

6.4 Belief Revision

The aim of belief revision stage is to update the belief structure according to the rule
and type of speech act. In case of assertions, agent’s individual beliefs as well as shared
beliefs must be refreshed. For concessions, only the shared belief base gets updated.

We do not present a new semantics for belief revision2. It is rather a technical means
to verify to what extent do the new rules interfere with the previously obtained belief
structures. When computing the new belief structures, still the information might be
lacking and the inconsistencies may occur. In fact this is the merit of our approach. Later
on the modular architecture of 4QL allows for dealing with inconsistencies differently
on various layers. Afterwards the update of the rule base is almost trivial: if suffices
to compute the new well-supported model, which is in P-Time. Of course, there is
space for improvement, for instance by examining only the fragments of the previous
well-supported model, which would provide better results. However in the worst case
still no better than P-Time can be achieved.

In the case of a successful belief revision, an acknowledgement in form of the
concession speech act must be sent, in order to notify the sender about the agreement
about the rule. A failure at this stage is a very rare incident, however, might happen (if
for example the program running the agent is manually killed) and would cause a fatal
error, for which to recover from, special means are needed.

If a message makes through Belief Revision, that means, that the rule has been
successfully integrated with the current knowledge and the appropriate acknowledgement
has been sent to whom it may concern.

6.5 The Algorithm

The Perceiving Assertions About Rules Algorithm takes the following input parameters:

– ` :– b. A rule with a body b = b11, . . . , b1i1 | . . . | bm1, . . . , bmim and a head `,
wrapped up in a speech act assert.

– S. The sender of the message.
– R. The receiver of the message.
– E . Agent’s R epistemic profile.
– BER = 〈CR, FR〉. Agent’s R belief structure.
– applicationType. Application type.

2 For literature see [29–32]

Perceiving Rules under Incomplete and Inconsistent Information 13

Algorithm 1 Perceiving Assertions About Rules Algorithm
1: procedure PERCEIVE(S, R, `, b, E , BE

R, applicationType)
2: [Filtering]
3: if FilteringModule.allow(speechAct=SA, sender=S, . . .) IN{f} then
4: go to [End]
5: end if
6: [Parsing]
7: [Case 1] . rule head and body recognized
8: if l ∈ FR ∧ ∀

j ∈ 1..m, k ∈ 1..im

bjk ∈ FR then . l, bjk ∈ {t, f, i}
9: go to [Evaluation]

10: [Case 2] . only rule body recognized
11: else if ∀

j ∈ 1..m, k ∈ 1..im

bjk ∈ FR then . l = u, bjk ∈ {t, f, i}
12: switch applicationType do
13: case ”exploratory”:
14: 〈BE

R1
, result〉 ← InformationSeekingAbout(l)

15: if result ==success then restart(BE
R1

) . possibly new belief structure
16: else plug-in custom solutions here
17: end if
18: case ”real time”: go to [Evaluation]
19: case ”other”: send(rejectR,S(` :– b)

20: [Case 3] . only rule head recognized
21: else if l ∈ FR then . l ∈ {t, f, i}, bjk = u
22: if communicativeRelation(S) == ”authority” then
23: go to [Evaluation]
24: else
25: for all j, k : bjk = u do . execute in parallel
26: 〈BE

R2
, result〉 ← send(requestR,S(bjk))

27: if result ==success then restart(BE
R2

) . new belief structure
28: else send(rejectR,S(` :– b))
29: end if
30: end for
31: end if
32: [Case 4] . rule head and rule body unknown
33: else . l, b = u
34: go to [Case 3] . resolve the body first
35: end if
36: [Evaluation]
37: if l ∈ FR then . rule head known: check if the rule is admissible
38: ETEST ← E ∪ {` :– b} . add the rule to a candidate epistemic profile
39: FRTEST ← ETEST (C)
40: BE

RTEST
← 〈CR, FRTEST 〉 . compute the candidate belief structure

41: if incompatible(BE
RTEST

, BE
R) then . try to resolve the problem

42: 〈BE
R3
, result, winner〉 ← send(challengeR,S(` :– b))

43: if result ==success then
44: if winner == R then . the rule was not admissible
45: go to [End]
46: else restart(BE

R3
) . the opponent won, restart with the new belief structure

47: end if
48: else send(rejectR,S(` :– b)
49: end if
50: else go to [BeliefRevision] . belief structures compatible
51: end if
52: else . rule head unknown
53: switch communicativeRelation(S) do
54: case ”authority”: go to [BeliefRevision]
55: case ”peer”: plug-in custom solutions here
56: case ”subordinate”: go to [End]
57: end if

14 B. Dunin-Kȩplicz and A. Strachocka

Algorithm 2 Perceiving Rules Algorithm (continued)
58: [BeliefRevision]
59: E ← E ∪ {` :– b} . add the rule to the epistemic profile
60: FR ← E(C)
61: BE

R ← 〈CR, FR〉 . compute the new belief structure
62: send(concedeR,S(` :– b))
63: [End]
64: end procedure

7 Example

Let us present a more thorough example demonstrating some of the cases described
above. Recall, that Tom is an agent realized3 via 4QL program outlined in Figure 2.

module tom:
relations: a(literal), use(literal, literal), borrow(literal).
rules:

a(hanger) :- a(nail), a(hammer), use(hammer, nail).
a(X) :- borrow(X).

facts:
a(nail).
a(hammer).
a(painting).
use(hammer, nail).

end.

Fig. 2. Example of a 4QL program realizing agent Tom.

Tom’s epistemic profile consist of four facts (hammer, painting, use(hammer, nail),
nail), and two rules: one, describing his ability to borrow things and the other, depicting
how to make a hanger. Tom’s belief structure (the well-supported model) is:

BT = {nail, hammer, painting, use(hammer, nail), hanger}

Suppose Bob has uttered the following rule (see Section 2):

assertB,T (hangingPainting :– hanger, painting.)

The rule head is unknown to Tom (it is absent from his belief structure: BT) but the
rule body is recognized: both literals are in the belief structure (but notice that hanger is
not a fact from the epistemic profile). According to the algorithm, Tom needs to exercise
the admissibility criterion for the new rule. He adds the rule to his candidate epistemic
profile and computes the new belief structure:

B′T = {nail, hammer, painting, use(hammer, nail), hanger, hangingPainting}

Now, B′T is compatible with BT , because all literals that were true remained true
and one literal which was unknown is now true. Tom concludes that he can add the rule

3 For modeling and for computing well-supported models we use the 4QL interpreter, developed
by P. Spanily. It can be downloaded from http://www.4ql.org/ .

Perceiving Rules under Incomplete and Inconsistent Information 15

to his epistemic profile permanently. In this way, Tom learnt how to achieve something
from already available means.

Another interesting case concerns agents’ ability to learn alternative ways of achiev-
ing goals. In Figure 3 the new module Tom, equipped with the newly learnt rule is
presented. Consider now the case that Tom does not have the hammer at hand (fact
hammer is false). Tom’s new belief structure is the following:

B′′T = {nail,¬hammer, painting, use(hammer, nail)}

module tom:
relations: a(literal), use(literal, literal), borrow(literal).
rules:

a(hangingPainting) :- a(hanger), a(painting).
a(hanger) :- a(nail), a(hammer), use(hammer, nail).
a(X) :- borrow(X).

facts:
a(nail).
-a(hammer).
a(painting).
use(hammer, nail).

end.

Fig. 3. Tom with a new rule added, but without the hammer.

Suppose Bob has uttered the following rule, providing another way to achieve a hanger:

hanger :– nail, hammer | borrow(hammer), use(hammer, nail).

All literals are known to Bob, so the candidate belief structure B′′′T can be computed:

B′′′T = {nail,¬hammer, painting, use(hammer, nail)}
The new rule can be safely added to Tom’s epistemic profile. Notice that if Tom

borrowed the hammer (a fact borrow(hammer) was added to Tom’s epistemic profile), he
would achieve hangingPainting now (see BT ′′′

borrowed
). It would have been impossible

without the new rule from Bob (compare with BT ′′
borrowed

):

BT ′′′
borrowed

= {nail, hammer,¬hammer, borrow(hammer), painting, use(hammer, nail),

hanger, hangingPainting}

BT ′′
borrowed

= {nail, hammer,¬hammer, borrow(hammer), painting, use(hammer, nail)}

16 B. Dunin-Kȩplicz and A. Strachocka

8 Discussion and Conclusions

This paper aligns with our ultimate research goal, namely, a paraconsistent model of
agents’ communication. In order to construct complex dialogues, the speech acts theory
provides the necessary building material. We initiated our research program by proposing
a paraconsistent framework for perceiving new facts via four different speech acts: assert,
concede, request and challenge [5]. In this work we make a second step by allowing the
agents to perceive assertions about reasoning rules as well.

The application of Speech Acts theory to communication in MAS dates back to late
20th century [19]. Since then it proved to be a practical tool for creating various agent
communication languages such as KQML and FIPA ACL [10] as well as formal models
of dialogues [1, 14, 15, 24].

Perceiving new information, whether it is some previously unknown fact, a new
valuation of a proposition, or a reasoning rule, typically requires belief revision [21]. Our
implementation tool of choice, the rule-base query language 4QL was designed in such
a way that the inconsistency is tamed and treated naturally in the language. As a great
benefit, belief revision turned out to be dramatically simplified and obtained in P-Time.

In this paper we focus on the case, when the information in question reflects the
procedural component on the agents’ epistemic profile, namely: the rules. This subject
has hitherto received little attention. Even though in [22], a cooperative rule learning
approach for exchanging sets of rules among agents has been presented and in [23], a
formalism has been proposed that allows for discussing inference rules acceptability by
agents, none of the approaches deals explicitly with unknown and possibly inconsistent
information. Trying to fill this gap in [5] and our recent paper, the next step will concern
challenging rules. In this context the aspect of validity and sensibility of the rules
themselves, which wasn’t treated here, will be vital.

References

1. K. Atkinson, T. Bench-Capon, and P. McBurney. Computational representation of practical
argument. Synthese, 152:157–206, 2005.

2. J. L. Austin. How to Do Things with Words. Clarendon Press, Oxford, second edition, 1975.
Edited by J. O. Urmson and M. Sbisa.

3. S. de Amo and M. Pais. A paraconsistent logic approach for querying inconsistent databases.
International Journal of Approximate Reasoning, 46:366–386, 2007.

4. F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Creating collective intention through
dialogue. Logic Journal of the IGPL, 9:145–158, 2001.

5. B. Dunin-Kȩplicz, A. Strachocka, A. Szałas and R. Verbrugge. Perceiving Speech Acts under
Incomplete and Inconsistent Information. KES AMSTA, Frontiers of Artificial Intelligence
and Applications 252, s. 255-264, IOS Press, 2013.

6. B. Dunin-Kȩplicz and A. Szałas. Epistemic profiles and belief structures. KES-AMSTA,
Lecture Notes in Computer Science 7327, s. 360-369, Springer-Verlag, 2012.

7. D.Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed EXPTIME-
complete. Journal of Logic and Computation, 16(6):765–787, 2006.

8. M. Dziubiński, R. Verbrugge, and B. Dunin-Kȩplicz. Complexity issues in multiagent logics.
Fundamenta Informaticae, 75(1-4):239–262, 2007.

9. F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science, 1:51–60, 1994.

Perceiving Rules under Incomplete and Inconsistent Information 17

10. FIPA. 2002. http://www.fipa.org/.
11. J. Małuszyński and A. Szałas. Living with inconsistency and taming nonmonotonicity. In

O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors, Datalog 2.0, volume 6702 of
LNCS, pages 384–398. Springer-Verlag, 2011.

12. J. Małuszyński and A. Szałas. Partiality and Inconsistency in Agents’ Belief Bases. KES-
AMSTA, Frontiers of Artificial Intelligence and Applications 252, s. 3-17, IOS Press, 2013.

13. V. Mascardi, D. Demergasso, and D. Ancona. Languages for programming BDI-style agents:
an overview. In F. Corradini, F. De Paoli, E. Merelli, and A. Omicini, editors, WOA 2005 -
Workshop From Objects to Agents, pages 9–15, 2005.

14. S. Parsons and P. McBurney. Argumentation-based dialogues for agent coordination. Group
Decision and Negotiation, 12:415–439, 2003.

15. H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review,
21(2):163–188, 2006.

16. J. R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.
17. A. Vitória, J. Małuszyński, and A. Szałas. Modeling and reasoning with paraconsistent rough

sets. Fundamenta Informaticae, 97(4):405–438, 2009.
18. D. Walton and E. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal

Reasoning. State University of New York Press, Albany (NY), 1995.
19. Cohen, Philip R. and Levesque, Hector J. Rational interaction as the basis for communication.

Technical Report 433, SRI International, Menlo Park, (CA), 1988
20. M. Kaiser and R. Dillmann and O. Rogalla. Communication as the basis for learning in

multi-agent systems ECAI 96 Workshop on Learning in Distributed AI Systems, 1996
21. Fabio Paglieri and Cristiano Castelfranchi. Revising Beliefs Through Arguments: Bridging the

Gap between Argumentation and Belief Revision in MAS Proceedings of the 1 st workshop on
Argumentation in MAS (ArgMAS), 2004, 78–94, Springer

22. S. Costantini. Learning by knowledge exchange in logical agents WOA 2005: Dagli, 2005
23. Peter Mcburney and Simon Parsons. Tenacious Tortoises: A formalism for argument over

rules of inference Computational Dialectics (ECAI 2000 Workshop), 2000
24. Munindar Singh. A semantics for speech acts Annals of Mathematics and Artificial Intelli-

gence, Springer Netherlands, 1012-2443, 47–71, 1993
25. Linder, B. and Hoek, W. and Meyer, J.-J.Ch. Actions that make you change your mind. KI-95:

Advances in Artificial Intelligence, 98:185–196, 1995.
26. Henry Prakken. Modelling Reasoning about Evidence in Legal Procedure. Proceedings of

the Eighth International Conference on Artificial Intelligence and Law, 119–128, 2001.
27. Bench-Capon, T.J.M. and Prakken, H. Using Argument Schemes for Hypothetical Reasoning

in Law. Artificial Intelligence and Law, 18(2), 153-174, 2010.
28. D. Gabbay and A. Hunter, Making Inconsistency Respectable: A Logical Framework for

Inconsistency in Reasoning, Part I - A Position Paper. Fundamentals of Artificial Intelligence
Research: International Workshop FAIR’91 Proc., 19-32, 1991.

29. M. Winslett, Updating logical databases. Cambridge University Press, 1990.
30. van Harmelen, Frank, Lifschitz, Vladimir, Porter and Bruce, Handbook of Knowledge

Representation, Elsevier Science, 2007.
31. J. J. Alferes, J. A. Leite , L. M. Pereira, H. Przymusinska and T. C. Przymusinski, Dynamic

Logic Programming, Procs. of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning, Trento, Italy, pp. 98-109, 1998.

32. J. J. Alferes, A. Brogi, J. A. Leite and L. M. Pereira, Evolving Logic Programs, 8th European
Conference on Logics in Artificial Intelligence (JELIA’02), pp. 50-61, LNCS 2424, 2002.

33. Béziau, Jean-Yves and Carnielli, Walter Alexandre and Gabbay, Dov M, Handbook of
paraconsistency, College publications, 2007.

34. D. Walton, C. Reed and F. Macagno, Argumentation Schemes, Cambridge University Press,
2008.

Web Intelligence and Agent Systems: An International Journal 5 (2015) 1–5 1
IOS Press

Paraconsistent Argumentation Schemes 1

Barbara Dunin-Kȩplicz a and Alina Strachocka a,⇤
a Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
E-mail: {keplicz,astrachocka}@mimuw.edu.pl

Abstract
Various types of everyday arguments are represented as argumentation schemes, originating from the Legal Argumentation

literature. The recent achievements in this domain can be applied to multi-agent settings to enrich the paradigmatic aspects of
communication and reasoning. Agents typically populate complex environments where incompleteness and inconsistency of
information is rather a rule than exception. Although the problem how to tackle inconsistencies is already present in argumen-
tation, a paraconsistent (that is, tolerating inconsistency) approach is still missing from the literature. The contribution of this
research is a computationally-friendly framework for formalizing paraconsistent argumentation schemes. This is achieved by
extending agent’s reasoning capabilities with non-deductive methods rooted in argumentation. To this end we provide a generic
paraconsistent program template for implementation of various argumentation schemes.

Our methodology is strongly influenced by ideas underlying 4QL: a four-valued, rule-based, DATALOG¬¬-like query lan-
guage. Thanks to its properties, the tractability of the solution (so hardly obtainable in logical modeling) has been reached. The
paper concludes with examples of several paraconsistent argumentation schemes implemented in 4QL.

Keywords: multi-agent systems, communication, nonmonotonic reasoning, paraconsistent argumentation schemes

1. Modeling Assumptions

The logical modeling of complex phenomena ap-
pearing in the context of intelligent distributed sys-
tems sometimes lacks realism. What emerges, is of-
ten both computationally complex and idealized theo-
ries not fitting well the modeled reality. A great deal of
this mismatch lies in the quality of information avail-
able in dynamic and unpredictable environments. In-
telligent agents, viewed as autonomous information
sources, may perceive the surrounding reality differ-
ently while building their informational stance. The in-
formation they need to handle comes from multiple
sources of diverse credibility, quality or significance.
Even though consistency of their beliefs is a desirable
property, in practice it is hard to achieve. Thus, when
modeling real-world situations, ignorance and incon-

1Supported by the Polish National Science Centre grant
2015/17/N/ST6/03642

*Corresponding author. E-mail: astrachocka@mimuw.edu.pl

sistency of information occurs naturally. However, in-
stead of making a reasoning process trivial, what is
a hindrance in classical logical systems, we view in-
consistency as a first-class citizen and try to efficiently
deal with it. This leads to creating logical systems
which tolerate inconsistencies, i.e., to paraconsistent
systems. On the other hand, as missing knowledge can
be completed and inconsistent information can be dis-
ambiguted, the realistic modeling of agency requires
nonmonotonic reasoning mechanisms, where new in-
formation may invalidate previously obtained conclu-
sions. Such approach to lacking and inconsistent in-
formation is the basis of realistic models of agency.
Despite the rich field of non-monotonic reasoning and
paraconsistent formalisms (see Section 1.1 and 1.2 for
a survey), in general a tractable approach that com-
bines both aspects was missing from the multi-agent
systems (MAS) literature.

The approaches to modeling agency typically fea-
ture the informational and motivational stance of an
agent, comprising beliefs, intentions and commitments.

1570-1263/15/$17.00 c� 2015 – IOS Press and the authors. All rights reserved

2 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

From multiple available frameworks (see a discussion
about realistic models of agency in Section 1.3), our
solution falls into the category of rule-based systems:
we associate individual agents with programs com-
posed of a set of facts and reasoning rules organized
into a layered architecture by the use of modules.

To reflect the diversity of possibilities we view
agents as heterogeneous reasoners. Following Dunin-
Kȩplicz and Szałas [20], the way the individual agents
deal with conflicting or lacking information is encoded
in their epistemic profile (see Section 3). Typically,
an epistemic profile embodies agents’ reasoning capa-
bilities. These in turn influence the agent’s deductive
processes to finally affect their belief structures, i.e.,
agents’ informational stance [20]. Moreover, various
agents may reason differently using diverse methods
of information disambiguation.

This paper is a part of a larger research program,
whose overall goal is a creation of a paraconsistent
model of agents’ communication, suitable for deal-
ing with unsure and incomplete information especially
in applications related to multi-agent systems. Gen-
erally, MAS are created for the synergistic effect of
collaborating agents, thus their essence is complex in-
teractions. They are vital to the paradigmatic activi-
ties like coordination, collaboration and negotiation,
which naturally include phases of communication and
reasoning. Therefore, an adequate modeling of com-
munication is one of the challenges in building au-
tonomous agents.

Communication has a long tradition as an important
topic in computer science, specifically in (distributed)
artificial intelligence and recently in MAS [45,14].
Starting from fixed communication protocols in dis-
tributed systems, we now attempt to approach flexible
dialogues among agents (see e.g., [13]). To achieve the
goal of agents communicating freely in the paraconsis-
tent world, we build upon Austin and Searle’s theory of
speech acts [44,2] and Walton and Krabbe semi-formal
theory of dialogue [55]. We view the dialogue par-
ticipants as independent information sources, which
try to expand, contract, update, and revise their be-
liefs through communication. Taking this perspective,
speech acts are "actions that change your mind" [52]
and provide the necessary building blocks to construct
complex dialogues, such as information seeking, in-
quiry, persuasion, negotiation or deliberation.

We have initiated our research program, by propos-
ing a paraconsistent framework for perceiving new
facts [18]. That enabled the agents to discuss their in-
formational stance, i.e.,:

– inform one another about values of different
propositions via assertions,

– ask for other agents’ values via requests,
– acknowledge the common values via conces-

sions, and
– question the contradictory values via challenges.

The second step was a preliminary analysis on com-
munication involving reasoning rules [16]. In that pa-
per, a model for assertions and concessions regarding
reasoning rules was proposed, permitting the agents to
accept or reject another agent’s reasoning rule accord-
ing to a defined admissibility criterion. Recently, these
building blocks were used to construct tractable, sound
and complete inquiry dialogues in the paraconsistent
settings [23]. In the current paper we show how to ex-
tend agent’s reasoning capabilities with non-deductive
methods like argumentation skills, which will later
enable agents to conduct arguments over reasoning
rules. To this end, we study so-called argumentation
schemes [56] (see Section 1.3).

Indeed, the question whether to adopt, challenge
or reject a reasoning rule has no single straightfor-
ward answer. This issue has been studied from mul-
tiple angles. In the Belief Revision approach the in-
fluence of reasoning rules on agents’ knowledge bases
was studied. Our solution proposed in [16] followed
this approach. A different approach leverages the so-
cial choice theory methods where the decision about
the admissibility of a rule is made on the social level
(see e.g., [22]). Finally, yet another research thread
concerns the methods originating form the Legal Rea-
soning, where argumentation schemes are proxies for
an ontology of reasoning methods. In such approach
a reasoning rule can be accepted if it is an instance (or
a template) of an established argumentation scheme.

1.1. Paraconsistency in Multi-agent Settings

In real-world applications one should accept uncer-
tainty and inconsistency of information, assuming that
four types of situations may occur:

– fact a holds,
– fact a does not hold,
– it is not known whether a holds (no source has

any information about a),
– information about a is inconsistent (some sources

claim a holds, other that a does not hold).

