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Modeling transcription factor complex binding
to eukaryotic genomes

Abstract

The binding of transcription factors (TFs) to their specific motifs in genomic reg-
ulatory elements of eukaryotic organisms is commonly studied in isolation. How-
ever, in order to elucidate themechanisms of transcriptional regulation, it is essential
to determine which TFs bind DNA cooperatively as dimers or higher order com-
plexes, and to infer the precise nature of these interactions. So far, only a small num-
ber of such cooperative complexes are known.
In this thesis, we present amethod for predicting cell-type–specific TF-TF dimer-

ization on DNA on a large scale. We applied it to DNase I hypersensitivity data,
representing the universe of possible TF complexes by their corresponding motif
complexes, and analyzed their occurrence at cell-type–specific DNase I hypersensi-
tive sites. This way, we predicted 603 highly significant cell-type–specific TF dimers,
the vast majority of which are novel. Our predictions included 69% (20/29) of the
known dimeric complexes manually compiled from the existing biochemical litera-
ture. The predictions were also independently supported by evolutionary conserva-
tion, as well as quantitative variation in DNase I digestion patterns.
Notably, the known and predictedTF dimers were almost always highly compact

and rigidly spaced, suggesting that TFs dimerize in close proximity to their partners,
which results in strict constraints on the structure of theDNA-bound complex. Ap-
plying our method to ChIP-seq data, we uncovered a general principle governing
the structure of TF-TF-DNA ternary complexes, namely that the flexibility of the
complex is correlated with, and most likely a consequence of, inter-motif spacing.
To allow for a broad adoption of our method, we developed TACO, a software

tool that takes as input any genome-wide set of regulatory elements and predicts
cell-type–specific TF dimers based on enrichment of motif complexes. This is the
first tool of such kind that can accommodate motif complexes composed of over-
lapping motifs, which are a characteristic feature of many known TF dimers. Our
method comprehensively outperforms the existing approaches, iTFs and SpaMo,
when benchmarked on a reference set of 29 known dimers.
Finally, we propose MOCCA, a novel computational method to identify indi-

vidual TF binding sites from genome sequence information and cell-type–specific
experimental data, such as DNase-seq. We combine the strengths of its predeces-
sors, CENTIPEDE andWellington, while keeping the number of free parameters in
the model reasonably low. Our method is unique in allowing for multiple binding
modes for a single TF, differing in their cut profile and overall number of DNase I
cuts.

Keywords: transcription factor complexes, cooperative binding, dimerization,
DNA sequence motifs, regulatory elements
ACMClassification: J.3
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Modelowanie wiązania kompleksów czynników transkrypcyjnych
w genomach eukariotycznych

Streszczenie

Wiązanie czynników transkrypcyjnych do specyficznychmotywówwelementach
regulatorowych znajdujących się w genomach organizmów eukariotycznych jest za-
zwyczaj badane dla każdego z czynników oddzielnie, bez uwzględniania wpływu
pozostałych. Jednakże w celu pełnego poznania mechanizmów regulacji transkryp-
cji należy rozstrzygnąć, które czynniki transkrypcyjne wiążą się kooperatywnie do
DNA jako dimery lub kompleksy wyższego rzędu, a także poznać dokładną naturę
tych oddziaływań. Do tej pory znana jest tylko niewielka liczba takich kooperatyw-
nych kompleksów.
W tej pracy przedstawiamy wielkoskalową i specyficzną dla poszczególnych ty-

pów komórek metodę przewidywania dimeryzacji czynników transkrypcyjnych na
DNA. Stosujemy ją do danych o nadwrażliwości naDNazę I, reprezentującmożliwe
kompleksów czynników transkrypcyjnych przez odpowiednie kompleksy ichmoty-
wów. Następnie analizujemy występowanie tych kompleksów w regionach otwar-
tej chromatyny specyficznych dla poszczególnych typów komórek. W ten sposób
przewidzieliśmy 603 istotnie nadreprezentowanych dimerów czynników transkryp-
cyjnych, spośród których zdecydowana większość nie była wcześniej znana. Nasze
przewidywania obejmują 69% (20 z 29) zbioru znanych dimerów, który zebraliśmy
z istniejącej literatury biochemicznej. Przewidywania były również niezależnie po-
twierdzone przez ewolucyjną konserwację, a także przez ilościową zmienność w pro-
filach cięcia DNazą I.
Co istotne, zarówno znane, jak i przewidywane dimery czynników transkrypcyj-

nych niemal zawsze były zwarte i sztywnie rozmieszczone. Sugeruje to, że dimeryza-
cja czynników transkrypcyjnych zachodzi w bezpośredniej ich bliskości, co narzuca
ścisłe ograniczenia w strukturze kompleksu związanego z DNA. Stosując naszą me-
todę do danych ChIP-seq, ustaliliśmy ogólną zasadę regulującą strukturę komplek-
sów złożonych z dwóch czynników transkrypcyjnych i DNA, mianowicie, że ich
elastyczność jest skorelowana z odstępem między motywami tych czynników na se-
kwencji DNA, prawdopodobnie będąc jego konsekwencją.
Abyumożliwić upowszechnienie naszejmetody, opracowaliśmyprogramTACO,

który przyjmuje jako wejście dowolny zbiór genomowych elementów regulatoro-
wych i przewiduje dimery czynników transkrypcyjnych specyficzne dla poszczegól-
nych typów komórek w oparciu o nadreprezentację kompleksówmotywów. Jest to
pierwsze narzędzie tego typu, które obsługuje kompleksy złożone z nachodzących
na siebie motywów. Takie kompleksy są cechą wielu znanych dimerów czynników
transkrypcyjnych. Napodstawie porównania zewspomnianymzbiorem29 znanych
dimerów, stwierdziliśmy że nasza metoda prześciga istniejące, iTFs i SpaMo.
Pod koniec pracy przedstawiamy programMOCCA, będący nowatorską oblicze-

niową metodą identyfikacji poszczególnych miejsc wiązania czynników transkryp-
cyjnych, na postawie informacji o sekwencji genomu oraz danych eksperymental-
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nych specyficznych dla typów komórek, takich jak dane DNase-seq. Łączymy zalety
dwóchpoprzednich podejść, CENTIPEDE iWellingtona, zachowując przy tym roz-
sądnie ograniczoną liczbęwolnych parametrówwmodelu. Naszametoda jest wyjąt-
kowa przez to, że dopuszcza by pojedynczy czynnik transkrypcyjny miał wiele róż-
nych stanów wiązania z DNA, różniących się profilami cięcia DNazą I oraz ogólną
liczbą tych cięć.

Słowa kluczowe: kompleksy czynników transkrypcyjnych, kooperatywne wiązanie,
dimeryzacja, motywy sekwencji DNA, elementy regulatorowe
Klasyfikacja tematyczna ACM: J.3
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1
Introduction

1.1 Motivation

Already Plato and Aristotle have discussed the nature of complex systems. Around
350 BCE, Aristotle in hisMetaphysics noted that

“In the case of all things which have several parts and in which the to-
tality is not, as it were, a mere heap, but the whole is something beside
the parts, there is a cause.” (Aristotle, 2009, Book VIII, Part 6)

When the entirety has different properties that its components, these components
cannot be only studied in isolation. Around 360 BCE, Plato in The Republic exem-
plified it by discussing beauty:

“Suppose that we were painting a statue, and some one came up to us
and said, Why do you not put the most beautiful colours on the most
beautiful parts of the body – the eyes ought to be purple, but you have
made them black – to him we might fairly answer, Sir, you would not
surely have us beautify the eyes to such a degree that they are no longer

1



eyes; consider ratherwhether, by giving this and the other features their
due proportion, wemake thewhole beautiful.” (Plato, 2009, Book IV)

In the case of biological systems, the complexity arises out of a multitude of in-
dividual interactions between biochemical compounds. While each of such inter-
actions may be effectively studied on its own, certain properties of the whole sys-
tem may can only be studied at a higher level. Understanding how such emergent
properties arise has been a major challenge for philosophers and naturalists over the
centuries.

The beginning of the incredibly rapid development of molecular biology can be
dated to 1953, when concurrent, albeit not joint, efforts of Francis Crick, Rosalind
Franklin, JamesWatson andMauriceWilkins led to the discovery of the structure of
DNA.Thedrafts versionsof the complete humangenomewerepublished in 2001by
the International Human Genome Sequencing Consortium and independently by
Celera Genomics. The publicly funded follow-up, Encyclopedia of DNA Elements
(ENCODE) Project, aims to identify all functional elements in the human genome
(ENCODE Project Consortium et al., 2012). The policy of making the generated
datasets publicly available allowed us to embark on the studies presented here.

The synthesis of proteins based on genetic information requires two steps: the
first one being transcription, in which the messenger RNA (mRNA) is synthesized
from a DNA template, and the second being translation, in which proteins are syn-
thesized based on thematuredmRNA transcript. The process of transcription is far
more complex in eukaryotes, i.e. organisms whose cells contain a nucleus where the
DNA is stored, than inprokaryotes, where the geneticmaterial is not enclosed in any
cellular compartment. Eukaryotes include all themulticellular andmany unicellular
organisms. In particular, all the animals, plants and fungi are eukaryotes.

Eukaryotic transcription is an extremely complex process taking place in the cell
nucleus. The packaging ofDNA around nucleosomes and subsequent higher order
chromatin structure allows for a great level of regulatory control. The expression of
individual genes is regulated by amultitude of processes affecting the corresponding
DNA and RNA fragments. Here, we focus on the binding of transcription factors,
i.e. proteins that recognize specific DNA sequence fragments and affect the rate of
transcription by binding to the DNA.

2



1.2 Organization of the thesis

This thesis does not follow the traditional structure of Introduction, Methods, Re-
sults, Discussion and Conclusion chapters. Instead, I have decided to organize the
thesis in five problem-based chapters, preceded by a general Introduction and fol-
lowed by the Conclusion. Four of these five chapters are split into Introduction,
Methods, Results and Discussion sections. This way, the results are put in a direct
context of the previous work on a particular problem, and are presented immedi-
ately after describing the relevant methods.
InChapter 2, we propose a novel computationalmethod for predicting cell-type–

specific TF-TF dimerization on DNA on a large scale. We apply it to DNase I hy-
persensitivity data and predict 603 highly significant TF dimers, the vast majority of
which are novel. Chapter 3 is dedicated to validation and characterization of these
predictions. They are independently supported by evolutionary conservation, as
well as quantitative variation in DNase I digestion patterns. We also expand the co-
operativity landscape by combining DNase-seq datasets from two sources, and by
applying our method to ChIP-seq data.
In Chapter 4, we discuss the structural properties of predicted TF dimers. In par-

ticular, we observe a strong link between their rigidity and compactness, suggesting
that TFs dimerize in close proximity to their partners. We also uncover a general
principle governing the structure of TF-TF-DNA ternary complexes, namely that
the flexibility of the complex is correlated with, and most likely a consequence of,
inter-motif spacing.
Two last chapters are dedicated to software tools. In Chapter 5 we discuss TACO,

a program that takes as input any genome-wide set of regulatory elements and pre-
dicts cell-type–specific TF dimers based on enrichment of motif complexes. We
show that TACO comprehensively outperforms the existing approaches, iTFs and
SpaMo. A dual problem is considered in Chapter 6. There, we propose MOCCA,
a software tool that can leverage the information about dimerization partners while
identifying individualTFbinding sites fromgenome sequence information and cell-
type–specific experimental data, such as DNase-seq.
In Appendix A, we list all the cell types referred to in this thesis. We suggest to re-

fer to it to decipher the cell line acronyms and to understand their role in the human
organisms. Finally, in Appendix Bwe give example specification files for TACO, the
software tool discussed in Chapter 5.
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Most of the work presented in this thesis is already published. Almost all results
of Chapter 2, as well as parts of Chapter 3 and 4, were published in:

Jankowski,A., Szczurek, E., Jauch,R., Tiuryn, J.,&Prabhakar, S. (2013).
Comprehensive prediction in 78 human cell lines reveals rigidity and
compactness of transcription factor dimers. Genome Research, 23(8),
1307–1318.

This co-authored paper presented the method developed by me and my supervi-
sors, Shyam Prabhakar and Jerzy Tiuryn. Moreover, Ewa Szczurek has proposed
an approach to systematically validate our cooperative binding predictions against
protein-protein interaction databases, which gave a strong support for our results.
This approach, presented in the paper, is not included in the thesis. Furthermore,
Ralf Jauch has developed the structural models described in Subsection 4.3.4, and
drawn the right part of Figure 4.8. The manuscript has been drafted by me, and all
the other co-authors greatly contributed to give it the final form.

The software presented in Chapter 5, along with the other parts of the results of
Chapter 3 and 4, was published in:

Jankowski, A., Prabhakar, S., & Tiuryn, J. (2014). TACO: a general-
purpose tool forpredicting cell-type–specific transcription factordimers.
BMC Genomics, 15(1), 208.

The idea for the software was developed jointly by me and my supervisors. The
manuscript has been drafted by me, and subsequently edited by all the co-authors.
The software and its documentation has been written by me; they are available on-
line at http://bioputer.mimuw.edu.pl/taco/. The source code of TACO is
also available on GitHub at https://github.com/ajank/taco.

The software presented in Chapter 6, codenamed MOCCA, was also written by
me. Its source code is available on GitHub at https://github.com/ajank/
mocca. Finally, all the errors that are found in this thesis are mine alone.
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2
Computational prediction

of transcription factor dimers

2.1 Introduction

Transcription factors (TFs) typically bind the eukaryotic genomes in clusters to form
regulatory complexes (Berman et al., 2002). However, notmuch is known about the
precise biochemical determinants of clustered TF binding. Moreover, the ability of
TFs that have relatively low sequence specificity in vitro to bindwith high specificity
in vivo is one of the long-standing paradoxes of regulatory genomics.
One explanation for the above observations is provided by focal chromatin open-

ness at regulatory elements, which attracts multiple TFs to the same stretch of ge-
nomicDNA, and is further reinforced by their co-binding. Such indirect cooperativ-
itybetween proximal binding sites ismostly non-specific, since it applies in principle
to any pair of TFs (Adams &Workman, 1995). Moreover, such co-binding TFs are
only subject to the “fuzzy” spacing constraint of proximity (Hannenhalli & Levy,
2002; Yu et al., 2006).
Another biochemical mechanism is direct cooperativity, as exemplified by homo-
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or heterodimerization of specific pairs of TFs on DNA. Note that his mechanism
also applies to higher-order complexes of three or more TFs. However, for simplic-
ity, we will henceforth only refer to TF “dimers”. Intuitively, one would hypothe-
size that such dimeric complexes should bind DNAwith rigid or semi-rigid spacing
(as opposed to variable or fuzzy spacing), due to the steric constraints imposed by
protein-protein interaction. However, the actual prevalence of spacing constraints
in vivo remains unknown, due to lack of comprehensive data.

Important examples of direct cooperativity between human TFs include the p53
homotetramer (Friedman et al., 1993), the NF-κB heterodimer (Chen et al., 1998a),
various bHLH dimers (De Masi et al., 2011), SOX2–POU5F1 (OCT4) dimeriza-
tion in embryonic stem cells (Chen et al., 2008) and AR–FOXA1 dimerization in
prostate cancer cells (Wang et al., 2011). Clearly, binding of dimeric TF complexes
to DNA is central to gene regulation in many well-studied biological contexts. In
addition to its role in facilitating TF clusters, direct cooperativity provides a simple
resolution to the paradox of binding specificity. However, little is known about the
overall extent and tissue-specificity of TF dimers in the human genome.

Here we present a method for comprehensively predicting cell-type–specific TF
dimerization based onDNA sequencemotifs of individual TFs andDNase I hyper-
sensitivity data. As a showcase example, we utilize DNase I hypersensitivity profiles
in 78 human cell types (ENCODE Project Consortium et al., 2012), as described in
Subsection 2.2.2. Uniquely, our approach can model the statistics of overlapping
motifs. As we show in Chapter 4, motif overlap is a feature of most TF dimers, and
this capability is therefore a major improvement over existing techniques. We con-
firm the accuracy of our predictions by multiple means, including the analysis of
their evolutionary conservation. Based on our method, in subsequent chapters we
obtain new insights into the prevalence and scope of direct TF cooperativity, and
the rigidity and compactness of such interactions.

Our method is based on enrichment analysis of motif pairs at specific spacings
in cell-type–specific hypersensitive sites. Thus, it differs from several existing bioin-
formatics approaches that aim to identify fuzzily spaced co-binding of TF pairs, i.e.
indirect cooperativity (Myšičková&Vingron, 2012;Qian et al., 2005;He et al., 2009;
Bais et al., 2011). Recently, Whitington et al. (2011) described a method that, simi-
larly to ours, predicts TF-TF dimerization based on enrichment of rigidly spaced
motif pairs. However, this approach requires ChIP-seq data for one of the poten-
tially cooperating TFs. In contrast, our approach is more broadly applicable, since
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it requires only one experimental data set per cell type. Consequently, our TF-TF
dimer predictions exceeded those of Whitington et al. (2011) by over a factor of 10,
and thenumber of predicteddimeric binding sites in regulatory elementswas greater
by over a factor of 100.
ChIP-seq data have also been used for TF cooperativity prediction byWang et al.

(2012), who tested for non-randomly spaced motif pairs within binding peaks. The
lattermethod ismost suited for detecting fuzzily spacedTF-TF interactions. Conse-
quently, the resulting predictions are different in nature from, and complementary
to, those we present here.

2.2 Methods

2.2.1 Overview of the method

To account for the intrinsic similarity of many of the cell types considered, we used
a systematic method to cluster them into coherent cell type clusters, based on the
similarity of their hypersensitivity profiles. We describe the clustering method in
detail in Subsection 2.2.3. Briefly, we accounted for the similarities between some of
the 78 human cell types from the ENCODEProject (ENCODEProject Consortium
et al., 2012) by grouping them into 41 distinct clusters, whichwewill henceforth refer
to as “cell types.”
The 964 vertebrate motifs in TRANSFAC Professional (Wingender, 2008) were

used as models of TF binding specificity, yielding 465,130 potential motif pairs. The
central assumption of our method is that dimeric TF complexes would be juxta-
posed in a constrained fashion when cooperatively bound to DNA. Consequently,
the genomic binding sites of cooperating TFs should form rigid motif complexes,
which we define as pairs of motifs with fixed relative orientation and offset (dis-
placement between left edges of motifs). We therefore tested all possible compact
motif complexes (motif spacing ≤ 50bp; see Subsection 2.2.5) of eachmotif pair for
enrichment in open chromatin regions specific to each of the 41 cell types.
To quantify enrichment, we counted the number of motif complex instances in

each set of cell-type–specific hypersensitive sites, and then compared against a back-
ground model based on the number of instances in the union set of hypersensitive
sites from all cell types (Figure 2.4). The significance of enrichment was assessed us-
ing a binomial distribution, after correcting for differences in motif co-occurrence
frequency between foreground and background sets (see Subsection 2.2.4). The va-
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mately 1.4 billion hypotheses tested. Inset: magnifica on of the first 10 decades of Q-Q plot. The calcu-
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model.

lidity of our statistical approach is supported by the observation that ourmotif com-
plex enrichment p-values fit the null expectation over four orders of magnitude and
are, if anything, moderately conservative (Figure 2.1).

Motif complexes showing statistically significant enrichment (p < 0.05 after
Bonferroni correction) were recognized as evidence of cell-type–specific TF cooper-
ativity. Application of the approach across all approximately 1.39·109 motif and cell-
type combinations yielded 5,233 significantly overrepresented motif complexes. For
example, we found a highly significant AR–FOXA1 motif complex in the LNCaP
prostate cancer cell line (p = 8.1 · 10−134; Figure 2.4), suggestive of widespread AR–
FOXA1dimerization at prostate cancer regulatory elements (Wang et al., 2011). Note
that the motif complex was enriched only at one precise offset, indicating a rigid,
strongly constrained heterodimeric structure.

Since the motif database frequently contains multiple motifs for a single TF, co-
operative binding of one TF pair frequently resulted in enrichment of multiple
equivalent motif complexes. We therefore clustered the 5,233 overrepresented mo-
tif complexes by similarity, so that each cluster constituted a distinct prediction of
direct physical cooperativity in TF-DNAbinding (see Subsection 2.2.6). Clustering
yielded 603 distinct predictions, covering 30 of the 41 cell types (73%). Each cluster
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was assigned the p-value of its most significant motif complex, which we refer to as
the signature motif complex.
The number of known TF dimers is difficult to quantify, since the evidence is

scattered over a large number of publications describing individual cases. We man-
ually compiled a list of 29 known instances of direct cooperativity in DNA binding
from the existing biochemical literature (Table 2.1). Although this list is possibly
incomplete, it is nevertheless likely that our 603 predictions outnumber the known
TF-TF-DNA complexes by over an order of magnitude.

2.2.2 Identifying hypersensitive sites in 78 ENCODE cell types

We incorporated DNase I hypersensitivity datasets produced at the University of
Washington as part of the ENCODE Project (UCSCGenome Browser track wgEn-
codeUwDnase). The 161 initially considered datasets covered 85 distinct cell types.
We excluded some datasets with atypical GC-content spectra, reducing the number
of datasets to 148, and the number of distinct cell types to 78 (data not shown). We
relied on the hg19 read alignments provided by the ENCODEgroup. To identify hy-
persensitive regions, we used the F-Seq peak-calling algorithm (Boyle et al., 2008),
treating each replicate separately.
We discarded hypersensitive regions, whose peak position lay within a repetitive

region (unionofRepeatMasker andTandemRepeat Finder) andhard-masked repet-
itive basepairs in the remaining hypersensitive regions. We also hard-masked coding
regions. To make the datasets obtained from different cell types comparable, we
limited our analysis to the top 50,000 hypersensitive sites in each cell type. We also
fixed the size of each hypersensitive region at 400 bp, centered on the F-Seq peak.
Hypersensitivity calls from replicates were merged as described in the next subsec-
tion.