Modeling assumptions of this research require the
use of a paraconsistent and paracomplete formalism.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 3

Put crudely, paraconsistency is a property of logics
whose logical consequence relation is not explosive
(i.e., where ex contradictione quodlibet (ECQ) does
not hold). Indeed, the principle of explosion is contro-
versial to paraconsistent logicians who argue that "the
move from a contradiction to an arbitrary formula does
not seem like reasoning" and provide examples of such
absurd "proofs" [40].

Needless to say, paraconsistency was studied from
multiple angles (see e.g., [26,7,11,40] for paraconsis-
tent reasoning techniques):

– discussive logic of Jaśkowski [27] aimed at ensur-
ing that contradictory sentences do not arise by
blocking the rule of adjunction;

– preservationist school of Schotch and Jennings [43]
for reasoning with consistent subsets of pre-
misses;

– relevance logics (Orlov, Belnap, Anderson, see [1]
and references therein) required that premisses
are relevant to the conclusion;

– C-System of da Costa [10] (and its generalization:
logics of formal inconsistency) allowed to distin-
guish consistent sentences from inconsistent ones
and reason about them differently;

– Priest’s logic of paradox [38] utilized third truth
value (both) and identified designated values
(true, both) to allow reasoning about paradoxes;

– logic of Belnap [3] added unknown and inconsis-
tent truth values to reason about information from
many sources.

Although to model phenomena such as lack and in-
consistency of information, the Belnap’s four-valued
logic is commonly used, it often provides counter-
intuitive results in ares we focus on (see [15,53] for
details). Let us recall the well-known example to show
one problematic situation.

Example 1 A family owns two cars: c1 and c2. Then,
safe(c1)_ safe(c2) expresses whether the family has
a safe car. The safety of car c1 was checked by two
different mechanics m1 and m2. The first expert m1

confirmed the safety of the car but the second ex-
pert m2 denied the car is safe. Car c2 has not gone
through any safety tests yet. Thus, the truth values
of safe(c1) and safe(c2) are: i and u respectively.
When _ is defined by Belnap’s truth ordering, we get
safe(c1) _ safe(c2) = i _ u = t. However, due to
contradictory results of safety tests, the safety of car
c1 is unclear. Moreover, we know nothing about safety
of car b. Similar example shows that also Belnap’s ^
operator yields counter-intuitive results.

The logic underpinning our implementation tool
(see Section 5) does not share such problems therefore
is better suited for this research.

1.2. Nonmonotonic Reasoning in Agency

The second important aspect of realistic modeling
is allowing that "additional information may invalidate
conclusions" [50]. Indeed, agents are situated in envi-
ronments where only incomplete information is avail-
able, so any monotonic formalism (where new infor-
mation never invalidates conclusions) is inadequate to
capture this phenomenon.

Currently, there is a variety of nonmonotonic tech-
niques (see e.g. Chapter 6 in [50] for general non-
monotonic/defeasible reasoning techniques):

– Reiter’s default reasoning [41], consisting of ap-
plying defaults, i.e., meta-rules of the form "in
the absence of any information to the contrary as-
sume ..." [50];

– Closed World Assumption (CWA) [42], to repre-
sent how databases handle negative information;

– Moore’s autoepistemic logic [34] to formalize
how perfectly rational agents form beliefs;

– McCarthy’s Circumscription [33] to model "jump-
ing to conclusions" by minimizing the extent of
abnormal predicate;

– Preferential models [28] based on preference re-
lation expressing typicality of possible worlds
(e.g., Shoham’s preference logic);

– Nute’s Defeasible Logic [35] encompassing strict
and defeasible rules together with a preference re-
lation among defeasible rules.

As typically these nonmonotonic techniques were de-
signed to formalize phenomena appearing in common-
sense reasoning, they are suitable for modeling ratio-
nal agents. On the other hand, argumentation schemes
attempt to classify the various types of everyday ar-
guments, utilizing the ideas underlying the formalisms
described above. As characterized in [56], argumenta-
tion schemes (AS)

"are argument forms that represent inferential
structures of arguments used in everyday dis-
course, and in special contexts like legal argu-
mentation, scientific argumentation and especially
in AI".

Each scheme is accompanied by a set of critical ques-
tions, used to evaluate the argument (see e.g., Table 1).
Although the various argumentation schemes may rep-

4 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

resent different types of reasoning (e.g., deduction, in-
duction, abduction, presumption, see also the tenta-
tive classification given in [56], Chapter 10), in gen-
eral their goal is to model plausible, thus defeasible,
reasoning.

1.3. Looking for Tractability

The entire line of our research is characterized by
a shift in perspective: instead of creating complex log-
ical theories, we tailor them to their tractable versions,
like rule-based systems. Then, instead of reasoning in
logical systems of high complexity we query paracon-
sistent knowledge bases.

Many important aspects of classical agency have to
be adjusted when adopting a paraconsistent seman-
tics. First of all, the AGM postulates for Belief Re-
vision [8] are no longer valid (but see [48,39]). On
the other hand, some assumptions underlying clas-
sical formalizations of agency (Dynamic Epistemic
Logic (DEL) [49], intention logic [9]; BDI [25] &
KARO [51] frameworks) are unpractical: real agents
do not have infinite resources (like time) available for
reasoning and they are not logically perfect reasoners.
Therefore a formalism which does not require such as-
sumptions would be preferred.

Our approach is strongly influenced by ideas un-
derlying 4QL: a four-valued paraconsistent query lan-
guage introduced by Małuszyński and Szałas (see [29,
30] and Section 5 for details). We have chosen 4QL
as a suitable tool for formalizing paraconsistent ar-
gumentation schemes (PAS), as it provides simple, yet
powerful constructs for application of a range of well-
known nonmonotonic techniques (see [19] for exam-
ples of default reasoning, autoepistemic reasoning, de-
feasible reasoning and the (Local) Closed World As-
sumption expressed in 4QL).

The contribution of the paper is extending epistemic
profiles with paraconsistent argumentation schemes,
providing templates for their implementation and en-
suring tractability of reasoning by using 4QL.

This paper is an extended version of our conference
paper [17]. In comparison to [17] we:

– provide implementation and discussion of addi-
tional five argumentation schemes,

– show scheme embedding, based on the Reputa-
tion and Prudence schemes to reason about trust,

– elaborate on the role of communicative relations
and their relationship to the Ethotic Argument,

– revise and extend discussion and background.

The paper is structured in the following way. First,
in Section 2, we describe the computational approach
to argumentation schemes. Next, in Section 3 the lan-
guage and logic used throughout the paper as well as
the concept of epistemic profiles and belief structures
are introduced. Section 4 presents the main contribu-
tion of this paper, namely the formalization of the para-
consistent argumentation scheme as a part of epistemic
profile. In Section 5 our implementation tool of choice
is described. Section 6 presents the formalization of
paraconsistent argumentation schemes with use of the
notion of well-supported models as well as the im-
plemented solution, which we illustrate on four argu-
mentation schemes: Expert Opinion, Position to Know,
Perception and Ethos. In Section 7 we show how to
embed schemes, utilizing the Reputation and Prudence
scheme for reasoning about trust. Section 8 concludes
the paper.

2. Computational Perspective on Paraconsistent
Argumentation Schemes

The aim of this work is augmentation of agents’ in-
ferential capabilities with the methods rooted in ar-
gumentation. Our primary goal is to provide means
for implementing the paraconsistent argumentation
schemes in a tractable way. This computational ap-
proach aims at combining techniques of classical rea-
soning with non-monotonic, argumentative reasoning.
The conclusions obtained with the use of both meth-
ods exist on equal terms, but possibly can be used in
different situations.

Following [37], we simplify the set of critical ques-
tions to those pointing to the specific undercutters,
called exceptions. Thus, the exceptions serve as means
to both undercut the argument and shift the burden of
proof to the other side [56].

Observation that most common sense rules have ex-
ceptions gave birth to nonmonotonic reasoning tech-
niques [50], however the difficulty lied in specifying
all the ’abnormal’ cases. Here, through modeling criti-
cal questions as exceptions, we try to minimize the set
of abnormalities under which the scheme is not appli-
cable. All in all, the opponent may attack the claim in
three ways:

– by rebutting the premisses,
– by rebutting the conclusion,
– by undercutting the argument using the excep-

tions.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 5

In addition, we encourage a rigorous separation of
various aspects of reasoning:

– the information,
– the opinion about the information and its source,
– the disambiguation of inconsistent information.

To illustrate this, consider our running example: the ar-
gument from Expert Opinion. It is summarized in Ta-
ble 1 (see also its implementation in 4QL presented in
Figure 4). The first column conveys the original form
of the argument, including the scheme (premises, con-
clusion) and critical questions (as in [56]). The second
column presents the adapted, paraconsistent version
of the argument. There, the set of critical questions
is replaced with the set of exceptions and the origi-
nal premises are encoded by four-valued literals. Im-
portantly, the conclusion is tetravalent (v(is(X)) = V
means that the value of is(X) is V , where V can be
one of: t, f, i u). Consider an expert e states that "it
is unknown whether a medicament m is safe to use
during pregnancy". In this case, the conclusion of the
Expert Opinion scheme, safe(m, pregnancy),
should take the unknown value, which is far more ex-
pressive and accurate than false , which would have
been chosen in the standard 2-valued approach under
the Closed World Assumption.

Table 1
Expert Opinion Argumentation Scheme

Original Argumentation Scheme

Sc
he

m
e

A is an expert in domain D
A asserts that X is true
X is within D

X is true

C
ri

tic
al

Q
ue

st
io

ns How credible is A as an expert source?
Is A an expert in domain D?
What did A assert that implies X?
Is A personally reliable as a source?
Is X consistent with what other experts assert?
Is A’s assertion of X based on evidence?

Paraconsistent Argumentation Scheme

P-
Sc

he
m

e isExpert(A,D)
assert(A,X,V)
inDomain(X,D)
v(is(X)) = V

E
xc

ep
tio

ns

¬isReliable(A)
¬evidenceBased(A,X,V)

Now, the various aspects of the reasoning can be
easily distinguished:

– object level, e.g., the claim assert(A,X ,V),
– meta-level:

⇤ the reasoning about the claim, e.g., using
inDomain(X ,D), evidenceBased(A,X ,V),
⇤ the reasoning about the sender agent, e.g., us-

ing isExpert(A,D), isReliable(A).

– meta-meta-level: reasoning about the compatibil-
ity of experts’ opinions (here it is excluded from
the scheme, as it corresponds to disambiguation
of inconsistent information arising from multiple
sources of opinion).

Our formalization concerns a mechanism for spec-
ifying any argumentation scheme. In addition, when
formalized in 4QL, the solution becomes tractable.
Since 4QL captures all tractable queries, the expres-
siveness is maintained.

3. Language and Epistemic Profiles

The heterogeneity of agents’ means, among others,
that even when seeing the same thing, the particular
individuals may draw different conclusions. The pow-
erful notion of epistemic profile [20] explicitly models
this problem. In general, it defines the way an agent
reasons (e.g., in this paper a rule-based agent imple-
mentation is assumed), including the manner of deal-
ing with conflicting or lacking information (e.g., by
combining various forms of reasoning available to the
agent, including belief fusion, disambiguation of con-
flicting beliefs or completion of lacking information).

The following definitions are adapted from [20],
where intuition and examples can be found.

In what follows all sets are finite except for sets of
formulas. We deal with the classical first-order lan-
guage over a given vocabulary without function sym-
bols presented in [29,20,46]. We assume that Const is
a fixed set of constants, Var is a fixed set of variables
and Rel is a fixed set of relation symbols. We shall use
this notation in the following definitions.

6 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

Definition 1 A literal is an expression of the form
R(⌧̄) or ¬R(⌧̄), with ⌧̄ being a sequence of parame-
ters, ⌧̄ 2 (Const [V ar)k, where k is the arity of R.
Ground literals over Const, denoted by G(Const), are
literals without variables, with all constants in Const.
If ` = ¬R(⌧̄) then ¬` def

= R(⌧̄). C

Though we use classical first-order syntax, the se-
mantics substantially differs from the classical one as
truth values t, i, u, f (true, inconsistent, unknown, false)
are explicitly present; the semantics is based on sets
of ground literals rather than on relational structures.
This allows one to deal with lack of information as
well as inconsistencies. Because 4QL is based on the
same principles, it can directly be used as implemen-
tation tool.

The semantics of propositional connectives is sum-
marized in Table 2. Observe that definitions of ^ and
_ reflect minimum and maximum with respect to the
ordering:

f < u < i < t, (1)

as argued in [12,29,53].

Table 2
Truth tables for ^, _, ! and ¬ (see [53,29,31]).

^ f u i t _ f u i t ! f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

It is worth noting that whenever truth values are re-
stricted to {f, t}, the semantics we consider is compat-
ible with the semantics of classical first-order logic.

Let v : Var �! Const be a valuation of variables.
For a literal `, by `(v) we understand the ground literal
obtained from ` by substituting each variable x occur-
ring in ` by constant v(x).

Definition 2 The truth value `(L, v) of a literal ` w.r.t.
a set of ground literals L and valuation v, is defined
by:

`(L, v)
def
=

8
>><
>>:

t if `(v)2L and (¬`(v)) 62L;
i if `(v)2L and (¬`(v))2L;
u if `(v) 62L and (¬`(v)) 62L;
f if `(v) 62L and (¬`(v))2L.

C

For a formula ↵(x) with a free variable x and
c 2 Const, by ↵(x)x

c we understand the formula ob-
tained from ↵ by substituting all free occurrences of
x by c. Definition 2 is extended to all formulas in Ta-
ble 3, where ↵ denotes a first-order formula, v is a val-
uation of variables, L is a set of ground literals, and
the semantics of propositional connectives appearing
at righthand sides of equivalences is given in Table 2.

Table 3
Semantics of first-order formulas.

If ↵ is a literal then ↵(L, v) is defined in Definition 2;

(¬↵)(L, v)
def
= ¬(↵(L, v));

(↵ � �)(L, v)
def
= ↵(L, v) � �(L, v), where �2{_,^,!};

(8x↵(x))(L, v) = min
a2Const

(↵x
a)(L, v),

where min is the minimum w.r.t. ordering (1);
(9x↵(x))(L, v) = max

a2Const
(↵x

a)(L, v),

where max is the maximum w.r.t. ordering (1).

Belief structures can now be defined as in [20]. If
S is a set, then FIN(S) represents the set of all finite
subsets of S.

Definition 3 Let C def
= FIN(G(Const)) be the set of all

finite sets of ground literals over constants in Const.
Then:

– a constituent is any set C 2 C;
– an epistemic profile is any function

E : FIN(C) �! C;
– by a belief structure over epistemic profile E is

meant a structure BE = hC, F i; here C ✓ C is a
nonempty set of constituents and F

def
= E(C) is the

consequent of BE . C

Final beliefs are represented as consequents.
Notice, that the epistemic profile, being any func-

tion, can encode any reasoning schema (especially
when we disregard complexity issues). In this paper
we extend agent’s repertoire to include user-defined ar-
gumentation schemes, that employ incomplete and un-
certain information. In the sequel, we will show the
theoretical foundations, and then the implementation
in 4QL.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 7

4. Argumentation Schemes as Parts of Epistemic
Profiles

Until now, the epistemic profiles, being arbitrary
functions, conveyed all reasoning capabilities of agents
(and groups of agents) [20], including their commu-
nicative strategies [18]. Here we distinguish yet an-
other component, namely, argumentation schemes that
extend an agent’s (or a group’s) epistemic profile.

4.1. Paraconsistent Argumentation Schemes:
Intuition

Argumentation schemes are modeled with the use
of the sets of premisses and exceptions, the latter one
replacing the concept of critical questions (see Sec-
tion 6 for the alternative formalization using the well-
supported models of 4QL modules). In our approach,
the conclusion of the paraconsistent argumentation
scheme can be: true , false , inconsistent or unknown .
We assume that a scheme has been applied when
it leads to true , false or inconsistent conclusions.
Otherwise (when the conclusion’s value is unknown)
the scheme was not applicable. This happens in two
cases:

– when the premisses are lacking, or
– when the exceptions are present.

If the conclusion may be drawn, then its value is log-
ically equivalent to conclusion resulting from the pre-
misses.

Let us give some intuitions first, before defining the
paraconsistent argumentation scheme. Since we admit
premisses, exceptions and conclusions to take any of
the four logical values, what happens when inconsis-
tent and missing information regards the premisses of
the argumentation scheme? To this end, recall the ar-
gument from Expert Opinion (see Table 1). When the
premise "a is an expert in domain D" is:

– unknown or false , it cannot serve to draw con-
clusions,

– true or inconsistent , it can be used. In the
worst scenario, the overall outcome will become
inconsistent .

Thus, attacking an argument on premisses can be
achieved by:

– proving one of them is false or unknown (rebutting),
– proving their inconsistency (undercutting).

Next, let’s consider the set of exceptions. It contains
all the exceptions potentially applicable in the scheme.
Whenever any of them becomes true, the schema is
blocked and cannot be applied. For example, consider
the exception regarding the expert’s reliability:

– if the expert is not reliable (¬isReliable is true),
the Expert Opinion scheme cannot be applied,

– otherwise, the exception is not triggered.

Therefore, as regards exceptions, their attacking power
matters only when they are true .

4.2. Paraconsistent Argumentation Schemes:
Definition

In our framework for paraconsistent argumenta-
tion schemes we deal with the three sets of ground
literals: Premisses (P), Exceptions (E) and Conclu-
sions (Con), and a function PAS ({P, E}) = Con,
which represents the paraconsistent argumentation
scheme.

The high-level structure of our running example is
presented in Figure 1. The ovals correspond to the sets
of ground literals, arranged into above-mentioned sets
of Conclusions, Premisses and Exceptions, as well as:
Expert, Ontology, Evidence, Assertions and Reliabil-
ity, which are specific for a particular scheme (here the
Expert Opinion utilizes the set of Assertions for con-
structing both the Premisses and Exceptions). The ar-
rows (from Premisses and Exceptions to Scheme) rep-
resent the function of the paraconsistent argumentation
scheme (PAS).

Conclusions

Premisses

Expert

Ontology Assertions

2

Exceptions

Reliability
Evidence

PAS

Figure 1. Modular architecture of Expert Opinion Scheme

The elements of the Conclusions set (literals) are
conclusions of the argumentation scheme as expressed

8 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

by the function PAS . In case of single-threaded rea-
soning (reasoning about one subject at a time), the
Conclusions set is a singleton. In case of a multi-
threaded reasoning (reasoning about many subjects si-
multaneously), the set of Conclusions can be larger,
with one literal corresponding to one conclusion on the
subject.

The set of Premisses contains candidates for con-
clusion of the scheme. They are obtained by means
specific to every argumentation scheme.

The elements of the set of Exceptions are triggers
that, when present, forbid the respective candidate con-
clusion from being drawn. Intuitively, a conclusion c
cannot be obtained when the exceptions indicate ¬c.

Ultimately, the conclusion of the scheme is obtained
in the following way. If there exists a tetravalent can-
didate for a conclusion c 2 Premisses (value of c is
not unknown), check whether there exists a trigger
blocking this candidate: ¬ c 2 Exceptions (value of
¬c is true).

– If there is no such a trigger, the candidate con-
clusion becomes the ultimate conclusion of the
scheme.

– Otherwise, the scheme cannot be applied causing
that the value of c 2 Conclusions is unknown .

To sum up (adopting the notation from Defini-
tion 4), a conclusion c is established based on the
supporting arguments given by the set of Premisses
(i.e. c(P, v) = t) and (lack of) rebutting triggers pro-
vided by the set of Exceptions (i.e. ¬c(E, v) 6= t).

Definition 4 Recall that

– C = FIN(G(Const)) stands for the set of all fi-
nite sets of ground literals over the finite set of
constants Const,

– v : V ar �! Const is a valuation of variables.
– by a constituent we understand any set C 2 C.

Let:

– P and E be two constituents, representing the set
of premisses and exceptions, respectively,

– S = {P, E} be a nonempty set of constituents
(S ✓ C),

– Con 2 C be a finite set of ground literals, repre-
senting the conclusions.

Then, paraconsistent argumentation scheme is a par-
tial function PAS : FIN(C) �! C, PAS ({P, E})
= Con,

such that:

c(Con, v)
def
=

8
>><
>>:

t iff c(P, v) = t and ¬c(E, v) 6= t;
i iff c(P, v) = i and ¬c(E, v) 6= t;
u iff c(P, v) = u or ¬c(E, v) = t;
f iff c(P, v) = f and ¬c(E, v) 6= t.

By belief structure over PAS we mean BPAS =
hS, Coni, where:

– S = {P, E}, S ✓ C is a nonempty set of con-
stituents;

– Con
def
= PAS(S) is the consequent of BPAS .

We identify the belief structure over PAS with the in-
stance of a paraconsistent argumentation scheme. C

The above definition presents the paraconsistent ar-
gumentation scheme as a partial function: a fragment
of agent’s epistemic profile that expresses agent’s ar-
gumentative skills. The implementation of PAS in 4QL
is presented in Definition 7, where also the analogy be-
tween both definitions is explained.

5. 4QL: an Implementation Tool

The rule language 4QL has been introduced in [29]
and further developed in [31,46]. In 4QL, beliefs are
distributed among modules. The 4QL language allows
for negation in premisses and conclusions of rules. In
particular, negation in rule heads may lead to incon-
sistencies. 4QL is based on the four-valued logic de-
scribed in Section 3. The semantics of 4QL is defined
by well-supported models [29,30,31,46], i.e., models
consisting of (positive or negative) ground literals,
where each literal is a conclusion of a derivation start-
ing from facts. For any set of rules, such a model is
uniquely determined:

"Each module can be treated as a finite set of lit-
erals and this set can be computed in deterministic
polynomial time” [29,31].

Thanks to this correspondence and the fact that 4QL
captures PTIME, the constituents and consequents of
Definition 3, can be directly implemented as 4QL
modules [21].

Typically, in multi-agent architectures, 4QL would
be situated in the layer that processes qualitative in-
formation, as opposed to the lower-level quantitative
information processing layer, for which various tech-

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 9

niques, including fuzzy, rough set and probabilistic ap-
proaches, can be used (e.g., for image, voice and other
sensor data processing).

For specifying rules and querying modules, we
adapt the language of [46]. To this end we need the
notion of multisource formulas defined as follows.

Definition 5 A multisource formula is an expression
of the form: m.A or m.A2T , where:

– m is a module name;
– A is a first-order or a multisource formula;
– T ✓ {t, i, u, f}.

We write m.A = v (respectively, m.A 6= v) to stand
for m.A2{v} (respectively, m.A 62{v}). C

The intuitive meaning of a multisource formula m.A
is:

“return the answer to query expressed by formula
A, computed within the context of module m”.

The value of ‘m.A 2 T ’ is:

⇢
t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula with
X1, . . . , Xk being its all free variables and D be a fi-
nite set of literals (a belief base). Then A, under-
stood as a query, returns tuples hd1, . . . , dk, tvi, where
d1, . . . , dk are database domain elements and the value
of A(d1, . . . , dk) in D is tv.

Definition 6

– Rules are expressions of the form:

conclusion :– premisses. (2)

where conclusion is a positive or negative literal
and premisses are expressed by a multisource for-
mula.

– A fact is a rule with empty premisses (such pre-
misses are evaluated to t).

– A module is a syntactic entity encapsulating a fi-
nite number of facts and rules.

– A 4QL program is a set of modules, where it is as-
sumed that there are no cyclic references to mod-
ules involving multisource formulas of the form
m.A2T . C

MODULE r :
RELATIONS: is(literal).

do(literal).

RULES:
is(heat):- is(fire).

-is(fire):- is(lowtemp).

do(extinguish):- is(heat)|is(fire).
-do(extinguish):- -is(heat),-is(fire).

is(X):- perceived.is(X).
-is(X):- -perceived.is(X).

END.

MODULE perceived :
RELATIONS: is(literal).
FACTS:

is(fire).

-is(heat).

END.

Figure 2. Example of a 4QL program.

Openness of the world is assumed, but rules can be
used to close it locally or globally.

Let us illustrate 4QL, consider Figure 2, where we
use syntax of the 4QL interpreter inter4QL.1 The pro-
gram shown in Figure 2 consists of two modules: r and
perceived . The program uniquely determines the fol-
lowing well-supported model for module perceived :

{is(fire), ¬is(heat)} (3)

and the following well-supported model for module r:

{is(heat), ¬is(heat), is(fire), do(extinguish)}.

(4)

From the epistemic profile perspective, the two
modules: r and perceived define sets of ground lit-
erals (3) and (4) and can be seen as a belief struc-
ture with one constituent perceived and a consequent
r. The epistemic profile is defined by rules of mod-
ule r. As well-supported models are sets of ground lit-
erals (with deterministic polynomial time data com-
plexity), we alternate between the notions of the set of
consequents and well-supported models (as mentioned
in Sections 3 and 6).

1The interpreter, developed by P. Spanily and revised by Ł. Białek,
can be downloaded from http://www.4ql.org/ .

10 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

6. Paraconsistent Argumentation Schemes in 4QL

Each argumentation scheme is a standalone entity,
with a dedicated 4QL module, containing two specific
rules:

is(X):- Premisses.is(X),

-Exceptions.is(X) in {false,unknown,incons}.

and

-is(X):- -Premisses.is(X),

-Exceptions.is(X) in {false,unknown,incons}.

The multisource formulas in the bodies of the rules
pertain to two other specific sub-modules: one cor-
responding to the premisses and one to the excep-
tions. Intuitively, these rules express the mechanism of
drawing the scheme conclusions using the premisses
and exceptions in the way described in Section 4. Al-
together, the 3-modular 4QL architecture reflects the
structure of the argumentation scheme:

– the set of premisses is translated to the module
SN_Premisses,

– the set of exceptions is captured in the module
SN_Exceptions,

– the conclusion (is(X)) is evaluated in the SN

(scheme name) module.

These three modules constitute the standard ap-
proach to argumentation schemes in 4QL. They are
captured in a generic template of a 4QL program con-
sisting of the three modules: SN, SN_Exceptions and
SN_Premisses (see Figure 3). Evaluation of an in-
stance of an argumentation scheme amounts to com-
puting the well-supported model for the module SN,
implementing this scheme (see e.g., Figure 4 for an
implementation of the Expert Opinion scheme).

The two rules encoded in module SN allow for draw-
ing true, false or inconsistent conclusions. Recall that
a conclusion c can be obtained when the exceptions do
not conclusively indicate ¬c. Again, let’s first investi-
gate, when the scheme cannot be applied?

1. The conclusion cannot be drawn due to the ex-
ceptions. This situation is encoded using the lit-
eral -SN_Exceptions.is(X) in both rules.

– When it is true , both rules in the SN module
cannot be executed (as the rule premisses eval-
uate to false , see Table 2).

2. The conclusion cannot be drawn due to the
lack of premisses. Consider valuations of the
first literal: (-)SN_Premisses.is(X).

– The only situation where both rules cannot
be executed due to it, is when the value of
(-)SN_Premisses.is(X) is unknown.

– Indeed, otherwise:

⇤ if it’s true, the first rule would be executed,
⇤ if it’s false, the second rule would be exe-

cuted,
⇤ if it’s inconsistent, both rules would be exe-

cuted.

Consider a situation, where there are both excep-
tions from the argumentation scheme and also
not all premisses are present. This would corre-
spond to the following case for both rules:

– the first literal is unknown ,
– the second literal is true .

Then, the conjunction would evaluate to unknown
(see Table 2) and none of the rules applies.

If there are no exceptions prohibiting the scheme
from being applied, the conclusion is(X) in the SN

module evaluates to the same value as is(X) in the
SN_Premisses module (as explained in Section 4).

As mentioned before, the burden of proving the pre-
misses lies on the proponent. The opponent can fight
a successful argument is two ways. Either by rebutting
it (by proving the conclusion is unknown) or by under-
cutting it (by proving the conclusion is inconsistent).
The first goal can be achieved in two ways:

– by showing that in the SN_Premisses module at
least one of the premisses is false or unknown, or

– by showing that -SN_Exceptions.is(X) is
true, i.e, at least one of the exceptions is true.

To undercut a successful argument the opponent
may attack the true premisses by proving their incon-
sistency.

In what follows we present the definition of a para-
consistent argumentation scheme, which is, in fact, an
implementation of Definition 4 in 4QL. The analogy
between both definitions is founded on the following
observations:

– the functions are represented as the sets of rules
(4QL modules),

– the sets of ground literals correspond to well-
supported models (see Section 5).

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 11

MODULE SN :

RELATIONS: is(literal).
RULES:

is(X) :- SN_Premisses.is(X),-SN_Exceptions.is(X) in {false,unknown,incons}.

-is(X) :- -SN_Premisses.is(X),-SN_Exceptions.is(X) in {false,unknown,incons}.

END.

MODULE SN_Exceptions :

RELATIONS:
ex_1(literal,...).

ex_n(literal,...).

is(literal).

RULES:
-is(X) :- ex_1(X,...) | . . . | ex_n(X,...).

END.

MODULE SN_Premisses :

RELATIONS:
p_1(literal,...).

p_m(literal,...).

assert(literal,literal,literal).

is(literal).

RULES:
is(X) :- p_1(...), ... , p_m(...), assert(A,X,true).

-is(X) :- p_1(...), ... , p_m(...), assert(A,X,false).

is(X) :- p_1(...), ... , p_m(...), assert(A,X,incons).

-is(X) :- p_1(...), ... , p_m(...), assert(A,X,incons).

END.

Figure 3. General 4ql Template for Argumentation Schemes

Definition 7 Recall that L stands for the set of ground
literals with constants in Const. Let Exceptions ,
Premisses and Scheme be three sets of rules. A Para-
consistent Argumentation Scheme is a tuple PAS =
hExceptions, Premisses, Schemei, such that if:

– MS is a well supported model of Scheme,
– MP is a well supported model of Premisses,
– ME is a well supported model of Exceptions,

then 9c 2 L, such that

MS(c) def
=

8
>><
>>:

t iff MP (c) = t and ME (¬c) 6= t;
i iff MP (c) = i and ME (¬c) 6= t;
u iff MP (c) = u or ME (¬c) = t;
f iff MP (c) = f and ME (¬c) 6= t.

Is such case we define c as the conclusion of the para-
consistent argumentation scheme. C

The above definition presents PAS as a tuple of spe-
cific 4QL modules (sets of rules). Figure 5 illustrates
it with the rectangles depicting the 4QL modules, as
in the Figures 4, 7 and 6. On the other hand, Defi-
nition 4 expresses PAS as a partial function: a frag-
ment of agent’s epistemic profile. Here, the PAS func-
tion (see Definition 4) is represented by the Scheme
module (Scheme rectangle in the Figure 5). The set of
conclusions of the scheme (Con) corresponds to the
well-supported model of the Scheme module (MS).
In general, the ovals in Figure 1 correspond to the well-
supported models of the modules depicted by the rect-
angles in the Figure 5.

Any argumentation scheme that can be represented
as PAS can be implemented in 4QL. Obtaining con-
clusion c of the scheme is in polynomial time, as it
amounts to computing the well-supported model of the
module Scheme . This complexity result allows to rea-

12 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

son and compare conclusions obtained with the use of
multiple different argumentation schemes at once.

6.1. Example: Argument from Expert Opinion

As a showcase for our solution, consider the Argu-
ment from Expert Opinion. The modules implement-
ing the scheme (eo, eoExceptions, eoPremisses)
and the agent (agent) are shown in Figure 4. Mod-
ule agent, represents the reasoning capabilities of the
agent . Agent’s epistemic profile is composed of two
rules:

is(X) :- eo.is(X,A).
-is(X) :- -eo.is(X,A).

It utilizes the Expert Opinion scheme to adjudicate
about the final conclusion is(X) on the matter X . In
this simple strategy of dealing with inconsistencies, the
agent acknowledges all opinions of experts A regard-
ing X , that were admitted by the Expert Opinion mod-
ule. This way the object, meta- and meta-meta levels
(see Section 2) are separated. For a more restrictive
strategy for dealing with inconsistency, a different so-
lution can be applied.

Scheme

Premisses

Exceptions

Expert Ontology Assertions

Reliability Evidence

Figure 5. Modular architecture of Expert Opinion Scheme

The implementation of the Expert Opinion scheme
deals with two explicit exceptions (as argued in Sec-
tion 2):

– evidence-based claim: -evidence.claim(A,X)
and

– reliability: -reliability.isReliable(A).

The sub-modules implementing particular excep-
tions are presented in Figure 6. The reliability and
evidence modules include the starting sets of facts,
stating that:

– bob is not trusted: isTrusted(bob) and
– evidently, it rained: sensorsLog(bob,rain).

The sub-modules (expert,ontology, assertions)
implementing particular premisses are presented in
Figure 7. Here, and for the remaining schemes we
equip the modules with some basic facts that can be
treated as test cases for a given argumentation scheme.

Module expert decides that an expert in field F
is an agent that does a job J which is related to that
field, e.g., a meteorologist is an expert in weather.
The assertions module translates the messages per-
ceived from agents (A) about their opinions (values t,
f, i) on various subjects (X) into assertions in 4QL.
The starting sets of facts include the information about
agents meteorologists: bob, ag1 , ag2 , ag3 .

This example allows us to test various scenarios of
missing and inconsistent information appearing in the
Expert Opinion scheme. If we load the program to
the interpreter and ask: agent.is(X), we would get
information that there are no known facts (the well-
supported model of the agent module is empty). In-
deed, there are no perceived messages in the module
assertions to start from. Now, if we add the follow-
ing facts to the module assertions:

* perceived(bob,rain,true),
* perceived(ag1,rain,true),
* perceived(ag2,rain,false),

and reload the module, the same question would yield
the following results: agent.is(rain):inconsistent.

If we intend to learn which experts’ opinions were
essential to that verdict, we should ask: eo.is(X,Y).
This query leads to the generation of the well-supported
model of the eo module. It contains the following
facts: {eo.is(rain, ag1),�eo.is(rain, ag2)}. Clearly,
bob’s opinion didn’t count (as absent from the model).
On the other hand, both ag1 ’s and ag2 ’s opinions
were admitted. Indeed, the only triggered excep-
tion, was the one concerning bob (the well-supported
model of the eoExceptions module contains only
{�is(rain, bob)}). Although bob’s claim was based
on evidence (evidence.claim(bob, rain) = t) he was
not reliable (reliability.isReliable(bob) = f).

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 13

MODULE agent :
RELATIONS: is(literal).
RULES:
is(X) :- eo.is(X,A).

-is(X) :- -eo.is(X,A).

END.

MODULE eo :
RELATIONS: is(literal, literal).
RULES:
is(X,A):- eoPremisses.is(X,A), -eoExceptions.is(X,A) in {false,unknown,incons}.

-is(X,A):- -eoPremisses.is(X,A), -eoExceptions.is(X,A) in {false,unknown,incons}.

END.

MODULE eoExceptions :
RELATIONS: is(literal, literal).
RULES:
-is(X,A):- eoPremisses.is(X,A),-reliability.isReliable(A)|-evidence.claim(A,X).

-is(X,A):- -eoPremisses.is(X,A),-reliability.isReliable(A)|-evidence.claim(A,X).

END.

MODULE eoPremisses :
RELATIONS: is(literal, literal).
RULES:
is(X,A):-expert.isExpert(A,D),ontology.inDomain(X,D),assertions.asserted(A,X).

-is(X,A):-expert.isExpert(A,D),ontology.inDomain(X,D),-assertions.asserted(A,X).

END.

Figure 4. Argumentation Scheme from Expert Opinion

Now, what should happen, if in the reliability

module’s fact: -isTrusted(bob) we replace bob
with ag2 ? Clearly, the two experts whose testimony is
admitted by the Expert Opinion scheme are now: ag1
and bob: eo.is(rain, bob) = t ^ eo.is(rain, ag1) = t.
The overall conclusion becomes: agent.is(rain) = t.

14 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

MODULE reliability :

RELATIONS:

isReliable(literal).

isTrusted(literal).

RULES:
isReliable(A) :- isTrusted(A).

-isReliable(A) :- -isTrusted(A).

FACTS:

-isTrusted(bob).

END.

MODULE evidence :

RELATIONS:

claim(literal,literal).

sensorsLog(literal,literal).

RULES:

claim(A,X) :- assertions.asserted(A,X), sensorsLog(A,X).

-claim(A,X) :- assertions.asserted(A,X), -sensorsLog(A,X).

FACTS:

sensorsLog(bob,rain).

END.

Figure 6. Modules for Exceptions

MODULE expert :

RELATIONS:
isExpert(literal,literal).

pair(literal,literal).

is(literal,literal).

RULES:
isExpert(A,F) :- is(J,A), pair(F, J).

FACTS:
pair(weather, meteorologist).

is(meteorologist, bob).

is(meteorologist, ag1).

is(meteorologist, ag2).

is(meteorologist, ag3).

END.

MODULE ontology :

RELATIONS: inDomain(literal,literal).
FACTS: inDomain(rain,weather).
END.

MODULE assertions :

RELATIONS:
perceived(literal, literal, literal).

asserted(literal, literal).

RULES:
asserted(A,X):- perceived(A,X,true).

-asserted(A,X):- perceived(A,X,false).

asserted(A,X):- perceived(A,X,incons).

-asserted(A,X):- perceived(A,X,incons).

END.

Figure 7. Modules for Premisses

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 15

6.2. Example: Argument from Perception

Consider the following argumentation scheme, which
allows agents to reason about percepts. The classical
scheme has two premisses and one critical question
(see Table 4). Since the second premise expresses the
link between the first premise and the conclusion, it
is redundant. The critical question works as an under-
cutter for that link and as such remains in our frame-
work. The Argument from Perception scheme, viewed
solely as an argumentation or reasoning pattern, is
quite simple. All the difficulty connected with assess-
ing the reliability of perception is extracted to the re-
lation isPerceptionReliable(). In practical ap-
plications, this relation would be implemented with
use of a dedicated module responsible for adjudicating
about the reliability of perception. In our example, the
final conclusion about is(rain) will be that of alice,
since bob’s perception is not reliable.

Table 4
Perception: from Original to Paraconsistent

Original Argumentation Scheme as in [56]

Sc
he

m
e

a has a ' image (an image of a perceptible prop-
erty).
To have a ' image (an image of a perceptible prop-
erty) is a prima facie reason to believe that the cir-
cumstances exemplify '.
It is reasonable to believe that ' is the case.

* Are the circumstances such that having a ' image
is not a reliable indicator of '?

Adapted to Communicative Settings

Sc
he

m
e a has a ' percept

' is the case

**

The circumstances are such that having a ' percept
is a reliable indicator of '.

Paraconsistent Argumentation Scheme

Sc
he

m
e percept(Agent,X)

is(X)

** isPerceptionReliable(Agent,X)
* - Critical Questions, ** - Assumptions

6.3. Example: Argument from Position to Know

Let’s consider another example of an argumentation
scheme: argument from Position to Know. The orig-
inal form of this scheme is presented in Table 5. It

consist of just two premisses and three critical ques-
tions. Notice that two critical questions are redun-
dant. After eliminating them, the only relevant crit-
ical question that remains concerns the reliability of
the source. In our framework it is expressed as an
assumption "a is a reliable source" implemented us-
ing relation isReliable() in pkExceptions mod-
ule in Figure 9.

Table 5
Position to Know: from Original to Paraconsistent.

Original Argumentation Scheme as in [56]

Sc
he

m
e a is in the position to know whether A is true

a asserts that A is true
A is true

*

Is a in the position to know whether A is true?
Is a a honest (trustworthy, reliable) source?
Did a assert that A is true?

Adapted to Communicative Settings
Sc

he
m

e a is in the position to know whether A is true
a asserts that A is true
A is true

** a is a reliable source

Paraconsistent Argumentation Scheme

Sc
he

m
e posKnow(Agent,X)

assert(Agent,X,Value)
is(X)

** isReliable(Agent)
* - Critical Questions, ** - Assumptions

For simplicity, instead of expanding the relation
isReliable(), in this example we provide the rel-
evant information as a fact (the information that bob
is not reliable encodes -isReliable(bob)). How-
ever, notice that it could have been given differently,
e.g., with use of the following rule:

isReliable(A):- reliability.high(A).

Such approach would be suitable to reflect that the in-
formation about reliability is obtained via an advanced
argumentation or reasoning process encapsulated in
module reliability, rather than by a simple hard-
coded fact. By adding a relevant rule with an exter-
nal literal referring a sub-module responsible for, in
this case, reasoning about reliability, we can embed
various argumentation schemes. We show an example

16 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

Figure 8. Perception Argumentation Scheme in 4QL

MODULE tom :

RELATIONS: is(literal).
RULES:
is(X):- p.is(X).

-is(X):- -p.is(X).

END.

MODULE p :

RELATIONS: is(literal).
RULES:
is(X):- pPremisses.is(X,A), -pExceptions.is(X,A) in {false,unknown,incons}.

-is(X):- -pPremisses.is(X,A), -pExceptions.is(X,A) in {false,unknown,incons}.

END.

MODULE pExceptions :

RELATIONS:
is(literal, literal).

isPerceptionReliable(literal, literal).

RULES:
-is(X,Agent):- -isPerceptionReliable(Agent,X).

FACTS:
-isPerceptionReliable(bob,rain).

END.

MODULE pPremisses :

RELATIONS:
percept(literal, literal, literal).

is(literal, literal).

RULES:
is(X,A):- percept(A,X,true).

-is(X,A):- percept(A,X,false).

is(X,A):- percept(A,X,incons).

-is(X,A):- percept(A,X,incons).

FACTS:
percept(bob, rain, true).

percept(alice, rain, false).

END.

of such embedding for the Argument from Ethos (see
Section 7).

Recall, that the original form of the Position to
Know scheme does not contain facts. Here, and for the
remaining schemes, we equip the modules with some
basic facts so that the programs shown in figures can be

executed with use of 4QL interpreter. In this example,
is(fire) is absent (unknown) from the well-supported
model of module tom. Although all the premises are
in place, the source of the information (bob) is not reli-
able. Therefore, the conclusion could not be drawn due
to the exceptions: �pkExceptions.is(fire) is true.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 17

Figure 9. Position to Know Argumentation Scheme in 4QL

MODULE tom :

RELATIONS: is(literal).
RULES:
is(X):- pk.is(X).

-is(X):- -pk.is(X).

END.

MODULE pk :

RELATIONS: is(literal).
RULES:
is(X):- pkPremisses.is(X), -pkExceptions.is(X) in {false,unknown,incons}.

-is(X):- -pkPremisses.is(X), -pkExceptions.is(X) in {false,unknown,incons}.

END.

MODULE pkExceptions :

RELATIONS:
isReliable(literal).

is(literal).

RULES:
-is(X):- pkPremisses.assert(A,X,V), -isReliable(A).

FACTS:
-isReliable(bob).

END.

MODULE pkPremisses :

RELATIONS:
posKnow(literal, literal).

assert(literal, literal, literal).

is(literal).

RULES:
is(X):- posKnow(A, X), assert(A, X, trueL).

-is(X):- posKnow(A, X), assert(A, X, falseL).

is(X):- posKnow(A, X), assert(A, X, inconsL).

-is(X):- posKnow(A, X), assert(A, X, inconsL).

FACTS:
posKnow(bob, fire).

assert(bob, fire, trueL).

END.

18 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

Figure 10. Ethos Argumentation Scheme in 4QL

MODULE tom :

RELATIONS: is(literal).
RULES:
is(X):- e.is(X,Y).

-is(X):- -e.is(X,Y).

END.

MODULE e :

RELATIONS: is(literal, literal).

RULES:
is(X,A):- ePremisses.is(X,A), -eExceptions.is(X,A) in {false,unknown,incons}.

-is(X,A):- -ePremisses.is(X,A), -eExceptions.is(X,A) in {false,unknown,incons}.

END.

MODULE eExceptions :

RELATIONS:
is(literal,literal).

qualitiesRelevant(literal).

evidenceBased(literal,literal,literal).

RULES:
-is(X,A):- ePremisses.goodQualities(A), -qualitiesRelevant(X) |

ePremisses.assert(A,X,Value), -evidenceBased(A,X,Value).

FACTS:
qualitiesRelevant(rain).

-evidenceBased(bob,rain,trueL).

END.

MODULE ePremisses :

RELATIONS:
goodQualities(literal).

assert(literal, literal, literal).

is(literal, literal).

RULES:
is(X,A):- goodQualities(A), assert(A,X,true).

-is(X,A):- goodQualities(A), assert(A,X,false).

is(X,A):- goodQualities(A), assert(A,X,incons).

-is(X,A):- goodQualities(A), assert(A,X,incons).