2.2.3 Clustering of cell types into 41 cell-type clusters

To avoid redundancy in our findings, we accounted for the similarities between
some of the 78 human cell types by clustering them by their genome-wide DNase I
hypersensitivity profiles (Figure 2.2). We represented the profiles of the 148 datasets
as genome-wide binary vectors, with value 1 at positions within hypersensitive re-
gions and value 0 elsewhere. We then calculated the dissimilarity between any two
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TF complex Sequence motif PubMed ID

1. SOX−OCT (canonical) 22344693

2. SOX−OCT (compressed) 22344693

3. SOX−OCT (plus3) 22344693

4. HNF1−HNF1 2460858

5. p53−p53−p53−p53 8475074

6. SMAD−SMAD 21724602

7. TCF−RUNX 17158875

8. ETS−RUNX 20019798

9. AR−FOXA1 21572438

10. EBF1−EBF1 20876732

11. HNF4α−HNF4α 18829458

12. bHLH−bHLH 17148476

13. AR−AR, GR−GR or PR−PR
steroid response elements (SREs)

10598584

14. p50−p65 (NF-κB) 9450761

15. ER−ER
estrogen response element (ERE)

15036253

16. IRF−IRF
interferon-stimulated response element (ISRE)

7687740

17. ETS−AP-1 16272134

18. ETS−IRF
ETS−IRF composite element (EICE)

22992523

19. SOX9−SOX9 17264118

20. VD3R−VD3R
vitamin D3 response element (VDRE)

1648450

21. TR−TR or RXR−TR
thyroid hormone response elements (TRE)

1648450

22. RAR−RAR
retinoic acid response element (RARE)

1648450

23. bHLH−GATA 9214632

24. STAT−STAT 7708771

25. AP-1−IRF
AP-1−IRF composite element (AICE)

22992523

26. ETS-1−ETS-1 12034715

27. SOX2−PAX6 15558474

28. GATA−GATA
GATApal

8628290

29. GABPα−CREB 23050235

Table 2.1: Known dimeric DNA-binding transcrip on factor complexes, manually compiled from the ex-
is ng biochemical literature. For the complexes predicted in comprehensive analysis of UW DNase-seq
data (Subsec on 3.3.4, Figure 3.3b), their sequence mo fs iden fied by TACO (see Chapter 5) are shown.
The remaining mo fs were compiled as spacing altera ons of TACO predic ons or juxtaposed TRANSFAC
monomers.
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Figure 2.2: Cell type dendrogram of 78 ENCODE cell types. 78 ENCODE cell types were hierarchically
clustered by the degree of overlap of their hypersensi ve regions, resul ng in 41 cell type clusters (see
Subsec on 2.2.3). The inner structure of the clusters is shown in black, whereas the rela onships be-
tween the clusters are shown in red.

datasets as the Hamming distance between the respective binary vectors, scaled in
such a way that the maximum dissimilarity across all comparisons equals 1.
Having calculated the dissimilarity matrix, we used the complete-linkage hierar-

chical clustering to collapse the 148 datasets from 78 cell types into cell type clusters.
Before clustering, we first joined replicates from the same cell type at the lowest level
of the dendrogram. The resulting dendrogram, along with the threshold defining
the 41 cell type clusters, are presented in Figure 2.2. We then merged the sets of hy-
persensitive regions, obtained as described in the previous subsection, within each
cell type cluster, combining overlapping regions into a single hypersensitive site.
Encouragingly, the resultingdendrogramrecapitulated the expecteddevelopmen-

tal hierarchy. For example, blood cells formed a single supercluster, which split into
lymphoid and myeloid branches. The lymphoid set further split into T-cell and B-
cell subclusters, and the myeloid set into megakaryocytic leukemias (K562, CMK)
and myeloblastoid cells (CD14+ monocytes and the promyelocytic leukemias, HL-
60 and NB4). We manually thresholded the cell type dendrogram to define 41 dis-
tinct clusters, which we will henceforth refer to as “cell types.”
Cluster-specific hypersensitive regions were defined as genomic regions hypersen-

sitive in a given cell type cluster, but not in any other cluster. In case of partial over-
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Figure 2.3: Defini on of mo f offset and mo f spacing. Both are calculated between AR and FOXA1
mo fs, in this order.

lap, the non-overlapping fragment was considered cluster-specific. For brevity, we
will refer to the cluster-specific hypersensitive regions as “cell-type–specific hyper-
sensitive regions.”

2.2.4 Calculating motif occurrence statistics

All 964 vertebratemotifs fromTRANSFACProfessional 2011.2were used asmodels
of TF binding specificity. Given a pair of motifs, theirmotif complex was defined as
a motif pair with a specified mutual orientation and offset. The offset was defined as
the coordinate of the leftmost position of one motif in the coordinate system of the
other motif (with zero-based start), whereas the spacing was defined as the number
of intervening nucleotides between the edges of the two motifs (Figure 2.3. We al-
lowed overlapping motif complexes, which were characterized by negative spacing.
We considered only the motif complexes within up to 50 bp spacing between the
twomotifs. Let us denote by s the fixed orientation and offset of themotifs, and call
it the structure of the motif complex.

For each combination of cell type, motif pair (M1,M2) and its structure s, we
calculated the significance of motif complex overrepresentation as follows. First,
matches to individual motifs were identified within hypersensitive sites at a motif
score threshold that provided at least 80% sensitivity (Rahmann et al., 2003). Pairs
ofmotifmatches that fit the specified structure swere taken as instances of themotif
complex.

Let C12(s) and c12(s) be the number of observed motif complex occurrences in a
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given set of cell-type–specific hypersensitive regions (foreground) and in the back-
ground set of all hypersensitive regions, respectively. Also, let N12(s) and n12(s) be
the number of all possible complex occurrences in the foreground and in the back-
ground, respectively. By a possible occurrence of the motif complex we mean any
occurrence such that the whole complex fits within the corresponding hypersensi-
tive region. Then

f12(s) = C12(s)/N12(s) (2.1)

is the probability of observing the motif complex s in the foreground, and

b12(s) = c12(s)/n12(s) (2.2)

is the probability of observing the motif complex s in the background.

Let C12 be the total number of observed occurrences in the foreground of the
pair of motifs (M1,M2) with structure s ranging over spacings up to 50 bp and
both orientations. In a similar way we define the numbers c12, N12, and n12. Then
f12 = C12/N12 is the probability of observing in the foreground the pair of motifs
(M1,M2) within a reasonable range of structures. Likewise, b12 = c12/n12 is the
probability of observing in the background the pair of motifs (M1,M2) within a
reasonable range of structures.

The null hypothesis is that the conditional foreground probability f12(s)/f12 and
conditional background probability b12(s)/b12 are the same. Consequently, the p-
value of observing in the foreground at leastC12(s) occurrences of themotif complex
with a specified structure s can be calculated as the probability of observing at least
C12(s) successes inN12(s) trials of the Bernoulli process with probability of success

f12 ·
b12(s)
b12

. (2.3)

An intuition behind the success probability of the Bernoulli schema is that it is
the background probability b12(s) of observing a givenmotif complexwith structure
s adjusted by the factor f12/b12, which reflects the relative motif pair densities in the
foreground and in the background. Note that if we fix the pair of motifs and the
structure s, then the background conditional probability stays the same and choice
of cell type (foreground) affects the probability of success in the Bernoulli schema
by the factor f12.
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Figure 2.4: Iden fica on of overrepresented cell-type–specific mo f complexes. (a) Example of overrep-
resented mo f complex specific to LNCaP (prostate cancer) cells. Number of instances of AR–FOXA1
mo f complexes within LNCaP-specific hypersensi ve sites (red bars) as a func on of mo f offset.
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p = 0.05 a er Bonferroni correc on. The complex with offset 11, marked with an asterisk, was the only
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(b) Examples of AR–FOXA1 mo f complexes at 3 different offsets.
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2.2.5 Limiting the set of cooperativity predictions

We expected that transcription factors, which bind cooperatively in a particular cell
type, should be also subject to individual overrepresentation in this cell type. To
account for this expectation, we considered only pairs of motifs satisfying the con-
dition f12 ≥ b12, i.e. pairs of motifs, which are at least as frequent in the foreground
as in the background (within a reasonable range of structures).

Another constraint directly corresponded to steric hindrance between two TFs.
Some approaches, e.g. Whitington et al. (2011) require that the motifs forming a
motif complex must not overlap. However, many of the available motifs have re-
dundant low-information positions at their ends, which would hinder the predic-
tion of genuine TF cooperativities. Consequently, previous studies could not avoid
trimming of low-information flanking regions of the motifs. We decided to apply
a different approach, allowing minor motif overlaps, to retain all of the informa-
tion contained in the binding affinity models. Our statistics accounts for possible
over- or underrepresentation of motif complexes consisting of overlapping motifs
(Figure 2.4). As explained below, excessive motif overlaps were disallowed as being
highly unlikely; motif complexes dominated by one of the individual motifs were
also disallowed.

Tomeasure the degree of overlap, we introduced the concept of overlapping infor-
mation content. For each overlappingmotif positionwe define it as theminimumof
the two information content values of the overlapping motifs. For the whole motif
complex, we defined it as the sum of the overlapping information content values,
ranging over all overlapping positions. We called an overlap minor, if the overlap-
ping information content didnot exceed 2bits. Wedisallowedmajor (i.e. notminor)
overlaps, because such colliding configurations are unlikely to correspond to direct
TF cooperativity.

We also disallowed motif complexes, in which one of the individual motifs dom-
inates the entire complex. To measure the share of an individual motif in a mo-
tif complex, we defined the information contribution of each motif. For a non-
overlapping motif position it is simply equal to the information content of the in-
dividual motif at that position. For an overlappingmotif position, if the twomotifs
differ in information content at that position, then the information contribution at
that position of the more informative motif is equal to its information content at
that position, and the information contribution at that position of the other motif
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Figure 2.5: The effect of mo f complex orienta on. As in Figure 2.4, but indica ng the number of mo f
complex occurrences for both of the possible mo f orienta ons in a mo f complex. The overrepresented
complex characterized by offset 11 and opposite mo f orienta on manifests two mildly enriched shadow
complexes, both of offset 12, one with opposite and one with same mo f orienta on.

is set to 0. In case of equal information content, both of the motifs have the infor-
mation contribution at that position set to half of their information content at this
position. We defined the information contribution of a motif in the motif com-
plex as the sum of its information contribution values, ranging over all positions.
We considered onlymotif complexes in which both of the individual motifs had the
information contribution of at least 6 bits.

Toavoid artifacts arising from individualmotifs that occur extremely rarelywithin
hypersensitive sites, we considered only motif complexes that occurred at least 100
times within cell-type–specific hypersensitive regions (i.e.C12(s) ≥ 100). Moreover,
we were aware that certain motifs are similar to themselves in a different layout. In
particular, overrepresentationof a particularmotif complex evokes possible overrep-
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resentation of shadow motif complexes consisting of the same motifs, but with al-
tered offset or orientation (Figure 2.5). We therefore allowed only one occurrence of
each combination of motif pair and cell type, by incorporating only the motif com-
plex with the smallest p-value. Finally, we considered only the overrepresented mo-
tif complexes with corrected p-value less than 0.05. The p-values were Bonferroni-
corrected by multiplying by the total number of hypotheses tested, across all motif
pairs, orientations, offsets and cell types (approximately 1.4 billion).

2.2.6 Basic clustering of cooperativity predictions

Due to the redundancy of themotif database used, a singleTF-TF cooperative inter-
action may be reported as multiple, mutually redundant, motif complexes (see, for
example, Figure 2.6). We therefore clustered the 5,233 overrepresented motif com-
plexes as described below. For each motif complex, we calculated its representative,
called dimer motif, by counting nucleotide frequencies at all its instances, including
a 5 bp margin on both sides.
As suggestedbyGupta et al. (2007),weused the squaredEuclideandistance (ED2)

as the dissimilarity measure of dimer motifs, assuming the clustering threshold of 2
for ED2. The overrepresentedmotif complexes were ranked by p-value in ascending
order. We clustered them in a greedy manner, subsequently comparing each com-
plex to already established clusters. The comparison was done by calculating ED2

between the considered complex and themost significantmotif complex in the con-
sidered cluster. If any ED2 was less than 2, then the considered complex was merged
with its counterpart with smallest p-value and discarded from further comparisons;
in the other case, a new cluster was established. In this way we obtained the 603
clusters, which we refer to as predicted dimers or simply predictions. Each prediction
was assigned the p-value of its most significant motif complex, which we refer to as
the signature motif complex. Consequently, each predictionwas characterized by the
cell types in which its signature motif complex was predicted.
In rare cases, it may happen that longer monomer motif can be constructed by

combining two short, degenerate motifs. To facilitate manual identification of such
artifacts, we reported instances where the dimermotif closely matched (ED2 < 2.0)
a singlemotif from the database. Note that it would not be appropriate to automat-
ically discard such dimer motifs, due to the contamination of motif databases with
dimer motifs (e.g. SOX–OCT).
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1. LNCaP
885 instances

p−value: 2.91 × 10−135
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M01012
HNF3

M00960
PR, GR

2. LNCaP
690 instances

p−value: 8.10 × 10−134
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M01261
HNF3A

M00921
GR

3. LNCaP
480 instances

p−value: 6.05 × 10−132
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M01261
HNF3A

M00960
PR, GR

4. LNCaP
680 instances

p−value: 3.84 × 10−124
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

M00724
HNF3alpha

M00960
PR, GR

5. LNCaP
1036 instances

p−value: 9.25 × 10−118
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M00724
HNF3alpha

M00921
GR

6. LNCaP
1355 instances

p−value: 6.43 × 10−117
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M01012
HNF3

M00921
GR

7. LNCaP
499 instances

p−value: 9.39 × 10−108
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

M01261
HNF3A

M00192
GR

8. LNCaP
947 instances

p−value: 1.23 × 10−103
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

M00791
HNF3

M00960
PR, GR

9. LNCaP
1001 instances

p−value: 7.26 × 10−102
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

M01012
HNF3

M00192
GR

10. LNCaP
752 instances

p−value: 1.58 × 10−96
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M00724
HNF3alpha

M00192
GR

Figure 2.6: Cluster of highly similar mo f complexes corresponding to AR–FOXA1 coopera vity. The
top 10 overrepresented mo f complexes comprising row 6 in Figure 2.7 are shown. The color of the
mo f bounding boxes indicates mo f orienta on rela ve to TRANSFAC mo f database: blue – same
orienta on, red – opposite orienta on.
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2.2.7 Expanded clustering of cooperativity predictions

For the study presented in this chapter, we clustered the overrepresentedmotif com-
plexes as described in the previous subsection. However, for subsequent studies we
propose a more sophisticated algorithm, being a generalization of the one described
above. The following expanded algorithm may be reduced to the basic one by set-
ting α = 2.0, β = 0 and γ = +∞.
We rank the overrepresented motif complexes by p-value in ascending order (i.e.

starting fromthemost highly enriched complex). Let us denote thembyR1, . . . ,RN.
In order to cluster the complexRn, we loop through k = 1, . . . , n− 1 and iteratively
check if Rn is similar to Rk, as described below. If any of the comparisons yields
a positive result, we immediately merge Rn into the cluster containing Rk. If the
complexRn cannot be incorporated into any of the existing clusters, a new cluster is
created, withRn as the cluster seed. In particular, themost enriched overrepresented
motif complex, i.e. R1, gives rise to the first cluster.
To compare Rn to Rk, the following three tests are performed. If any of the three

tests results in a positive outcome, the two complexes are deemed to be similar.

Test 1: motif complex identity. The first test is attempted only if Rk is the cluster
seed of a previously established cluster. If Rn and Rk share the same motif
complex, then Rn is joined by motif complex identity to the cluster of Rk. It
occurs when the same motif complex is found overrepresented in different
target datasets.

Test 2: dimer motif similarity. The second test is attempted only ifRk is a signature
motif complex, i.e. the cluster seed or joined by motif complex identity to
its cluster. Let ED2(Rn,Rk) be the squared Euclidean distance between the
dimer motifs for complexes Rn and Rk. The simplest motif similarity crite-
rion would be to impose a threshold on ED2. However, our approach allows
highly specific motifs (those with high information content) to be further
apart in Euclidean space, and still be considered similar. We therefore employ
a distance threshold that is an affine function of the information content. If

ED2(Rn,Rk) < α · IC(Rk) + β, (2.4)

where α and β are user-provided parameters, and IC(Rk) is the information
content of the dimermotif forRk, thenRn is joined by dimer motif similarity
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to the cluster of Rk.

Test 3: overlap of genomic instances. The third test is attempted only if Rk is a sig-
nature motif complex or joined by dimer motif similarity. Let C12(Rn ∩ Rk)

be the number of their overlapping genomic instances (note that only over-
laps conforming to the most common relative spatial arrangement of Rn and
Rk are counted). Intuitively, we would like to capture the number of excess
instances of Rn that are not also instances of Rk.

As described in detail in Subsection 2.2.4, the enrichment p-value ofRn is cal-
culated as theprobability of observing at leastC12(Rn) successes inN12(Rn) tri-
als of theBernoulli processwithprobability of success f12·(b12(Rn)/b12), where
C12(Rn) is the actual number of Rn instances in the target dataset,N12(Rn) is
the number of all its possible occurrences in the target dataset, b12(Rn) is the
probability of observingRn in the control dataset, and f12 and b12 are the prob-
abilities of observing the pair of motifs constituting Rn within a reasonable
range of structures in the target and control dataset, respectively.

The success probability of this Bernoulli process combines two components:
the “base” probability b12(Rn) of observing the motif complex Rn in the con-
trol dataset, and the factor f12/b12 accounting for the enrichment of the under-
lying motif pair (i.e. motif complexes regardless of their spacing) in the target
dataset.

Now we introduce

E12(Rn) = N12(Rn) · f12 ·
b12(Rn)

b12
(2.5)

as the expected number of instances of Rn following from the null model.
Consequently, thenumberof excess instances over thenullmodel nowamounts
to C12(Rn)− E12(Rn). If

C12(Rn ∩ Rk) ≥ γ ·
(
C12(Rn)− E12(Rn)

)
, (2.6)

where γ is a user-provided parameter, then Rn is joined by overlap of genomic
instances to the cluster of Rk.
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2.3 Results

2.3.1 Top-ranked predictions include known instances of TF coop-
erativity

All of the 10 most statistically significant cooperativity predictions matched known
TF complexes (Figure 2.7). Moreover, the predicted cell type was also consistent
withprevious studies, inmost of the cases. For example, thewell-known cooperative
interaction of POU5F1 (OCT4) with SOX2 (Ambrosetti et al., 1997; Chen et al.,
2008), which is central to embryonic stem cell pluripotency, was ranked fourth and
predicted in the correct cell type. Note that the OCT4–SOX2 heterodimer motif
is sometimes mistakenly annotated in databases as an OCT4 or SOX2 monomer
motif due to its high prevalence at OCT4 and SOX2 binding sites.

Note also that the monomers participating in cooperative binding are typically
predicted only at the TF-family level, i.e. “OCT” or “SOX,” since TFs within a par-
alog family generally bind highly similar DNA sequences. Thus, additional domain
knowledge or expression analysis is needed to determine exactly which represen-
tative of each TF family is involved in the DNA-bound complex (see, for exam-
ple, (Carroll et al., 2005)). Occasionally, prior knowledge may alter the interpre-
tation of TF identity within a dimeric complex. Inmost cases, this re-interpretation
merely involves substituting one paralogous TF for another. However, in excep-
tional cases, such as the E-boxmotifs in Figure 2.7, the TFs implied by the predicted
motif pairs are not paralogous to the actual TFs binding themotif (basic helix-loop-
helix dimers).

Over all, 20 of the 29 known TF dimers (Table 2.1) were present among our pre-
dictions, suggesting that our method has 69% sensitivity. This number should be
considered as a lower bound, since certain TFs from the set of known dimers may
not be expressed in cell types considered in our study. Notably, our 36th rankedmo-
tif complex, NFAT–AP-1 (p = 2.1 · 10−40, http://bioputer.mimuw.edu.pl/
papers/tfdimers/), matches theNFAT–FOS–JUN trimer that is known to syn-
ergistically regulate several immune-response genes (Chen et al., 1998b). This trimer
was predicted by our algorithm because the sequence recognized by the FOS–JUN
(AP-1) dimer was present as a single motif (accession numberM00926) in TRANS-
FAC.
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Prediction Dimeric motif Previous studies

1. WERI−Rb−1
(retinoblastoma)

3776 instances

p−value: 2.01 × 10−482

E−box dimer
(ubiquitous)

De Masi et al. 2011YY2
YY1

PUR1
GR
MEIS1

2. HRCEpiC:HRE:RPTEC
(kidney epithelial cells)

1188 instances

p−value: 7.83 × 10−320

HNF1 homodimer
(liver and kidney cells)

Courtois et al. 1988
Cheret et al. 2002

CRX
IPF1

OG−2
CRX
IPF1

3. WERI−Rb−1 + HFF:HFF−Myc + SK−N−SH_RA
(retinoblastoma + fibroblast cells + neuroblastoma)

3306 + 218 + 858 = 4382 instances

p−value: 5.55 × 10−266

E−box dimer
(ubiquitous)

De Masi et al. 2011YY1
YY2

YY1
AML1a
YY2
REX1
NF−1

4. H1−hESC:H7−hESC:NT2−D1
(embryonic stem cells)

5068 instances

p−value: 1.26 × 10−196

OCT−SOX heterodimer
(embryonic stem cells)

Ambrosetti et al. 1997
Chen et al. 2008

POU5F1
Oct−1

Octamer
Oct−2

Nanog
SMAD1
SOX4

5. Jurkat
(T lymphocytes)

1330 instances

p−value: 7.15 × 10−167

RUNX−TCF heterodimer
(osteoblasts)

Kahler and Westendorf 2003
Reinhold and Naski 2007

Kid3
CBF (core binding factor)

TCF−4
TCF−3
LEF1

6. LNCaP
(prostate adenocarcinoma)

885 instances

p−value: 2.91 × 10−135

FOXA1−AR heterodimer
(prostate adenocarcinoma)

Wang et al. 2011
HNF3

HNF3A
HNF3alpha

PR, GR
GR

7. GM12864:GM12865:GM12878
(B lymphocytes)

1218 instances

p−value: 1.99 × 10−127

IRF homotypic dimer
(ubiquitous)

Tanaka et al. 1993E2F1
IRF−8

IRF−8
IRF−1
NFAT3

8. BE2_C + NB4
(neuroblastoma)

464 + 152 = 616 instances

p−value: 8.18 × 10−116

EBF1 homodimer
(B lymphocytes)

Treiber et al. 2010

Helios A
Churchill

STAT1
MZF1

Helios A
Churchill
Ik−2

9. Jurkat
(T lymphocytes)

712 instances

p−value: 7.19 × 10−115

ETS−RUNX heterodimer
(T lymphocytes)

Hollenhorst et al. 2009c−Ets−1(p54)
ELF5

Kid3
CBF (core binding factor)

10. HEEpiC:PrEC:SAEC + NHEK
(various epithelial cells)

740 + 444 = 1184 instances

p−value: 5.03 × 10−97

p53 homotetramer
(ubiquitous)

Friedman et al. 1993
McLure and Lee 1998

p53 decamer
p53

p53 decamer
p53
TTF−1 (Nkx2−1)

Figure 2.7: Top 10 predicted mo f complexes, ranked by p-value. Middle column: below each mo f com-
plex, the loca ons of underlying individual mo fs are indicated by red and blue lines.
Left column: for each mo f complex, the enriched cell types are separated by ‘+’ symbols. The number of
mo f complex instances in hypersensi ve sites specific to each cell type is also indicated. The p-value is
given for the most significant predic on across the indicated cell types.
Right column: TF dimer that binds the mo f complex, with literature cita ons.
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2.4 Discussion