FACTS:
goodQualities(bob).

goodQualities(alice).

assert(bob, rain, true).

assert(alice, rain, false).

END.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 19

6.4. Example: Ethotic Argument

The Argument from Ethos is commonly used to ad-
judicate about truth or falsity of a proposition on the
grounds of the qualities of the information source. The
original form of the scheme is given in Table 6. The
two non-redundant critical questions are: the one about
relevancy of the character qualities and the one about
the claim being evidence-based.

In the example in Figure 10, the main premise
(goodQualities of an agent) is given with the use
of simple facts (see module ePremisses). The two
implemented critical questions are: the one about
(ir)relevancy of the qualities of character and the one
about the statement being evidence-based. With use of
this argumentation scheme as an example, we intend to
shed more light on the way scheme embedding is done
in 4QL. In Section 7 we show how other argumenta-
tion schemes can be embedded into this one, to draw
conclusions about the goodQualities of an agent in
a more sophisticated way.

Table 6
Ethos: from Original to Paraconsistent

Original Argumentation Scheme as in [56]

Sc
he

m
e

If a is a person of good (bad) moral character, then
what a says should be accepted as more plausible
(rejected as less plausible).
a is a person of good (bad) moral character.
What a says should be accepted as more plausible
(rejected as less plausible).

*

Is a a person of good (bad) moral character?
Is character relevant in the dialogue?
Is the weight of presumption claimed strongly
enough warranted by the evidence given?

Adapted to Communicative Settings

Sc
he

m
e a is an agent of good combination of qualities

a asserts that A is the case
A is the case

**

Agent’s qualities are relevant in the dialogue.
The weight of A is strongly enough warranted by
the evidence given.

Paraconsistent Argumentation Scheme

Sc
he

m
e goodQualities(Agent)

assert(Agent, X, Value)
is(X)

**

qualititesRelevant(X)
evidenceBased(Agent,X,Value)

* - Critical Questions, ** - Assumptions

7. Embedding Argumentation Schemes

Let’s recall the original Ethotic Argument and our
paraconsistent version of it (Table 6). As we do not in-
tend to over-antropomorphize our artificial agents, the
classical notion of good (bad) moral character should
be treated in a way that is more relevant to MAS. One
approach can be to focus on qualities such as: verac-
ity, prudence, perception and cognitive skills as pro-
posed in [54]. However, in [54], the problem whether
agent’s statements should be considered or disregarded
was adjudicated with use of a higher-level concept: the
credibility of an agent, which was expressed with the
use of the credibility function. The character traits re-
called above play a role in judging agent’s credibility
and therefore plausability of his arguments. In addi-
tion, "when one of these traits is a relevant basis for an
adjustment in a credibility function, there is a shift to
a subdialogue in which the argumentation in the case
is re-evaluated" [54].

A slightly different approach to the same problem is
presented in [36], where the role of credibility, plays
trust, which is considered to be "a mechanism for man-
aging the uncertainty about autonomous entities and
the information they deal with". Furthermore "trust
should be reason-based, which suggests argumenta-
tion as a mechanism for constructing arguments (rea-
sons) for and against adopting beliefs and pursuing ac-
tions, and explicitly recording the agents that need to
be trusted."

Finally, in [18], yet another solution to the same
problem has been proposed, with the use of commu-
nicative relations, which comprise various aspects of
communication and "can be viewed as selective lens,
through which we can see only these parts of the rela-
tions involved, which affect communication".

The common part of these approaches is the need
for assessing plausibility of arguments put forward by
agents. In this paper we lean towards the solution that
uses the notion of communicative relation, which cov-
ers a wide range of relations or concepts that could be
relevant for assessing the plausability of agent’s argu-
ments from the ethotic standpoint.

Figure 11 represents an example of a 4QL module
(communicationX) of some application, that encodes
the communicative relations (for brevity we write cr

for "communicative relation") for some agent X . By
cr(A,high) we mean that agent X has a high com-
municative relation with agent A. There are three lev-
els of communicative relations required in the appli-
cation: high, medium and low. Further, the example

20 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

presents also a module that encodes one of the com-
ponents of the communicative relation: trust (mod-
ule trust). As we can see, the agent adjudicates
about trust using two argumentation schemes: reputa-
tion (module rep) and prudence (module pru).

One advantage of this approach is an easy fine-
tuning of applications. It is fairly straightforward to
change the communicationX module presented in
Figure 11 such that for different applications, particu-
lar concepts (trust, power, veracity, etc.) are taken into
consideration with different weights.2 In addition, if
the application developers want to add yet another fac-
tor that should influence communicative relations be-
tween the agents, they need to implement a relevant
submodule (like the module trust) and update the
body of the rule that computes the level for the commu-
nicative relation (in the module communicationX).

7.1. Reputation and Prudence Argumentation
Schemes

As argued above, the factors which may influence
the communicative relation are diverse. Here we in-
tend to present how the trust component can be real-
ized in the paraconsistent setting and embedded in the
Ethotic Argumentation scheme. For this purpose, we
utilize two argumentation schemes for reasoning about
trust, as proposed in [36]: Reputation and Prudence.

Table 7 summarizes both schemes, giving their orig-
inal form in the first column, the adapted version with
reduced critical questions in the second column, and
the paraconsistent version in the third column.

Next, the 4QL modules that encode these schemes
are presented in Figure 12 and Figure 13 respectively
(notice we omit the standard top-level module rep and
pru and present only the modules responsible for com-
puting premisses and exceptions).

Let’s consider the Reputation scheme first. The only
critical question that is not redundant is the one regard-
ing the manipulation of reputation score. We make it
explicit in the repExceptions module. In case of the
Prudence scheme, we need to assess the accuracy of
both risk estimations, as well as the assumption that
there is no other agent for which the risk of trust is
lower. This all is done in the pruExceptions module
(see Figure 13).

2Then, through simulations, one could obtain an optimal division
of weights for which the system achieves its goal in the best way,
e.g., the fastest.

7.2. Embedding Reputation and Prudence in
Argument from Ethos

Now that we have shown the paraconsistent imple-
mentation of the Reputation and Prudence Argumen-
tation Schemes for reasoning about trust, let’s look
at their embedding in the Argument from Ethos. The
embedding of the schemes is realized in the follow-
ing way. Instead of (or in addition to) drawing conclu-
sions about agent’s qualities from the facts base only,
we equip the module e (see Subsection 6.1), convey-
ing the Ethotic Argument scheme, with the ability to
draw conclusion based on yet another argumentation
scheme. This can be done by adding a new rule:

goodQualities(X):-communicationX.cr(X,high)

to the module ePremises and removing (or not
if we intend to keep this information) all the facts
goodQualities(X). In this way, we combine the
Ethotic Argument scheme with the whole set of
schemes for reasoning about communicative relations
(encoded in the communicationX module, see Fig-
ure 11), in particular, for reasoning about trust with the
use of the Reputation and Prudence schemes.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 21

Figure 11. Communicative Relations and Reasoning about Trust.

MODULE communicationX :

RELATIONS: cr(literal,literal).
RULES:
cr(A,high) :- trust.v(A), perception.v(A),cognitive.v(A),veracity.v(A).

cr(A,medium):- trust.v(A),perception.v(A)in {true,unknown},

cognitive.v(A) in {true,unknown,incons}, veracity.v(A).

cr(A,low):- trust.v(A), perception.v(A)in {true,incons,unknown},

cognitive.v(A) in {true,incons,unknown},

veracity.v(A) in {true,incons,unknown}.

END.

MODULE trust :

RELATIONS: v(literal).
RULES:
v(A):- rep.trust(A), pru.trust(A) in {true,unknown}.

END.

Table 7
Selected Argumentation Schemes for Reasoning about Trust.

Original Scheme Adapted Paraconsistent

R
ep

ut
at

io
n

Sc
he

m
e If B has a reputation for

being trustworthy, then A
may choose to trust B.

B has a reputation for be-
ing trustworthy

reputation(Agent, Value)
& math.gt(Value,50)

trust B trust B trust(Agent)

C
ri

tic
al

Q
ue

st
io

ns

(A
ss

um
pt

io
ns

)

Does B have a good rep-
utation?
Are we sure that B’s rep-
utation has not been ma-
nipulated to make it more
positive?

B’s reputation has not
been manipulated

¬manipulated(Value)

Original Scheme Adapted Paraconsistent

Pr
ud

en
ce

Sc
he

m
e A may decide to trust B

because it is less risky
than not trusting B.

Trusting B is is less risky
than not trusting B

riskOfTrust(Agent, Val1)
& riskOfDistrust(Agent, Val2)
& math.lt(Val1,Val2)

trust B trust B trust(Agent)

C
ri

tic
al

Q
ue

st
io

ns

(A
ss

um
pt

io
ns

)

Is it riskier to not trust B
than it is to trust B?
Is it possible to accurately
estimate the risk in trust-
ing and not trusting B?
Is there another individ-
ual we could trust where
the risk would be lower
than trusting B?

The risk in trusting and
not trusting B was accu-
rately estimated.

There is no other individ-
ual we could trust where
the risk would be lower
than trusting B.

accurate(Val1) & accurate(Val2)

-other(X,Agent)
& riskOfTrust(Agent, Val1)
& riskOfTrust(X,Val2)
& math.lt(Val2,Val1)

22 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

Figure 12. Argumentation Scheme for Reasoning about Trust from Reputation

MODULE repExceptions :

RELATIONS:
trust(literal).

manipulated(literal).

RULES:
-trust(A) :- repPremisses.reputation(A,V), manipulated(V).

manipulated(V):- math.gt(V, 100).

END.

MODULE repPremisses :

RELATIONS:
trust(literal).

reputation(literal, literal).

RULES:
trust(A) :- reputation(A, V), math.gt(V,50).

FACTS:
reputation(bob, 51).

reputation(alice, 110).

END.

Figure 13. Argumentation Scheme for Reasoning about Trust from Prudence

MODULE pruExceptions :

RELATIONS:
trust(literal).

accurate(literal).

RULES:
-trust(A):- pruPremises.riskOfTrust(A,V1),-accurate(V1) |

pruPremises.riskOfDistrust(A,V2),-accurate(V2) |

pruPremises.riskOfTrust(X,Va1),pruPremises.riskOfTrust(A,Va2),

math.gt(Va1,Va2),base.isOther(X,A).

END.

MODULE pruPremises :

RELATIONS:
trust(literal).

riskOfTrust(literal, literal).

riskOfDistrust(literal, literal).

isTerrorist(literal).

RULES:
trust(A):- riskOfTrust(A, V1), riskOfDistrust(A, V2), -math.gt(V1,V2).

riskOfDistrust(A, 1000):- isTerrorist(A).

FACTS:
isTerrorist(bob).

riskOfTrust(bob, 50).

riskOfDistrust(alice, 1200).

END.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 23

8. Discussion and Conclusions

The contribution of this paper is a computationally-
friendly framework for paraconsistent argumentation
schemes, extending agent’s reasoning capabilities. The
tetravalent model of argumentation schemes can be
used in information-rich environments, naturally obey-
ing incomplete or uncertain information. To this end,
we provided templates for implementing an arbitrary
argumentation scheme in 4QL, like Position to Know,
Ethos, Perception or Expert Opinion [56]. Further, we
showed a way of embedding argumentation schemes,
on the example of Argument from Reputation and Ar-
gument from Prudence to reason about trust. Our so-
lution is both expressive (as 4QL captures all tractable
queries) and feasible (as 4QL enjoys polynomial com-
putational complexity of computing queries). Such
a choice allows for:

– an efficient belief revision upon filling the gaps
in knowledge (see also [4]), using light-weight
forms of nonmonotonic reasoning [19]),

– exploring different disambiguation strategies for
dealing with inconsistencies [21]. This aspect will
be investigated in detail in the upcoming paper.

Such features distinguish 4QL from other for-
malisms, e.g., Answer Set Programming (ASP) [24].
ASP is based on the trivalent semantics (true , false ,
unknown), and does not admit inconsistency. Com-
puting a so-called "answer set" (stable model) is NP-
complete. The answer sets may contain conclusions
that are not grounded in facts, which may be suitable
for ASP primary applications (specification and com-
putation of problems from the NP class), however is
not appropriate in our case.

Dealing with missing or ambiguous information in
argumentation is not a new subject [5]. For example,
in [6] the authors propose a formal bi-party inquiry di-
alogue system where DeLP is used to deal with igno-
rance and inconsistency. In [47], the authors proposed
a logic of multiple-valued argumentation (LMA), in
which agents can argue using multi-valued knowledge
base in the extended annotated logic programming
(EALP) (such an approach was next applied in [32]).
However, unlike our approach, the solution was based
on Belnap’s logic.

9. Acknowledgements

The authors would like to thank Professor Andrzej
Szałas for his comments which greatly improved this
paper.

References

[1] A. R. Anderson, N. D. Belnap, and J. M. Dunn. Entailment:
The Logic of Relevance and Necessity, volume 2. Princeton
University Press, 1992.

[2] J. L. Austin. How to Do Things with Words. Clarendon Press,
Oxford, second edition, 1975.

[3] N. Belnap. A useful four-valued logic. In Modern Uses of
Many Valued Logic, pages 8–37. Reidel, 1977.

[4] L. Bertossi. Database Repairing and Consistent Query An-
swering. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2011.

[5] P. Besnard and A. Hunter. Elements of argumentation, vol-
ume 47. MIT press Cambridge, 2008.

[6] E. Black and A. Hunter. An inquiry dialogue system. Au-
tonomous Agents and Multi-Agent Systems, 19(2):173–209,
2009.

[7] H. A. Blair and V. S. Subrahmanian. Paraconsistent logic
programming. Theoretical Computer Science, 68(2):135–154,
1989.

[8] P. G. C. Alchourrón and D. Makinson. On the logic of the-
ory change: Partial meet functions for contraction and revision.
Journal of Symbolic Logic, 50:510–530, 1985.

[9] P. R. Cohen and H. J. Levesque. Intention is choice with com-
mitment. Artificial Intelligence, 42(2-3):213–261, 1990.

[10] N. C. A. da Costa. On the theory of inconsistent formal sys-
tems. Notre Dame Journal of Formal Logic, 15(4):497–510,
10 1974.

[11] C. V. Damásio and L. M. Pereira. A survey of paraconsistent
semantics for logic programs. In Handbook of Defeasible Rea-
soning and Uncertainty Management Systems, pages 241–320.
Kluwer Academic Publishers, 1998.

[12] S. de Amo and M. Pais. A paraconsistent logic approach for
querying inconsistent databases. International Journal of Ap-
proximate Reasoning, 46:366–386, 2007.

[13] F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Creating col-
lective intention through dialogue. Logic Journal of the IGPL,
9:145–158, 2001.

[14] F. Dignum and M. Greaves, editors. Issues in Agent Commu-
nication, volume 1916 of LNCS. Springer, 2000.

[15] D. Dubois. On ignorance and contradiction considered as truth-
values. Logic Journal of the IGPL, 16(2):195–216, 2008.

[16] B. Dunin-Kȩplicz and A. Strachocka. Perceiving rules under
incomplete and inconsistent information. In Computational
Logic in Multi-Agent Systems, volume LNCS 8143 of LNCS,
pages 256–272. Springer, 2013.

[17] B. Dunin-Kȩplicz and A. Strachocka. Computationally-
friendly argumentation schemes. In Web Intelligence (WI) and
Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM
International Joint Conferences on, volume 3, pages 167–174,
August 2014.

24 B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes

[18] B. Dunin-Kȩplicz, A. Strachocka, A. Szałas, and R. Verbrugge.
Paraconsistent semantics of speech acts. Neurocomputing,
151:943–952, 2015.

[19] B. Dunin-Kȩplicz and A. Szałas. Distributed paraconsistent
belief fusion. In Intelligent Distributed Computing VI, vol-
ume 446 of Studies in Computational Intelligence, pages 59–
69. Springer, 2013.

[20] B. Dunin-Kȩplicz and A. Szałas. Taming complex beliefs.
Transactions on Computational Collective Intelligence XI,
LNCS 8065:1–21, 2013.

[21] B. Dunin-Kȩplicz, A. Szałas, and R. Verbrugge. Tractable rea-
soning about group beliefs. In Engineering Multi-Agent Sys-
tems, volume 8758 of LNCS, pages 328–350. Springer Interna-
tional Publishing, 2014.

[22] B. Dunin-Keplicz and A. Strachocka. Paraconsistent multi-
party persuasion in talklog. In Q. Chen, P. Torroni, S. Villata,
J. Y. Hsu, and A. Omicini, editors, PRIMA 2015: Principles
and Practice of Multi-Agent Systems - 18th International Con-
ference, Bertinoro, Italy, October 26-30, 2015, Proceedings,
volume 9387 of Lecture Notes in Computer Science, pages
265–283. Springer, 2015.

[23] B. Dunin-Keplicz and A. Strachocka. Tractable in-
quiry in information-rich environments. In Q. Yang and
M. Wooldridge, editors, Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages 53–60.
AAAI Press, 2015.

[24] M. Gelfond and Y. Kahl. Knowledge Representation, Reason-
ing, and the Design of Intelligent Agents - The Answer-Set Pro-
gramming Approach. Cambridge University Press, 2014.

[25] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and
M. Wooldridge. The belief-desire-intention model of agency.
In Proceedings of the 5th International Workshop on Intelli-
gent Agents V, Agent Theories, Architectures, and Languages,
ATAL ’98, pages 1–10, London, UK, 1999. Springer-Verlag.

[26] W. C. J.-Y. Beziau and D. Gabbay. Handbook of Paraconsis-
tency. College Publications, 2007.

[27] S. Jaśkowski. Propositional calculus for contradictory deduc-
tive systems. Studia Logica, 24(1):143–157, 1969.

[28] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic rea-
soning, preferential models and cumulative logics. Artificial
Intelligence, 44(1-2):167–207, July 1990.

[29] J. Małuszyński and A. Szałas. Living with inconsistency and
taming nonmonotonicity. In Datalog Reloaded, volume 6702
of LNCS, pages 384–398. Springer-Verlag, 2011.

[30] J. Małuszyński and A. Szałas. Logical foundations and com-
plexity of 4QL, a query language with unrestricted nega-
tion. Journal of Applied Non-Classical Logics, 21(2):211–232,
2011.

[31] J. Małuszyński and A. Szałas. Partiality and inconsistency in
agents’ belief bases. In KES-AMSTA, volume 252 of Fron-
tiers in Artificial Intelligence and Applications, pages 3–17.
IOS Press, 2013.

[32] K. Matsunaga and H. Sawamura. Aaslma: An automated ar-
gument system based on logic of multiple-valued argumen-
tation. In Knowledge-Based Intelligent Information and En-
gineering Systems, volume 3684 of LNCS, pages 830–838.
Springer, 2005.

[33] J. McCarthy. Circumscription - a form of non-monotonic rea-
soning. Artificial Intelligence, 13(1-2):27–39, 1980.

[34] R. Moore. Possible-world semantics for autoepistemic logic.
In Readings in Nonmonotonic Reasoning, pages 137–142.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1987.

[35] D. Nute. Defeasible logic. In Handbook of Logic in Artificial
Intelligence and Logic Programming (Vol. 3), pages 353–395.
Oxford University Press, Inc., New York, NY, USA, 1994.

[36] S. Parsons, K. Atkinson, K. Z. Haigh, K. N. Levitt, P. McBur-
ney, J. Rowe, M. P. Singh, and E. Sklar. Argument schemes for
reasoning about trust. In B. Verheij, S. Szeider, and S. Woltran,
editors, COMMA, volume 245 of Frontiers in Artificial Intelli-
gence and Applications, pages 430–441. IOS Press, 2012.

[37] H. Prakken. On the nature of argument schemes. In Dialec-
tics, Dialogue and Argumentation. An Examination of Douglas
Walton’s Theories of Reasoning, pages 167–185. College Pub-
lications, 2010.

[38] G. Priest. The logic of paradox. Journal of Philosophical
Logic, 8(1):219–241, 1979.

[39] G. Priest. Paraconsistent belief revision. Theoria, 67(3):214–
228, 2001.

[40] G. Priest, K. Tanaka, and Z. Weber. Paraconsistent logic. In
The Stanford Encyclopedia of Philosophy. Spring 2015 edition,
2015.

[41] R. Reiter. A logic for default reasoning. In Readings in Non-
monotonic Reasoning, pages 68–93. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1987.

[42] R. Reiter. On closed world data bases. In Readings in
Nonmonotonic Reasoning, pages 300–310. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1987.

[43] P. K. Schotch and R. E. Jennings. Inference and necessity.
Journal of Philosophical Logic, 9(3):327–340, 1980.

[44] J. Searle and D. Vanderveken. Foundations of Illocutionary
Logic. Cambridge University Press, Cambridge, 1985.

[45] M. P. Singh. Agent communication languages: Rethinking the
principles. Computer, 31(12):40–47, Dec. 1998.

[46] A. Szałas. How an agent might think. Logic Journal of the
IGPL, 21(3):515–535, 2013.

[47] T. Takahashi and H. Sawamura. A logic of multiple-valued
argumentation. In Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems-
Volume 2, pages 800–807. IEEE Computer Society, 2004.

[48] K. Tanaka. The AGM theory and inconsistent belief change.
Logique Et Analyse, 48(189-192):113–150, 2005.

[49] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic
Epistemic Logic. Springer Publishing Company, Incorporated,
1st edition, 2007.

[50] F. van Harmelen, V. Lifschitz, and B. W. Porter, editors. Hand-
book of Knowledge Representation, volume 3 of Foundations
of Artificial Intelligence. Elsevier, 2008.

[51] B. van Linder, W. van der Hoek, and J.-C. Meyer. Formalizing
abilities and opportunities of agents. Fundamenta Informati-
cae, 34(1-2):53–101, 1998.

[52] B. van Linder, W. van der Hoek, and J.-J. Meyer. Actions
that make you change your mind. In I. Wachsmuth, C.-R.
Rollinger, and W. Brauer, editors, KI-95: Advances in Artifi-
cial Intelligence, volume 981 of Lecture Notes in Computer
Science, pages 185–196. Springer Berlin Heidelberg, 1995.

[53] A. Vitória, J. Małuszyński, and A. Szałas. Modeling and rea-
soning with paraconsistent rough sets. Fundamenta Informati-
cae, 97(4):405–438, 2009.

B. Dunin-Kȩplicz et al. / Paraconsistent Argumentation Schemes 25

[54] D. Walton. Ethotic arguments and fallacies: The credibility
function in multi-agent dialogue systems. Pragmatics and
Cognition, 7(1):177–203, 1999.