Genome-wide scans for DNase I hypersensitivity are a powerful tool for mapping
cis-regulatory elements with high spatial precision in any given cell type (Crawford
et al., 2006). One major advantage of this method is that, when combined with
TF-DNA affinity models (motifs), DNase-seq can facilitate binding site predictions
for a broad range of individual TFs (Pique-Regi et al., 2011) (Boyle et al., 2011). We
have taken the latter approach one step further by using DNase-seq data to pre-
dict cooperatively bound TF complexes genome-wide. In all, we predicted coop-
erative binding of 603 signature motif complexes to 450,652 binding sites in reg-
ulatory regions specific to 28 different cell types. As a resource for future inves-
tigations, we provide these 603 motif complexes, along with exact genomic coor-
dinates of their occurrences in cell-type–specific regulatory elements genome-wide
(http://bioputer.mimuw.edu.pl/papers/tfdimers/).
The power of our method derives from the fact that it can in principle predict

all TF complexes in a given cell type based on a single DNase-seq dataset. Addi-
tional datasets could be incorporated in the future to predict dimers in additional
cell types. Judging from the set of 29 known cooperative dimers, our predictions
have sensitivity of at least approximately 69%. The vast majority of the 603 pre-
dicted complexes are novel. Overall, our results suggest that TF dimerization is far
morewidespread thanpreviously known. This provides at least a partial explanation
to the paradox of TF-DNA binding specificity in large genomes. While TFs may
individually possess low sequence selectivity, the complexes they form with other
DNA-binding factors could be highly specific (Levine&Tjian, 2003). Thus, our re-
sults suggest that the current bioinformatics focus on predicting TF-DNA binding
based on individual position weight matrices and chromatin openness data should
be expanded.
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3
Validation and characterization

of predicted transcription factor dimers

3.1 Introduction

In the previous chapter, we have proposed a computational method for predicting
transcription factor dimers. We have applied it to DNase-seq data for 41 human cell
types, and found 5,233 significantly overrepresentedmotif complexes, which yielded
603 predicted complexes after clustering. Most of these predicted dimers are novel,
hence they require a systematic validation and interpretation.
Most of the analyzed cell types was characterized by multiple TF dimers, with 15

cell types having at least 10 predictions after their clustering (Table 3.1). Not surpris-
ingly, the number of individual overrepresented motif complexes and the number
of predictions correlated well with the total length of cell-type–specific hypersensi-
tive sites for a given cell type.
Apart from the above view, we also wanted to obtain a TF-centric perspective of

our predictions from Chapter 2. Hence, we clustered all the individual 964 motifs
using complete linkage hierarchical clustering, based on ED2 between the motifs, to
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Number Total length Number of Number
Cell type cluster (individual cell types separated by colon, “:”) of regions (base pairs) complexes of clusters

A549 8 936 721 405 1
AG04449:AG09309:AG10803:BJ 14 609 1 032 679 1
AG04450:WI-38 7 700 569 630 1 1
AG09319:HGF:HPdLF 13 729 1 069 487 4 1
AoAF:HCF:HCM:HConF:HPAF:HPF 14 250 982 930
BE2_C 17 217 2 298 836 199 17
CMK 16 575 2 199 464 59 9
GM12864:GM12865:GM12878 42 632 7 395 257 332 56
H1-hESC:H7-hESC:NT2-D1 44 857 8 661 450 395 62
HAc:HA-h 12 010 974 206
HAEpiC 7 414 701 085
HA-sp 11 602 561 392
HBMEC:HCPEpiC:HIPEpiC:HNPCEpiC 11 390 644 190
HCFaa 6 184 322 649
HCT-116 7 856 572 940
HEEpiC:PrEC:SAEC 19 322 1 474 439 28 10
HeLa-S3 15 086 1 661 709 10 1
HFF:HFF-Myc 6 992 433 603 47 3
HL-60 20 643 2 435 972 161 22
HMEC 18 037 1 125 606 2 1
HMF:SKMC 6 657 445 887 2 1
HMVEC-dAd:HMVEC-dLy-Ad:HMVEC-dNeo:HMVEC-LLy 21 941 2 399 603 13 5
HMVEC-dBl-Ad:HMVEC-dBl-Neo:HMVEC-dLy-Neo:
HMVEC-LBl:HPAEC:HRGEC:HUVEC 26 516 2 659 135 462 15

HRCEpiC:HRE:RPTEC 21 572 3 004 717 775 53
HRPEpiC 14 025 2 131 177 28 12
HSMM 7686 461 937 4 2
HSMMtube 12 334 1 079 127 13 7
HVMF 8 045 641 027 1
Jurkat 22 054 3 675 475 397 35
K562 22 665 3 445 873 147 15
LNCaP 24 377 4 760 594 452 62
MCF-7 18 625 2 573 829 176 10
Monocytes-CD14+:Monocytes-CD14+_RO01746 21 556 2 585 081 581 36
NB4 11 025 1 042 263 38 5
NH-A:NHLF 6 451 317 333
NHDF-Ad:NHDF-neo 14 627 1 654 633 18 6
NHEK 13 961 1 055 601 7 3
PANC-1 17 897 1 605 646 50 3
SK-N-MC 20 292 3 853 699 44 15
SK-N-SH_RA 22 308 2 818 340 28 6
WERI-Rb-1 33 411 7 400 569 757 162

control set (union of all hypersensitive sites from all cell types) 481 676 197 077 852

Table 3.1: Cell-type–specific sta s cs of our predic ons from Chapter 2. For each of the 41 cell types (i.e.
cell type clusters) we indicate the number and total length of cell-type–specific hypersensi ve sites, the
number of overrepresented mo f complexes and the number of predicted coopera ve interac ons.
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obtain 350 motif clusters. The clustering threshold was set to 2.0, i.e. all the motifs
in one motif cluster had their pairwise ED2 not greater than 2.0. We observed that
out of these 350 clusters of similar motifs, 129 participated in at least one prediction.

3.2 Methods

3.2.1 ComparisonwithChIP-seq-basedapproachofWhitingtonetal.
(2011)

We repeated our computational experiment from Chapter 2 using the motifs re-
ported by Whitington et al. (2011). In case they used a custom motif, we applied
the closest counterpart found in TRANSFAC, trimmed or extended respectively.
We adjusted the motif sensitivity threshold in our method from 0.8 to 0.95, so that
the number of individual motif occurrences in the genomewas large enough for the
overrepresentation statistics to be powerful.

3.2.2 Calculating DNase I cut density score

We compared the number of DNase I cuts between the instances of a predicted sig-
nature motif complex and the instances of its slight alterations, which we refer to
as incorrectly spaced complexes, consisting of the same two motifs, but with slightly
increased spacing between them, by +1 up to +10 bp. Both the sets contained only
the instances within hypersensitive sites specific to cell types for which the coopera-
tivity prediction was made. Having fixed one prediction, we calculated the DNase I
digestion patterns for both the predicted complex instances and incorrectly spaced
complex instances, as shown in Figure 3.1. Our DNase I cut density score was the
number of DNase I cuts in the ±100 bp neighborhood of the motif complex in-
stance, calculated with a triangular kernel and normalized within each prediction so
that its average value for incorrectly spaced complexes equals 1. We then used the
Mann–Whitney U test to assess whether the instances of predicted motif complex
are more enriched in DNase I cuts than incorrectly spaced complex instances.

3.2.3 Calculating evolutionary conservation score

We followed a similar approach as for the DNase I cut density score, comparing the
predicted and incorrectly spaced complexes. For each occurrence of the motif com-
plex, we have calculated the weighted average of phyloP primate basepairwise cross-
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Figure 3.1: DNase I cut density near predicted and incorrectly spaced mo f complexes.
(a) Example of AR–FOXA1. The average number of DNase I cuts in LNCaP-specific hypersensi ve sites
is shown in the vicinity of AR–FOXA1 mo f complex instances. Red curve: DNase I cut density averaged
over 690 instances of the predicted AR–FOXA1 mo f complex (we predict that AR–FOXA1 heterodimer
binds at these loca ons in LNCaP cells). Black curve: DNase I cut density averaged over 1,909 instances
of incorrectly spaced AR–FOXA1 mo f complexes (wider than the predicted spacing by 1 to 10 bp). The
DNase I cut density is significantly higher within ±100 bp of the predicted heterodimer binding sites;
(b) Similar to a: DNase I cut density averaged over the 54 predicted mo f complexes that failed to show
significant enrichment for DNase I cuts when analyzed individually.
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species constraint scores (Pollard et al., 2010), where the weights were proportional
to the information content at the correspondingnucleotide in the dimermotif. This
weighting is justified by the fact that higher information content positions are likely
to bemore constrained. Again, weused theMann–WhitneyU test to assesswhether
the instances of predictedmotif complex aremore conserved than incorrectly spaced
complex instances.

3.3 Results

3.3.1 Predicted interactionssignificantlyoverlappreviousapproach
ofWhitington et al. (2011)

We compared our predictions with cooperative interactions inferred from motif
analysis of ChIP-seq data (Whitington et al., 2011). We clustered the 59 human cell-
type–specific motif complexes reported by Whitington et al. (2011) exactly as our
complexes were clustered, and obtained 44 non-redundant predictions. Of these 44
predictions, 29 were reported in cell types for which we obtained DNase-seq data.
We found that 9 of these 29 (31%) were also predicted by our method in at least one
cell type, and 7/29 (24%)were predicted by ourmethod in exactly the same cell type.
Thus, there is a significant (p = 2.6·10−23), though incomplete, overlap between the
two prediction sets. Apart from false positives and negatives in the two interaction
sets, one possible reason for the limited overlap is that most of the TF-TF dimers
predicted by Whitington et al. (2011) were predicted to bind at <30 locations in the
genome. Our method, while more general, is only sensitive to TF-TF dimers with
widespread binding, since it does not benefit from the precision of ChIP-seq data.
This distinction is underlined by the observation that our 603 predicted TF dimers
are estimated to bind at 450,652 locations genome-wide. In contrast, the humanTF
cooperativity predictions inWhitington et al. (2011) cover 1,821 genomic sites.

3.3.2 DNase I cut density independently supports predicted physi-
cal interactions

In predicting TF dimers, we did not use all of the information contained in the
DNase-seq data. Specifically, we ignored variation in DNase-seq peak height – all
hypersensitive siteswere treated as equivalent. Consequently, wewould expect false-
positivemotif complexes to be randomly distributed relative to peak height. In con-
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trast, truly cooperative motif complexes should show a skew towards the “taller”
hypersensitive peaks. This is because cooperativity would enhance TF-DNA bind-
ing and thereby enhance average chromatin openness (Pique-Regi et al., 2011; Boyle
et al., 2011). This opens up another avenue for independently validating our predic-
tions – we could test each predicted TF-TF dimer for bias towards taller hypersensi-
tive peaks. Note that there is no circularity in this validation approach, since we are
testing for peak-height skews within the set of DNase I hypersensitive sites, rather
than between peaks and the rest of the genome.

For illustration, consider again the AR–FOXA1 motif complex. We predicted
thatAR–FOXA1would bind cooperatively at 690 locationswithin LNCaP-specific
hypersensitive sites, with the two individual motifs offset by 11 bp. We constructed
the average density profile of DNase I cuts at cooperatively bound locations by ag-
gregating over these 690 sites (see Subsection 3.2.2). For comparison, we considered
1,909 AR–FOXA1 motif complex instances with “incorrect” spacing (motif offset
between 12 and 21 bp) within the same set of hypersensitive sites. If the two TFs did
indeed bind cooperatively at the predicted motif offset, this cooperativity would re-
sult in stronger average TF-DNA binding at sites with the correct motif spacing,
relative to sites with the incorrect spacing. Consequently, we would expect the cut
density to be greater at the 690 correctly spaced sites, relative to the 1,909 incorrectly
spaced sites. This is indeed the case, within the central 200 bp window (Figure 3.1a,
p = 1.3 · 10−13). Our examination of the cut density profiles of other known TF
dimers showed the same trend (data not shown).

We repeated the comparison of DNase I cut density profiles in Figure 3.1a for
the entire set of 603 signature motif complexes, and found that, as a group, they
collectively showed the expected cut density enrichment (p < 10−300). At an indi-
vidual level, 91% of the predicted cooperative interactions (549/603) showed statis-
tically significant enrichment in DNase I cuts, after correcting for multiple testing
(FDR< 0.05). Thus, most of our predicted dimers were independently supported
by the cut-density test.

To obtain further insight into the remaining 54 (603 minus 549) predicted motif
complexes that were rejected by this test, we averaged their collective DNase I cut
profile, and compared it to the profile at the 540 corresponding incorrectly spaced
complexes. Encouragingly, we again found significant local elevation of DNase I
accessibility (Figure 3.1b, p = 0.019), suggesting that deeper sequencing of DNase-
seq libraries could provide sufficient statistical power to validate several additional
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Figure 3.2: Evolu onary constraint signatures of predicted mo f complexes.
(a) Example of FOXA1 (HNF3A) homodimer, ranked 11th and predicted in LNCaP (prostate cancer) cells.
Again, we considered the predicted mo f complex (first column) and its 10 incorrectly spaced variants.
At each nucleo de posi on, color intensity indicates the average phyloP constraint score, weighted by
informa on content at the corresponding mo f posi on (see Subsec on 3.2.3). Evolu onary constraint is
highest at the predicted mo f spacing;
(b) Evolu onary constraint q-values and fold change for the top 100 predicted mo f complexes. Evolu-
onary constraint scores were calculated for each predicted mo f complex and its 10 incorrectly spaced

variants (see Subsec on 3.2.3). For each predic on, we tested if the corresponding mo f complex in-
stances were enriched for evolu onary constraint rela ve to the remaining 10 spacings. We show the
corresponding q-values (top) and fold changes (bottom) of evolu onary constraint scores between the
predicted mo f complex and its incorrectly spaced variants. Predic ons with q-value below 0.05 are
indicated by blue bars in both plots.

motif complexes.

3.3.3 Evolutionaryconservationsupportspredictedphysical inter-
actions

Yet another approach to validate the predicted TF dimers would be to compare evo-
lutionary conservation scores between predicted and incorrectly spaced motif com-
plexes. This test has limited power, since TF binding sites are known to diverge
very rapidly between species, and also because informative positions within motif
complexes typically cover only approximately 5-10 bp. However, we still expected at
least some of our predicted complexes to show a signal of evolutionary constraint;
see, for example, the constraint profile of the FOXA1 (HNF3A) homodimer (Fig-
ure 3.2a). For this purpose, we used primate basepairwise conservation scores (Pol-
lard et al., 2010), weighted by motif information content (see Subsection 3.2.3). For
23.7% of the predictions (143/603), we observed preferential evolutionary constraint
(FDR<0.05), further supporting the validity of our predictions (Figure 3.2b).
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University of Washington
DNase-seq

a

177 datasets 59 datasets
93 cell types 59 cell types

Duke University
DNase-seq

44 cell type clusters 26 cell type clusters
119.5M base pairs 127.9M base pairs

b
University

of Washington
DNase-seq

Known
dimeric

complexes

8 15

6

0 51

44

175

Duke
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DNase-seq

Figure 3.3: Data sources and comparison of TF dimer predic ons.
(a) DNase-seq data sources.
(b) Comparison of TF dimer predic ons obtained using UW and Duke DNase-seq data. The Venn diagram
illustrates the overlap between the two sets and also the set of known DNA-binding TF dimers manually
compiled from the exis ng biochemical literature (Table 2.1).

3.3.4 Consistency of DNase-seq-based TF dimer predictions

The ENCODE Project Consortium (ENCODE Project Consortium et al., 2012)
provides multiple types of whole-genome open chromatin profiles, including data
fromDNase-seq experiments performedat theUniversity ofWashington (UW, track
wgEncodeUwDnase) and Duke University (Duke, track wgEncodeOpenChromD-
nase). In order to obtain a comprehensive set of TF dimer predictions, and also
assess the robustness and generality of our method, we ran it separately on both the
UW and Duke collections.

For either of thedata sources (UWorDuke),we considered allDNase-seqdatasets
from cell types under normal conditions (no treatment) that were not embargoed
as of January 2013. We merged replicates and clustered cell types according to the
similarity of their DNase-seq profiles, which resulted in 44 and 26 cell type clusters
in UW and Duke, respectively (Figure 3.3a). Either of the data sources covered ap-
proximately 4% of the genome.

Applicationof ourmethod to these two sets of genomic regulatory regions yielded
247 and 110 predictedTF dimers, respectively, of which 66were shared (Figure 3.3b).
Note that we did not expect complete overlap, since the 93 unclustered cell types
from UW and the 59 from Duke shared only 15 cell types in common. After cell
type clustering, the latter 15 contributed to 14 of the 44 UW cell types and 11 of the
26 Duke cell types. We also compare predicted TF dimers with a list of 29 known
TF dimers manually compiled from the existing biochemical literature (Table 2.1).
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Notably, we found that DNase-seq data from both UW and Duke were predictive
of most of the known dimeric complexes.

3.3.5 ExpandingthecooperativitylandscapewithadditionalDNase-
seq datasets

We expected that the known instances of direct TF cooperativity would tend to co-
incide with the most statistically significant TF dimer predictions, as was the case
with our previous results based on UW DNase-seq data alone (Subsection 2.3.1).
Focusing on the top 10 predictions derived fromDuke data (Figure 3.4), we found 6
known interactions, the remaining 4 being novel predictions. Strikingly, while the
known SOX9 homodimer (Genzer & Bridgewater, 2007) was detected as the 2nd
ranked prediction, we also found two novel SOX homodimer motifs, ranked 5th
and 10th respectively. The novel dimeric motifs are almost identical to the known
SOX9motif complex, except that the spacing between themonomer binding sites is
increased or decreased by a single basepair. All three dimerswere found to be specific
to a cluster ofmelanoma (skin cancer) cell lines, consisting ofColo829 andMel_2183.
Interestingly, SOX9 is downregulated asmelanocytes progress tomelanoma, and its
overexpression inmelanoma cell lines inhibits tumorigenicity (Passeron et al., 2009).
Our discovery of three distinct SOX9homodimer bindingmodes inmelanomapro-
vides a single candidate molecular mechanism for the biological role of this TF in
melanoma formation.

Another novel prediction, GATA–SMADdimer ranked 6th, is in line with phys-
ical and functional interaction between GATA3 and SMAD3 reported by Blokzijl
et al. (2002). However, we cannot rule out the alternative explanation, namely that
this novel prediction is a variant of the knownGATA–E-box dimer (Wadman et al.,
1997), ranked 7th, with only a half-site of palindromic E-box motif being bound in
this case.

The final novel prediction in Figure 3.4, GATA–GATA, ranked 8th in Figure 3.4,
was found specific to K562 cell line. GATA is known to be a pioneer factor (Zaret &
Carroll, 2011), and has been reported to bind cooperatively to a “GATApal” palin-
dromic composite motif: ATCWGATAAG (Trainor et al., 1996). Our predicted
dimer involves a converging pair of GATAmotifs, as opposed to the diverging mo-
tifs in GATApal. By extension, we therefore call this prediction “GATAcpal”.
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Prediction Dimeric motif Previous studies

1. HPDE6-E6E7:NHEK:pHTE:RWPE1, HMEC
(various epithelial cells)

1602 + 220 = 1822 instances

p−value: 4.98 × 10−254

p53 homotetramer
(ubiquitous)

Friedman et al. 1993
McLure and Lee 1998p53 decamer p53 decamer

2. Colo829:Mel_2183
(skin cancer cells)

2110 instances

p−value: 2.73 × 10−225

SOX9−SOX9 homodimer
(chondrocytic cells)

Genzer and Bridgewater 2007

SOX SOX

3. H1-hESC:H7-hESC:H9ES:iPS:iPS_CWRU1:iPS_NIHi11:iPS_NIHi7
(embryonic stem cells)

383 instances

p−value: 3.23 × 10−101

OCT−SOX heterodimer
(embryonic stem cells)

Ambrosetti et al. 1997
Chen et al. 2008OCT SOX

4. HepG2:Huh-7:Huh-7.5
(liver cancer cells)

3146 instances

p−value: 4.99 × 10−92

HNF4α−HNF4α homodimer
(HeLa and pancreatic cells)

Lu et al. 2008

HNF4, COUP-TF HNF4, COUP-TF

5. Colo829:Mel_2183
(skin cancer cells)

1304 instances

p−value: 3.22 × 10−88

N/A

SOX SOX

6. K562
(leukemia cells)

461 instances

p−value: 1.90 × 10−64

N/A

SMAD GATA

7. K562
(leukemia cells)

274 instances

p−value: 1.61 × 10−62

E-box−GATA heterodimer
(leukemia cells)

Wadman et al. 1997

E-box GATA

8. MCF-7:T-47D
(breast cancer cells)

568 instances

p−value: 1.64 × 10−62

N/A

GATA GATA

9. GM12878:GM18507:GM19238:GM19239:GM19240
(B lymphocytes)

731 instances

p−value: 2.17 × 10−62

IRF homotypic dimer
(ubiquitous)

Tanaka et al. 1993

IRF IRF

10. Colo829:Mel_2183
(skin cancer cells)

988 instances

p−value: 9.74 × 10−54

N/A

SOX SOX

Figure 3.4: Top 10 predicted mo f dimers in Duke DNase-seq data, ranked by p-value.
Left column: for each predic on, the enriched cell type, number of mo f complex instances in cell-type–
specific hypersensi ve sites and p-value are indicated.
Middle column: below each dimer mo f, binding sites for individual mo fs are indicated. Only the struc-
ture of the cluster seed is shown. For clarity, we have manually interpreted the mo f annota ons.
Right column: literature cita on on predicted TF dimer.
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3.3.6 ChIP-seq data extend the scope of TF dimer predictions

To demonstrate the robustness of ourmethod, we further applied it to 94 ChIP-seq
datasets from K562 cells.

To demonstrate the ability to incorporate regulatory element annotations from
multiple sources, we applied the algorithm to 127 replicates from 94 ChIP-seq ex-
periments in K562 cells (ENCODEProject Consortium et al., 2012). For each exper-
iment, we downloaded from Factorbook (Wang et al., 2012) the top 5 motifs found
in ChIP-seq peaks using MEME (Bailey & Elkan, 1994).

Weused ourmethod to scan formotif complexes that contained at least one of the
5motifs discovered in the respective dataset. The partnermotif in the complex could
be from the TRANSFAC database or from the entire set of motifs discovered in all
K562 datasets. In total, our analysis yielded 81 predictedTFdimers, ofwhich the top
10 are shown in 3.5. Ranked 1st is the knownETS–RUNXdimer (Hollenhorst et al.,
2009), which was found in ChIP-seq peaks for PU.1, a transcription factor from the
ETS family.

The 2nd ranked prediction, found in ChIP-seq peaks forNRSF (REST), actually
represents a full-length, monomeric RESTmotif (Johnson et al., 2008). It was pre-
dicted by our method as a dimeric motif complex because “HudsonAlpha/NRSF:
motif3”, the third-rankedmotif discoveredbyMEMEwithinRESTChIP-seqpeaks,
is actually only a fragment of the full-length REST motif, and the remaining frag-
ment is very similar to the motif for nuclear receptors such as GR and PR.