[55] D. Walton and E. Krabbe. Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. State University of New

York Press, Albany (NY), 1995.
[56] D. Walton, C. Reed, and F. Macagno. Argumentation Schemes.

Cambridge University Press, 2008.

Tractable Inquiry in Information-Rich Environments∗

Barbara Dunin-Kȩplicz, Alina Strachocka
Institute of Informatics, University of Warsaw

Banacha 2, 02-097 Warsaw, Poland
keplicz,astrachocka@mimuw.edu.pl

Abstract
In the contemporary autonomous systems the role
of complex interactions such as (possibly relaxed)
dialogues is increasing significantly. In this pa-
per we provide a paraconsistent and paracomplete
implementation of inquiry dialogue under realis-
tic assumptions regarding availability and quality
of information. Various strategies for dealing with
unsure and inconsistent information are analyzed.
The corresponding dialogue outcomes are further
evaluated against the (paraconsistent and paracom-
plete) distributed beliefs of the group.
A specific 4-valued logic underpins the presented
framework. Thanks to the qualities of the imple-
mentation tool: a rule-based query language 4QL,
our solution is both expressive and tractable.

1 Paraconsistent Nonmonotonic Dialogues
The synergistic effect of collaborating agents is achieved by
their proper communication. However, in dynamic and un-
predictable environments up-to-date, sure and complete in-
formation is hardly obtainable. This leads to conflicts, uncer-
tainty and paracompleteness, particularly when handling in-
formation originating from multiple sources of diverse cred-
ibility, quality or significance. In this paper we introduce
a new approach to logical modeling of conversing agents,
which are prepared to handle inconsistency and ignorance.

To this end, a paracomplete and paraconsistent (i.e., toler-
ating inconsistencies) logic is necessary, supported by two
new truth values: unknown (u) and inconsistent (i). In
line with other paraconsistent approaches to modeling di-
alogues [Takahashi and Sawamura, 2004; Prakken, 2010;
Black and Hunter, 2009], inconsistency does not trivialize
reasoning but is treated as first-class citizen alike true (t) and
false (f). In our system the following choices have been made.

• The four-valued logic of [Vitória et al., 2009] underpins
the solution.

• Unknown or inconsistent conclusions do not enforce ter-
mination of the reasoning process.

∗This research is partially supported by Warsaw Center of Math-
ematics and Computer Science.

• Such conclusions can be handled via lightweight forms
of nonmonotonic reasoning.

Entailment in logic amounts to deriving conclusions from
theories that can be seen as complex knowledge bases. How-
ever, instead of querying arbitrary theories, in order to reduce
complexity we tailor them to their tractable versions like spe-
cific rule-based systems. Thus, instead of reasoning in logical
systems of high complexity, we query paraconsistent knowl-
edge bases. Only recently has a sufficiently expressive tool
existed for creating and querying them in polynomial time:
4QL - a DATALOG¬¬-like four-valued rule-based query lan-
guage. Following this shift in methodology, the contribution
of this paper is an implementation of a tractable, paraconsis-
tent and paracomplete multi-party inquiry dialogue suitable
for agents situated in information-rich environments. The
overall goal of inquiry is to collectively solve a theoretic prob-
lem, resulting in the common knowledge about the solution.

Consider a multi-agent system where each swarm agent
is specialized in gathering different type of information via
a polling system, and a supervisor agent which verifies cer-
tain information for the human user. Suppose the human user
asks if it is safe to travel to place X (safe(X)?) and none
of the agents knows the answer. Engaging in inquiry on the
topic safe(X) allows agents to share only the relevant pieces
of their (possibly vast) knowledge and collectively arrive at
a final recommendation for the human user. Although con-
flicts may naturally appear on many different levels of such
group activity [Dunin-Kȩplicz et al., 2014], it is not the goal
of inquiry but rather persuasion to resolve them.

Unlike the classical case [Walton and Krabbe, 1995], our
approach to inquiry permits 4-valued statements. It turns out
that the initial valuation of the topic separates Inquiry-What
from Inquiry-That. In both cases, several strategies to han-
dle missing and inconsistent information are presented and
formally investigated. The final outcomes of such dialogues
are compared against the (possibly inconsistent and incom-
plete) distributed knowledge of the conversing group [Fagin
et al., 1995]. In this regard the soundness of a strategy means
that whenever a dialogue terminates with a given conclusion,
the same result would be obtained by an individual reasoning
from the union of all the agents’ belief bases. Accordingly,
if a solution is obtainable from the union of agents beliefs,
an inquiry under a complete strategy will reach it. The main
result of this research concerns soundness and completeness

of the open-minded inquiry strategy (Theorem 4).
Enriching the modeling perspective allows us to contem-

plate several new cognitive situations in communication (see
e.g., [Dunin-Keplicz et al., 2015]), occurring also in inquiry.
Arguably, other normative models of dialogues would benefit
from the 4-valued approach.

The paper is structured as follows. First, in Section 2, the
notions underpinning our solution are recalled. Section 3 con-
cerns the formalization of inquiry, its strategies and proper-
ties. Finally, Section 4 concludes the paper.

2 Language and Implementation Tool
Our formal inquiry dialogue system uses the logical language
of [Małuszyński and Szałas, 2013; Szałas, 2013; Małuszyński
and Szałas, 2011]. Agents’ informational stance is encoded in
the rule-based query language 4QL1 defined in [Małuszyński
and Szałas, 2013], further developed in [Szałas, 2013] and
based on a 4-valued logic of [Vitória et al., 2009]. 4QL al-
lows for negation both in premisses and conclusions of rules.
Importantly, negation in the conclusions may lead to inconsis-
tencies. Even though openness of the world is assumed, rules
can be used to close the world locally or globally. Below, the
formal language underlying 4QL will be briefly introduced.

In what follows all sets are finite except for sets of for-
mulas. We deal with the classical first-order language over
a given vocabulary without function symbols. We assume
that Const is a fixed set of constants, Var is a fixed set of
variables and Rel is a fixed set of relation symbols.

Definition 1 A literal is an expression of the form R(τ̄) or
¬R(τ̄), τ̄ being a sequence of parameters, τ̄ ∈ (Const ∪
V ar)k, where k is the arity of R ∈ Rel. Ground literals over
Const, denoted by G(Const), are literals without variables,
with all constants in Const. If ` = ¬R(τ̄) then ¬` def

= R(τ̄).C

Though we use classical first-order syntax, the semantics sub-
stantially differs from the classical one as truth values t, i, u, f
(true, inconsistent, unknown, false) are explicitly present; the
semantics is based on sets of ground literals rather than on
relational structures. Intuitively:

• a is t if all sources claim a,

• a is f if all sources claim ¬a,

• a is u if no sources claim a nor ¬a,

• a is i if some sources claim a, other claim ¬a.

For semantics of propositional connectives see Table 1.
The definitions of ∧ and ∨ reflect minimum and maximum
with respect to the truth ordering

f < u < i < t. (1)

Whenever truth values are restricted to {f, t}, the semantics is
compatible with the semantics of classical first-order logic.

Let v : Var → Const be a valuation of variables. For a lit-
eral `, by `(v) we mean the ground literal obtained from ` by
substituting each variable x occurring in ` by constant v(x).

1Open-source implementation of 4QL is available at 4ql.org.

Table 1: Truth tables for ∧, ∨,→ and ¬.

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

Definition 2 The truth value `(L, v) of a literal ` w.r.t. a set
of ground literals L and valuation v, is defined by:

`(L, v)
def
=

t if `(v)∈L and (¬`(v)) 6∈L;
i if `(v)∈L and (¬`(v))∈L;
u if `(v) 6∈L and (¬`(v)) 6∈L;
f if `(v) 6∈L and (¬`(v))∈L.

C

For a formula α(x) with a free variable x and c ∈ Const, by
α(x)xc we understand the formula obtained from α by substi-
tuting all free occurrences of x by c. Definition 2 is extended
to all formulas in Table 2, where α denotes a first-order for-
mula, v is a valuation of variables, L is a set of ground liter-
als, and the semantics of propositional connectives appearing
at righthand sides of equivalences is given in Table 1.

Table 2: Semantics of first-order formulas.

• if α is a literal then α(L, v) is defined in Defini-
tion 2;

• (¬α)(L, v)
def
= ¬(α(L, v));

• (α ◦ β)(L, v)
def
= α(L, v) ◦ β(L, v),

where ◦∈{∨,∧,→};
• (∀xα(x))(L, v) = min

a∈Const
(αx

a)(L, v),

where min is the minimum w.r.t. ordering (1);
• (∃xα(x))(L, v) = max

a∈Const
(αx

a)(L, v),

where max is the maximum w.r.t. ordering (1).

In 4QL beliefs are distributed among modules. Each mod-
ule can be treated as a finite set of literals. For specifying
rules, multisource formulas and querying modules, we apply
the language of [Szałas, 2013].

Definition 3 A multisource formula is an expression of the
form: m.A or m.A∈T , where:
• m is a module name;
• A is a first-order or a multisource formula;
• v is a valuation;
• T ⊆ {t, i, u, f}.

We write m.A = v (respectively, m.A 6= v) to stand for
m.A∈{v} (respectively, m.A 6∈{v}). C

The intuitive meaning of a multisource formula m.A is:

“return the answer to query expressed by formula
A, computed within the context of module m”.

The value of ‘m.A ∈ T ’ is:
{
t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula with
X1, . . . , Xk being its all free variables and D be a finite set
of literals (a belief base). Then A, understood as a query, re-
turns tuples 〈d1, . . . , dk, tv〉, where d1, . . . , dk are database
domain elements and the value of A(d1, . . . , dk) in D is tv.

From now on we assume that the domain and language are
fixed and the programs and rules are ground. If S is a set,
then FIN(S) represents the set of all finite subsets of S. In
what follows let C def

= FIN(G(Const)) be the set of all finite
sets of ground literals over constants in Const.

Definition 4
• Rules are expressions of the form:

` :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim . (2)

where the conclusion ` is a positive or negative literal
and the premisses b11, . . . , b1i1 , . . . , bm1, . . . , bmim are
multisource formulas and ‘,’ and ‘|’ abbreviate conjunc-
tion and disjunction, respectively.

• A fact is a rule with empty premisses (evaluated to t).

• A module is a syntactic entity encapsulating a finite
number of facts and rules.

• A 4QL program is a set of modules, without cyclic refer-
ences to modules involving multisource formulas of the
form m.A∈T . C

If δ is a rule, by head(δ) we mean the rule conclusion. If δ is
a fact, head(δ) = δ.

The key concepts of modules and multisource formulas
allow us to deal with unknown or inconsistent conclusions
without enforcing termination of the reasoning process. Tech-
nically, any literal l corresponds to a multisource formula
M.l, thus l ∈M .

The semantics of 4QL is defined by well-supported mod-
els [Małuszyński and Szałas, 2013; Szałas, 2013], i.e., mod-
els consisting of (positive or negative) ground literals, where
each literal is a conclusion of a derivation starting from facts.
For any set of rules, such a model is uniquely determined and
computable in deterministic polynomial time O(Nk) where
N is the size of domain and k = max(s, t) where s is the
maximal arity of relations and t is the maximum number of
free variables. As we deal with ground programs, t = 0.
When s is a bound constant, which is the case in practical ap-
plications of 4QL (qualitative not quantitative reasoning), we
achieve tractability. Notice that it is the same complexity as
SQL with recursion.

Definition 5 Let P be a 4QL program,A a formula, andMP

the well-supported (unique) model of P . Then: P |= A iff
for any valuation v we haveMP |= v(A).

As an example, consider program P = {top, su} consist-
ing of two modules top and su (for surveillance).

top = { enter(b) :– isAt(s, b),¬has(s, h).,
isAt(s, b) :– isArmed(s), hearShotsAt(b).,
isAt(s, b) :– su.isAt(s, b) ∈ {u, i, t}.,

¬has(s, h),
has(s, h),
isArmed(s)}

su = { isAt(s, b) :– see(s, b),¬conditions(fog).,
see(s, b),
¬conditions(fog)}

(3)
The literals s, b, h represent suspect, building and

hostage, respectively. The program uniquely determines the
following well-supported model for module su:

Msu = {¬conditions(fog), see(s, b), isAt(s, b)} (4)

and the following well-supported model for module top:

Mtop = {enter(b),¬enter(b), isAt(s, b),
isArmed(s), has(s, h),¬has(s, h)}. (5)

Definition 6 Let ` be a literal and P a 4QL program.
A derivation of ` from P is the well-supported modelMP .

A dependence set of a literal ` from a program P consists
of literals reachable via backward chaining on P from `.

Definition 7 Let ` be a literal and P a 4QL program. A de-
pendence set of ` from P , denoted DP,` is a set of literals
such that:
• ¬`, ` ∈ DP,`,
• if there is a rule `′ :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim

in P , such that `′ ∈ DP,` then
∀j∈1..m∀k∈1..ij bjk,¬bjk ∈ DP,`. C

A proof of a literal ` from a program P is a subprogram
S of P generated from the dependence set DP,` by taking all
rules and facts of P whose conclusions are in DP,`.

Definition 8 Let ` be a literal, P a 4QL program. A proof
of l from P is a 4QL program S ⊆ P such that δ ∈ S iff
head(δ) ∈ DP,`, where δ is a fact or a rule. The size of the
proof S is the size of the program S. The size of domain of
the proof S is the size of the dependence set DP,`. C

In order to implement dialogues, the functionality of
adding a rule to a 4QL program is required.

Definition 9 We define an operation of adding a ground rule
Mi.` :– b to a 4QL program P = {M1, ...,Mn} as follows:
P ′ = P ∪ {Mi.` :– b} =
{M1, ...,Mi−1,Mi ∪ ` :– b,Mi+1, ...,Mn}

3 Inquiry
The purpose of inquiry is to collectively solve a theoretical
problem [Walton and Krabbe, 1995]. In multi-agent systems,
inquiry ”starts when some agents are ignorant about the solu-
tion to some question or open problem. The main goal is the
growth of knowledge, leading to agreement about the con-
clusive answer of the question. This goal may be attained

in many different ways, including an incremental process of
argument which builds on established facts in drawing con-
clusions beyond a reasonable doubt. Both information re-
trieval and reasoning may be intensively used in this pro-
cess” [Dunin-Kȩplicz and Verbrugge, 2010]. In its classical
form, inquiry seeks to prove a statement as true or false:

I1. is(suspect, guilty) = t: ’prove that suspect is guilty’,

I2. is(suspect, guilty) = f: ’prove that suspect is not guilty’.

Our paraconsistent and paracomplete framework allows for
contemplating other possibilities:

I3. is(suspect, guilty) = i: ’prove that there are inconsistent in-
formation concerning suspect’s guilt’,

I4. is(suspect, guilty) = u: ’is suspect guilty?’.

Specifically (3) exemplifies that inquiry can commence when
the goal’s initial valuation is i. Our approach allows to model
such situations, common in practical applications. In con-
trast, until a valuation for (4) is established, no classical in-
quiry on this subject (finding a proof) can commence. This
scenario resembles discovery dialogue, where ”we want to
discover something not previously known” [McBurney and
Parsons, 2001]. In our setting, the dialogue aiming at dis-
covering the value of a statement is just another variation of
inquiry, so is structured exactly the same. Thus, two types of
inquiry dialogues are distinguished:

1. Inquiry-WHAT, where initial valuation of s is u and
the goal of the dialogue is to establish the valuation
vf of s (see I4).

2. Inquiry-THAT, where initial valuation of s is t, f or i,
and the goal of the dialogue is to confirm or refute this
by providing the proof for s (see I1, I2, I3).

Inquiry-WHAT succeeds if the final valuation vf 6= u and
Inquiry-THAT succeeds if vf is equal to the initial valuation
vi of s. An outcome of a successful inquiry is the valuation
of the goal and the proof of it (see Definiton 13).

3.1 Query and Commitment Stores
A common approach to modeling inquiry is to keep two stores
(see e.g., [Black and Hunter, 2009; Singh, 1998] and refer-
ences therein): a Commitment Store (CS), reflecting agents’
commitments, and a Query Store (QS), reflecting current
open questions. Commitment Store is thus associated with
an individual agent while Query Store - with the dialogue.

We maintain both stores associated with the dialogue
(CSd, QSd) without any assumptions about agents’ individ-
ual Commitment Stores. Technically, our Commitment Store
reflects the current accumulated knowledge base. It is cre-
ated empty when the dialogue begins (as no locutions have
been uttered yet) and updated with every assertion relevant
to the dialogue. To sum up, in our methodology, the in-
quiry Commitment Store is just an evolving 4QL program
(see also [Alferes et al., 2002]).

We assume that in the course of dialogue agents assert only
relevant information, that is, rules whose conclusions match
the current entries in QS. For a literal l ∈ QS, relevant re-
sponses include both l :– b and ¬l :– b (or ` and ¬`). Accord-
ingly, two locutions crucial to inquiry are:

• assert(Si, δ, d): agent Si asserts a rule or a fact δ in the
dialogue d. If assertion is relevant, it’s content is added
to CSd and its premisses are added to QSd.

• requestAll(Si, d): agent Si requests content of QSd.

Backward chaining mechanism employed here is com-
monly used in deductive argumentation for driving the ar-
gumentation process (see e.g., [Besnard and Hunter, 2008;
Black and Hunter, 2009; Prakken, 2010]).

Definition 10 Locution mt is relevant to an inquiry d at
time t iff mt = assert(S,Mi.` :– b, d) and (¬)Mi.` ∈ QSt

d,
where QSt

d is the Query Store of d at time t. We will al-
ternate between the notions of locution, message, move and
utterance. C

To make the communication more flexible, the assumption
about relevance of the locutions can be realized by a filter-
ing mechanism. Then, instead of requiring that agents make
specific moves, we allow them to utter any locutions, filtering
out the irrelevant ones2.

Definition 11 Commitment Store of a dialogue d at time t is
a 4QL program denoted as CSt

d = 〈M t
1, . . . ,M

t
k〉:

• CS0
d = ∅

• CSt
d = CSt−1

d ∪ {Mi.` :– b}, such that
mt = assert(S,Mi.` :– b, d) is relevant to d at time t,

• CSt
d = CSt−1

d otherwise. C

Next, the Query Store, is a repository of active, unresolved
leads in the inquiry. It contains literals which compose the
proof of the inquiry goal s. At the beginning the Query Store
contains s as a single entry. The mechanism of updating
QS is in fact a paraconsistent and paracomplete distributed
version of backward chaining3, as discussed in Section 3.3.
However, in contrast to the classical backward chaining, here
we have a number of additional options to investigate. Con-
sequently, there may be various policies for adding literals
to QS (selecting threads to follow) and removing them from
QS (closing explored threads). Functions open and close
(see Definition 12) correspond to such methods.

Definition 12 Let:

• CSt
d be the Commitment Store of dialogue d at time t,

• mt be the message received at time t,

• close : FIN(C) × FIN(C) → FIN(C) be a method for
removing entries from the Query Store,

• open : FIN(C) × FIN(C) → FIN(C) be a method for
adding entries to Query Store.

Then, Query Store of an inquiry dialogue d on subject s at
time t is a finite set of literals denoted as QSt

d such that:

• QS0
d = {s}

2Such a filter is easy to implement: upon receiving a message,
QS is inspected to verify if the rule head is in the scope of inquiry.

3Hybrid backward-forward chaining techniques may be used if
assert locution contains a set of rules, e.g., a subset of proof con-
structed bottom-up. This is a topic for future research.

• QSt
d = (QSt−1

d ∪ B′) \ B′′, if
mt = assert(S,Mi.` :– b, d), where

B′ = open(b, CSt
d),

B′′ = close(QSt−1
d ∪B′, CSt

d),

• QSt
d = QSt−1

d otherwise. C

3.2 Dialogue Outcome vs. Distributed Knowledge
Our setting consists of a finite set of n cooperative agents.
The assumption that agents do not withhold information im-
plicitly constraints the number of requestAll locutions per one
assertion. Agents’ belief bases are encoded as finite, ground
4QL programs P1, . . . , Pn, that share a common ontology
and do not change during the course of dialogue. Agents
communicate one-to-all without coordination. The well-
supported models MP1 , . . . ,MPn of the programs express
agents’ final beliefs. The union of individual agents’ belief
bases (i.e., their distributed knowledge [Fagin et al., 1995]) is
expressed by the sum of their 4QL programs:

⋃
i∈1..n Pi. An

agent can join and leave a dialogue at any time if in between
join and leave locutions it utters at least one assertion.
Agents cannot repeat assertions. These assumptions allow us
to verify quality and completeness of the obtained results.

Since 4QL programs are finite and agents cannot repeat
utterances, there must be a moment t when no agent has
anything more to utter because either it has run out of relevant
moves or because the dialogue goal s has been achieved,
whichever comes first. Thus, dialogue terminates at time t.
The knowledge accumulated in the course of a dialogue d
is expressed by the Commitment Store of that dialogue at
termination time t: CSt

d. The final conclusion depends on
the dialogue strategy (see below) and is expressed as follows.

Definition 13 For an inquiry terminating at time t, with the
goal s of initial valuation vi, the value of the dialogue conclu-
sion is vf = v(s,MCSt

d
), whereMCSt

d
is the well-supported

model of CSt
d. Dialogue is:

• successful iff

– vi = u ∧ vf 6= u [Inquiry-WHAT], or
– vi 6= u ∧ vf = vi [Inquiry-THAT],

• unsuccessful otherwise. C

The value of the goal s obtained from the union of agents’
programs is expressed as v(s,M⋃

i∈1..n Pi
).

Definition 14 Let:

• open : FIN(C)× FIN(C)→ FIN(C),

• close : FIN(C)× FIN(C)→ FIN(C)

be two methods for adding and removing entries to Query
Store of dialogue d. Then: ST = 〈open, close〉 is a strategy.

Definition 15 A strategy ST is sound iff whenever dia-
logue d on subject s conducted under this strategy termi-
nates at t with conclusion k, then if v(s,MCSt

d
) = k then

v(s,M⋃
i∈1..n Pi

) = k.

Definition 16 A strategy ST is complete iff whenever dia-
logue d on subject s conducted under this strategy terminates
at t with conclusion k, then if v(s,M⋃

i∈1..n Pi
) = k then

v(s,MCSt
d
) = k.

3.3 Opening and Closing Inquiry Threads
In classical backward chaining, the inference engine selects
rules whose consequents match the goal to be proved. If the
antecedent of the rule is not known to be true, then it is added
to the list of goals. In our paraconsistent and nonmonotonic
distributed version of backward chaining, the conditions un-
der which antecedent can be added to the list of goals differ
depending on the method used. Consequently, there may be
various policies for adding literals to QS (selecting threads
to follow via function open). From a variety of possibilities,
here we investigate two such methods. A literal can be added
to the Query Store if:
A1. Its valuation in the CS model is u, meaning that only

threads lacking any evidence whatsoever are explored.
A2. Always, meaning that every premise is investigated fur-

ther, even one that is tentatively assumed to be t, f or i.
Definition 17 Let CSt

d be the Commitment Store of
an inquiry dialogue d at time t and MCSt

d
be its well-

supported model. Let mt = assert(S,Mi.` :– b, d)
be the message received at time t, such that:
b = b11, . . . , b1i1 | . . . | bm1, . . . , bmim . Then,

open(b, CSt
d)

def
=

{bjk |j ∈ 1..m, k ∈ 1..ij
andMCSt

d
(bjk) = u} [A1]

{bjk |j ∈ 1..m, k ∈ 1..ij} [A2]
C

Notice that in the nonmonotonic paraconsistent backward-
chaining, obtaining a truth value for p does not necessarily
close the line of reasoning about p, since the evidence put
forward by other agents may change the value of p in a num-
ber of ways. This is why we conduct inquiry until all relevant
information is shared by the agents.

The conditions under which a goal can be abandoned also
differ depending on the policy employed. We distinguish
two methods for removing literals fromQS (closing explored
threads via function close):
R1. Once its valuation in the CS model is not u, meaning

that a thread is terminated whenever any evidence for it
is found. In some cases it may be closed prematurely,
without exposing other evidence relevant to the thread.

R2. Never, meaning the threads are never abandoned, as the
information regarding them may grow. This will not lead
to infinite dialogues, since agents cannot repeat utter-
ances and their programs do not change during dialogue.

Definition 18 Let CSt
d be the Commitment Store of an in-

quiry dialogue d at time t and MCSt
d

be its well-supported
model. Let QSt−1

d be the Query Store of an inquiry dialogue
d at time t − 1 and MQSt−1

d
be its well-supported model.

Then,

close(QSt−1
d , CSt

d)
def
=

{{x ∈M
QSt−1

d
|MCSt

d
(x) 6= u} [R1]

∅ [R2]

3.4 Inquiry Strategies
The ensuing question is which combination of methods for
updating QS makes sense (see Table 3) and how do resulting
inquiry strategies differ. Unlike other approaches, we do not
assume that the distributed knowledge of the group is com-
plete. If the statement s cannot be proved by agents, the con-
clusion would simply be u.

Table 3: Inquiry strategies defined as pairs of methods for
updating QS.

R1 R2
A1 narrow-minded pragmatic
A2 forgetful open-minded

Theorem 1 Narrow-minded strategy is neither sound nor
complete. Moreover, it is type 1 nondeterministic.4

Proof. Due to the non-monotonicity of our inquiry, applying
the narrow-minded strategy may result in overlooking some
important information. As the counterexample, assume three
agents A1, A2, A3 are engaged in an inquiry dialogue with
the goal enter(b). Their programs are shown in Table 4 and
the dialogue conduct is presented in Table 5.

Table 4: Programs of Agents A1, A2, A3.

A1 A2 A3

1 enter(b) :– isAt(s, b),
¬has(s, h)

¬su.isAt(s, b) hearShotsAt(b)

2 isAt(s, b) :–
su.isAt(s, b) ∈ {u, i, t}

isArmed(s)

3 isAt(s, b) :–
isArmed(s),

hearShotsAt(b)
4 ¬has(s, h)

Table 5: Example of a Narrow-Minded Inquiry.

t QSt
d mt MCSt

d

0 enter(b) ∅ ∅
1 enter(b), isAt(s, b), has(s, h) A1(1) ∅
2 enter(b), has(s, h), su.isAt(s, b) A1(2) isAt(s, b)
3 enter(b), has(s, h) A2 (1) ¬su.isAt(s, b)
4 enter(b) A1(4) ¬su.isAt(s, b),

¬has(s, h)

For brevity, we denote assertions in Table 5 as Aj(k),
standing for the k-th rule of agent Aj . Dialogue termi-
nates in step 4, since only agent A1 has a rule with con-
clusion enter(b) but it has already uttered it. Notice that
at timepoint t = 2 we had to remove isAt(s, b) from
the Query Store, as it became true in MCS2

d
. There-

fore, agent A1 didn’t have a chance to use rule (3) in the
dialogue. Obviously, v(enter(b),MCS4

d
) = u, whereas

4Type 1 nondeterminism in logic programs means freedom to
choose the rule to apply [Schöning, 2008].

the conclusion obtained by merging agents’ programs is
v(enter(b),M⋃

i∈1..3 Pi
) = t. If instead in the timepoint

t = 2 agent A1 would have uttered rule (3), then Query Store
and in consequence, the whole dialogue, would look differ-
ently, leading to a true conclusion even if agent A1 didn’t
have a chance to utter rule (1). C

Two strategies are equal if the dialogues conducted under
these strategies cannot be distinguished on the basis of the
content of the stores at any time.

Definition 19 Dialogue D1 is equal to dialogue D2 iff for
all finite sequences of moves s = m1, . . . ,mts , s.t. mi

is relevant at i to D1 and to D2, we have that ∀i ∈ 1..ts
CSi

D1
= CSi

D2
and QSi

D1
= QSi

D2
.

Strategies S1 and S2 are equal iff dialogues conducted
under these strategies are equal. C

Theorem 2 Forgetful and narrow-minded strategies are
equal.

Proof sketch. In the forgetful strategy, we add all literals from
the rule body to QS only to remove the known ones after-
wards. Therefore, what remains are the unknown literals.
Since agents cannot query QS in between adding and remov-
ing literals (in theory update of QS is atomic operation), these
two strategies are indistinguishable. C

Theorem 3 Pragmatic and open-minded strategies are equal
in terms of dialogue conduct.

Proof. Let’s consider the pragmatic strategy and a goal s. In
the first step, the rule s :– b is considered. All rule premisses
(b) are either empty (when s is a fact) or unknown (since CS0

is empty). Therefore, in the first step all premisses (b) are
added to QS0 and the initial rule s :– b (or fact s) is added to
CS0. Obviously for a literal to be t, f or i, it has to be a rule
conclusion or a fact. Since only rules, whose conclusions are
in QS are admitted to CS, there cannot be a t, f or i literal
which is in CS but was not in QS beforehand. C

Theorem 4 Open-minded strategy is sound and complete.

Proof sketch. Assume that v(s,MCSt
d
) = k

and v(s,M⋃
i∈1..n Pi

) 6= k. At the time of dialogue ter-
mination, CS contains all relevant messages. Each of
these was uttered by at most one agent. Therefore, we
can assign each message to a set CSi where i was the
sender. Obviously, CSi ⊆ Pi. Therefore we have:
CS =

⋃
i∈1..n CSi ⊆

⋃
i∈1..n Pi. Since v(s,MCSt

d
) = k

and v(s,M⋃
i∈1..n Pi

) 6= k, that means that there is a part

of the union of programs S def
=
⋃

i∈1..n Pi \ CS, such that,
adding S to CS would change the valuation of s. However,
that would mean that there exists a rule (or a fact) in S whose
conclusion is in premisses of CS. That means, that rule is
a part of the proof for s but was not uttered by the agent,
which contradicts our assumptions.

Proof of completeness is analogous. C
Notice that in open-minded inquiry on subject s, CS is the

evolving proof of s from
⋃

i∈1..n Pi and QS is the evolving
dependence set of s from

⋃
i∈1..n Pi.

3.5 Complexity
Complexity measures of proposed inquiry strategies include:
• communication complexity, concerning only the amount

of communication among agents (who have unlimited
computational power) [Kushilevitz and Nisan, 1997],
• computational complexity (data complexity), concern-

ing the amount of computation (when communication
is free) required to:

– achieve dialogue termination,
– obtain a conclusion of a terminated dialogue.

Computational complexity of both problems is expressed in
terms of data complexity [Vardi, 1982; Papadimitriou and
Mihalis, 1997], i.e., complexity of evaluating a fixed query
(here: inquiry goal) on an arbitrary database (CS). Thus data
complexity is given as a function of the size of CS.

In what follows we deal with terminated dialogues and thus
we write CS and QS instead of CSt

d and QSt
d, respectively.

Since open-minded strategy subsumes narrow-minded (The-
orems 1 and 4), the (pessimistic) communication complexity
results of open-minded strategy hold for both (see Table 6).
Theorem 5 If the size of the domain of the proof of s is N ,
then the size |QS| of the Query Store at the end of the open-
minded inquiry is N/2 ≤ |QS| ≤ N .

Proof. Since all literals from rule bodies are added to QS and
they are never removed from QS, in fact they all take part in
proving the goal s. Moreover, negative and positive literals
from the proof are added to QS only once (either l or ¬l). C

Theorem 4 allows us to conclude:
Theorem 6 If the size of the proof of s is M , then the size
|CS| of the Commitment Store at the end of the open-minded
inquiry is |CS| = M .

Proof. The total amount of information shared by all assert
locutions (ai denotes number of assertions by agent i) uttered
in the dialogue is:

n∑

i=1

ai∑

j=1

|1| = |CS| = M

C
Recall that n denotes the total number of agents, each hold-

ing a certain amount of (relevant) information, such that the
proof of the inquiry topic from the union of all agents’ belief
bases is of size M (from Theorem 6). The communication
complexity is polynomial in the total amount of information
relevant to the proof.
Theorem 7 Communication complexity of inquiry
is O(nM).

Proof. In general there can be up to n−1 requests per one
assert. Thus, there can be at mostM asserts (agents cannot
repeat assertions), M × (n− 1) requests and at most 2 join
and leave locutions per one assert. Altogether (n+ 2)×M
locutions exchanged before dialogue termination5. Therefore
the communication complexity is O(nM). C

5Notice that even for hybrid forward-backward chaining, this is
the pessimistic time complexity.

Recall that the size of the domain of the proof is N , which
is the upper limit on the size of Query Store (see Theorem 5).

Theorem 8 Computational complexity of a narrow-minded
inquiry is: M ×O(Nk).

Proof. In the narrow-minded strategy, after each assert the
well-supported model of theCS has to be computed, which is
in O(Nk) (see Section 2). Thus each such step takes O(Nk).
However, at the termination time, the conclusion is known
(obtainable in O(1)). Computational complexity of narrow-
minded inquiry is thus M ×O(Nk). C

Theorem 9 Computational complexity of termination of
open-minded inquiry is: O(1).

Proof. Handling each assert amounts to adding a rule to
CSt, which is in O(1). Handling each request is in O(1) as
it amounts to sending the whole QSt back to the agent. C

Theorem 9 shows that the major factor in the complexity
of the termination problem of the open-minded inquiry is the
communication complexity.

Theorem 10 Obtaining the conclusion of a terminated open-
minded inquiry is O(Nk).

Proof. Recall that computing the well-supported model of
CS is in O(Nk), where N is the size of domain. For open-
minded strategy the computation of the well-supported model
is only needed after the dialogue terminates, i.e., once per
dialogue. C

Characteristics Open-minded Narrow-minded
Open vs. Closed System open (at least one assert per join)
Addressing one-to-all
Coordination asynchronous
Properties sound and not sound and

complete not complete
Communication Complexity O(nM) O(nM)
Computational Complexity

O(1) O(MNk)(Termination)
Computational Complexity

O(Nk) O(1)(Obtaining Conclusion)
Total Store Size M +N

Table 6: Results for open- and narrow-minded inquiries

4 Related Work and Conclusions
Exploring paraconsistency and paracompleteness in argu-
mentation is not new: there is a number of formalisms
that do not trivialize when inconsistent premises (for a sur-
vey see [Walton et al., 2008; Besnard and Hunter, 2008]).
In [Black and Hunter, 2009] a formal bi-party inquiry di-
alog system is proposed where DeLP is used to deal with
ignorance and inconsistency. In [Takahashi and Sawamura,
2004] the logic of multi-valued argumentation (LMA) is used
and agents can argue using multi-valued knowledge base.
In [Prakken, 2010] ASPIC+, a framework for structured ar-
gumentation with possible inconsistent knowledge bases and
defeasible rules is given. However, none of these formalisms

handles inconsistency and ignorance the way 4QL does. Usu-
ally the inconsistent premisses yield conclusions (e.g., ’unde-
cided’) which cannot be further dealt with.

As indicated in [Dignum and Vreeswijk, 2003; Traum,
2004], several new issues arise when contemplating the plu-
rality of dialogue participants. Multi-party issues were also
studied in [Yuan et al., 2011], where a distributed argumen-
tation system was given together with a multi-party dialogue
game for computing the defensibility of an argument from
consistent knowledge bases. In [Vreeswijk and Hulstijn,
2004], a simple multi-party inquiry dialogue assumed com-
munication in turns with no termination criterion.

Leaving behind the realm of two-valued logical approaches
to bi-party dialogues, we arrived at a solution for multi-party,
paraconsistent and paracomplete inquiry. We investigated
four inquiry strategies, conditional on different policies for
opening and closing threads. The relevant results were eval-
uated against the paraconsistent and paracomplete distributed
knowledge of the group.

The general outcome of our research calls for reconsider-
ing normative models of dialogues by introducing two addi-
tional logical values: i and u. Specifically, the novelty lies in
understanding the very nature of the dialogue’s goal, leading
to a better discernment between inquiry and discovery and
more applications of inquiry.

In future work, we intend to investigate hybrid forward-
backward chaining techniques for a dialogue system, where
the locutions can contain a set of rules. Next, we plan to re-
search methods for handling inconsistencies and uncertainty
in the Commitment Store via a challenge locution.

5 Acknowledgments
The authors would like to thank Andrzej Szałas for his com-
ments which greatly improved this paper.

References
[Alferes et al., 2002] J. J. Alferes, A. Brogi, J. A. Leite, and L. M.

Pereira. Evolving logic programs. In Proceedings of JELIA 2002,
volume 2424 of LNCS, pages 50–61. Springer, 2002.

[Besnard and Hunter, 2008] P. Besnard and A. Hunter. Elements of
Argumentation. The MIT Press, 2008.

[Black and Hunter, 2009] E. Black and A. Hunter. An inquiry di-
alogue system. Autonomous Agents and Multi-Agent Systems,
19(2):173–209, 2009.

[Dignum and Vreeswijk, 2003] F. Dignum and G. Vreeswijk. To-
wards a testbed for multi-party dialogues. In Workshop on Agent
Communication Languages, volume 2922 of LNCS, pages 212–
230. Springer, 2003.

[Dunin-Kȩplicz and Verbrugge, 2010] B. Dunin-Kȩplicz and
R. Verbrugge. Teamwork in Multi-Agent Systems: A Formal
Approach. Wiley, 2010.

[Dunin-Kȩplicz et al., 2014] B. Dunin-Kȩplicz, A. Szałas, and
R. Verbrugge. Tractable reasoning about group beliefs. In
2nd international Workshop on Engineering Multi-Agent Systems
(EMAS 2014), LNAI. Springer, 2014.

[Dunin-Keplicz et al., 2015] Barbara Dunin-Keplicz, Alina Stra-
chocka, Andrzej Szalas, and Rineke Verbrugge. Paraconsistent
semantics of speech acts. Neurocomputing, 151:943–952, 2015.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y.
Vardi. Reasoning about Knowledge. The MIT Press, 1995.

[Kushilevitz and Nisan, 1997] Eyal Kushilevitz and Noam Nisan.
Communication Complexity. Cambridge University Press, New
York, NY, USA, 1997.

[Małuszyński and Szałas, 2011] J. Małuszyński and A. Szałas. Liv-
ing with inconsistency and taming nonmonotonicity. In Data-
log Reloaded, volume 6702 of LNCS, pages 384–398. Springer-
Verlag, 2011.

[Małuszyński and Szałas, 2013] J. Małuszyński and A. Szałas. Par-
tiality and inconsistency in agents’ belief bases. In KES-AMSTA,
volume 252 of Frontiers in Artificial Intelligence and Applica-
tions, pages 3–17. IOS Press, 2013.

[McBurney and Parsons, 2001] P. McBurney and S. Parsons.
Chance discovery using dialectical argumentation. In New Fron-
tiers in Artificial Intelligence, volume 2253 of LNCS, pages 414–
424. Springer, 2001.

[Papadimitriou and Mihalis, 1997] Christos H. Papadimitriou and
Yannakakis. Mihalis. On the complexity of database queries.
In Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 1997.

[Prakken, 2010] H. Prakken. An abstract framework for argumen-
tation with structured arguments. Argument and Computation,
1(2):93–124, 2010.

[Schöning, 2008] Uwe Schöning. Logic for Computer Scientists.
Modern Birkhäuser Classics. Birkhäuser Boston, 2008.

[Singh, 1998] M. P. Singh. Agent communication languages: Re-
thinking the principles. Computer, 31(12):40–47, December
1998.

[Szałas, 2013] A. Szałas. How an agent might think. Logic Journal
of IGPL, 21(3):515–535, 2013.

[Takahashi and Sawamura, 2004] T. Takahashi and H. Sawamura.
A logic of multiple-valued argumentation. In Proceedings of the
Third International Joint Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 800–807. IEEE Computer
Society, 2004.

[Traum, 2004] D. Traum. Issues in multiparty dialogues. Advances
in Agent Communication, pages 201–211, 2004.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational query
languages (extended abstract). In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82,
pages 137–146, New York, NY, USA, 1982. ACM.

[Vitória et al., 2009] A. Vitória, J. Małuszyński, and A. Szałas.
Modeling and reasoning with paraconsistent rough sets. Fun-
damenta Informaticae, 97(4):405–438, 2009.

[Vreeswijk and Hulstijn, 2004] G.A.W. Vreeswijk and J. Hulstijn.
A free-format dialogue protocol for multi-party inquiry. In In
Proc. of the Eighth Int. Workshop on the Semantics and Prag-
matics of Dialogue (Catalog ’04), pages 273–279, 2004.

[Walton and Krabbe, 1995] D. N. Walton and E. C. W. Krabbe.
Commitment in Dialogue: Basic Concepts of Interpersonal Rea-
soning. State University of New York Press, Albany (NY), 1995.

[Walton et al., 2008] D. Walton, C. Reed, and F. Macagno. Argu-
mentation Schemes. Cambridge University Press, 2008.

[Yuan et al., 2011] Jinping Yuan, Li Yao, Zhiyong Hao, Fang Liu,
and Tangming Yuan. Multi-party dialogue games for distributed
argumentation system. In IAT, pages 329–332. IEEE Computer
Society, 2011.

Paraconsistent Multi-party Persuasion in TalkLOG

Barbara Dunin-Kȩplicz and Alina Strachocka

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
keplicz,astrachocka@mimuw.edu.pl

Abstract. Some conflicts appearing in multi-agent settings may be resolved via
communication. In this paper, besides conflicts of opinions, paradigmatically re-
solved by persuasion, we study resolution of conflicting justifications of opinions.
To cope with agents’ ignorance and inconsistencies, often arising from perception
and interactions, our formal framework TalkLOG employs a 4-valued logic with
two additional logical values: unknown and inconsistent. Within TalkLOG we
study such properties of persuasion as: termination, soundness and completeness.
Another critical issue is complexity of agents’ communication, typically inter-
leaved with reasoning. In TalkLOG tractability of both aspects is obtained thanks
to the implementation tool: rule-based 4-valued language 4QL.

1 Requirements for Resolving Conflicts via Persuasion

The overall goal of this research is a communication protocol for resolving conflicts by
a group of agents situated in dynamic and unpredictable environments where up-to-date,
unambiguous and complete information is hardly obtainable. Within our dialogue sys-
tem, TalkLOG, we introduce a new approach to logical modeling of conversing agents,
obeying the following principles of communication:
1. Agents’ informational stance is paraconsistent (i.e., tolerating inconsistencies) and

paracomplete (i.e., tolerating lack of information). Particularly, inconsistent and
incomplete conclusions do not terminate reasoning, but can be further dealt with.

2. Agents are able to complete and disambiguate missing and ambiguous information.
3. Flexible, multi-party conversations are considered.
4. Tractable protocols are built to allow for practical applicability.
5. Dynamics of communication model involves beliefs change during dialogue.

Contemporary approaches to flexible communication draw upon Walton and Krabbe’s
semi-formal theory of dialogue, adapting the normative models of human communica-
tion to multi-agent settings. The dialogue that aims at resolving conflicts in their ty-
pology is persuasion, characterized as follows: ”The initial situation of a persuasion
dialogue (or critical discussion), is a clash or conflict of points of view. The main goal
is a resolution of the initial conflict by verbal means. This means that if the dialectical
process is to be successful at least one of the parties involved in the conflict will have
to change its point of view at some stage in the dialogue. The internal aim of each party
is to persuade the others to take over its point of view” [1].

In the whole spectrum of approaches to persuasion starting from the seminal vol-
ume [1], through more formal works [2, 3], the two-party, two-valued models pre-
vail. Only recently multi-party aspects have been studied [4, 5], while non-classical
approaches [6, 7] did not treat inconsistencies as first-class citizens. In contrast to them,
the contribution of this paper is a formal, dynamic model of a tractable, paraconsistent

and paracomplete multi-party persuasion, featuring Classical and Deep Persuasion, to
solve conflicts of opinions and conflicts of justifications of opinions, respectively. Op-
posed to [6, 7], our solution is built upon the four-valued logic of [8] with an intuitive se-
mantics behind the two new truth values: unknown (u) and inconsistent (i). Such choice
permits to rationally cope with agents’ ignorance and inconsistencies usually resulting
from agents’ interactions and the complexity of the environment.

Another critical issue is complexity of agents’ communication, typically interleaved
with reasoning. Instead of reasoning in logical systems of high complexity, in TalkLOG
we query paraconsistent knowledge bases. To this end we use 4QL - a DATALOG¬¬-
like four-valued rule-based query language. In the light of the new perspective we prove
such properties of paraconsistent persuasion as: termination, convergence to the merged
outcome, soundness and completeness; similarly to our results obtained for inquiry [9].

The paper is structured as follows. First, in Section 2 related work is reviewed. Next,
Section 3, briefly recalls the underpinnings of our solution. The main matter convey
Sections 4 and 5, concerning formalization of persuasion and analysis of its properties,
respectively. Finally, Section 6 concludes the paper.