The 4th ranked prediction is the known GATA–E-box motif complex (Wad-
man et al., 1997), which was also identified in the above-described analysis of Duke
DNase-seq datasets (ranked 7th in Figure 3.4). Here, it is overrepresented in ChIP-
seq peaks for the E-box-binding factor TAL1. Not surprisingly, among the top 5
motifs found in theseChIP-seqpeaks, there is anE-boxmotif “Stanford/TAL1_(SC-
12984): motif4”. The top 5motifs also include theGATAmotif “Stanford/TAL1_(SC-
12984): motif2”. Such secondary TF motifs have been frequently reported in addi-
tion to the canonical ones (Wang et al., 2012). However, the biophysical interpre-
tation of such secondary motifs is usually unclear. They could be a consequence
of tethered binding, functional cooperativity or actual dimerization. These diverse
mechanistic explanations can be distinguished more easily with the help of spacing
analysis (Figure 2.4). In this case, it is clear that the secondary GATAmotif at TAL1
ChIP-seq peaks is a consequence of GATA–TAL1 heterodimerization on DNA.
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Prediction
Dimeric motif

dataset-specific ChIP-seq motifs (motif1 to motif5) and partner motifs from TRANSFAC or other ChIP-seq datasets

1. HudsonAlpha/PU.1

5291 instances

p−value: 4.02 × 10−768 HudsonAlpha/PU.1: motif2

Kid3
CBF (core binding factor)
AP-3
AML1a
HNF4, COUP

2. HudsonAlpha/NRSF

936 instances

p−value: 2.17 × 10−295

PUR1
GR

PR, GR
T3R

MEIS1
HudsonAlpha/NRSF: motif3

3. HudsonAlpha/SIX5, HudsonAlpha/ETS1

373 instances

p−value: 1.00 × 10−139 HudsonAlpha/SIX5: motif4
HudsonAlpha/ETS1: motif3

p300
MYB
AML2
AP-3

4. Stanford/TAL1_(SC-12984)

1039 instances

p−value: 6.98 × 10−137 Stanford/TAL1_(SC-12984): motif4
NMYC

GATA
GATA-3
Stanford/TAL1_(SC-12984): motif2
UChicago/eGFP-GATA2: motif1

5. Stanford/TAL1_(SC-12984)

1001 instances

p−value: 1.18 × 10−136

Smad4
Smad3

GR
YY1

SMAD
Stanford/TAL1_(SC-12984): motif2

6. Stanford/SMC3_(ab9263)

1492 instances

p−value: 5.14 × 10−132

AP4
Kid3
ING4

SREBP
CBF (core binding factor)

Stanford/SMC3_(ab9263): motif3

7. HudsonAlpha/SP2_(SC-643), Yale/c-Fos,
Stanford/NF-YA, Stanford/NF-YB

197 instances

p−value: 6.53 × 10−105

Yale/c-Fos: motif4
Yale/c-Fos: motif4

HudsonAlpha/SP2_(SC-643): motif2
Yale/c-Fos: motif2
HudsonAlpha/SP2_(SC-643): motif2
Stanford/NF-YA: motif4
Stanford/NF-YB: motif2

8. UW/CTCF

455 instances

p−value: 1.29 × 10−100 UW/CTCF: motif2

YY1
WT1
GKLF
Kid3
TTF-1 (Nkx2-1)

9. HudsonAlpha/PU.1, HudsonAlpha/SP2_(SC-643)

1183 instances

p−value: 1.09 × 10−98 HudsonAlpha/PU.1: motif2
HudsonAlpha/GABP: motif2

AP-1
STAT1
HudsonAlpha/SP2_(SC-643): motif4
Yale/c-Fos: motif4

10. Yale/Rad21

811 instances

p−value: 1.95 × 10−97

C/EBPbeta
Kid3

SREBP2
C/EBP

YY1
Yale/Rad21: motif1

Figure 3.5: Top 10 predicted mo f dimers in K562 ChIP-seq peaks, ranked by p-value.
Left column: for each predic on, the names of enriched ChIP-seq datasets, followed by the number of
mo f complex instances and p-value in most significantly enriched dataset.
Right column: below each dimer mo f, the loca ons and names of underlying individual mo fs are indi-
cated for the top 5 overrepresented mo f complexes. Red mo fs correspond to the TF immunoprecipi-
tated in an enriched ChIP-seq dataset, whereas blue mo fs originate from TRANSFAC or other ChIP-seq
datasets. For clarity, the red lines were drawn only once if the corresponding mo f was shared across all
5 complexes.
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3.4 Discussion

We systematically validated ourTF cooperativity predictions by comparing against a
large-scale experimental database of protein-protein interactions and found highly
significant overlap. This concordance is highly encouraging, given the profound
differences between our computational method and experimental approaches. We
also employed a novel statistical test to detect local elevation of the DNase-seq tag
density, which validated 91% (549/603) predictions, and showed that at least some
of the remaining 54 predictions would have also been validated if the correspond-
ing DNase-seq libraries had been sequenced to greater depth. Another indication
of functional relevance of the proposed complexes is the preferential evolutionary
conservation of motif pairs with predicted structure. These findings independently
support the accuracy of TF cooperativity predictions.
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4
Structural properties

of predicted transcription factor dimers

4.1 Introduction

We have so far confirmed the consistency and accuracy of the predicted TF dimers.
This was done mostly by analyzing each of the predictions separately. In this chap-
ter, we will discus the structural properties of our predictions, arising from the gen-
eral tendencies in the spacingof theoverrepresentedmotif complexes, aswell as from
the degree of flexibility allowed in their structures.

4.2 Methods

4.2.1 Analysis of motif spacing flexibility

We defined motif spacing to be the number of intervening nucleotides between the
proximal basepairs of the two motifs. In order to make the definition robust, we
calculated motif spacing on the basis of trimmed motifs. Motif trimming was im-
plemented as in Whitington et al. (2011), by eliminating flanking columns with in-
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formation content less or equal 0.25 bit from both sides of the individual motifs.
Note thatmotif trimmingwas only used to calculatemotif spacing; ourmethod did
not require motif trimming.

To characterize the flexibility of TF-TF-DNA complexes, we grouped together
the predictions that could have arisen frommultiple spacings of the sameTF dimer.
In other words, we grouped together predicted motif complexes that shared the
same pair of motifs in the same orientation, and varied only in their motif spacing.
In the case of DNase-seq data, we only grouped predictions arising from the same
dataset (for example, UWDNase-seq inGM12878 cells). Note thatmotif complexes
within a group were constrained to all have the same left-right ordering of the indi-
vidual motifs.

4.3 Results

4.3.1 Predicted cooperative interactions are rigid and compact

There is someuncertainty in the literature about the spatial properties ofmotif pairs
that are bound by TF dimers (Mirny, 2010; Biggin, 2011). Here, we define motif
spacing as the number of intervening nucleotides between the edges of the twomo-
tifs (negative values indicatemotif overlap). As noted above, numerous studies have
tested for fuzzymotif spacing, andpredictedTF-TF interactionswith relatively large
inter-motif distances (approximately tens of base pairs). In contrast, some biochem-
ical analyses suggest that dimeric motif spacings should be rigid or semi-rigid, and
also compact (<5 bp). Known TF complexes that fit this pattern include a number
of SOX–OCT heterodimers (Ng et al., 2012) and several nuclear receptor dimers
(Umesono et al., 1991). Our results clearly fit the latter model, as illustrated by the
spatial pattern of motif complex enrichment scores corresponding to our top 100
predictions (Figure 4.1a). Note that most of the 603 predicted interactions require
completely rigid spacing and the vast majority of the rest allow only 1 or 2 bp of
variation in motif spacing (Figure 4.1b).

Interestingly, the vast majority (87.2%) of motif spacings among our 603 predic-
tions were negative, indicating motif overlap (Figure 4.1c). It is possible that this
high frequency of overlap merely represents an artifact of uninformative basepairs
present at the flanks of TRANSFAC motifs. However, even after trimming poten-
tially redundant motif positions (see Subsection 4.2.1), we still found that 67.8% of
the motif pairs overlapped (Figure 4.2). Consistently, a high degree of overlap was
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Deviation from predicted motif spacing
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Figure 4.1: Rigidity and compactness of transcrip on factor dimers.
(a) For each of the top 100 predic ons, we display the mo f complex enrichment p-value as a func on of
mo f spacing (see Subsec on 2.2.4). Spacings to the le of the red line correspond to overlapping mo fs;
(b) Very few of the 603 predicted mo f complexes remain significantly enriched when mo f spacing is
altered, sugges ng that coopera ve mo f complexes are rigidly spaced;
(c) Spacing distribu on of 603 predicted mo f dimers (top) and 29 known TF dimers (bo om; Table 4.1).
Spacings to the le of the red line correspond to overlapping mo fs. Predicted and known dimers are
compact, i.e. ghtly spaced.
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Trimmed Cluster rank
Description Motif 1 Offset Motif 2 Spacing spacing Ch. 2 UW Duke

SOX–OCT M01247→ 12 M00795→ −8 −2 4 1 3
SOX–OCT M01247→ 11 M00795→ −9 −3
SOX–OCT M01247→ 15 M00795→ −5 1
HNF1–HNF1 M01712← 5 M01712→ −1 −1 2 3 22
p53–p53–p53–p53 M00761→ 10 M00761← 0 0 10 5 1
SMAD–SMAD M01889← 3 M01889→ −4 −2 10 5
TCF–RUNX M01705← 7 M01160→ −2 −2 5 7
ETS–RUNX M00074← 8 M01160→ −5 −3 9 8 89
AR–FOXA1 M00921← 12 M00724← 4 4 6 9
EBF1–EBF1 M01003→ 5 M01003← −6 −2 8 11 29
HNF4α–HNF4α M00967← 7 M00967← −2 0 12 4
bHLH–bHLH M01808← 11 M01808→ 5 5 16 17 37
AR–AR, GR–GR or PR–PR M00921→ 7 M00921← −1 3 30 20
p50–p65 (NF-κB) M01100→ 4 M00750→ −5 −5 21 22 74
ER–ER M00959← 6 M00959→ −5 −5 25 25
IRF–IRF M01665→ 5 M01250→ −2 0 7 31 9
ETS–AP-1 M01281← 4 M00926→ −2 0 36 43 13
ETS–IRF M00074← 9 M01250→ −4 0 15 44 38
SOX9–SOX9 M01590← 12 M01590→ 0 2 293 50 2
VD3R–VD3R M01270← 9 M01270← 2 3
TR–TR or RXR–TR M01270← 10 M01270← 3 4 179 58
RAR–RAR M01270← 11 M01270← 4 5
bHLH–GATA M01808← 14 M00789← 8 8 99 72 7
STAT–STAT M00500← 7 M00500→ −1 −1 63 109 11
AP-1–IRF M00926← 4 M01881→ −4 −1 98 210 68
ETS-1–ETS-1 M00074← 9 M00074→ −4 0
SOX2–PAX6 M01590→ 9 M00097← −3 2
GATA–GATA M00462→ 5 M00462← −5 1
GABPα–CREB M01660→ 1 M00113← −5 −3

Table 4.1: Mo f dimers underlying the known DNA-binding TF complexes presented in Table 2.1. Cluster
rank refers to: Ch. 2 – results in Chapter 2; UW and Duke – results in Subsec on 3.3.4. Note that our
method predicts p53–p53–p53–p53 homotetramer as a dimer of two homodimers, and SMAD–SMAD
homodimer is found in the same cluster as p53 homotetramer.
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Figure 4.2: Rigidity and compactness of transcrip on factor dimers a er mo f trimming. Same as Fig-
ure 4.1, but a er trimming poten ally redundant mo f posi ons (see Subsec on 4.2.1).

observed even among the trimmed motif pairs corresponding to known TF dimers
(Table 4.1, Figure 4.1c). Thus, 87.2% of the associations detected by our approach
would be invisible to existing methods that do not allow motif overlap. Moreover,
even after motif trimming, which is not necessarily advisable in all cases, 67.8% of
our predictions would be undetectable by all existing approaches. Overall, our re-
sults indicate that TF dimers bind rigid and highly compact motif complexes.

4.3.2 Association between rigidity and compactness of TF dimers

Notably, the analysis of overrepresentedmotif complexes in ChIP-seq peaks yielded
multiple long-range interactions (spacing >15 bp), which were not discovered in our
previous analyses of DNase-seq data (Figure 4.3). Most dramatically, we observed
that in two such cases, ranked 40th and 41st, up to 5 motif spacings were signifi-
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Motif spacing
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Figure 4.3: Wide range of mo f spacings for TF dimers predicted in K562 cells. Predicted dimers that
varied only in their spacing (same mo f pair and orienta on) were grouped together and ranked by the
p-value of the most significant spacing. For each such group of dimer predic ons in K562 ChIP-seq peaks,
we show the mo f complex enrichment p-value as a func on of mo f spacing. Spacings to the le of the
red line correspond to overlapping mo fs.

cantly overrepresented. Both of these predictions involved NF-Y homodimers, as
did yet another of the predictions (Figure 4.4a). Of the 9 predicted NF-Y homod-
imers, 5 were direct repeats, 3 were divergent palindromes and 1 was a convergent
palindrome. The 5 different spacings for the NF-Y direct repeat were broken up
into two clusters one turn apart, and therefore phased to be on the same side of the
DNAdouble helix. Another relativelywidely spaced (>5 bp) interactionmentioned
earlier, GATA–E-box, similarly permitted flexible spacing (Figure 4.4b).

In Subsection 4.3.1, we noted that TF dimers are mostly rigidly spaced and com-
pact, and hypothesized that compactness explained rigidity. Here, we use the ex-
panded set of dimer predictions to test this hypothesis. Consistently with this hy-
pothesis, we uncovered a significant correlation between the rigidity and compact-
ness of predicted TF dimers.

In order to quantify a potential association between rigidity and compactness of
TF dimers, we aggregated our predictions derived from K562 ChIP-seq data into
groups that varied only in their motif spacing (see Subsection 4.2.1), as in Figure 4.3.
We then found Pearson correlation coefficient of r = 0.51 between the number
of enriched complexes for a motif pair and their average motif spacing (Figure 4.5,
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A 1. Stanford/NF-YB

195 instances

p−value: 4.32 × 10−28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Yale/c-Fos: motif2

Stanford/NF-YB: motif2

2. Yale/c-Fos

135 instances

p−value: 2.05 × 10−14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
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Figure 4.4: Predicted long range mo f dimers in K562 ChIP-seq data. As in Figure 3.5, (a) NF-Y homotypic
dimers and (b) GATA–E-box heterodimers predicted in K562 ChIP-seq data are shown in detail.
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Figure 4.5: Posi ve associa on between average mo f spacing and flexibility of mo f dimers. Left column:

predic ons in K562 ChIP-seq peaks, right column: combined predic ons from UW and Duke DNase-
seq data. Upper row: sunflower plots show the number of predicted mo f spacings for a group of dimer
predic ons as a func on of the average of their mo f spacings. In case of data points occurring more
than once, their count is indicated by the number of petals (orange lines). Lower row: sunflower plots show
the standard devia on of predicted mo f spacings as a func on of average mo f spacing. The Pearson
correla on coefficients are shown for all plots.

upper left). The difference in averagemotif spacing calculated within the prediction
groups, compared between completely rigid motif complexes (single-spacing) and
flexible complexes (more than one spacing) was found highly significant (p = 4.07 ·
10−6, Mann-Whitney U test). Thus, we see a highly significant correlation between
the rigidity and compactness of predicted TF dimers.

In order to test the generality of the abovementioned correlation, we applied the
same approach to the combined set ofDNase-seq dimer predictions, obtained using
UWorDuke data. Again, we observed a positive Pearson correlation of r = 0.53 be-
tween the number of predicted complexes for a motif pair and their spacing. How-
ever, we noticed that four of the complexes in this case dominated the correlation
coefficient by virtue of having outlier values for the motif spacing; their motif spac-
ing was more than 5 interquartile ranges above the third quartile. When these four
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data points were discarded, the correlation coefficient dropped to r = 0.14 (Fig-
ure 4.5, upper right). However, we still observed significantly larger average motif
spacing among flexible complexes as compared to the completely rigid complexes
(p = 0.014).
We further testedwhether amore quantitativemeasure of dimer flexibilitywould

also support the above findings on the structural properties of TF dimers. Consis-
tently, we found that the average motif spacing also correlates with the standard
deviation of motif spacings for a motif pair (Figure 4.5, lower left and right). In this
case, the Pearson correlation coefficients were r = 0.45 for K562 ChIP-seq dimers
and r = 0.47 for combined DNase-seq dimers (r = 0.26 after outlier removal).
In summary, we found that the rigidity and compactness of motif complexes are
consistently correlated, by multiple measures in two different data types.

4.3.3 DynamiclandscaperevealslowTFdimerreuseacrosscelltypes

The vast majority of TF dimers predicted in DNase-seq data were found specific to
a single cell type only (87% or 215/247 inUW, 89% or 98/110 inDuke). Out of the 32
remaining dimers inUW, 29were predicted in exactly two cell types (Figure 4.6) and
usually found to be reused between related cell types (e.g. prostate cancer LNCaP
and breast cancerMCF-7). Note that these predictions originated from disjoint sets
of genomic regions (i.e. cell-type–specific hypersensitive sites), so the predictions in
different cell types are independent. A similar trend of low TF dimer reuse was ob-
served in Duke DNase-seq data (Figure 4.7).

4.3.4 Predictedcooperative interactions indicatekeyroleofFOXA1
in prostate cancer cells

Asnoted above, all of the top 10 cooperativity predictionsmatchedknownTFdimers
(Figure 2.7). However, the 11th-rankedprediction,which implies a FOXA1 (HNF3A)
homodimer in prostate cancer cells (p = 5.1 · 10−93; Figure 4.8b), is, to the best of
our knowledge, novel. This motif dimer also shows a very strong signal of prefer-
ential evolutionary constraint (q = 5.2 · 10−18; Figure 3.2a). Note that in the same
prostate cancer cell line there already exists onewell-known dimeric complex involv-
ing FOXA1, namelyAR–FOXA1 (Wang et al., 2011), which ranked 6th amongst our
predictions (Figure 4.8a). Inspired by these two cases, we searched for additional
FOXA1 cooperative interactions among our predictions. Strikingly, we found a sec-
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Figure 4.8: Key role of FOXA1 in prostate cancer cells (LNCaP).
Left: most significant coopera vity predic ons involving FOXA1 and underlying overrepresented mo f
complexes. The number of instances and p-value are given as in Figure 2.7.
Right: predicted 3D structures of respec ve TF-TF-DNA complexes. (a) FOXA1–AR heterodimer; (b) di-
verging FOXA1 homodimer; (c) converging FOXA1 homodimer; (d) FOXA1–NFI heterodimer. Due to the
lack of crystal structure for NFI in Protein Data Bank, no 3D structure is predicted in d.

ond predicted FOXA1 homodimer, with a completely different structure (ranked
108th, p = 8.8 · 10−18; Figure 4.8c), as well as a predicted FOXA1–NFI heterodimer
(ranked 139th, p = 6.4 · 10−15; Figure 4.8d). Thus, we predict that FOXA1 is in-
volved in at least four strong cooperative dimeric binding modes in prostate cancer
cells, only one of which was previously known.

To assess whether the four motif dimers involving FOXA1 topologically permit
the assembly of dimeric TF complexes, we attempted to generate structural models.
To this end, we first simulated ideal B-DNA structures containing the dimer motifs
fromFigure 4.8 using thew3DNAserver (http://w3dna.rutgers.edu/). Next,
wedownloaded structuralmodels fromtheProteinDataBank (PDB) (Bermanet al.,
2000) containing androgen receptor (Shaffer et al., 2004) and FOX (Littler et al.,
2010)DNAbindingdomains (PDB identifiers 1R4I and 3G73)whenbound toDNA
sequences that closelymatch the consensus of our compositemotifs. Unfortunately,
we found no PDB entries with reasonable sequence similarity to NFI. To assemble
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Figure 4.9: Converging FOXA1 homodimer 3D structure (Figure 4.8c) seen from a different perspec ve.
Notably, C termini do not overlap.

hypothetical ternary TF-TF-DNA complexes, we superimposed DNA strands of
the experimental crystal structures upon the simulated DNA with composite mo-
tifs using least-squares fitting inCoot (Emsley&Cowtan, 2004). We then visualized
the resulting complexes using PyMOL (DeLano, 2002).

By analyzing the resulting models of TF dimers on DNA, we found that both
homodimeric FOX complexes as well as the heterodimeric FOX–AR complex can
assembly without any steric hindrance. Furthermore, the protein interfaces of the
FOX–AR complex (Figure 4.8a) as well as the converging FOX homodimer (Fig-
ure 4.8c; Figure 4.9) are positioned favorably such that they could engage in direct
protein-protein interactions. The diverging FOX homodimer (Figure 4.8b) is ar-
ranged on opposing faces of the DNA double helix, and direct protein-protein in-
teractions between the DNA-binding domains are less likely in the present confor-
mation, barring pronounced allosteric effects. It is possible that FOX–FOX bind-
ing cooperativity in this case is mediated by DNA conformational changes, as has
been previously observed in multiple instances (Baburajendran et al., 2011).

4.4 Discussion

We show that TF dimers were both rigid and compact, and hypothesize based on
qualitative structural arguments that their rigidity is a consequence of their com-
pactness. Such a causal relationship could arise for two reasons. Firstly, TF pairs
binding widely spaced motifs are likely to form protein-protein contacts via their
DNA-distal domains, or even via intervening cofactors. Such a configurationwould
in general be more flexible than direct physical contact between the DNA-binding
domains. Secondly, a widely spaced complex might also gain flexibility from the
greater deformability of the long stretch of intervening DNA. The widely spaced
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complexes found in K562 cells provided us with an opportunity to test the above
hypothesis. Our results indicate that TF dimers that bind widely spacedmotif pairs
are significantly more flexible in their spacing, thus providing statistical support for
a causal relationship between compactness and rigidity (Figure 4.5). While our anal-
ysis provides the first evidence, further biochemical experiments are required to ex-
plore this relationship in greater detail.
In cases of very high inter-domain flexibility, as is perhaps true of NF-Y, even

the relative orientation of individual motifs may vary. The NF-Y complex contains
three proteins, NF-YA, NF-YB and NF-YC, of which only NF-YA forms specific
contacts with DNA (Fleming et al., 2013). Thus, the NF-Y “dimer” motifs we iden-
tified are likely to be bound by pairs of such trimers, i.e. hexamers. It is possible
that inter-trimer contacts are mediated not by the DNA-binding NF-YA subunit,
but by the DNA-distal NF-YB or NF-YC subunits. Interestingly, the NF-Y motif
was recently reported to form well-defined complexes of fixed spacing with E-box,
E2F and TATA-box motifs at promoters genome-wide (Fleming et al., 2013), sug-
gesting that the ternary complexes identified here are not the only cooperative in-
teractions involving NF-Y. The same study also showed that NF-Y was unusually
adept at binding genomic regions that showed no activating or repressive histone
marks, suggesting that the TF acts as a pioneer factor. This is again consistent with
our previous hypothesis that pioneer factors derive their DNA binding specificity
frommultiple dimeric binding modes.
Although the TF dimers predicted by our method are generally rigidly spaced, it

is conceivable that this reflects to some extent an ascertainment bias of the algorithm.
Dimerswith highly flexible spacingwould be harder to detect by thismethod, if they
resulted in only weak enrichment of motif pairs at any given spacing. Similarly, the
fact that all of the 29 known TF dimers we extracted from the literature are rigid or
semi-rigid could also bequestioned; one couldhypothesize that existingbiochemical
assays for detecting cooperative dimerization on DNA are somehow biased against
flexibly spaced dimers. However, we are not aware of any experimentally validated
instances ofTF dimers that can bind cooperativelywith highly flexiblemotif spacing.
Notably, in a recent study, even though the algorithm used to predict TF dimers
permitted some flexibility in the spacing, all of the experimentally validated dimers
turnedout tobe rigid, i.e. theyboundwithhigh affinity only at a singlemotif spacing
(Kazemian et al., 2013). Thus, the evidence so far is strongly weighted towards rigid
or semi-rigid TF dimers.
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FOXA1 is well known to act as a pioneer factor in multiple cell types, including
breast and prostate cancer cells (Zaret & Carroll, 2011). In other words, FOXA1 can
initiate binding even at nucleosome-occluded DNA sites, and thereby potentiate
subsequent binding of other factors. One would therefore imagine that FOXA1
should be able to bind all of its motif matches in the human genome. However,
this is clearly not the case; in reality, FOXA1 binds only a small subset of its candi-
date sites (Lupien et al., 2008). Thus, there must be some other mechanism that
compensates for the limited ability of chromatin openness to confer binding speci-
ficity upon pioneer TFs. Our results suggest that multiple homodimeric and het-
erodimeric bindingmodes could potentially contribute to the binding specificity of
FOXA1. Alternatively, one could hypothesize that dimerization may enhance the
ability of this pioneer factor to compete with nucleosomes when the cognate DNA
binding surface is not accessible. Interestingly, other known pioneer factors, such as
GR and GATA (Zaret & Carroll, 2011), also appear among our top 40 predicted in-
teractions, suggesting that dimerization could potentially represent a general speci-
ficity mechanism for pioneering TFs.

Previous studies have focused almost exclusively on fuzzily spaced co-binding of
TFs, which is in general indicative of functional or indirect cooperativity. In con-
trast, biochemical studies suggest that only a singlemotif spacing, or atmost 2-3 spac-
ings, are compatible with direct cooperativity through TF dimerization (Cotnoir-
White et al., 2011; Grove et al., 2009; Slattery et al., 2011). Moreover, even when TFs
are seen to dimerize at a few different possible spacings, one spacing typically dom-
inates in terms of binding affinity. For example, although OCT4 and SOX2 can
dimerize at motif pairs separated by precisely three additional basepairs relative to
the canonical OCT4–SOX2 motif spacing, the canonical spacing clearly provides
greater binding affinity (Ng et al., 2012). Not surprisingly therefore, in vivo binding
sites overwhelmingly favor the canonical spacing (Chen et al., 2008).

Our results indicate that there exists a large class of conformationally constrained
TF dimers that bind rigidly-spacedmotif complexes. The inflexibility of thesemotif
complexes implies that dimerization on DNA frequently imposes strict constraints
on the relative spatial conformationof the participatingTFs. As in the case ofOCT4
and SOX2, a small number of additional motif spacings may indeed provide alter-
nate dimeric binding modes for the same factors, but these additional modes are
likely to have lower affinity and also to contribute relatively few genomic binding
sites. Finally, our predicted motif complexes are typically highly compact, perhaps
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suggesting that TF dimerization is mediated by DNA-binding domains more com-
monly than by co-factors or DNA-distal domains.
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5
Software framework for predicting

transcription factor dimers

5.1 Introduction

The list of knownDNA-binding TF dimers and multimers has expanded rapidly –
we have compiled from the biochemical literature a list of 29 such complexes that
have experimental support (Table 2.1). Concomitantly, numerous studies have used
in silico analysis to computationally predict TF dimers. Since the goal of these stud-
ies was to predict specific ternary complexes of TFs with DNA, they scanned for
pairs of TF-binding motifs enriched at a fixed relative orientation and spacing in
regulatory regions. In Chapter 2 we have described such method that exploited the
abundance of DNase-seq datasets available from the ENCODE consortium (EN-
CODEProject Consortium et al., 2012); subsequently, we also incorporateChIP-seq
data. Others have used DNase I hypersensitivity data on a smaller scale (Kazemian
et al., 2013), as well as TF ChIP-seq data (Whitington et al., 2011; Hollenhorst et al.,
2009) and also sets of promoter or enhancer regions (Chatterjee et al., 2012; Fleming
et al., 2013) to define the regulatory elements of interest.

55



Upuntil recently, two software tools exist for performing themotif dimer enrich-
ment analysis described above: SpaMo (Whitington et al., 2011) and iTFs (Kazemian
et al., 2013). One important drawback of these tools is that they cannot assess enrich-
ment of motif pairs that are so close that they overlap, even though such overlap is
common (Figure 4.1). In Chapter 2, we propose a mathematical framework for TF
dimer prediction that accommodates for motif overlap. Now, we introduce TACO
(Transcription factor Association from Complex Overrepresentation), a software
tool that generalizes this approach.

To allow for a broad adoption of our method, we encapsulate it into a config-
urable, publicly available standalone tool. We also compare TACO to SpaMo and
iTFs, by benchmarking the the three algorithms on the set of 29 known dimers.

5.2 Identification of dataset-specific predictions

We use DNA sequence motifs as models of TF binding specificity. In the default
setting, we consider all possible pairs of the motifs provided. For each pair of motifs
we test all possible compact motif complexes (all relative orientations and, by de-
fault, motif spacing of at most 50 bp) for enrichment in each of the target datasets.
It should be noted that TACO can seamlessly handle the statistics of overlapping
motif pairs, a property not shared by existing algorithms. As we will explain in de-
tail in Chapter 4, this is an important feature, since a sizeable fraction of known TF
dimers bind overlapping motif pairs.

Toquantify enrichment,we count thenumberofmotif complex instances in each
target dataset, and compared it against the number of instances in the background
model. The backgroundmodel is based on the control dataset, defined as the union
of all regulatory regions from all cell types. As described Subsection 2.2.4, the en-
richment is calculated taking into account the difference in motif co-occurrence fre-
quency between foreground (target) and background (control) datasets.

Motif databases very often contain multiple motifs for the same TF, or very sim-
ilar motifs for different TFs. For this reason, a single underlying TF-TF interaction
often results in the detection of multiple, highly similar motif complexes by TACO.
We therefore cluster the overrepresentedmotif complexes, taking into account their
similarity (measured by Euclidean distance) and overlap of their genomic instances,
as described in Subsection 2.2.7.
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Figure 5.1: Strongly cell-type–specific and weakly cell-type–specific paradigms. In both of the paradigms,
the control dataset is defined as the union of all input regions.

5.3 Implementation and applicability

Operating system(s): Unix-like, such as Linux andMac OS XOther requirements:
R or standalone Rmath library
TACO is a standalone C++ software tool. Its mandatory inputs are: reference

genome sequence (FASTA format) and a list of TF motifs or a motif database. Ac-
ceptedmotif formats includeTRANSFAC(Wingender, 2008), JASPAR(Bryne et al.,
2008), SwissRegulon (Pachkov et al., 2013) and MEME (Bailey & Elkan, 1994) out-
put. Moreover, a collection of genome-wide sets of regulatory regions should be
provided (BED format). TACO can handle input regulatory region datasets of two
kinds: strongly cell-type–specific or weakly cell-type–specific. Each input dataset
should be declared as strongly or weakly specific (these two kinds can be provided
simultaneously). In this thesis, all the DNase-seq datasets were processed according
to the strongly specific paradigm. In contrast, ChIP-seq datasets considered here
were treated as weakly specific.
Strongly and weakly cell-type–specific datasets are translated using different ap-

proaches into target datasets for TF dimer prediction (Figure 5.1). Regulatory re-
gions of strongly specific datasets are intersected with each other, and only the non-
overlapping (unique) portions are retained as target regions. In contrast, the weakly
specific datasets are directlyused as target datasets, withoutmodification. Theunion
of all input regulatory regions is used as a control dataset in order to build the null
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model of motif complex occurrence.
Theopen chromatindatasetswhich couldbeused includepublicly availableDNase-

seq data from the ENCODE Project (ENCODE Project Consortium et al., 2012).
The input datasets can be provided as multiple replicates per cell type, to bemerged
by TACO within each cell type. In this way, closely related cell types, e.g. with sim-
ilar genome-wide DNase I hypersensitivity profiles, may be merged as well.

The scope of the analysis may be narrowed down by screening for enrichment
only in a subset of the target datasets. Moreover, instead of scanning for enrichment
of all possible motif pairs, one or both of the motifs forming the motif complex can
be fixed by the user. Below we provide three typical use cases for TACO.

Prediction of overrepresented motif complexes in a collection of DNase-seq datasets.
All possible motif complexes are screened for enrichment in all cell-type–specific
open chromatin regions. As stated, such analysis follows the concept presented in
Chapter 2. Alternatively, only some of the datasets could be screened, with the re-
maining open chromatin datasets contributing only to the control set.

Prediction of overrepresentedmotif complexes in ChIP-seq peaks. Themotifs of im-
munoprecipitated TFs are supplied, and all motif complexes with all possible part-
ner motifs from the database are screened for enrichment in ChIP-seq peaks. This
approach has previously been used by Whitington et al. (2011). The collection of
ChIP-seq peaks should be large enough to provide a representative control set. For
example, all publicly available ChIP-seq datasets from the ENCODE Project for a
given cell type could be used.

Analysis of cooperative interactions between a given pair of TFs with known motifs.
SomeTFdimers allow formultiple spacings, and are overrepresented only in certain
datasets (see Subsection 4.3.3). Given a pair of motifs of interest, all possible motif
complexes are screened for enrichment in all datasets.

5.4 Execution time and output

One of our priorities while developing TACO was to make the analyses computa-
tionally tractable. Comprehensive analyses using two sources of DNase-seq data,
described in Subsection 3.3.4, where we took as input 964 vertebrate TF affinity
motifs from TRANSFAC Professional (Wingender, 2008), requires the testing of
2.57 billion hypotheses. TACO completes this task in approximately 6 hours, using
16 cores of a 3.33 GHz machine and up to 11 GB of memory.
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Asoutput,TACOprovides amultidimensional viewofoverrepresented cell-type–
specific motif complexes. First, TACO clusters the enriched motif complexes as de-
scribed in Subsection 2.2.7, and treats each cluster as a single predicted TF dimer.
For each overrepresented motif complex within a cluster, the locations of all its ge-
nomic occurrences are reported. We also provide the position weight matrices in-
ferred by counting nucleotide frequencies at each position within its genomic in-
stances. Moreover, TACO also provides statistics that can be used to visualize the
distribution of enrichment p-values using aQ-Q plot, and to generate spacing plots
as in Figure 4.3.
The source code for TACO is freely available under the GNUGPL license, along

with examples anddocumentation, athttp://bioputer.mimuw.edu.pl/taco/
and on GitHub at https://github.com/ajank/taco.

5.5 Benchmarking the dimer prediction tools

We compared TACO with the two other dimer prediction methods, SpaMo (13)
and iTFs (12), by benchmarking the the three algorithms on the set of 29 known
TF dimers manually compiled from the existing biochemical literature (Table 2.1;
Table 4.1).
Since the known dimers were used as a set of true positives, we tested 25 distinct

motif pairs underlying the 29 known dimers. As a control, we added a set of 1000
randommotif pairs, which were randomly chosen from all motif pairs which could
be possibly formed using all 964 vertebrate motifs from TRANSFAC Professional
2011.2 (17). We also ensured that the set of 1000 randommotif pairs does not overlap
with the set of 25 positive motif pairs.
Each of the tools (TACO, SpaMo and iTFs) was applied to each of the 44 cell-

type–specific DNase-seq datasets fromUniversity of Washingon (UW) and each of
the 26 cell-type–specificDNase-seq datasets fromDukeUniversity (Duke). In these
datasets, we masked repetitive regions (as identified by RepeatMasker and Tandem
Repeat Finder) and coding regions (extracted from Ensembl). Options specific to
each of the tools are reported in the next subsections.
SpaMo and iTFs were evaluated both with and without trimming of uninfor-

mative positions at motif edges. Motif trimming was implemented externally and
performed as in (13) and (12), by eliminating flanking columnswith information con-
tent less or equal 0.25 bit from both sides of the individual motifs. Note that we did
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not run TACOwith trimmed motifs, since TACO is able to handle motif overlap.

Each of the tools was applied to each cell-type–specific dataset separately to cal-
culate enrichment p-values for all motif complexes which could be formed from
the abovementioned motif pairs. Note that iTFs uses binned spacing, so the p-
valueswere provided for each spacing intervalwithin eachmutualmotif orientation.
Since we do not have complete a priori information on the cell-type–specificity of
known dimers, we combined all the enrichment p-values across datasets by choos-
ing the most significant p-value for a given motif complex. In the case of combined
(UW+Duke) study, the enrichment p-values were combined across data sources as
well.

Sensitivity was defined as the fraction of the 29 known dimers (i.e. known motif
complexes) detected at any given p-value threshold. False-positive ratewas defined as
the fraction of the randommotif dimers (i.e. all the othermotif complexes) detected
at the same threshold.

5.5.1 Benchmarking parameters for TACO

TACOwas run with the default options (in particular, MaxMotifSpacing = 50).
Individual motif matches were identified using the threshold criterion we recom-
mend for TRANSFAC, i.e. Sensitivity = 0.8. In addition, to ensure that
all p-values are reported, we specified TargetInstancesThreshold = 0, Fold-
ChangeThreshold = 0.0 and PValueThreshold = Inf.

We also minimized the motif complex clustering, which was irrelevant to the
benchmarking, in order to adequately compare the execution time. Hence, we spec-
ified ClusteringDistanceConstant = 0.0, ClusteringDistanceMulti-
plier = 0.0 and ClusteringOverlapThreshold = Inf.

5.5.2 Benchmarking parameters for SpaMo

SpaMowas runusingspamo -trim 0 -cutoff 1 -margin 50 -keepprimary

-bgfile [background file] [dataset] [motif1].meme [motif2].meme.
Thebackground file, containing thenucleotide frequencies, was generatedbyfasta-
-get-markov from the union set of all cell-type–specific DNase-seq datasets con-
sidered.
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5.5.3 Benchmarking parameters for iTFs

iTFs was run with distance ranges as specified in [12], namely 0-10, 10-25, 25-50 and
50-100 bp. We noted that due to the spacing binning, three known hormone re-
ceptor homodimers (rows 20-22 in Table 2.1) cannot be easily distinguished. These
motif complexes share the samemotifs and orientation, anddiffer only by their spac-
ing, which falls into the same distance range. To resolve this ambiguity, we referred
to TACO and SpaMo predictions and found that these complexes were identified as
enriched in different datasets.
In the case ofUWdata, TR−TRorRXR−TR(row21)wasmost overrepresented

inWERI-Rb-1 cell type (uncorrectedTACO p-value= 1.53·10−32), RAR−RAR(row
22) in SK-N-SH_RA (p = 2.65 · 10−4) and VD3R−VD3R (row 20) in WERI-Rb-
1 (p = 0.039) and NB4 (p = 0.058). Consequently, for iTFs analysis of the single
motif pair yielding these complexes in UW data, we separated WERI-Rb-1, SK-N-
SH_RA andNB4 datasets, considering them as indicators of three different dimers,
and excluded all the other datasets.
In the case of Duke data, we found no significant cell-type–specific overrepre-

sentation of the motif complexes discussed above. However, to make the results
comparable, we referred to the smallest (albeit insignificant) TACO p-values and
found that TR−TR or RXR−TR was most overrepresented in HMEC cell type,
RAR−RAR in LNCaP and VD3R−VD3R in 8988T. Consequently, for iTFs anal-
ysis of the single motif pair yielding these complexes in Duke data, we separated
HMEC, LNCaP and 8988T datasets as above, and excluded all the other datasets.
In the case of combined (UW+Duke) study, for iTFs analysis of the single motif

pair discussed above, we separated the three datasets as in theUWcase, and excluded
all the other datasets, including all Duke ones.
For all the othermotif pairs, we combined all the datasets (cell types) as previously

described.

5.6 Comparison of dimer prediction tools

We compared TACOwith the two other dimer predictionmethods, SpaMo (Whit-
ington et al., 2011) and iTFs (Kazemian et al., 2013) using the 29 known dimers as
a benchmark set of true positives (Table 2.1; Table 4.1). Henceforth, we tested 25
distinct motif pairs underlying the 29 known dimers, and as a control we included
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Figure 5.2: Comparison of dimer predic on algorithms, UW DNase-seq data. SpaMo and iTFs were evalu-
ated both with and without mo f trimming. Note that TACO does not require mo f trimming. Sensi vity
is shown as a func on of false posi ve rate; Area Under Curve (AUC) is indicated.

a set of 1000 random motif pairs. All the tools were applied to each of the 44 cell-
type–specific UWDNase-seq datasets. Sensitivity was defined as the fraction of the
29 known dimers detected at any given p-value threshold. False-positive rate was
defined as the fraction of the random motif dimers detected at the same threshold
(Figure 5.2).

SpaMo and iTFs were evaluated both with and without trimming of uninforma-
tive positions at motif edges. Motif trimmingwas performed as inWhitington et al.
(2011) and Kazemian et al. (2013). As expected, both of these tools performed better
with trimmed motifs. Notably, with motif trimming, iTFs performed marginally
better than SpaMo (AUC = 0.49 vs. AUC = 0.47) despite the fact that it was not
designed to predict rigidly spaced TF dimers (Kazemian et al., 2013). Ultimately,
TACO (AUC = 0.84) clearly outperformed the other tools; note that we did not
run TACO with trimmed motifs, since TACO is able to handle motif overlap. We
also found that TACO is robust to the motif sensitivity threshold chosen (5.4). No-
tably, TACO and SpaMo completed the benchmarking analysis reasonably fast (2.7
and 6 hours on a single CPUmachine, respectively; TACOmayusemultiple CPUs).
However, iTFs could only complete the job in a feasible time when running on a
cluster.

62



Duke DNase-seq Combined (UW+Duke) DNase-seq
A B

False positive rate

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TACO (untrimmed)
AUC = 0.86

iTFs (trimmed)
AUC = 0.49

iTFs (untrimmed)
AUC = 0.25

SpaMo (trimmed)
AUC = 0.51

SpaMo (untrimmed)
AUC = 0.26

False positive rate

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TACO (untrimmed)
AUC = 0.74

iTFs (trimmed)
AUC = 0.48

iTFs (untrimmed)
AUC = 0.24

SpaMo (trimmed)
AUC = 0.54

SpaMo (untrimmed)
AUC = 0.25

Figure 5.3: Comparison of dimer predic on algorithms, Duke and combined (UW+Duke) DNase-seq data.
As in Figure 5.2, with algorithms evaluated using (a) Duke and (b) combined (UW+Duke) DNase-seq data.

Comparing the three tools by applying them to the 26 cell-type–specific Duke
DNase-seq datasets yielded comparable results, with TACO (AUC = 0.74) again
outperforming the two other tools (Figure 5.3a). Combining the predictions from
bothDNase-seqdata sources gave evenbetter performance (AUC=0.86; Figure 5.3b).

5.7 Specification file format

TACO, or Transcription factor Association from Complex Overrepresentation, is
a program to predict overrepresented motif complexes in any genome-wide set of
regulatory regions. TACO is a command line tool, and should be invoked with one
argument: the name of the specification file to process.

5.7.1 General conventions

A specification file, usually with .spec extension, has a HTML-like structure. A
hash sign (#) begins a comment. Sequences of whitespace will collapse into a single
whitespace. All the declarations have a form of key=value pairs. In case multiple
values are allowed, they may come as multiple key=value pairs, as well as multiple
values separated by whitespace. All filenames may contain wildcards. Each declara-
tion has block scope, i.e. is applicable only to the declarations within <section>

…</section>. All the applicable sections are described below.
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used throughout this study.

5.7.2 Reference genome

The <Genome> section specifies the reference genome sequence file(s), and possibly
set(s) of genomic regions to be masked (excluded from the analysis). The following
keys may be used:

FastaFile FASTAfile(s) containing the genome sequences. Lowercasenucleotides
(usually representing repetitive regions) are masked.

MaskedRegions BED file(s) listing regions to be masked, e.g. coding sequences.

5.7.3 Input datasets

Input regulatory regiondatasets of twokinds arehandled: strongly cell-type–specific
or weakly cell-type–specific. Each input dataset should be declared as strongly or
weakly specific (these two kinds can be provided simultaneously). They are specified
in the<StronglySpecificDatasets> section(s) and<WeaklySpecificDatasets>
section(s), respectively. We recommend treating open chromatin datasets (such as
DNase-seq datasets) as strongly specific, and ChIP-seq datasets as weakly specific.
Each input dataset may consist ofmultiple replicates in narrowPeak or BED format.
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Strongly and weakly cell-type–specific datasets are translated using different ap-
proaches into target datasets forTFdimerprediction. Regulatory regions of strongly
specific datasets are intersected with each other, and then only the non-overlapping
(unique) portions are retained as target regions.
In contrast, the weakly specific datasets are directly used as target datasets, with-

outmodification. Theunionof all replicates sharing a dataset identifierwill be taken
as a single input dataset. The union of all input datasets is used as a control dataset
in order to build the null model of motif complex occurrence. The following keys
may be used to specify input datasets:

Dataset Replicate filename, optionally precededby thedataset identifier andwhites-
pace. If no dataset identifier is provided, the replicate filename is taken.

DatasetList File(s) containing a list of datasets specified as above, in subsequent
lines.

In addition, the following keysmay be used to normalize the datasets (each replicate
separately):

RegionSize Set each region size to a given value (in base pairs), centering at the
peak. Default: 0 (leave it unchanged).

RegionMasking Specify how the regions overlapping masked fragments of the
genome (see MaskedRegions in <Genome> section) should be treated. One
of the following:

None no masking,

Peak exclude a region if its peak position (as specified in narrowPeak file) is
masked in the genome

Majority exclude a region if most of the underlying genomic sequence is
masked.

Default: None.

RegionCount Consider not more than the given number of regions with top sig-
nalValue (as specified in narrowPeak file). Default: 0 (consider all).
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5.7.4 Sequence motifs

Motifs (position weight matrices) used in the analysis are specified in the Motifs
section(s). Accepted formats include: TRANSFAC, JASPAR, SwissRegulon and
MEME output (in PSPM format, including the header line starting with letter-
-probability). Althoughmore than one motif database may be provided, it will
be usually not necessary.

Motif identifiers are read along the position weight matrices. The uniqueness
of the identifiers is enforced by suffixing them with underscore (_) and subsequent
numbers if necessary. If no identifier is provided, motif filename is used instead.
The following keys may be used:

Database Motif database file(s).

DatabaseSubset File(s) listing identifiers of motifs from the motif database(s)
to be included in the analysis. If not provided, all the motifs from all motif
databases are used.

Motif Motif filename, optionally preceded by the dataset identifier and whites-
pace.

Sensitivity Sensitivity value used for setting motif score threshold. Default:
0.9.

5.7.5 Scope of the analysis

The set of motif complexes or datasets considered in the analysis may be narrowed
down in the <Scope> section(s). The following keys may be used:

Motif1 Motif identifiers for one of the motifs forming up themotif complex. De-
fault: all motifs.

Motif2 Motif identifiers for the other motif forming up the motif complex. De-
fault: all motifs.

Dataset Identifiers of the target datasets to consider. Default: all datasets.
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5.7.6 Various options

In the <Options> section, the following keys may be used:

NumberOfThreads Number of simultaneously running threads. Should be not
more than the number of CPU cores of the machine. Default: 1.

MinMotifInformationContribution Minimal information contributionof each
of the motifs forming up the motif complex. Default: 6.0.