2 Related Work
Walton and Krabbe introduced two types of semi-formal persuasion dialogues: permis-
sive (PPD - everyday conversations) and rigorous (RPD - model of reasoned argument).
Their ”persuasion dialogue generally takes the form of a sequence of questions and
replies, or attacks and defenses where each side takes a turn to make a move. A move is
a sequence of locutions advanced by a participant at a particular point in the sequence
of dialogue” [1]. As in PPD and RPD replies cannot be postponed, since each player’s
move has to pertain to the adversary’s preceding move, these dialogue types do not of-
fer a more nuanced handling of the burden of proof, which is important for increased
flexibility of interlocutors. Moreover no formal properties are given.

PWA protocol [3], although suffered from similar modeling limitations (see also [10]
for discussion) was a formal approach allowing to analyze formal properties, among
others, termination and outcomes of dialogues. Prakken’s system [2] was the first to
allow alternative replies and postponing replies, thus permitting much flexibility in per-
suasion. Conflict resolution in [3] hinged on the preference relation between arguments,
while in [2] on the priorities of reasoning rules. Still all above mentioned approaches
were two-party and required that support of an argument was consistent.

Multi-party aspects were introduced to persuasion by Bonzon et al. [4], where
agents shared the set of arguments, but had different attack relations among them. Al-
though agents were privately assigned to two adverse groups, they independently pro-
posed moves to the central authority who selected the move to play. The outcomes were
juxtaposed with the merged argumentation system [11].

Several argumentation systems dealt with ignorance or inconsistency, although not
necessarily applied to persuasion. Sawamura et al. [7] proposed a framework for multiple-
valued argumentation (LMA) where agents can argue using multi-valued knowledge
base. In [6] ASPIC+, a framework for structured argumentation with possible incon-
sistent knowledge bases and defeasible rules was given. However, none of these for-
malisms handles inconsistency or lack of information the way 4QL does. Usually the

inconsistent premisses yield conclusions (e.g., ’undecided’) which terminate the rea-
soning process, thus cannot be further dealt with, unlike in our approach.

3 4QL as an Implementation Tool

TalkLOG uses the logical language introduced in [12–14]. This allows to encode agents’
informational stance in the rule-based query language 4QL1 defined in [12], further
developed in [13], and based on the 4-valued logic of [8]. 4QL features:

– Possibly many, perhaps distributed information sources.
– Four logical values (t, f, i, u).
– Unrestricted negation (in premisses and conclusions of rules).
– Simple tools: rules, modules and multi-source formulas to formulate and enrich

(lightweight versions of) (Local) Closed World Assumption, autoepistemic reason-
ing, default reasoning, defeasible reasoning, etc.

– Modular architecture to deal with unknown or inconsistent conclusions without
enforcing termination of the reasoning process.

– PTime complexity of computing queries while capturing all tractable queries.
For convenience, both the underlying 4-valued logic and 4QL are recalled from [8, 12–
14] in Appendix2. In what follows all sets are finite except for sets of formulas; domain
and language are fixed and the programs and rules are ground. We deal with the classical
first-order language over a given vocabulary without function symbols. � denotes the
set of all facts; ⇧ denotes the set of all rules.

The semantics of 4QL is defined by well-supported models, i.e., models consisting
of (positive or negative) ground literals, where each literal is a conclusion of a deriva-
tion starting from facts. For any set of rules, such a model is uniquely determined and
computable in deterministic polynomial time O(Nk) where N is the size of domain and
k = max(s, t) where s is the maximal arity of relations and t is the maximum number
of free variables. As we deal here with ground programs, t = 0. When s is a bound
constant, what takes place in qualitative not quantitative reasoning, being all practical
applications of 4QL, tractability is achieved.

4 Persuasion in TalkLOG

Although traditionally persuasion arises from a conflict of opinions [1], the following
example illustrates other possibilities.

Example 1 (John & Mark). Two friends John and Mark are saving up money together
(expressed by save(money)) and every week they are paying an agreed amount into
their common bank account. However, John wants to buy a motorcycle with that money
(expressed by the rule save(money) :– buy(moto)) and Mark plans to open a small
bar (save(money) :– buy(bar)). As there is no outspoken initial conflict of opinions
regarding saving money (save(money) is t for both of them), classically, no persuasion
can commence. However, the concealed disagreement concerns their motivations. C

1 Open-source implementation of 4QL is available at 4ql.org.
2 Availalble at http://4ql.org/downloads/appendix.pdf.

In TalkLOG, if the friends want to resolve the issue immediately (instead of fighting over
saved money later), they can enter into a discussion about their differing motivations.
Ultimately, as an outcome from such dialogue, they would:

– abandon one of the goals and focus on the other, or
– continue to save money for both goals, or
– give up on saving at all since they could not come to an agreement.

We formalize motivation (warrant or justification) as the proper proof of a formula (see
Def. 2). To this end, the notion of the dependence set of a literal ` from a program P is
needed. Intuitively, it consists of literals reachable via backward chaining on P from `.

Definition 1 (Dependence Set). Let ` be a literal and P a 4QL program. The depen-
dence set of ` from P , denoted DP,` is the set of literals such that:

– ¬`, ` 2 DP,`,
– if there is a rule `0 :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim in P , such that `0 2 DP,`

then 8j21..m8k21..ij
bjk, ¬bjk 2 DP,`. C

The proof of a literal ` from a program P is a subprogram S of P generated from
the dependence set DP,` by taking all rules and facts of P whose conclusions are in
DP,`. Notice that proof may contain rules whose premisses evaluate to f or u, thus do
not influence the value of `. The definition of proper proof disregards such rules.

Definition 2 (Proof, Proper Proof). Let ` be a literal, P a 4QL program and � 2 �[⇧
a fact or a rule. The proof of l from P is a 4QL program S ✓ P such that � 2 S iff
head(�) 2 DP,`. The proper proof (p-proof) or warrant of l from P denoted �l,P , is
a subset of Sl,P such that � 2 �l,P iff body(�)(MSl,P

) 2 {t, i}. C

By equal/different motivations we mean equal/unequal p-proofs. By equal opinions
we mean equal valuations of the formulas representing opinions. Obviously, equality
of warrants entails equality of opinions, but not the other way around. We differentiate
between cases where initial situation concerns conflict of opinions or conflict of war-
rants and we are interested in how the initial conflict is resolved, i.e., whether a common
opinion or a common warrant has been reached. Although [1] distinguish three types
of points of view (opinions) towards a topic of persuasion: positive, negative and one
of doubt, in TalkLOG, the ’doubtful’ point of view is expanded, distinguishing the cases
when the doubt results from ignorance or from inconsistency.

Definition 3 (Initial Conflict on Topic). Let:
– ' 2 C be a ground literal, representing the topic of dialogue,
– P1 and P2 be two 4QL programs of agents A1 and A2,
– MP1

and MP2
be the well-supported models of P1 and P2 respectively,

– �',P1 and �',P2 be the p-proofs of ' from P1 and P2 respectively.

Then:
– an initial conflict on topic ' between A1 and A2 occurs when:

• '(MP1) 6= '(MP2), or [conflict of opinion]
• �',P1

6= �',P2
[conflict of warrant]

– A1 and A2 share a common opinion on ' if '(MP1
) = '(MP1

),
– A1 and A2 share a common warrant on ' if �',P1

= �',P2
.

The goal of Classical Persuasion is a common opinion, while of Deep Persuasion
- common warrant. Unless stated otherwise, the formalism concerns both dialogues.

4.1 Locutions and Moves

In TalkLOG, the content of a locution is either an opinion (belief) of an agent, repre-
sented by a literal ' together with its value v; or a piece of evidence, represented by
a fact or a rule � together with its membership function µ(�) (see Definition 4 below).
Definition 4. Let P be a 4QL program and � 2 � [⇧ be a fact or a rule. Then:

µP (�)
def
=

8
>><
>>:

t when � 2 P ^ ¬� 62 P ;
f when � 62 P ^ ¬� 2 P ;
i when �, ¬� 2 P ;
u otherwise.

Definition 5. A locution is a tuple of the form hAgent, Dialogue, SpeechAct, Contenti
for simplicity denoted further as SpeechActDialogue

Agent hContenti, where:
– Agent is the identifier of the sender of the utterance: Agent 2 XAg ,
– SpeechAct is the type of locution: SpeechAct 2 {assert, assertBel, concede,

why, retract, adopt, retractBel},
– Dialogue is the identifier of the dialogue: Dialogue 2 XDial,
– Content is the propositional content of locution, dependent on speech act type. C

The format and intended meaning of locutions permitted in TalkLOG persuasion3, i.e.:
– assertions of evidence or beliefs,
– questioning evidence or beliefs,
– concessions, retraction or adoption of evidence,
– retraction of beliefs,

are given in Tab. 1, where x 2 XAg , d 2 XDial and:
– ' 2 C is a ground literal, � 2 � [⇧ is a fact or a rule,
– v, µ(�), v0 2 T is a truth value, such that v0 6= u,
– B is a body of a rule.4

Table 1: Formats and intended meaning of permissible locutions in TalkLOG persuasion.
Locution Type Format Intended Meaning

assert assertd
xh�, µ(�)i asserting attitude towards evidence �

concede conceded
xh�, µ(�)i conceding/agreeing with evidence �

assertBel assertBeldxh', vi asserting attitude towards an opinion '

assertBel assertBeldxhB, vi asserting attitude towards an opinion B

why whyd
xh', v0i questioning opinion '

retract retractd
xh�i retracting evidence �

adopt adoptd
xh�i adopting evidence �

retractBel retractBeldxh', vi retracting opinion '

The set of all locutions that match the format presented in Tab. 1 is denoted U . A move
is a sequence of locutions uttered by the same agent in the same timepoint. Moves
denotes the set of all permissible persuasion moves (where neither agent’s knowledge
base nor its beliefs can change during a move), so in a single move an agent cannot:

– assert different points of view towards the same belief,
– assert and retract the same belief,
– both (concede or assert) and (retract or adopt) a piece of evidence.

3 We skip ’operational’ locutions like requestAll, join, leave for simplicity.
4 assertBelhB, vi is a notation for a sequence of assertBel concerning literals in B.

4.2 Dialogue Stores

TalkLOG persuasion merges two approaches:

– resolving conflicts of opinions via argumentation (and embedded 4QL mechanisms),
– employing dedicated conflict resolution methods to adjudicate between conflicting

pieces of evidence. To this end we have chosen social choice theory methods [15]
(particularly, voting) for resolving conflicts unsolvable via argumentation.

In the mentalistic approach [16–18] the semantics of locutions was defined by
means of their pre- and post-conditions; for a related paraconsistent semantics con-
sult [19]. However, recently pre-conditions are realized via relevance function (see
Section 4.3), while post-conditions – as updates of so-called dialogue stores. TalkLOG
persuasion requires: Query (QS), Dispute (DS), Resolved Dispute (RDS) and Com-
mitment Stores (CS). This permits to validate correctness of moves using public infor-
mation [20] (i.e., these stores’ content) rather than internal states of agents.

QS QS contains beliefs and questions uttered by agents. Agents may inspect QS to
find questions that need answering or opinions of others that can be questioned.

DS DS contains pieces of evidence put forward by agents to support a belief or respond
to a question. Agents may query DS to support or undermine a piece of evidence
submitted by another agent.

RDS contains both traces of resolved conflicts as well as unanimously accepted pieces
of evidence. To comply with those decisions, participants are required to adopt
a piece of evidence accepted by the group (using adopt) or abandon one (using
retract locution) via voting, but consult e.g., [21].

CS CS contains the agreed-upon pieces of evidence, which once accepted are never
deleted. The fact that CS grows monotonically is important for both complexity
considerations and analysis of the properties of TalkLOG persuasion.

QS contains tuples of the form hQ, F, V, Xi where Q 2 {bel, why} denotes tuple type,
F 2 C ground literal, V 2 T a point of view towards the formula, and X 2 XAg the
sender. QS Update Function defines how QS changes after a move:

– assertBelA(', v) results in creating a new tuple hbel,', v, Ai,
– whyA(', v) results in creating a new tuple hwhy,', v,?i,
– retractBelA(', v) results in removing hbel,', v, Ai from QS, and, if that was the

last opinion v about ' in QS, removing also tuple hwhy,', v,?i (if one exists).

Definition 6. Let F t
d : {bel, why}⇥ C⇥ T⇥ XAg and mt = u1; . . . ; uk be the move

received at time t. Then, QS Update Function updateQS : F t
d ⇥Moves! F t

d is:

updateQS(S, u1; . . . ; uk)
def
=

⇢
updateQS(stepQS(S, u1), u2; . . . ; uk) if k > 1
stepQS(S, u1) if k = 1,

where stepQS : F t
d ⇥ U ! F t

d is a one-step update function defined as follows:

stepQS(S, u)
def
=

8
>>>>>>>><
>>>>>>>>:

S [{hwhy,', v,?i} if u = whyd
Ah', vi;

S [{hbel,', v, Ai} if u = assertBeldAh', vi;
S \ {hbel,', v, Ai} if u = retractBeldAh', vi^

9hbel,',v,A0i2S s.t. A0 6= A;
S \ {hbel,', v, Ai, hwhy,', v,?i} if u = retractBeldAh', vi^

¬9hbel,',v,A0i2S s.t. A0 6= A;
S otherwise.

Definition 7 (Query Store). Let mt be the move received at time t, and updateQS

be the QS Update Function. Then, Query Store of persuasion d at time t, initiated by
Ainit, is a finite set of tuples, denoted QSt

d : {bel, why}⇥ C⇥ T⇥ XAg , s.t.:

QSt
d

def
=

⇢
{hbel, s, vi, Ainiti} if t = 0
updateQS(QSt�1

d , mt) otherwise

Dispute Store contains tuples of form h�, nt, nf, ni, nui : (� [⇧)⇥N4. We will write:

DS[�, k]
def
= nk, DS[¬�, k]

def
= DS[�, ¬k], where k 2 T.

We use DS[�] to test if an entry for � is in DS, and DS[�, k]++ to increment nk counter
for �:

DS[�]
def
=

⇢
t iff h�, nt, nf, ni, nui 2 DS;

f iff h�, nt, nf, ni, nui 62 DS;

DS[�, k]++ def
= {hx, nt, nf, ni, nui 2 DS|x 6= �} [

{h�, xt, xf, xi, xui 2 DS : xk = DS[�, k] + 1}
DS Update Function defines the way DS is updated after each move:

– assert results in creating a new tuple for the propositional content of assertion
(unless already exist) and increasing the support counter for the asserted value,

– concede increases the support counter for the uttered value if the relevant tuple
exist in DS.

Definition 8. Let mt = u1; . . . ; uk be the move received at time t, � 2 � [⇧; v 2 T
and V t

d : (� [⇧)⇥ N4. Then, DS Update Function updateDS : V t
d ⇥Moves! V t

d is:

updateDS(S, u1; . . . ; uk)
def
=

⇢
updateDS(stepDS(DS, u1), u2; . . . ; uk) if k > 1
stepDS(DS, u1) if k = 1

where stepDS : V t
d ⇥ U ! V t

d is a one-step update function defined as follows:

stepDS(DS, u)
def
=

8
>><
>>:

X[�, v] + + where X = DS [{h�, 0, 0, 0, 0i} and
u = assertd

Ah�, vi and DS[�] = f;
DS[�, v] + + if (u = assertd

Ah�, vi _ u = conceded
Ah�, vi) and DS[�] = t;

DS otherwise.

Definition 9 (Dispute Store). Let mt be the move received at time t and updateDS be
the DS Update Function. Then, Dispute Store of persuasion d at time t is a finite set of
tuples, denoted as DSt

d : (� [⇧)⇥ N4 such that:

DSt
d

def
=

⇢
; if t = 0
updateDS(DSt�1

d , mt) otherwise

The entries in RDS are of the form h(¬)�, ii or h(¬)�, oi, meaning the piece of
evidence is either admitted (”in”) or rejected (”out”). After each increase of support
counter in DS for �, the voting function is called, which, if there are enough casting
votes, adjudicates about � (unlike the argumentation approach where each move may
change the status of an argument). Recall, that each agent Ai votes with its µPAi

(�).

Definition 10. Let Status = {i, o}, � 2 � [⇧ , and n 2 N be the number of dialogue
participants. Then, a voting function VF is any function V F : (� [⇧)⇥ N5 ! Status2,
such that V F (�, nt, nf, ni, nu, n) = ; iff nt + nf + ni + nu 6= n, and if � 2 ⇧ (a rule)
then V F (�, nt, nf, ni, nu, n) 6= hi, ii.
From several possible outcomes of voting over �, we forbid accepting antithetic rules
(expressed by hi, ii). If ha, bi is the outcome for �, then a is the status of � and b of ¬�.

Definition 11 (Resolved Dispute Store). Let mt be the move received at time t, and:
– DSt

d be the Dispute Store of dialogue d at time t,
– V F be a voting function,
– � 2 � [⇧; v 2 T; s1, s2 2 Status,
– n 2 N be the number of dialogue participants.

Then, Resolved Dispute Store of persuasion d at time t is a finite set of tuples denoted
as RDSt

d : (� [⇧)⇥ Status such that:

– RDS0
d = ;

– RDSt
d = RDSt�1

d [X , where: X = {h�, s1i [h¬�, s2i |
(a) conceded

Sh�, vi 2 mt _ assertdSh�, vi 2 mt,
(b) hs1, s2i = V F (�, DSt

d[�, t], DSt
d[�, f], DSt

d[�, i], DSt
d[�, u], n)}.

– RDSt
d = RDSt�1

d otherwise. C

Commitment Store is updated always after RDS is updated with an entry with status
”in”. The final value of the Deep Persuasion topic is evaluated within the context of this
store. In fact, CS is just an evolving 4QL program [22].

Definition 12 (Commitment Store). Let:

– RDSt
d be the Resolved Dispute Store of dialogue d at time t,

– mt be the message received at time t,
– � 2 � [⇧; v 2 T.

Then, Commitment Store of a persuasion dialogue d at time t is a 4QL program denoted
CSt

d such that:
– CS0

d = ;
– CSt

d = CSt�1
d [X , where X = {� |

(a) conceded
Ah�, vi 2 mt _ assertdAh�, vi 2 mt,

(b) h�, ii 2 RDSt
d},

– CSt
d = CSt�1

d otherwise. C

The conclusion of persuasion on topic s with initial value vi is the final value vf of s,
together with the justification (p-proof) �s,CSt

d
for that value, obtained in the dialogue.

For the purpose of this paper we distinguish two termination conditions:
– Impasse: when no agent has a relevant move to make,
– Common Opinion: when all agents agree on the value of the topic.

Definition 13. Let CSt
d be the Commitment Store of Deep Persuasion d terminating at

t, with the topic s of initial value vi. Then, the conclusion of d is c = hvf , Si where:
– vf = s(MCSt

d
), where MCSt

d
is the well-supported model of CSt

d,
– S = �s,CSt

d
, i.e., S is the p-proof of s from CSt

d.

Definition 14. Let QSt
d be the Query Store and CSt

d be the Commitment Store of Clas-
sical Persuasion d terminating at t with n participants A1, . . . , An, with the topic s of
initial value vi. Then, the conclusion of d is c = hvf , Si where:

– n = |hbel, s, vf , Xi 2 QSt
d : X 2 {A1, . . . An}|,

– S = �s,CSt
d
, i.e., S is the p-proof of s from CSt

d.

Obtaining conclusion of terminated Deep Persuasion amounts to computing the
well-supported model of CSt

d just once, at the end of dialogue. Thus, this problem is
in O(Nk) (see Section 3) where N is the size of domain and k is the maximal arity of
relations. Obtaining conclusion of terminated Classical Persuasion is in O(N) = |QSt

d|
(QSt

d may possibly contain all beliefs of agents at termination time).

4.3 Move and Locution Relevance

To ensure coherence and focus of persuasion, the notion of move relevance is em-
ployed after [23]. As move is a sequence of locutions, relevance of each locution is
verified on the basis of dialogue stores’ content at the given timepoint t and the locution
content (arbitrarily, irrelevant locutions are ignored). For ease of presentation, dialogue
stores are updated after each relevant locution, so that locution relevance can be defined
without reference to preceding locutions in the move. Relevant locutions are:

1. Assertions of a belief assertBeldSh , vi if it concerns:
(a) the topic of the dialogue,
(b) a belief asserted by another agent,
(c) premisses or head of a rule present in DS, or a fact present in DS.

2. Questions about a belief whyd
Sh', vi if the opinion v 2 {t, f, i} about ' is in QS.

3. Assertions of a fact or rule assertdSh�, vi if
(a) a question about a belief concerning head(�) is in QS,
(b) it is present in DS (an assertion works as concession then).

4. Concessions of a fact or a rule conceded
Sh�, vi present in DS.

5. Retractions of a belief retractBeldSh', vi if relevant belief of agent S is in QS.
6. Adoptions of a fact or a rule adoptdSh�, vi if h�, ii 2 RDS.
7. Rejections of a fact or a rule rejectdSh�, vi if h�, oi 2 RDS.

An irrelevant move is a move without relevant locutions. Notice that an irrelevant
locution ui 2 mt may be relevant at t0 6= t, but a non-permissible move mt will not be
permissible at any other time t0. Lemma 1 illustrates that in a single move an agent can
always utter its entire p-proof of a formula.
Lemma 1. If �s,P 6= ; and s(MP) = v, then while hwhy, s, v,?i 2 QS there exists
a relevant move m = u1; . . . ; un s.t.5:

�s,P =
S {�[µP (�) 2 {t, i}], ¬�[µP (�) 2 {f, i}] 2 P :
9i21..n ui = asserth�, µP (�)i _ ui = concedeh�, µP (�)i}.

Proof follows from move/locution relevance definition.
5 [·] is the Iverson bracket.

4.4 Working Example

The standard example [2] is adapted to the 3-agent case introducing agent Tom and
additional steps 4’ and 8’. The agents share an ontology, where module top contains
top-level beliefs while module news beliefs about a specific information source (here
a newspaper). At t = 0, Paul’s program P 0 consists of modules top0

P and news0
P :

P 0 = {top0
P , news0

P }. Olga’s and Tom’s programs are denoted likewise. Table 2 con-
cisely presents evolving programs of three agents. We refer to their elements by num-
bers (e.g., rule ¬safe(car) :– high(maxspeed, car) from module top has number 3 and
at t = 0 is present in Olga’s and Tom’s programs, as indicated by ⇥ in columns O0 and
T 0). Program P 0 uniquely determines the well-supported model for modules top0

P and
news0

P (Mtop0
P

and Mnews0
P

resp.), as given in Table 3. We refer to beliefs by capital
letters (e.g., A for safe(car), thus Mtop9

P
= {A, ¬A, B, C}, but Mtop0

O
= {¬A, C}).