MaxOverlappingInformationContent Maximal overlapping information con-
tent allowed in the motif complex. Default: 2.0.

MaxMotifSpacing Maximal spacing between the motifs forming up the motif
complex. Motif spacing is defined as the number of intervening base pairs
between the edges of the two contributing motifs; negative values indicate
motif overlap. Default: 50.

ConsiderOrientationsSeparately Whether to calculatemotif complexover-
representation statistics separately for each of the two mutual motif orienta-
tions in a motif pair. One of: True, False. Default: True.

ConsiderMostSignificantComplexOnly Whether to consider only the most
significant motif complex structure for a motif pair. One of: True, False.
Default: False.

TargetInstancesThreshold Minimal number of instances in target dataset for
an overrepresented motif complex not to be rejected. Default: 100.

FoldChangeThreshold Fold change threshold. Default: 1.

PValueThreshold p-value threshold, applied to p-values after Bonferroni correc-
tion. Default: 0.05.

DimerMotifFlanks Number of flanking basepairs for dimer motifs. Default: 5.

ClusteringAcrossDatasets Whether to allowprediction clusters to span across
multiple datasets. One of: True, False. Default: True.

ClusteringDistanceConstant Constant in the affine function for joiningmo-
tif complexes by dimer motif similarity. Default: 0.
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ClusteringDistanceMultiplier Multiplier in the affine function for joining
motif complexes by dimer motif similarity. Default: 0.15.

ClusteringOverlapThreshold Overlap threshold for joiningmotif complexes
by overlap of genomic instances. Default: 0.2.

OutputPrefix Prefix for all output files. Default: name of the specification file,
after truncating trailing .spec if possible.

OutputDetailedStats Whether to savedetailed statistics for allmotif complexes
formedbypairs ofmotifs yielding anoverrepresentedmotif complex. Oneof:
None, Signature – only for signature motif complexes, All – for all over-
represented motif complexes. Default: All.

OutputDimerMotifs Whether to save dimermotifs. One of: None, Signature,
All. Default: All.

OutputGenomicLocations Whether to save genomic locations of instances of
overrepresentedmotif complexes. One of: None, Signature, All. Default:
All.

GenomicLocationsMaxSpacingDeviation Number of incorrect motif spac-
ings to be considered while saving genomic instances. If greater than 0, ge-
nomic instances of incorrectly spaced variants of overrepresentedmotif com-
plexes will be saved, with spacing deviation ranging between 1 and the given
value. Default: 0.

OutputPValueDistribution Whether to save p-value distribution, suitable for
Q-Q plot. One of: True, False. Default: True.

5.7.7 Output files

The following files are created as output, subject to the options discussed above:

<OutputPrefix>.tab all overrepresented motif complexes, clustered into pre-
dictions

<OutputPrefix>.stats detailed statistics for all motif pairs yielding an overrep-
resented motif complex
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<OutputPrefix>.pwms dimer motifs in TRANSFAC format

<OutputPrefix>.hits genomic locations of instances of overrepresented motif
complexes, and possibly of their incorrectly spaced variants

<OutputPrefix>.pval p-value distribution.

5.8 Discussion

Wehave demonstrated the generality and consistency of TF dimer predictionsmade
by TACO by applying the algorithm to 152 DNase-seq datasets and 94 ChIP-seq
datasets from the ENCODE Project. Moreover, we showed that TACO clearly out-
performs existing dimer prediction toolswhen benchmarked on the set of 29 known
dimers. Based on all TACO predictions, we found that TF dimers that bind widely
spacedmotif pairs are significantly more flexible in their spacing. Overall, we expect
TACO to be widely applicable, since thousands of regulatory element datasets will
be available in the near future. We also anticipate its application to regulatory anno-
tations from assay types other than those discussed here, since the algorithm allows
a great deal of flexibility in data type and mode of analysis.
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6
Building on

transcription factor footprints
to predict individual binding sites

6.1 Introduction

In the previous chapters, we have focused on the identification of the putative struc-
tures of transcription factor complexes that bind cooperatively to DNA. The com-
prehensive knowledge of such functional structures is essential to fully understand
the mechanisms of transcriptional regulation. In practice, while focusing on a cer-
tain mechanism, the dual problem is often faced: having focused on a particular set
of TFs, one wish to identify the binding sites of these factors to the genome, in dif-
ferent cell types and conditions. Hence, the methods aimed at identification of TF
complexesmust be complementedwith accurate tools to incorporate the knowledge
about TF complexes to predict individual TF binding sites.
The traditional method of analyzing individual active regulatory elements in the

genome involves the digestion by DNase I and subsequent identification of regions
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whereTFs are bound to theDNAfragment andprotect theDNAfromdegradation
by the enzyme. These protected sites, or TF footprints, can be identified on a large
scale by a more recent protocol, DNase I digestion followed by high-throughput
sequencing (DNase-seq).

CENTIPEDE (Pique-Regi et al., 2011)was the first algorithm aimed at combining
sequence informationwith experimental data to identify the sites where a particular
TF is bound in the genome. Thismethod relied on the presence of aDNA sequence
motif at the candidate binding sites considered. A logistic regressionmodel allowed
formultiple types of prior information to be incorporated, e.g. PositionWeightMa-
trix (PWM) score, distance to the nearest Transcription Start Site and sequence evo-
lutionary conservation. The posterior component consisted of a combination of
negative binomial and multinomial positional models for each type of experimen-
tal data, such as DNase-seq or histone modification ChIP-seq. Overall, the main
strength of CENTIPEDE is the ability to identify binding sites for multiple TFs
from a single DNase-seq experiment.

MILLIPEDE (Luo & Hartemink, 2013), a method inspired by CENTIPEDE,
also aims at identifying TF binding sites, and also combines DNase digestion data
with TF binding specificity information. The method of MILLIPEDE is a dra-
matic simplification of the CENTIPEDE approach. Instead of a comprehensive
combination of negative binomial and multinomial models to represent the posi-
tional distribution of DNase I cuts, these cuts were grouped into several (e.g. 5 or
12) bins. The log-transformed DNase I cut counts within these bins were incor-
porated in the logistic regression model, together with all the prior information.
Overall, the number of parameters inMILLIPEDE is at least an order ofmagnitude
smaller than in CENTIPEDE; hence the name MILLIPEDE. The authors showed
that MILLIPEDE outperforms CETIPEDE marginally in human but dramatically
in yeast. This was attributedmostly to avoiding over-fitting of parameters by focus-
ing on a more coarse-grained model, focused on the large-scale differences between
the bound and unbound states.

Wellington (Piper et al., 2013) is another recent algorithm to predict occupied TF
binding sites from DNase-seq data. This algorithm is based on a completely differ-
ent approach, and does not require a DNA sequence motif to identify the prior set
of candidate binding sites. Instead,Wellington quantifies an imbalance in theDNA
strand-specific alignment information of DNase-seq data around virtually every lo-
cation in the genome. The authors argue that in a DNase-seq experiment, most
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of the DNA fragments captured for sequencing are in the order of 50 to 150 bp in
length, and they are expected to originate from within the DNase I hypersensitive
sites, as opposed to nucleosomal DNA. Since the length of DNase I hypersensitive
sites is usually 200-250 bp, the captured fragments are likely to span the regions of
DNAprotected by boundTFs. These captured fragmentsmanifest themselves after
sequencing as 5’ sequence tags, representing just one end of these fragments. Hence,
a typical DNase I hypersensitive site should be enriched in forward strand tags up-
stream and in reverse strand tags downstream of bound TFs.
Wellington takes advantage of this strand imbalance criterion to greatly increase

the specificity by reducing the number of false positives. The authors show that
their method requires much fewer predictions than several previous approaches to
recapitulate an equal amount of ChIP-seq data. For each base pair, Wellington tests
the hypothesis that there are significantly more reads aligning to the forward strand
in the upstream shoulder region with respect to the reads aligning to the forward
strand in the footprint region. Moreover, a reverse complement hypothesis is tested,
i.e. that there are significantly more reads aligning to the reverse strand in the down-
stream shoulder region with respect to the reads aligning to the reverse strand in
the footprint region. The final Wellington p-value for a given genomic location is a
product of the two for the aforementioned hypotheses.
Here, we propose MOCCA, a novel computational method to accurately iden-

tify TF footprints from genome sequence information and cell-type–specific ex-
perimental data, such as DNase-seq data. Our approach combines the strengths
of CENTIPEDE and Wellington, while keeping the number of free parameters in
the model reasonably low. For a given TF, we first identify candidate binding sites
that have reasonable sequence affinity, using a position weight matrix. Then, like
CENTIPEDE, we employ an Expectation-Maximization-based approach to simul-
taneously learn the DNase I cut profiles and classify the binding sites as bound or
unbound.
Our method is unique in allowing for multiple bound states for a single TF, dif-

fering in their cut profile andoverall number ofDNase I cuts. Tomake themodel ro-
bust, we employ a systematic approach to group theDNase I cuts, according to their
location and strand. Inspired by Wellington, we take the forward strand DNase I
cuts only upstream and within the cut site, while the reverse strand DNase I cuts –
within the cut site and downstream. We model the total number of cuts as a neg-
ative binomial component, while the cut distribution (regularized by binning out-
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Dataset Number of reads

Name Genome Browser track A549 HepG2 K562

Duke DNase OpenChromDnase 51.6M 13.6M 80.8M
UWDNase UwDnase 33.3M 22.1M 35.8M
UWDGF UwDgf 350.6M 168.9M 180.0M

Table 6.1: Numbers of reads in DNase-seq datasets used. Three ENCODE cell lines were considered:
A549, HepG2 and K562. UW, University of Washington; DGF, Digital Genomic Footprin ng.

side the cut site) is modeled as a multinomial component. Overall, MOCCA pre-
dictions agreewell with experimental ChIP-seqmeasurements ofTF binding at can-
didate motif sites. We also comprehensively compared the predictive performance
of MOCCA, CENTIPEDE and Wellington, and show that MOCCA consistently
outperformedCENTIPEDE andWellington, especiallywhen applied toDNase-seq
datasets with lower sequencing depth.

6.2 Methods

6.2.1 DNase-seq data frommultiple sources

The ENCODE Project (ENCODE Project Consortium et al., 2012) provides three
different tracks with DNase-seq data. Two of them follow the standard ENCODE
DNase-seq protocol: wgEncodeOpenChromDnase from Duke University (Duke)
and wgEncodeUwDnase from University of Washington (UW). The third track,
wgEncodeUwDgf, follows theDigitalGenomicFootprintingprotocol, which yields
much higher number of sequencing reads (Table 6.1).

6.2.2 ChIP-seq data as a golden standard of TF binding

We have downloaded a collection of ChIP-seq datasets from ENCODE and used
themas a golden standard forTFbinding (Table 6.2). The same collectionofdatasets
was used to asses the performance of Wellington in (Piper et al., 2013). The cor-
responding DNA sequence motifs for these TFs were taken from the HOMER
(Hypergeometric Optimization of Motif EnRichment) suite (Heinz et al., 2010).
The motif instances in the human genome of these motifs were downloaded from
http://homer.salk.edu/homer/ (HOMERKnownMotifs track).

All the genomicmotif instances were classified as either bound or unbound. The
instances overlapping any ChIP-seq peak were classified as bound, and all the re-
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ChIP-seq peaks Motif instances

inside outside
Cell Transcription with without ChIP-seq ChIP-seq
type factor total motif motif peaks peaks ENCODE narrowPeak filename

K562 ATF3 16 011 2 162 13 849 4 298 160 472 HaibK562Atf3V0416101
K562 c-Myc 5 023 2 098 2 925 4 331 509 454 SydhK562Cmyc
K562 CTCF 56 058 25 788 30 270 26 432 41 170 UtaK562Ctcf
K562 JunD 26 674 2 600 24 074 5 070 112 079 UchicagoK562Ejund
K562 Max 46 171 16 419 29 752 34 226 1 131 646 HaibK562MaxV0416102
K562 NFE2 2 637 1 619 1 018 1 750 50 360 SydhK562Nfe2
K562 NRF1 4 211 2 609 1 602 5 960 20 440 SydhK562Nrf1Iggrab
K562 NRSF 15 849 2 055 13 794 2 112 2 750 HaibK562NrsfV0416102
K562 PU.1 28 677 18 514 10 163 20 262 549 324 HaibK562Pu1Pcr1x
K562 Sp1 7 206 2 830 4 376 4 861 137 043 HaibK562Sp1Pcr1x
K562 USF1 18 521 12 431 6 090 23 808 524 887 HaibK562Usf1V0416101
A549 ATF3 6 580 308 6 272 636 164 134 HaibA549Atf3V0422111Etoh02
A549 bHLHE40 3 123 1 225 1 898 2 667 254 098 SydhA549Bhlhe40Iggrab
A549 CEBP 38 845 25 305 13 540 46 517 1 722 846 SydhA549CebpbIggrab
A549 CTCF 45 732 23 536 22 196 24 289 43 313 UwA549Ctcf
A549 ELF1 8 611 5 075 3 536 6 937 348 641 HaibA549Elf1V0422111Etoh02
A549 ETS1 5 525 2 564 2 961 3 466 1 145 420 HaibA549Ets1V0422111Etoh02
A549 GABP 12 348 7 196 5 152 9 396 871 718 HaibA549GabpV0422111Etoh02
A549 Max 9 881 3 982 5 899 8 965 1 156 907 SydhA549MaxIggrab
A549 NRSF 11 970 1 938 10 032 1 861 3 001 HaibA549NrsfV0422111Etoh02
A549 USF1 8 004 4 710 3 294 9 452 539 243 HaibA549Usf1V0422111Etoh02
A549 YY1 10 259 2 148 8 111 2 079 52 873 HaibA549Yy1cV0422111Etoh02
A549 ZBTB33 7 152 626 6 526 1 052 14 443 HaibA549Zbtb33V0422111Etoh02
HepG2 ATF3 3 291 1 132 2 159 2 392 162 378 HaibHepg2Atf3V0416101
HepG2 c-Myc 4 413 1 762 2 651 3 558 510 227 UtaHepg2Cmyc
HepG2 CTCF 55 778 26 856 28 922 27 655 39 947 HaibHepg2Ctcfsc5916V0416101
HepG2 FOXA1 40 989 29 356 11 633 76 105 6 363 288 HaibHepg2Foxa2sc6554V0416101
HepG2 HNF4a 20 805 10 913 9 892 12 889 519 223 HaibHepg2Hnf4asc8987V0416101
HepG2 JunD 21 614 866 20 748 1 632 115 517 HaibHepg2JundPcr1x
HepG2 Max 11 854 4 707 7 147 10 726 1 155 146 SydhHepg2MaxIggrab
HepG2 MYB 17 898 8 016 9 882 10 306 2 389 507 HaibHepg2Mybl2sc81192V0422111
HepG2 NRF1 1 902 1 635 267 4 132 22 268 SydhHepg2Nrf1Iggrab
HepG2 NRSF 12 828 1 686 11 142 1 743 3 119 HaibHepg2NrsfV0416101
HepG2 RXR 17 063 6 976 10 087 9 044 1 265 842 HaibHepg2RxraPcr1x
HepG2 Sp1 25 477 3 599 21 878 6 087 135 817 HaibHepg2Sp1Pcr1x
HepG2 Srebp1a 2 585 293 2 292 307 327 401 SydhHepg2Srebp1Insln
HepG2 TBP 13 806 2 490 11 316 3 798 3 136 778 SydhHepg2TbpIggrab
HepG2 TR4 2 953 660 2 293 836 88 251 SydhHepg2Tr4Ucd
HepG2 USF1 21 890 14 809 7 081 27 503 521 192 HaibHepg2Usf1Pcr1x

Total 670 214 283 494 386 720 449 140 26 312 163
Percentage 42.3% 57.7% 1.7% 98.3%

Table 6.2: ChIP-seq datasets used as a golden standard of TF binding. These datasets were generated
by the ENCODE Analysis Working Group (AWG) using a uniform processing pipeline. The narrowPeak
filenames follow the pa ern “wgEncodeAwgT s…UniPk.narrowPeak.gz”, where only the changing “…”
part is given above.
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maining ones were classified as unbound. We considered all the genomic motif in-
stances as candidate binding sites in the analysis.

6.2.3 Prior probabilities of TF binding

The prior component of the model captures the genomic sequence and other static
(i.e. independent of cell type or conditions) characteristics of the candidate binding
site for a TF of interest. Let us denote by i a particular genomic instance (motif
match) of a motif of interest. Typically, the static characteristics assigned to motif
instances are: the respective PWM score, average evolutionary conservation and so
on.

To formalize the model, let us denote the value of the j-th static characteristics
for genomic instance i by x(j)i , where 1 ≤ j ≤ J. In the simplest case, where each
motif instance can be either “bound” or “unbound”, we apply a logistic approach
to model the ratio of the prior probabilities:

P(Zi = 1)
P(Zi = 0)

= exp
(
β0 +

∑
j

βjx
(j)
i

)
. (6.1)

Here, Zi = 1 indicates that the i-th motif instance is bound, whereas Zi = 0 indi-
cates that it remains unbound. Such amodel has been used inCENTIPEDE (Pique-
Regi et al., 2011).

Now we will generalize the above-described model. Let us consider a TF that
manifests one or more cooperative binding modes, with well-defined structures of
the underlying motif complexes. The cooperative binding modes, and the corre-
spondingmotif complexes, will be both denoted by k = 2, . . . ,K+ 1. Each of these
complexes imposes certain offset and orientation of the partner motif with respect
to the primary motif.

Again, let us denote by i a particular genomic instance of amotif of interest. This
genomic instance implies the corresponding locations for all partner motifs within
all definedmotif complexes. Wewill now include in themodel the static characteris-
tics for these partner motif instances. These characteristics are calculated no matter
how infavourable they are, and included in the sequence x(j)i , where 1 ≤ j ≤ J. Note
that in the homodimer case, some of these characteristics may be derived from the
same PWM, however scored at a different genomic location.

Now let us focus on a particular cooperative binding mode k, where 2 ≤ k ≤
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K+ 1. We introduce the indicators γ(k)j ∈ {0, 1}, specifying whether the static char-
acteristics x(j)i should be taken into account in this cooperative binding mode. The
values of these indicators ensure that only the characteristics specific to the primary
motif instance and to the partner motif instances within k-th motif complex will
be taken into account. Moreover, the monomer binding mode, denoted by k = 1,
should be characterized only by the characteristics referring to the primarymotif in-
stance. Hence, γ(1)j = 0 for all the characteristics j referring to any of the partner
motifs.

To model the prior probabilities, we now apply a logistic model against the un-
bound “pivot” case of Zi = 0:

P(Zi = k)
P(Zi = 0)

= exp
(
β(k)0 +

∑
j

β(k)j γ(k)j x(j)i

)
, (6.2)

where k = 0 indicates no binding, k = 1 refers to binding as monomer, and k =

2, . . . ,K + 1 refer to the respective cooperative binding modes. This way, we have
K+ 1 outcomes separately regressed against the pivot outcome Zi = 0.

For clarity, we impose an additional constraint such that γ(k)j = 0 implies β(k)j =

0. In other words, β(k)j = 0 for the partner motifs not involved in k-th binding
mode. We can now explicitly formulate P(Zi = 0) by summing up Equation 6.2
for k = 1, . . . ,K+ 1:∑K+1

k=1 P(Zi = k)
P(Zi = 0)

=
K+1∑
k=1

exp
(
β(k)0 +

∑
j

β(k)j γ(k)j x(j)i

)
(6.3)

1− P(Zi = 0)
P(Zi = 0)

=
K+1∑
k=1

exp
(
β(k)0 +

∑
j

β(k)j γ(k)j x(j)i

)
(6.4)

P(Zi = 0) =
1

1+
∑K+1

k=1 exp
(
β(k)0 +

∑
j β

(k)
j γ(k)j x(j)i

) . (6.5)

Applying the above to Equation 6.2, we obtain an explicit formulation for all the
probabilities P(Zi = k)where k > 0:

P(Zi = k) =
exp
(
β(k)0 +

∑
j β

(k)
j γ(k)j x(j)i

)
1+
∑K+1

l=1 exp
(
β(l)0 +

∑
j β

(l)
j γ(l)j x(j)i

) . (6.6)
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6.2.4 Modeling the number of DNase I cuts

Apart from the static characteristics of the individual motif instances, our model
incorporates positional data about the chromatin state, e.g. as represented by chro-
matin openness or histone modification patterns. This cell-type and condition–
specific information is used to derive the likelihood of being in a particular bound
state for each of the candidate binding sites.

In this study, we use DNase-seq data a measure of chromatin openness. We in-
clude the numbers of DNase I cuts at individual base pairs, (DNasei,j)j, counted in
the vicinity of the motif instance i in a strand-specific manner. The forward strand
cuts are taken only upstream and within the cut site, while the reverse strand cuts –
within the cut site and downstream. For example, we may consider primary motif
of length L and 200 bp margin; in such a case, DNasei,j contains the numbers of
forward strand DNase I cuts (j = 1, . . . , 200 + L, starting 200 bp upstream) and
reverse strand ones (j = 201+ L, . . . , 400+ 2L, starting at the cut site).

We observed that all kinds of positional data based on short sequence reads, in
particular all kinds ofDNase-seq data, are prone to artifactual spikes of reads (above
100 reads) mapped to a single location and strand in the genome. These spikes may
arise from the sequence fragments originating at repetitive regions with incomplete
representation in the reference genome. Hence, we applied clipping to the number
of reads mapped to a single location and strand, choosing the threshold as the value
of 99.9% quantile of all (DNasei,j)i,j. The values of DNasei,j above the threshold
were set to be equal to the threshold itself. We have tried to use other quantiles
apart from the 99.9% quantile, namely 99% and 99.99%; they all gave similar results
(data not shown).

LetXi = ((DNasei,j)j, . . . ) denote all the positional data available to the model.
As stated in the previous subsection, we introduce the latent variables Zi such that
P(Zi = 0 | Xi) is the probability of motif instance i to be unbound, P(Zi = 1 | Xi)

is the probability of it being bound by monomer, P(Zi = 2 | Xi) is the probability
of it being bound in the first cooperative binding mode, and so on. Our primary
interest is

pi =
K+1∑
k=1

P(Zi = k | Xi) = 1− P(Zi = 0 | Xi), (6.7)

i.e. the probability of the motif instance i to be bound in any binding mode.
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Taking the complement and following the Bayes theorem, we get

1− pi = P(Zi = 0 | Xi) =
P(Xi | Zi = 0)P(Zi = 0)∑K+1
k=0 P(Xi | Zi = k)P(Zi = k)

(6.8)

1
1− pi

=
K+1∑
k=0

P(Xi | Zi = k)P(Zi = k)
P(Xi | Zi = 0)P(Zi = 0)

= 1+
K+1∑
k=1

P(Xi | Zi = k)P(Zi = k)
P(Xi | Zi = 0)P(Zi = 0)

(6.9)

pi
1− pi

=
K+1∑
k=1

P(Xi | Zi = k)P(Zi = k)
P(Xi | Zi = 0)P(Zi = 0)

. (6.10)

We will now explain how the conditional probabilities P(Xi | Zi = k) are mod-
eled. We make a simplifying assumption that the different positional data types
(such as DNase I cuts or histone modifications) used in the model are independent,
given its binding state (Zi). Hence, the conditional probability P(Xi | Zi = k) is a
product of the corresponding conditional probabilities for all the types of positional
data included in the model:

P(Xi | Zi = k) = P((DNasei,j)j | Zi = k) · . . . . (6.11)

Each type of positional data is modeled separately, using a mixture model. The
first component captures the total number of reads mapped in the vicinity of the
motif instance i, using the negative binomial distribution. This way, the model is
robust with respect to the dataset coverage. The second component captures the
spatial distribution of the given number of reads, using the multinomial distribu-
tion.