Table 2: Evolving Programs of Paul, Olga and Tom.
Module top : P 0 O0 T 0 O40 P 9

1. safe(car) :– has(airbag, car). ⇥ ⇥
2. ¬safe(car) :– news.reports(airbagExplosions, car),

news.reliable(airbagExplosions) 2 {t, u, i}.
⇥

3. ¬safe(car) :– high(maxspeed, car). ⇥ ⇥ ⇥ ⇥
4. has(airbag, car). ⇥ ⇥ ⇥ ⇥
5. high(maxspeed, car). ⇥ ⇥ ⇥ ⇥

Module news : P 0 O0 T 0 O40 P 9

6. ¬reliable(airbagExplosions) :–
concerns(airbagExplosions, technology).

⇥ ⇥

7. reports(airbagExplosions, car). ⇥ ⇥ ⇥ ⇥ ⇥
8. concerns(airbagExplosions, technology). ⇥ ⇥ ⇥ ⇥ ⇥

Table 3: Evolving Beliefs of Paul, Olga and Tom.
Literals from module top : P 0 O0 T 0 O40 P 9

A. safe(car) t f f f i
B. has(airbag, car) t u t t t
C. high(maxspeed, car) u t t t t

Literals from module news : P 0 O0 T 0 O40 P 9

D. reliable(airbagExplosions) f u u u f
E. reports(airbagExplosions, car) t t t t t
F. concerns(airbagExplosions, technology) t t t t t

The complete dialogue conduct is given in Table 4, where column 4 shows the change
in Query Store between consecutive moves. We elaborate only on the first few steps:
1 Paul: ”My car is safe.” assertBelhA, ti
2 Olga: ”Why is your car safe?” whyhA, ti
3 Paul: ”Since it has an airbag.” asserth1, ti; assertBelhB, ti; asserth4, ti
4 Tom: ”That is true, but this does not make

your car safe.”
concedeh4, ui; assertBelhA, fi

4’ Olga: ”Yes, exactly.” concedeh4, ui; assertBelhA, fi

5 Paul: ”Why does that not make my care safe?
6 Tom: ”Since the newspapers recently reported on airbags expanding without cause.
7 Paul: ”Yes, that is what the newspapers say but that does not prove anything, since newspaper

reports are very unreliable sources of technological information.”
8 Olga: ”Still your car is still not safe, since its maximum speed is very high.”
8’ Tom: ”That’s right.”
9 Paul: OK, I was wrong that my car is safe.”

Notice that after Olga’s concession (Tab. 4, step 4’) her program should change, adopt-
ing the fact has(airbag, car). Thus, her belief structure may change such that new rea-
soning lines become available and/or the already uttered beliefs are no longer up-to-
date. The technical contribution of our solution allows to model such dialogues.

Table 4: Conduct of Paul, Olga & Tom persuasion on subject safe(car).

t S mt �QSt DSt RDSt CSt

1 P assertBelhA, ti +hbel, A, t, P i ; ; ;
2 O whyhA, ti +hwhy, A, t,?i ; ; ;
3 P asserth1, ti;

assertBelhB, ti;
asserth4, ti

+hbel, B, t, P i h1, 1, 0, 0, 0i, h4, 1, 0, 0, 0i ; ;

4 T concedeh4, ti;
assertBelhA, fi

+hbel, A, f, T i h1, 1, 0, 0, 0i, h4, 2, 0, 0, 0i ; ;

4’ O concedeh4, ui;
assertBelhA, fi

+hbel, A, f, Oi h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i h4, ii, h¬4, oi 4

5 P whyhA, fi +hwhy, A, f,?i, h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i h4, ii, h¬4, oi 4
6 T asserth2, ti;

assertBelhE, ti;
assertBelhD, ui;

+hbel, E, t, T i,
+hbel, D, u, T i

h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i,
h2, 1, 0, 0, 0i

h4, ii, h¬4, oi 4

7 P concedeh2, ui;
assertBelhD, fi;
asserth6, ti;
assertBelhF, ti

+hbel, D, f, P i,
+hbel, F, t, P i

h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i,
h2, 1, 0, 0, 1i, h6, 1, 0, 0, 0i

h4, ii, h¬4, oi, 4

8 O adopth4, ti;
asserth3, ti;
assertBelhC, ti;
asserth5, ti

+hbel, C, t, Oi, h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i,
h2, 1, 0, 0, 1i, h6, 1, 0, 0, 0i,
h3, 1, 0, 0, 0i, h5, 1, 0, 0, 0i

h4, ii, h¬4, oi, 4

8’ T concedeh3, ti;
concedeh5, ti

h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i,
h2, 1, 0, 0, 1i, h6, 1, 0, 0, 0i,
h3, 2, 0, 0, 0i, h5, 2, 0, 0, 0i

h4, ii, h¬4, oi, 4

9 P concedeh3, ui;
concedeh5, ui

h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i,
h2, 1, 0, 0, 1i, h6, 1, 0, 0, 0i,
h3, 2, 0, 0, 1i, h5, 2, 0, 0, 1i

h4, ii, h¬4, oi,
h3, ii, h¬3, oi
h5, ii, h¬5, oi

4, 3,
5

9b P adopth3, ti;
adopth5, ti;
retractBelhA, ti

�hbel, A, t, P i,
�hwhy, A, t,?i,

h1, 1, 0, 0, 0i, h4, 2, 0, 0, 1i,
h2, 1, 0, 0, 1i, h6, 1, 0, 0, 0i,
h3, 2, 0, 0, 1i, h5, 2, 0, 0, 1i

h4, ii, h¬4, oi,
h3, ii, h¬3, oi,
h5, ii, h¬5, oi

4, 3,
5

In step 9b Paul retracts his original belief. However, he still disagrees with others
on that matter as safe(car) is f for Olga and Tom but it is i for Paul at time t = 9 (see
Table 3). Note that Impasse criterion is not met yet, since there are still relevant moves
to make, e.g., a concession of rule 1 by Olga and Tom.

5 Selected Properties

The following assumptions about participating agents allow us to verify quality and
completeness of the obtained results.

[Cooperativeness] We deal with a finite set of n cooperative agents who do not withhold information.
This implicitly constraints the number of queries to dialogue stores per one locu-
tion. Agents’ belief bases are encoded as finite, ground 4QL programs P1, . . . , Pn,
that share a common ontology.

[Activeness] In between join and leave, an agent must make at least one relevant move.
[Compliance] Agents’ programs change during dialogue according to the current state of RDS.

[Sincerity] Agents do not lie about their beliefs nor contents of their programs.
[Pragmatism] Particular agents cannot repeat assert and concede locutions.

Agents communicate one-to-all without coordination. Their final beliefs are expressed
by the well-supported models MP1

, . . . , MPn
of the programs. Note that agents can

repeat assertBel locutions, provided they are separated by retractBel: simply in the
light of new evidence agents’ beliefs may change.

Theorem 1. Persuasion dialogues terminate.

Proof. Regardless the termination criterion, termination of persuasion follows trivially
from the fact that we deal with finite 4QL programs, and from the assumptions of ac-
tiveness (disallowing joining and leaving dialogue endlessly), pragmatism (disallow-
ing repeating specific locutions), sincerity (disallowing inventing beliefs or evidence),
compliance (disallowing infinitely expanding programs, since in the course of dialogue
agents’ programs change only to reflect resolved conflicts, so the size of CS can be
bounded by the union of all participants’ programs). C

Theorem 2. Persuasion terminating on Impasse is a Deep Persuasion.

Proof Assume d is a persuasion dialogue on topic s terminating at t on Impasse cri-
terion, with participants A1, . . . , An, s.t. Ai’s program at t is P t

i . Then, Ai’s p-proof
of s at t is �s,P t

i
, Ai’s value of s at t is s(MP t

i
) = vt

i and dialogue conclusion is
c = hvf ,�s,CSt

d
i, where CSt

d is the Commitment Store of d at t and vf = s(MCSt
d
).

Assume d is not a Deep Persuasion, i.e., 9i�s,P t
i
6= �s,CSt

d
. We will consider the two

cases separately: either vf is not commonly shared by all agents, or it is.
Case 1: 9i vt

i 6= vf . First assume vt
i 6= u, so �s,P t

i
6= ;. Then, agent Ai has either:

1a. not revealed its current belief, thus could not (properly) prove it, or
1b. uttered its current belief but failed to provide a p-proof of it,
1c. uttered its current belief and provided a proof but other agents did not vote for it,
1d. uttered its current belief and provided a proof but other agents refuted it.

(1a)
def⌘ hbel, s, vt

i , Aii 62 QSt
d. Since assertBel concerning dialogue topic can be

uttered at any time (unless already present in QS), this contradicts our assumptions ()
that d terminated on Impasse.

(1b)
def⌘ 9�2�s,P t

i

DSt
d[�] = f. Consider ¬ (1a) ^(1b) holds. But, hwhy, s, vt

i ,?i 2 QSt
d

since why can be uttered at any time by anyone, if the relevant belief is present in QS
and the relevant tuple for why wasn’t uttered yet. Thus, on Lemma 1, agent Ai has
a relevant move consisting of all the facts and rules from �s,P t

i
, thus .

(1c)
def⌘ 9�2�s,P t

i

: h�,�i, h¬�,�i 62 RDSt
d where � 2 Status. If ¬(1a)^¬(1b)^ (1c),

then there is an agent who did not vote for entry �. But asserting an attitude towards
a piece of evidence is possible at any time (provided it is not a repetition), thus .

(1d)
def⌘ 9�2�s,P t

i

� 62 CSt
d. If ¬ (1a) ^ ¬(1b) ^¬ (1c) ^ (1d) holds, at least one rule or

fact � from Ai’s p-proof of s was not accepted by others. Since Ai still regards � as an
element of p-proof at time t, it didn’t comply with group decision, thus .
So finally we have ¬ (1a) ^ ¬(1b) ^¬ (1c) ^¬ (1d), so 8�2�s,P t

i

� 2 CSt
d so �s,P t

i
✓

CSt
d. Also 8iCSt

d ✓ P t
j (compliance). But 9i : vt

i 6= vf = s(MCSt
d
), so P t

i \ CSt
d \

�s,P t
i
6= ; but then .

Back to Case 1 when vt
i = u. Then, Ai cannot provide a proof (�s,P t

i
= ;), but

vf 6= u, so �s,CSt
d
6= ;. Assuming Ai is compliant, CSt

d ✓ P t
i but since �s,CSt

d
6= ;

and �s,P t
i

= ; there is a nonempty relevant piece of P t
i \ CSt

d 6= ; which influences
the p-proof �s,P t

i
and which was not shared by Ai, thus .

Case 2.(8i v
t
i = vf). If vf = u then 8i�s,P t

i
= �s,CSt

d
= ; trivially. Case when vf 6= u

and 9i�s,P t
i
6= �s,CSt

d
is analogous to (1c) and (1d) above. C

Since the common warrant may be obtained earlier than termination time t imposed
by Impasse, formally Deep Persuasion covers a wider set of dialogues than persuasion
ending on Impasse. Since we cannot determine at runtime whether a common warrant
has been reached, in practice we use Impasse criterion and in the sequel we restrict the
notion of Deep Persuasion to Deep Persuasion ending on Impasse.

Theorem 3. Persuasion terminating on Common Opinion is a Classical Persuasion.

Proof. Trivially from sincerity. C

5.1 Soundness, Completeness and Convergence to Merged Outcome

The merging operator
P

(s) used in analysis of persuasion properties reflects the nature
of dialogue and is a consensual merge (see [11]) exploiting a voting mechanism (see
Definition 10) for conflict resolution. Merging is an iterative procedure, achieved by
joining p-proofs of the merge parameter s and resolving conflicts on the way. The result
of merging is a 4QL program defined as follows:

nX

i=1

Pi

!
(s)

def
=

ITMAX[

IT=0

0
@ [

�2S
�IT

IN(�)

1
A ,

where for IT � 0, k 2 T:

–
S
�IT def

=
S

i=1..n �s,P IT
i

,

– ITMAX
def
= IT : 8i=1..n : P IT+1

i = P IT
i ,

– P IT+1
i = P IT

i [S�2S
�IT IN(�) \S�2S

�IT OUT (�),
– IN(�) = {�[a = i], ¬�[b = i] : ha, bi 2 V F (�, n�

t , n
�
f , n

�
i , n

�
u, n)},

– OUT (�) = {�[a = o], ¬�[b = o] : ha, bi 2 V F (�, n�
t , n

�
f , n

�
i , n

�
u, n)}

– n�
k = |{i 2 1..n : µP IT

i
(�) = k}|.

In each iteration, the conflicts in the union of all agents’ p-proofs are resolved by
voting6, whose outcomes (sets IN and OUT) are then used to update the programs. The
procedure stops naturally when agents’ programs stop changing. The proof of s from
such a merge is �s,(

P
i=1..n Pi)(s) while the value of the topic s is s(M(

Pn
i=1 Pi)(s)).

Informally, soundness of persuasion means that any conclusion obtained in the dia-
logue equals the conclusion obtained by a single agent reasoning from a merged knowl-
edge bases of dialogue participants. On the other hand, completeness of persuasion
means that any conclusion obtained by reasoning from merged knowledge bases of
participants is obtainable by persuasion carried out by these agents.

Definition 15. Persuasion dialogue d on subject s is sound iff whenever it terminates
at t with conclusion c = hvf , Si, then if s(MCSt

d
) = vf then s(M(

Pn
i=1 Pi)(s)) = vf .

Definition 16. Persuasion dialogue d on subject s is complete iff whenever it terminates
at t with conclusion c = hvf , Si, then if s(M(

Pn
i=1 Pi)(s)) = vf then s(MCSt

d
) = vf .

Theorem 4. Classical Persuasion is not sound and not complete.

Proof. As a counterexample consider group of agents G = {A, B} with programs
PA = {a :– b; b} and PB = {a :– ¬b; ¬b} participating in dialogue d on subject a.
Assume A starts with assertBeldAha, ti. From 2 possible moves, B chooses to reply
with assertBeldBha, ti. Since |hbel, a, t, Xi 2 QS2

d : X 2 G| = |G|, dialogue ends at
t = 2 with a conclusion c = ht, ;i (CS2

d is empty). However, conclusion c0 obtained
using any merging operator VF (see Def. 10) on A and B’s programs is c0 = hu, ;i. C

A subset of Deep Persuasion dialogues called Iterated Deep Persuasion can be
distinguished when additional restrictions are put on agents regarding querying dialogue
stores, namely, when the below steps are repeated one after another in a loop:
A. while (exists other relevant move) do not query DS nor RDS;
B. while (exists other relevant move) do not query RDS;
C. while (exists relevant move) play move; (i.e., query RDS)

Theorem 5. Iterated Deep Persuasion is sound and complete.

Proof. In Iterated Deep Persuasion, in each iteration IT (starting with IT = 0):
Loop A. Agents cannot see new evidence of other agents. Thus each agent i individually

(e.g. in one relevant move) reveals only its whole current p-proof �s,P IT
i

to others

(interleaved with any assertBel or why locutions). So
S
�IT def

=
S

i=1..n �s,P IT
i

is publicly available in DS after this phase.
Loop B. Agents receive access to evidence of others (can query DS). Each agent i reveals

its attitude towards any � 2 S�IT (even if not in its p-proof of s), so after this
phase 8�2S

�IT we have all n�
k = |{i 2 1..n : µP IT

i
(�) = k}|, where k 2 T. Thus,

voting begins and 8�2S
�IT we obtain the sets IN(�) and OUT (�) s.t.:

IN(�) = {�[a = i], ¬�[b = i] : ha, bi 2 V F (�, n�
t , n

�
f , n

�
i , n

�
u, n)}, and

OUT (�) = {�[a = o], ¬�[b = o] : ha, bi 2 V F (�, n�
t , n

�
f , n

�
i , n

�
u, n)}.

6 Note P not � in the subscript µP IT
i

(�), since one may vote for � even if absent from the
p-proof.

After this step, RDSIT+1 = RDSIT [[

�2S
�IT

{h�, ii : � 2 IN(�)} [
[

�2S
�IT

{h�, oi : � 2 OUT (�)}.

Loop C. Agents receive access to RDS thus eventually each agent’s program is updated as
follows: P IT+1

i = P IT
i [

[

�2S
�IT

IN(�) \
[

�2S
�IT

OUT (�)

Since this is a Deep Persuasion, agents play until Impasse, i.e., when 8i : P IT+1
i = P IT

i

(when agents’ programs stop changing, in loop C all final relevant moves are played if
exist). Then, at termination time tt:

CStt
d =

[
{� : h�, ii 2 RDStt

d } =
ITMAX[

IT=0

[

�2S
�IT

IN(�) =

nX

i=1

Pi

!
(s),

so �s,(
Pn

i=1 Pi)(s) = �s,CStt
d

. C

Theorem 6. Deep and Classical Persuasion possibly converges to the merged outcome.

Proof. Immediately from Thm. 5 and the fact that Classical Persuasion subsumes Deep.

6 Conclusions

We presented a formalization of multi-party, paraconsistent and paracomplete persua-
sion in TalkLOG, where agents can argue about beliefs with use of pieces of evidence.
Classical Persuasion [1] was investigated and extended to account for more types of
initial conflicts of opinion due to the 4-valued approach. Moreover we distinguished
Deep Persuasion, which solves conflicts of justifications of opinions, more common in
tightly-coupled groups. We succeeded to obtain a unified treatment of both dialogue
types, which, in TalkLOG, are differentiated only by termination criterion.

Our model is somewhat complex as it deals with 4 dialogue stores, retaining the
effects of agents’ moves and resolved conflicts. Such architecture permits to achieve
a protocol with public semantics. Specifically, we show that obtaining conclusion of
a terminated dialogue is tractable. Our contribution advances the research on computa-
tional models of persuasion as we explicitly consider dynamics of belief revision in the
course of dialogue. Moreover, we depart from the traditional notion of conflict based on
inconsistency, allowing instead for a custom voting mechanism for conflict resolution.

The outcomes of TalkLOG dialogues are juxtaposed with the merged outcomes of
the individual informational stances of participants. A non-trivial merge operator (in-
spired by [11]) exploited the same voting mechanism as in dialogue. Finally, Classical
Persuasion turned out to be neither sound nor complete, as the same opinion may be
justified by different, in extreme cases even antithetic justifications, which may not be
discovered. Thus, we naturally reached deeper than just opinions, namely at their jus-
tifications, what led us to distinguishing a new type of dialogue: Deep Persuasion. In
a special class of Deep Persuasion, i.e., Iterated Deep Persuasion, soundness and com-
pleteness was obtained (assuming again the same voting mechanism in dialogue and
merge) at the price of limiting flexibility of agents’ communication.

The results were obtained in a paraconsistent, nonmonotonic, multi-party and dy-
namic setting. Extending this research, we will provide the proof of soundness and
completeness of all Deep Persuasion dialogues and investigate more specific complex-
ity results, following our previous work on inquiry [9].

References

1. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal Reason-
ing. State University of New York Press, Albany (NY) (1995)

2. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering Review
21(2) (2006) 163–188

3. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-
agent dialogues. J. Log. Comput. 13(3) (2003) 347–376

4. Bonzon, E., Maudet, N.: On the outcomes of multiparty persuasion. In: Argumentation in
Multi-Agent Systems. Volume 7543 of LNCS. Springer (2012) 86–101

5. Kontarinis, D., Bonzon, E., Maudet, N., Moraitis, P.: Regulating multiparty persuasion with
bipolar arguments: Discussion and examples. In: Modles Formels de l’interaction (MFI’11).
(2011)

6. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
and Computation 1(2) (2010) 93–124

7. Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In: AAMAS, IEEE
Computer Society (2004) 800–807

8. Vitória, A., Małuszyński, J., Szałas, A.: Modeling and reasoning with paraconsistent rough
sets. Fundamenta Informaticae 97(4) (2009) 405–438

9. Dunin-Kȩplicz, B., Strachocka, A.: Tractable inquiry in information-rich environments. In:
Proceedings of the IJCAI’15, AAAI Press (2015) to appear

10. Prakken, H.: Models of persuasion dialogue. In Simari, G., Rahwan, I., eds.: Argumentation
in Artificial Intelligence. Springer US (2009) 281–300

11. Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M., Marquis, P.: On the
merging of Dung’s argumentation systems. Artif. Intell. 171(10-15) (2007) 730–753

12. Małuszyński, J., Szałas, A.: Partiality and inconsistency in agents’ belief bases. In: KES-
AMSTA. Volume 252 of Frontiers in Artificial Intelligence and Applications., IOS Press
(2013) 3–17

13. Szałas, A.: How an agent might think. Logic J. IGPL 21(3) (2013) 515–535
14. Małuszyński, J., Szałas, A.: Living with inconsistency and taming nonmonotonicity. In:

Datalog Reloaded. Volume 6702 of LNCS., Springer-Verlag (2011) 384–398
15. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. Multiagent systems (2012)

213–283
16. FIPA: (2002) http://www.fipa.org/.
17. Cohen, P.R., Levesque, H.J.: Performatives in a rationally based speech act theory. In:

Meeting of the Association for Computational Linguistics. (1990) 79–88
18. Fisher, M.: Representing and executing agent-based systems. In: Proceedings of the ECAI-

94 Workshop on Agent Theories, Architectures, and Languages. (1994) 307–324
19. Dunin-Kȩplicz, B., Strachocka, A., Szałas, A., Verbrugge, R.: Paraconsistent semantics of

speech acts. Neurocomputing 151 (2015) 943–952
20. Chopra, A.K., Artikis, A., Bentahar, J., Colombetti, M., Dignum, F., Fornara, N., Jones,

A.J.I., Singh, M.P., Yolum, P.: Research directions in agent communication. ACM TIST
4(2) (2013) 20

21. Dunin-Kȩplicz, B., Szałas, A., Verbrugge, R.: Tractable reasoning about group beliefs. In:
EMAS 2014. Lecture Notes in Artificial Intelligence. Springer Berlin Heidelberg (2014)

22. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Proceedings
of JELIA 2002. Volume 2424 of LNCS., Springer (2002) 50–61

23. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of
Logic and Computation 15 (2005) 1009–1040