In case of DNase-seq data, we actually consider the DNase I cuts as two separate
types of positional data, according to their strandness, i.e. considering the forward
and reverse strand cuts separately:

P((DNasei,j)j | Zi = k) = P((DNase+i,j)j | Zi = k) · P((DNase−i,j)j | Zi = k).
(6.12)

Furthermore, both the negative binomial and multinomial components are cal-
culated for each strand separately. For brevity, we discuss the formulas for the for-
ward strand DNase I component only; they are analogous for the reverse strand.
The negative binomial component in binding mode k quantifies the total number
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of DNase I cuts on the forward strand

DNaseSum+
i =

∑
j
DNase+i,j (6.13)

and is naturally parametrized by the success probability p+(k) ∈ (0, 1) and the real-
valued number of failures r+(k) > 0.

Themultinomial component quantifies the probability of a particular spatial dis-
tribution of the total number of DNase I cuts on a given strand. As opposed to
CENTIPEDE (Pique-Regi et al., 2011), we do not keep a separate free parameter for
each position (respective to themotif location) and strand, but apply amore flexible
approach. For each binding mode k and positional data type (e.g. DNase I cuts on
forward strand), we divide the positions j into one or more bins. Note that the bins
are considered separately for each biding mode.

Let us denote by DNaseBin+(k)
j the bin number for position j in binding mode

k. For clarity, let us assume that the bins are numbered by positive integers. In this
study, we take 20 bp long bins outside the motif binding site, and single-base-pair
bins within motif binding site. Moreover, for the unbound mode (k = 0) we put
all the positions in a single bin:

DNaseBin+(k)
j =


1 for k = 0 and any j

⌈j/20⌉ for k > 0 and j = 1, . . . , 200

190− j for k > 0 and j = 201, . . . , 200+ L.

(6.14)

Note that binding modes may differ in the way the positions are split into bins.

For a given bindingmode k, we associate a free parameter λ+(k)
b with each bin b =

1, . . . ,B+(k). However, for the multinomial distribution we must provide a vector
of probabilities covering every single position in the vicinity of the motif instance.
Hence, we calculate the actual multinomial coefficients λ̃+(k)

j by taking λ+(k)
b for

b = DNaseBin+(k)
j and normalizing λ+(k)

b so that
∑

j λ̃
+(k)
j = 1. By definition,

the multinomial coefficients λ̃+(0)
j for the unbound state are equal, i.e. there is no

positional preference for DNase I cuts in the null model.

The joint probability of the DNase I positional data is obtained by the superpo-
sition of the negative binomial and multinomial components:
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P((DNase+i,j)j | Zi = k)
= NegativeBinomial

(
DNaseSum+

i | p+(k), r+(k))
·Multinomial

(
(DNase+i,j)j | DNaseSum+

i , (λ
+(k)
b )b

)
. (6.15)

Now we can explicitly formulate the probabilities:

NegativeBinomial
(
DNaseSum+

i | p+(k), r+(k))
=

Γ
(
r+(k) +DNaseSum+

i
)

Γ
(
DNaseSum+

i + 1
)
Γ(r+(k))

(p+(k))r
+(k)

(1− p+(k))DNaseSum+
i (6.16)

Multinomial
(
(DNase+i,j)j | DNaseSum+

i , (λ
+(k)
b )b

)
= DNaseSum+

i !
∏
j

(
λ̃+(k)

j

)DNase+i,j

DNase+i,j!

= Γ
(
DNaseSum+

i + 1
)∏

j

(
λ̃+(k)

j

)DNase+i,j

Γ
(
DNase+i,j + 1

) , (6.17)

where Γ is the standard gamma function, i.e. a continuous extension of the factorial
function.

6.2.5 Expectation-Maximization approach

To estimate the model parameters

Θ =
(
(β(k)j )j,k, (p+(k))k, (p−(k))k, (r+(k))k, (r−(k))k, (λ+(k)

b )b,k, (λ−(k)
b )b,k

)
,

(6.18)
we apply the Expectation-Maximization approach. We use a common technique:
instead of maximizing the likelihood function

L(Θ) =
∏
i
P(Xi | Θ) (6.19)
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with unknown latent state, we maximize the complete likelihood function

LC(Θ) =
∏
i
P(Xi,Zi | Θ) =

∏
i
P(Xi | Zi,Θ)P(Zi | Θ), (6.20)

which is more tractable.
The complete likelihood function, as stated above, is defined only for Zi = 0,

. . . , K + 1. However, we may rewrite it using indicator functions Z(k)
i such that

Z(k)
i = 1 if Zi = k and Z(k)

i = 0 otherwise:

LC(Θ) =
∏
i

K+1∏
k=0

P(Xi | Zi = k,Θ)Z
(k)
i P(Zi = k | Θ)Z

(k)
i . (6.21)

Let us denote by ⟨Z(k)
i ⟩ the expected value ofZ

(k)
i . It holds that ⟨Z(k)

i ⟩ = P(Zi = k).
Taking the expected value ofLC(Θ)with respect to allZ(k)

i , we obtain a real-domain
function of Θ:

⟨LC(Θ)⟩ =
∏
i

K+1∏
k=0

P(Xi | Zi = k,Θ)⟨Z
(k)
i ⟩P(Zi = k | Θ)⟨Z

(k)
i ⟩. (6.22)

The formulas will easier to manipulate after taking the logarithm:

log⟨LC(Θ)⟩ =

LA(Θ)︷ ︸︸ ︷∑
i

K+1∑
k=0

⟨Z(k)
i ⟩ logP(Xi | Zi = k,Θ)

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ logP(Zi = k | Θ)︸ ︷︷ ︸

LB(Θ)

. (6.23)

Our goal is to maximize the (log-transformed) expected value of the complete
likelihood functionLC. Note that the value of the first component,LA, depends on
(p+(k))k, (p−(k))k, (r+(k))k, (r−(k))k, (λ+(k)

b )b,k and (λ−(k)
b )b,k, while the value of the

second component, LB, depends only on the parameters in Θ not listed previously,
namely on (β(k)j )j,k. Therefore, we can maximize LA and LB separately.

We foundno closed-form solution for β(k)j thatmaximizesLB(Θ), hencewe apply
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) numerical optimization procedure
here (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). This method
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uses the function values and gradients to build up a representation of the surface to
be maximized. Substituting Equation 6.6 to the definition of LB, we get:

LB(Θ) =
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩
(
β(k)0 +

∑
j

β(k)j γ(k)j x(j)i

)
−
∑

i
log
(
1+

K+1∑
l=1

exp
(
β(l)0 +

∑
j

β(l)j γ(l)j x(j)i

)) K+1∑
k=0

⟨Z(k)
i ⟩. (6.24)

Note that the last factor,
∑K+1

k=0⟨Z
(k)
i ⟩, is equal to 1 and may thus be omitted. Dif-

ferentiating LB with respect to β(k)j , we get:

∂LB

∂β(k)j
=
∑

i
⟨Z(k)

i ⟩γ
(k)
j x(j)i −

∑
i

exp
(
β(k)0 +

∑
j β

(k)
j γ(k)j x(j)i

)
γ(k)j x(j)i

1+
∑K+1

l=1 exp
(
β(l)0 +

∑
j β

(l)
j γ(l)j x(j)i

) . (6.25)

Now let us focus on the other component of log⟨LC(Θ)⟩, i.e. LA. For clarity, let
us assume that DNase-seq data is the only kind of positional data provided. The
derivations follow analogously for any other independent positional datasets. Sub-
stituting Equations 6.11 and 6.12 to the definition of LB in Equation 6.23, we get:

LA(Θ) =

L+
A (Θ)︷ ︸︸ ︷∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ logP((DNase+i,j)j | Zi = k)

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ logP((DNase−i,j)j | Zi = k)︸ ︷︷ ︸

L−
A (Θ)

. (6.26)

The two components,L+
A andL−

A , depend on distinct sets of parameters in the same
manner. Hence, we can maximize them separately. Without loss of generality, we
will discuss the optimization procedure for L+

A . From Equations 6.15 to 6.17, we
have:

L+
A (Θ) =

∑
i

K+1∑
k=0

⟨Z(k)
i ⟩ log

(
Γ
(
r+(k) +DNaseSum+

i
)

Γ
(
DNaseSum+

i + 1
)
Γ(r+(k))
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· (p+(k))r
+(k)

(1− p+(k))DNaseSum+
i

)

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log

Γ
(
DNaseSum+

i + 1
)∏

j

(
λ̃+(k)

j

)DNase+i,j

Γ
(
DNase+i,j + 1

)


=
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ

(
r+(k) +DNaseSum+

i
)

−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ

(
DNaseSum+

i + 1
)
−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ(r+(k))

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩r+(k) log(p+(k)) +

∑
i

K+1∑
k=0

⟨Z(k)
i ⟩DNaseSum+

i log(1− p+(k))

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ

(
DNaseSum+

i + 1
)

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩
∑

j
DNase+i,j log

(
λ̃+(k)

j

)
−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩
∑

j
log Γ

(
DNase+i,j+1

)
.

(6.27)

Eliminating the additive inverse terms and noting that
∑K+1

k=0⟨Z
(k)
i ⟩ = 1, we get:

L+
A (Θ) =

∑
i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ

(
r+(k)+DNaseSum+

i
)
−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ(r+(k))

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩r+(k) log(p+(k)) +

∑
i

K+1∑
k=0

⟨Z(k)
i ⟩DNaseSum+

i log(1− p+(k))

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩
∑

j
DNase+i,j log

(
λ̃+(k)

j

)
−
∑

i

∑
j
log Γ

(
DNase+i,j + 1

)
.

(6.28)

Note that only the first three summands depend on (r+(k))k, only the third and
fourth depends on (p+(k))k, and only the fifth depends on the parameters (λ+(k)

b )b,k,
which give rise to

(
λ̃+(k)

j

)
j,k
. Hence, we may find the values of (λ+(k)

b )b,k that max-
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imize LA independently of the other parameters. We need to maximize

K+1∑
k=0

∑
j
log
(
λ̃+(k)

j

)∑
i
⟨Z(k)

i ⟩DNase+i,j (6.29)

subject to the constraint
∑

j λ̃
+(k)
j = 1 for each k. Since k-th element in the sum

above depends only on
(
λ̃+(k)

j

)
j
and consequently only on (λ+(k)

j )j, we can maxi-

mize each element of the sum independently. We use a common technique, and for
a given kmaximize the expression∑

j
log
(
λ̃+(k)

j

)∑
i
⟨Z(k)

i ⟩DNase+i,j + L ·
(
1−
∑

j
λ̃+(k)

j

)
, (6.30)

where L is called the Lagrange multiplier.

Let us recall that the multinomial coefficients λ̃+(k)
j are equal to the correspond-

ing parameters λ+(k)
b such that b = DNaseBin+(k)

j . Now let us fix the bin b and
define the set Jb grouping all the positions j falling within bin b:

Jb =
{
j : DNaseBin+(k)

j = b
}
. (6.31)

Differentiating Formula 6.30 with respect to λ+(k)
b and setting the derivative equal

to zero, we get:

0 =
∑
j∈Jb

1
λ+(k)

b

∑
i
⟨Z(k)

i ⟩DNase+i,j − L · |Jb|. (6.32)

Note that the above is a decreasing function of λ+(k)
b , hence we capture a local max-

imum here. Hence,

L · |Jb|λ+(k)
b =

∑
j∈Jb

∑
i
⟨Z(k)

i ⟩DNase+i,j (6.33)

and summing this equation over all b = 1, . . . ,B+(k), we get

L ·
B+(k)∑
b=1

|Jb|λ+(k)
b =

B+(k)∑
b=1

∑
j∈Jb

∑
i
⟨Z(k)

i ⟩DNase+i,j. (6.34)
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We should now note that

1 =
∑

j
λ̃+(k)

j =
B+(k)∑
b=1

∑
j∈Jb

λ̃+(k)
j =

B+(k)∑
b=1

|Jb|λ+(k)
b . (6.35)

Now Equation 6.34 becomes

L =
B+(k)∑
b=1

∑
j∈Jb

∑
i
⟨Z(k)

i ⟩DNase+i,j, (6.36)

and substituting the above into Equation 6.33, we obtain the desired solution:

λ+(k)
b =

∑
j∈Jb
∑

i⟨Z
(k)
i ⟩DNase+i,j

|Jb|
∑B+(k)

c=1
∑

j∈Jc
∑

i⟨Z
(k)
i ⟩DNase+i,j

. (6.37)

To increase the robustness of the model, we added pseudocounts (formally speak-
ing, applied an estimator shrinkage) while calculating the values of the parameters
(λ+(k)

b )b,k. For each b and k, we take the regularized value 1
2λ

+(k)
b + 1

2 |Jb|/
∑

b |Jb|.

Now we will find the values of (p+(k))k that maximize LA independently of the
other parameters. Differentiating Equation 6.28 with respect to p+(k) and setting
the derivative equal to zero, we obtain the closed form for p+(k):

0 =
∂L+

A
∂p+(k) =

∑
i
⟨Z(k)

i ⟩r+(k) 1
p+(k) −

∑
i
⟨Z(k)

i ⟩DNaseSum+
i

1
1− p+(k) (6.38)

p+(k)
∑

i
⟨Z(k)

i ⟩DNaseSum+
i = (1− p+(k))

∑
i
⟨Z(k)

i ⟩r+(k) (6.39)

p+(k) =

∑
i⟨Z

(k)
i ⟩r+(k)∑

i⟨Z
(k)
i ⟩DNaseSum+

i +
∑

i⟨Z
(k)
i ⟩r+(k)

. (6.40)

Again, the above is a decreasing function of p+(k), indicating a local maximum here.

It remains to establish the values of (r+(k))k that maximize LA. Let us recall that
only the first four summands in Equation 6.28 depend on (r+(k))k or (p+(k))k. We
start with substituting Equation 6.40 into these four summands:

L′+
A (Θ) =

∑
i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ

(
r+(k) +DNaseSum+

i
)
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−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩ log Γ(r+(k)) +

∑
i

K+1∑
k=0

⟨Z(k)
i ⟩r+(k) log

(∑
l
⟨Z(k)

l ⟩r+(k)

)

−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩r+(k) log

(∑
l
⟨Z(k)

l ⟩DNaseSum+
l +

∑
l
⟨Z(k)

l ⟩r+(k)

)

+
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩DNaseSum+

i log

(∑
l
⟨Z(k)

l ⟩DNaseSum+
l

)

−
∑

i

K+1∑
k=0

⟨Z(k)
i ⟩DNaseSum+

i log

(∑
l
⟨Z(k)

l ⟩DNaseSum+
l +

∑
l
⟨Z(k)

l ⟩r+(k)

)
.

(6.41)

Unfortunately, there seems to be no closed-form solution for r+(k) that maxi-
mizes L′+

A (Θ). Here we again apply the BFGS numerical optimization (Broyden,
1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). For brevity, let us introduce
the digamma function, ψ(x) = Γ′(x)

Γ(x) . Differentiating L+
A with respect to r+(k), we

get:

∂L+
A

∂r+(k) =
∂L′+

A
∂r+(k) =

∑
i
⟨Z(k)

i ⟩ψ
(
r+(k) +DNaseSum+

i
)
−
∑

i
⟨Z(k)

i ⟩ψ(r+(k))

+ log

(∑
i
⟨Z(k)

i ⟩r+(k)

)∑
i
⟨Z(k)

i ⟩+
∑

i
⟨Z(k)

i ⟩

− log

(∑
i
⟨Z(k)

i ⟩DNaseSum+
i +

∑
i
⟨Z(k)

i ⟩r+(k)

)∑
i
⟨Z(k)

i ⟩

−
∑

i⟨Z
(k)
i ⟩∑

i⟨Z
(k)
i ⟩DNaseSum+

i +
∑

i⟨Z
(k)
i ⟩r+(k)

∑
i
⟨Z(k)

i ⟩r+(k)

−
∑

i⟨Z
(k)
i ⟩∑

i⟨Z
(k)
i ⟩DNaseSum+

i +
∑

i⟨Z
(k)
i ⟩r+(k)

∑
i
⟨Z(k)

i ⟩DNaseSum+
i . (6.42)

Writing the above equation using p+(k) as defined in Equation 6.40, we get:

∂L+
A

∂r+(k) =
∑

i
⟨Z(k)

i ⟩ψ
(
r+(k) +DNaseSum+

i
)
− ψ(r+(k))

∑
i
⟨Z(k)

i ⟩

+
(
log
(
p+(k))+ 1− p+(k))∑

i
⟨Z(k)

i ⟩ −
p+(k)

r+(k)

∑
i
⟨Z(k)

i ⟩DNaseSum+
i . (6.43)
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Nowthenumerical optimizationprocedure referred to above is used to find the local
maximum.

The Expectation-Maximization procedure was initialized by assigning the prior
probabilities as follows. In the monomer binding mode, we put P(Zi = 1)/P(Zi =

0) = 100 for the top 10%ofmotif instanceswith highest total number ofDNase-seq
cuts. In a dimer bindingmode k, we putP(Zi = k)/P(Zi = 0) = 100 for themotif
instances satisfying both of the following criteria: beingwithin the top 10% ofmotif
instances with highest total number of DNase-seq cuts, and being within the top
10% of motif instances with highest dimerization partner motif score. In the cases
notmentioned above for any boundmode k, we putP(Zi = k)/P(Zi = 0) = 0.01.

We then estimate the values for (β(k)j )j,k, and for the first Maximization step we
take the prior probabilities as the posterior ones. We iterate the Expectation-Maxi-
mization procedure, in each iteration getting a revised vector of parametersΘt, until
the posterior probabilities do not change by more than 0.001, i.e.

max
i,k

∣∣P(Zi = k | Xi,Θt+1)− P(Zi = k | Xi,Θt)
∣∣ < 0.001. (6.44)

Inmost of the cases described here, the algorithmconverged in less that 30 iterations.

6.3 Results

6.3.1 MOCCA systematically outperforms the other tools

We systematically benchmarked MOCCA along with two other tools for accurate
footprint identification,CENTIPEDE(Pique-Regi et al., 2011) andWellington (Piper
et al., 2013). As stated in Subsection 6.2.1, we applied all the methods to DNase-
seq data from three tracks: Duke DNase, University of Washington (UW) DNase
and UW Digital Genomic Footprinting (DGF). From each of the DNase-seq data
sources, sequence tag profiles were fetched for three human cell types: A549 (lung
adenocarcinoma epithelial cell line),HepG2 (hepatocellular carcinoma cell line) and
K562 (leukemia cell line). As a reference, we used ChIP-seq data from ENCODE as
a golden standard for TF binding (see Subsection 6.2.2).

Since both MOCCA and CENTIPEDE learn a model for TF footprints, we vi-
sualized these models by plotting their multinomial components (Figure 6.1). Note
that the curves for MOCCA were smoothed by replacing the fixed-value bins by
a piecewise linear function. The multinomial models for MOCCA were based on
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Figure 6.1: Example models of TF footprints learned by CENTIPEDE (left) and MOCCA (right) for two TFs:
bHLHE40 (top) and ELF1 (bottom) in A549 cell line. Line colors indicate the strandness of DNase I cuts. In
the case of MOCCA, the forward strand cuts (blue) are considered only upstream and within the cut site,
while the reverse strand cuts (violet) are considered only within the cut site and downstream.
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much fewer freeparameters, hence theyweremuch smoother than theirCENTIPEDE
counterparts.

To systematically benchmark the three tools, we have plotted Receiver Operat-
ing Characteristic (ROC) curves for each tool and each combination of cell type and
TF for which we have reference ChIP-seq data. The ROC curves, showing the rela-
tionship between false positive rate (i.e. 1−specificity, x axis) and true positive rate
(i.e. sensitivity, y axis), are the standard approach in assessing binary classifier per-
formance. Example ROC curves for several TFs in K562 cells, shown in Figure 6.2,
suggest a systematical supremacy of MOCCA over Wellington and CENTIPEDE.

Albeit routinely performed, application ofROC curves to assess the performance
of TF binding site prediction is often criticized. These classifier performance assess-
ments are characterized by relatively small number of true positives (motif instances
actually bound by the TF) and large number of true negatives (motif instances that
remain unbound). Hence, the shape of ROC curves and area under them is mostly
affected by the ability of a particular tool to correctly predict unbound motif in-
stances (Piper et al., 2013). To obtain a complementary view, we also plotted the
Precision-Recall curves, showing the relationship between recall (i.e. sensitivity, x
axis) and precision (i.e. positive predictive value, fraction of instances predicted as
bound that is actually bound, y axis). Example Precision-Recall curves, shown in
Figure 6.3, also indicate that MOCCA systematically outperforms the other tools.

A common single-dimensional measure in assessing classifier performance is the
area under ROC curve, or AUROC. We have calculated this statistics for all the
combinations of cell types and TFs considered, for each of the three DNase-seq
data sources (Figure 6.4). We found that MOCCA consistently performed best in
the case of UW and Duke DNase-seq data, while for UW DGF there was no clear
supremacy of neither MOCCA nor Wellington. To obtain a summary view of the
performance of each of the three tools considered (CENTIPEDE, Wellington and
MOCCA) we have aggregated the AUROC statistics between different cell types
andTFs in the form of boxplots (Figure 6.5). This aggregation suggests that the per-
formance of CENTIPEDE is most affected by the choice of DNase-seq data source.

We also studied the difference between AUROC performance of MOCCA and
Wellington, and found that for some TFs it is noticeably higher than for the other
ones. We hypothesized that this may be related to the motif information content of
these TFs. To test this hypothesis, we calculated the Pearson correlation of the dif-
ference between AUROC performance, as described above, and the motif informa-
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Figure 6.2: Example Receiver Opera ng Characteris c curves for the three tools. Predic on performance
of CENTIPEDE, Wellington and MOCCA in K562 cells using three sources of DNase-seq data is shown.
Only the results for a subset of 4 representa ve TFs are shown.
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Figure 6.4: Areas under Receiver Opera ng Characteris c curves for the three tools. Predic on perfor-
mance of CENTIPEDE, Wellington and MOCCA in A549, HepG2 and K562 cells using three sources of
DNase-seq data is shown. Apart from the values for individual TFs, the averages are indicated for each
cell line.
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tion content (Figure 6.6). We alsopermuted themotif information content between
the classification tasks 1000 times to calculate the empirical p-value for the Pearson
correlation coefficient r. For all the three DNase-seq data sources, we observed a
statistically significant negative correlation (Figure 6.6).

6.3.2 KnowledgeofTFdimerizationmodesdoesnot improvethepre-
diction of individual TF binding sites

We benchmarked how well MOCCA predicted the binding sites for AR, FOXA1,
SOX2 and OCT4, as identified by ChIP-seq datasets, when the information on the
possible dimerization modes of these TFs is supplied. The choice of TFs for this
study was guided by the multitude of dimeric binding modes known and predicted
for AR and FOXA1. Apart from the dimers shown in Figure 4.8, we also included
the AR–AR homodimer (row 13 in Table 2.1). Hence, the MOCCA model had
4 states for AR (i.e. AR monomer, AR−AR, AR−FOXA1 and unbound), and 5
states for FOXA1 (FOXA1 monomer, FOXA1−AR, FOXA1−FOXA1 divergent,
FOXA1−FOXA1 convergent, unbound). The performance of TF binding site pre-
diction was assessed in unstimulated, as well as androgen-stimulated, LNCaP cells.

For SOX2 and OCT4, we included the canonical SOX2–OCT4 heterodimer, as
well as SOX9–SOX9 homodimer sharing the same SOX motif (rows 1 and 19 in
Table 2.1). TheMOCCAmodel had4 states for SOX2 (i.e. SOX2monomer, SOX2–
OCT4, SOX9–SOX9 and unbound), and 3 states forOCT4 (i.e. OCT4monomer,
OCT4–SOX2 and unbound). The performance of TF binding site prediction was
assessed in H1-hESC embryonic stem cells.

We expected that the additional bindingmodeswould improve the overall predic-
tive power, given that the prior information on partner motif score would allow to
separate distinct dimer footprints. However, both in terms of Receiver Operating
Characteristic curves (Figure 6.7) and Precision-Recall curves (Figure 6.8), we found
no observable improvement. To verify whether the dimeric binding modes indeed
have distinguishable profiles, we plotted the components of MOCCA model: the
negative binomial component (Figure 6.9) and the multinomial component (Fig-
ure 6.10). We found that the models learned byMOCCA clearly differ between the
binding modes, yet their inclusion does not improve the prediction of individual
TF binding sites.
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6.4 Discussion

In this study, we comprehensively compared the predictive performance of three
tools aimed at predicting TF binding sites from DNase-seq data. Two of them,
CENTIPEDE andWellington, used completely different approaches to address this
problem. In ourmethod proposed here,MOCCA,we combine the benefits of both
of the two other tools, and showed thatMOCCA consistently outperformed CEN-
TIPEDE andWellington, especially when applied toDNase-seq datasets with lower
sequencing depth.
When allowing for more than one bound state in MOCCA, we found that the

additional DNase I cut profiles can differ greatly. However, the inclusion of these
additional states for the known TF dimers did not yield an increase in predictive
power. We conclude that in the case of TF dimerization, it may happen that the
boundTFdimers influence the chromatin state strongly enough to be detected even
in a dimer-unaware manner.
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7
Conclusion

Typically, TFs bind to only a very small fraction of their motif matches in the vast
human genome. It is thought that the remaining motif matches remain unbound
because they lie in closed chromatin (ENCODE Project Consortium et al., 2012).
This model should not apply to pioneer factors, since they have the ability to bind
closed chromatin. It is therefore not clear how do pioneer factors achieve binding
specificity. We discovered multiple potential homo- and heterodimeric complexes
involving FOXA1, and hypothesize that this pioneer factor could achieve binding
specificity by exploiting a multiplicity of dimeric binding modes. The pioneer fac-
torGATAmay constitute yet another example of this phenomenon, given itsmulti-
ple known and newly predicted dimeric binding modes (GATA–E-box, GATApal,
GATAcpal).
We have so far assumed that the existence of a preferred motif spacing for a TF

pair is indicative of dimeric binding. However, there is one other possible expla-
nation that must be kept in mind. It has been shown that Smad4 dimers can bind
cooperatively to DNA even in the absence of direct physical contacts (Baburajen-
dran et al., 2011). The authors of this study suggested that DNA conformational
changes induced by TF binding could be a mechanism for cooperative binding of
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specific Smad4homo- andheterodimers. It is conceivable that someof ourpredicted
TF pairs might cooperate via allosteric changes in DNA structure rather than direct
protein-protein contacts.

Throughout this thesis, we have almost exclusively focused on transcription fac-
tor dimers, despite the fact that higher order complexes may also play an important
role. Actuallywehave beenworking on an extension ofTACOfromdimers towards
higher order complexes. Given that even an analysis of all the possible motif trimers
would be computationally too demanding, our approach was to combine overrep-
resentedmotif dimers found in the same cell type and sharing one of themotifs. We
tested for enrichment of such a trimer as compared to the enrichment of underly-
ing dimers. Unfortunately we found no strongly enrichedmotif trimer or any other
strongly enriched higher order complex. An impeding factor here is that there are
only a few higher order TF complexes that might be used as a reference set to assess
the method performance. It may be also the case that possible higher order cooper-
ative TF complexes are rather incidental, as opposed to TF dimers, which manifest
themselves as motif dimers in multiple genomic locations.
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A
Table of ENCODE cell types

Cell type Tier Description Lineage Tissue Karyotype Sex

8988T 3 pancreas adenocarcinoma (PA-TU-8988T) endoderm liver cancer F
A549 2 epithelial cell line derived from a lung carcinoma tissue endoderm epithelium cancer M
Adult_CD4_Th0 3 CD4+ cells isolated from human blood and enriched

for Th0 populations
mesoderm blood normal B

Adult_CD4_Th1 3 CD4+ cells isolated from human blood and enriched
for Th1 populations

mesoderm blood normal B

AG04449 3 fetal buttock/thigh fibroblast ectoderm skin normal M
AG04450 3 fetal lung fibroblast endoderm lung normal M
AG09309 3 adult toe fibroblast from apparently healthy 21 year old ectoderm skin F
AG09319 3 gum tissue fibroblasts from apparently healthy 24 year

old
ectoderm gingiva normal F

AG10803 3 abdominal skin fibroblasts from apparently healthy
22 year old

ectoderm skin M

AoAF 3 aortic adventitial fibroblast cells mesoderm blood vessel normal F

Table A.1: ENCODE cell types referred to in this thesis. Table extracted and adapted from http:
//genome.ucsc.edu/ENCODE/cellTypes.html. Tier (1, 2 or 3) was assigned by ENCODE to
priori ze the experiments on Tier 1 and Tier 2 first. Tier 1 consists of three most extensively studied cell
lines: GM12878, H1-hESC and K562. Karyotype (normal or cancer) is indicated only if it is known. Sex of
the sample donor(s) is indicated as follows: M – male, F – female, M – mixed, U – unknown.
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Cell type Tier Description Lineage Tissue Karyotype Sex

BE2_C 3 neuroblastoma, BE-C is a clone of the SK-N-BE
neuroblastoma cell line

ectoderm brain cancer M

BJ 3 skin fibroblast ectoderm skin normal M
Caco-2 3 colorectal adenocarcinoma endoderm colon cancer M
CD20+_RO01778 2 B cells, caucasian, draw number 1, newly promoted to

tier 2: not in 2011 analysis
mesoderm blood normal F

CD34+_Mobilized 3 hematopoietic progenitor cells- mobilized, from donor
RO01679.

mesoderm blood M

Chorion 3 chorion cells (outermost of two fetal membranes), fetal
membranes were collected from women who
underwent planned cesarean delivery at term, before
labor and without rupture of membranes

extraembryonic
mesoderm,
trophecto-
derm

fetal
membrane

U

CLL 3 chronic lymphocytic leukemia cell, T-cell lymphocyte mesoderm blood cancer F
CMK 3 acute megakaryocytic leukemia cells mesoderm blood cancer M
Colo829 3 malignant melanoma ectoderm skin cancer M
Fibrobl 3 child fibroblast ectoderm skin normal F
FibroP 3 fibroblasts taken from individuals with Parkinson’s

disease, AG20443, AG08395 and AG08396 were pooled
for this sample

ectoderm skin normal U

FibroP_AG08395 3 fibroblasts taken from individuals with Parkinson’s
disease

ectoderm skin
fibroblast

F

FibroP_AG08396 3 fibroblasts taken from individuals with Parkinson’s
disease

endoderm lung
fibroblast

F

FibroP_AG20443 3 fibroblasts taken from individuals with Parkinson’s
disease

ectoderm skin
fibroblast

M

Gliobla 3 glioblastoma, these cells (aka H54 and D54) come from
a surgical resection from a patient with glioblastoma
multiforme (WHOGrade IV).

ectoderm brain cancer U

GM04503 3 adult twin pair fibroblasts, monozygotic twin of
GM04504

ectoderm skin normal F

GM04504 3 adult twin pair fibroblasts, monozygotic twin of
GM04503, 13% of the cells examined show random
chromosome loss

ectoderm skin normal F

GM06990 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, CEPH/Utah, treatment: Epstein-Barr Virus
transformed

mesoderm blood F

GM12864 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, CEPH/Utah pedigree 1459, treatment:
Epstein-Barr Virus transformed

mesoderm blood M

GM12865 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, CEPH/Utah pedigree 1459, treatment:
Epstein-Barr Virus transformed

mesoderm blood F

GM12878 1 B-lymphocyte, lymphoblastoid, International HapMap
Project, CEPH/Utah - European Caucasian,
Epstein-Barr Virus

mesoderm blood normal F

GM12891 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, CEPH/Utah pedigree 1463, treatment:
Epstein-Barr Virus transformed

mesoderm blood M

GM12892 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, CEPH/Utah pedigree 1463, treatment:
Epstein-Barr Virus transformed

mesoderm blood F
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Cell type Tier Description Lineage Tissue Karyotype Sex

GM18507 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, Yoruba in Ibadan, Nigera, treatment:
Epstein-Barr Virus transformed

mesoderm blood M

GM19238 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, Yoruba in Ibadan, Nigera, treatment:
Epstein-Barr Virus transformed

mesoderm blood F

GM19239 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, Yoruba in Ibadan, Nigera, treatment:
Epstein-Barr Virus transformed

mesoderm blood M

GM19240 3 B-lymphocyte, lymphoblastoid, International HapMap
Project, Yoruba in Ibadan, Nigera, treatment:
Epstein-Barr Virus transformed

mesoderm blood F

H1-hESC 1 embryonic stem cells inner cell
mass

embryonic
stem cell

normal M

H7-hESC 3 undifferentiated embryonic stem cells inner cell
mass

embryonic
stem cell

U

H9ES 3 embryonic stem cells inner cell
mass

embryonic
stem cell

F

HAc 3 astrocytes-cerebellar ectoderm cerebellar normal U
HAEpiC 3 amniotic epithelial cells pluripotent epithelium normal U
HA-h 3 astrocytes-hippocampal ectoderm brain hip-

pocampus
normal U

HA-sp 3 astrocytes spinal cord ectoderm spinal cord normal U
HBMEC 3 brain microvascular endothelial cells mesoderm blood vessel normal U
HBVP 3 brain vascular pericytes mesoderm blood vessel normal U
HBVSMC 3 brain vascular smooth muscle cells. mesoderm blood vessel normal F
HCF 3 cardiac fibroblasts mesoderm heart normal U
HCFaa 3 cardiac fibroblasts- adult atrial mesoderm heart normal F
HCM 3 cardiac myocytes mesoderm heart normal U
HConF 3 conjunctival fibroblasts ectoderm eye U
HCPEpiC 3 choroid plexus epithelial cells ectoderm epithelium normal U
HCT-116 3 colorectal carcinoma endoderm colon cancer M
HEEpiC 3 esophageal epithelial cells endoderm epithelium normal U
HEK293T 3 embryonic kidney that expresses SV40 large T antigen mesoderm kidney F
HeLa-S3 2 cervical carcinoma ectoderm cervix cancer F
Hepatocytes 3 primary hepatocytes, liver perfused by enzymes to

generate single cell suspension
endoderm liver normal B

HepG2 2 hepatocellular carcinoma endoderm liver cancer M
HFF 3 foreskin fibroblasts mesoderm foreskin normal M
HFF-Myc 3 foreskin fibroblast cells expressing canine cMyc mesoderm foreskin normal M
HGF 3 gingival fibroblasts ectoderm gingiva normal U
HIPEpiC 3 iris pigment epithelial cells ectoderm epithelium normal U
HL-60 3 promyelocytic leukemia cells mesoderm blood cancer F
HMEC 3 mammary epithelial cells ectoderm breast normal U
HMF 3 mammary fibroblasts ectoderm mammary F
HMVEC-dAd 3 adult dermal microvascular endothelial cells. mesoderm blood vessel normal F
HMVEC-dBl-Ad 3 adult blood microvascular endothelial cells,

dermal-derived
mesoderm blood vessel normal F

HMVEC-dBl-Neo 3 neonatal blood microvascular endothelial cells,
dermal-derived

mesoderm blood vessel normal M
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Cell type Tier Description Lineage Tissue Karyotype Sex

HMVEC-dLy-Ad 3 adult lymphatic microvascular endothelial cells,
dermal-derived

mesoderm blood vessel normal F

HMVEC-dLy-
Neo

3 neonatal lymphatic microvascular endothelial cells,
dermal-derived

mesoderm blood vessel normal M

HMVEC-dNeo 3 neonatal microvascular endothelial cells (single donor),
dermal-derived

mesoderm blood vessel normal M

HMVEC-LBl 3 blood microvascular endothelial cells, lung-derived mesoderm blood vessel normal F
HMVEC-LLy 3 lymphatic microvascular endothelial cells, lung-derived mesoderm blood vessel normal F
HNPCEpiC 3 non-pigment ciliary epithelial cells endoderm epithelium normal U
HPAEC 3 pulmonary artery endothelial cells. mesoderm blood vessel normal F
HPAF 3 pulmonary artery fibroblasts mesoderm blood vessel normal U
HPDE6-E6E7 3 pancreatic duct cells immortalized with E6E7 gene of

HPV
endoderm pancreatic

duct
normal F

HPdLF 3 periodontal ligament fibroblasts ectoderm epithelium normal M
HPF 3 pulmonary fibroblasts isolated from lung tissue endoderm lung normal U
HRCEpiC 3 renal cortical epithelial cells mesoderm epithelium normal U
HRE 3 renal epithelial cells mesoderm epithelium normal U
HRGEC 3 renal glomerular endothelial cells mesoderm kidney normal U
HRPEpiC 3 retinal pigment epithelial cells ectoderm epithelium normal U
HSMM 3 skeletal muscle myoblasts mesoderm muscle normal U
HSMM_emb 3 embryonic myoblast mesoderm muscle U
HSMM_FSHD 3 primary myoblast from Facioscapulohumeral Muscular

Dystrophy (FSHD) patients, muscle needle biopsies
mesoderm muscle U

HSMMtube 3 skeletal muscle myotubes differentiated from the
HSMM cell line

mesoderm muscle normal U

HTR8svn 3 trophoblast (HTR-8/SVneo) cell line, a thin layer of
ectoderm that forms the wall of many mammalian
blastulas and functions in the nutrition and
implantation of the embryo

ectoderm blastula normal F

Huh-7 3 hepatocellular carcinoma endoderm liver cancer M
Huh-7.5 3 hepatocellular carcinoma, hepatocytes selected for high

levels of hepatitis C replication
endoderm liver cancer M

HUVEC 2 umbilical vein endothelial cells mesoderm blood vessel normal U
HVMF 3 villous mesenchymal fibroblast cells mesoderm connective normal U
iPS 3 induced pluripotent stem cell derived from skin

fibroblast
induced
pluripotent
stem cell

B

iPS_CWRU1 3 iPS cells derived fromMSC658 fibroblast induced
pluripotent
stem cell

M

iPS_NIHi11 3 iPS cells derived from AG20443 fibroblast induced
pluripotent
stem cell

M

iPS_NIHi7 3 iPS cells derived from AG08395 fibroblast induced
pluripotent
stem cell

F

Jurkat 3 T lymphoblastoid derived from an acute T cell leukemia mesoderm blood cancer M
K562 1 leukemia mesoderm blood cancer F
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Cell type Tier Description Lineage Tissue Karyotype Sex

LHCN-M2 2 skeletal myoblasts derived from satellite cells from the
pectoralis major muscle of a 41 year old caucasian heart
transplant donor, immortalized with
lox-hygro-hTERT (”LH”), and Cdk4-neo (”CN”)

mesoderm skeletal
muscle
myoblast

M

LNCaP 3 prostate adenocarcinoma endoderm prostate cancer M
M059J 3 malignant glioblastoma, glioma, lack DNA-dependent

protein kinase activity, deficient in repair of DNA
double strand breaks, the cells are negative for glial
fibrillary acidic protein (GFAP)

ectoderm brain cancer M

MCF-7 2 mammary gland, adenocarcinoma ectoderm breast cancer F
Medullo 3 medulloblastoma (aka D721), surgical resection from

a patient with medulloblastoma as described by Darrell
Bigner (1997)

ectoderm brain cancer U

Medullo_D341 3 Medulloblastoma cell line of neuron or neuron
precursor origin

ectoderm brain cancer U

Mel_2183 3 Melanoma Cell line ectoderm skin cancer U
Melano 3 epidermal melanocytes ectoderm skin normal U
Monocytes-
CD14+

2 Monocytes-CD14+ are CD14-positive cells from human
leukapheresis production, from donor RO 01826

mesoderm monocytes normal F

Monocytes-
CD14+_RO01746

2 Monocytes-CD14+ are CD14-positive cells from human
leukapheresis production, from donor RO 01746

mesoderm monocytes normal F

Myometr 3 myometrial cells mesoderm myometrium normal F
NB4 3 acute promyelocytic leukemia cell line mesoderm blood cancer U
NH-A 3 astrocytes (also called Astrocy) ectoderm brain normal U
NHBE_RA 3 bronchial epithelial cells with retinoic acid endoderm bronchial

epithelium
normal F

NHDF-Ad 3 adult dermal fibroblasts mesoderm skin normal F
NHDF-neo 3 neonatal dermal fibroblasts mesoderm skin normal U
NHEK 3 epidermal keratinocytes ectoderm skin normal U
NHLF 3 lung fibroblasts endoderm lung normal U
NT2-D1 3 malignant pluripotent embryonal carcinoma (NTera-2) mesoderm testis cancer M
Osteobl 3 osteoblasts (NHOst) mesoderm bone normal U
PANC-1 3 pancreatic carcinoma endoderm pancreas cancer M
PanIsletD 3 dedifferentiated human pancreatic islets from the

National Disease Research Interchange (NDRI), same
source as PanIslets

endoderm pancreas B

PanIslets 3 pancreatic islets from 2 donors, the sources of these
primary cells are cadavers from National Disease
Research Interchange (NDRI) and another sample
isolated as in Bucher, P. et al., Assessment of a novel
two-component enzyme preparation for human islet
isolation and transplantation. Transplantation 79, 917
(2005)

endoderm pancreas normal M

pHTE 3 primary tracheal epithelial cells endoderm epithelium U
PrEC 3 prostate epithelial cell line endoderm prostate normal U
ProgFib 3 fibroblasts, Hutchinson-Gilford progeria syndrome

(cell line HGPS, HGADFN167, progeria research
foundation)

ectoderm skin M

RPMI-7951 3 human skin malignant melanoma cells ectoderm skin cancer F
RPTEC 3 renal proximal tubule epithelial cells mesoderm epithelium normal U
RWPE1 3 prostate epithelial endoderm prostate normal M
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Cell type Tier Description Lineage Tissue Karyotype Sex

SAEC 3 small airway epithelial cells endoderm epithelium normal U
SKMC 3 skeletal muscle cells mesoderm muscle normal U
SK-N-MC 3 neuroepithelioma cell line derived from a metastatic

supra-orbital human brain tumor
ectoderm brain cancer F

SK-N-SH_RA 3 neuroblastoma cell line, treatment: differentiated with
retinoic acid

ectoderm brain cancer F

Stellate 3 hepatic stellate cells, liver that was perfused with
collagenase and selected for hepatic stellate cells by
density gradient

endoderm liver normal F

T-47D 3 epithelial cell line derived from a mammary ductal
carcinoma.

ectoderm breast cancer F

Th1 3 primary Th1 T cells mesoderm blood U
Th2 3 primary Th2 T cells mesoderm blood U
Urothelia 3 primary ureter cell culture of urothelial cells derived

from a 12 year-old girl and immortalized by
transfection with a temperature-sensitive SV-40 large T
antigen gene

mesoderm urothelium normal F

WERI-Rb-1 3 retinoblastoma ectoderm eye cancer F
WI-38 3 embryonic lung fibroblast cells, hTERT immortalized,

includes Raf1 construct
endoderm embryonic

lung
normal F
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B
Example specification files for TACO

The specification file listed below was used to benchmark TACO using University
of Washington DNase-seq data in Section 5.5.

#
# Example specification file for TACO.
#
# Comprehensive prediction of transcription factor dimers in cell-type-specific
# open chromatin regions.

<Genome>
FastaFile = hg19/*.fa
MaskedRegions = coding_hg19.bed

</Genome>

#
# Open chromatin datasets, e.g. DNase-seq peaks
#
# One replicate per line, two fields are required: dataset name and BED filename.
# For each dataset, the union of all corresponding replicates will be taken.

<StronglySpecificDatasets>
DatasetList = wgEncodeUwDnase_hg19.list

# Dataset normalization (each replicate separately):
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# exclude a hypersensitive region if most of the underlying genomic sequence is masked
RegionMasking = Majority
# consider not more than the given number of regions with top signalValue
RegionCount = 50000

</StronglySpecificDatasets>

#
# Motif database, e.g. TRANSFAC, JASPAR, SwissRegulon -- preferably use only one of these
#

# TRANSFAC
<Motifs>

Database = TRANSFAC/matrix.dat
DatabaseSubset = TRANSFAC.vertebrata
Sensitivity = 0.8

</Motifs>

# JASPAR
#<Motifs>
# Database = JASPAR/jaspar_CORE/non_redundant/by_tax_group/vertebrates/matrix_only/matrix_only.txt
# Sensitivity = 0.9
#</Motifs>

# SwissRegulon
#<Motifs>
# Database = SwissRegulon/weight_matrices
# Sensitivity = 0.95
#</Motifs>

#
# Various options, do not forget to adjust NumberOfThreads
#

<Options>
NumberOfThreads = 16

MinMotifInformationContribution = 6.0
MaxOverlappingInformationContent = 2.0
MaxMotifSpacing = 50
ConsiderOrientationsSeparately = True
ConsiderMostSignificantComplexOnly = False

TargetInstancesThreshold = 100
FoldChangeThreshold = 1.0
PValueThreshold = 0.05

DimerMotifFlanks = 5
ClusteringAcrossDatasets = True
ClusteringDistanceConstant = 0.0
ClusteringDistanceMultiplier = 0.15
ClusteringOverlapThreshold = 0.2
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OutputDetailedStats = All
OutputDimerMotifs = All
OutputGenomicLocations = All
GenomicLocationsMaxSpacingDeviation = 0
OutputPValueDistribution = True

</Options>

In the case ofDukeDNase-seq data, slightly different settingwere used to enforce
that all theDNase-seq peaks will have the same size. Below, only the fragment of the
specification file that differs from the above one is listed.

<StronglySpecificDatasets>
DatasetList = wgEncodeOpenChromDnase_hg19.list

# Dataset normalization (each replicate separately):
# make all hypersensitive regions the same size
RegionSize = 300
# exclude a hypersensitive region if most of the underlying genomic sequence is masked
RegionMasking = Majority
# consider not more than the given number of regions with top signalValue
RegionCount = 50000

</StronglySpecificDatasets>
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