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Abstract 

 
 
We present a comprehensive Arabic tagging system: from the raw text to tagging 

disambiguation. For each processing step in the tagging system, we analyze the 

existing solutions (if any) and use one of them or propose, implement and 

evaluate a new one.  

This work began with designing a new Arabic tagset suitable for Classical Arabic 

(CA) and Modern Standard Arabic (MSA). In addition to the classical 

constructions in tag systems, we introduce interleaving of tags. Interleaving is a 

relation between tags which, in certain situations, can be attached to the same 

occurrence of a word, but each of them can also appear alone. Our tagset makes 

this relation explicit.  

Then we deal with the preparatory stages for tagging system. The first initial 

stage is tokenization and segmentation. We use rule-based and statistical 

methods for this task. The second stage is analyzing and extracting the lemma 

from the word. We have created our own analyzer compatible with our 

requirements. Its main part is a dictionary which provides features, POS and 

lemma for each word.  

The last part of our work is the tagging algorithm which produces one tag for 

each word. We use a hybrid method by combining rules-based and statistical 

methods. Three taggers, Hidden Markov Model (HMM), maximum match and Brill 

are combined by a new method, which we call master and slaves. Then 

handwritten rule-based tagger is also added to master-slaves. The rule based 

tagger eliminates incorrect tags, and the master chooses the best one among the 

remaining ones, assisted by the other slaves. 

Our complete system is ready to be used for annotation of Arabic corpora. 
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Chapter 1 Introduction 
 

 

 

1.1 Introduction 

The topic of this dissertation is morphosyntactic part of speech tagging 

(abbreviated POS tagging) for Arabic.  

This topic has long and rich history for other languages, mainly for English.  

POS tagging provides fundamental information about word forms used in 

sentences of natural language. The method of utilizing this information varies 

depending on the particular NLP application (information retrieval, machine 

translation …), in which it is used.  

Tagging is a source of many challenges for researchers. These challenges 

depend very much on the language under consideration. In this dissertation we 

consider Arabic, a highly inflected language. Although Arabic language is 

generally quite regular and there are very few irregular forms, very rich and 

complicated structure of inflection, which in many cases changes the structure of 

the words, causes high degree of complexity of tagging. The other hard problem is 

the lack of Arabic language resources, corpora and other tools. We propose a new 

tagset in this dissertation and in this case the scarcity of resources makes the work 
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much more difficult. Tokenization schemes
1
 are also a source of problems in 

tagging. 

We can distinguish, in our dissertation, online and offline tagging. In both of 

them, the problem to be solved is the same, but the trade-off between quality of 

tagging and the speed of the process is different.  

Online tagging is typically a part of another application, like machine 

translation. The speed in this scenario is very important, even at the price of 

somewhat decreased accuracy.  

Offline tagging can be considered as an independent task, like annotating a 

corpus. The accuracy is in this case the crucial factor with much less emphasis on 

speed. 

In this dissertation we have offline tagging in mind, hence we aim mainly at 

increasing accuracy of the process and the quality of information it provides, and 

generally disregard efficiency questions. 

1.2 The overview of the dissertation 

When we work on tagging, in the first place we have to choose a right tagset to 

be used. This choice affects the amount of information about forms of words 

generated in the process of tagging. One can use an existing tagset or decide to 

develop a new one. In this dissertation we present a new tagset, which improves 

on the existing ones.  

 POS tagging, similarly to other NLP tasks, needs a number of preprocessing 

stages. Most of these stages can be considered as separated tasks. We list here all 

the stages in our work. Some of these stages are optional in other works. For 

example, the analyzer misses in most of resent Arabic POS tagging techniques. 

The first one is tokenization and segmentation, i.e., splitting the running text 

into tokens. This procedure can be split into several steps:  

1. Normalization: unification of variants of letters, deleting Tatweel and the 

like. 

2. Sentence segmentation: splitting running text into sentences  

                                                
1
 See (Habash)  [45] for more information on tokenization schema. Also, see (Benajiba & Zitouni) 

 [19] for schema levels. 
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3. Word segmentation: splitting sentences into words.  

4. Word tokenization: splitting words into morphemes. 

Many other NLP tasks need this preprocessing, too. In our dissertation, this 

preprocessing is a separate task, and therefore our algorithms can be used 

independently of the tagging procedure.  

The second level of preprocessing is analysis with lemma extraction, which 

extracts the lemma of each word, determines the part of speech and features for it. 

In many other approaches it is the task of a morphological analyzer to extract the 

root or stem of the word rather than the lemma. Extracting lemma for Arabic 

received little attention in the literature so far because it was considered to be a 

hard problem.  

After these two preprocessing steps, the tagging will be achieved by applying 

one of the supervised or unsupervised techniques to disambiguate the results of 

the previous steps. Figure 1-1 shows the whole system which tries to solve all the 

tasks described in this introduction. 

1.3 Related work 

Our complete system has few counterparts in the literature, because it is a 

whole tagging system, and most of the existing papers deal with isolated 

fragments of the complete process. Therefore we will list the works which relate, 

partially or completely, to our work.  

1.3.1 Tagset related works 

Tagsets are intimately connected with taggers which use them and are 

generally not discussed as standalone objects. (Khoja tagset  [57] [59]; Al-Qrainy 

tagset  [9], Sawalha tagset  [82], Alhadj tagset  [38], Buckwalter tagset, Reduced 

Buckwalter tagset ( Bies tagset, Kulick tagset  [65] and Extended Reduced tagset) 

 [45], KATIB POS tagset  [47] [49] and PADT tagset  [45]) are the most well-known 

Arabic tagsets. We discuss them and their limitations in Chapter 3. Our main goal 

in designing a new one was to cover specific elements of Arabic missing in those 

tagsets and eliminating unwanted tags. The other goal is for producing a tagset 

compatible with Classical Arabic (CA) and Modern Standard Arabic (MSA). See 

chapter 3 for more details. 
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We constructed a new tagset by avoiding the limitations of the above 

mentioned tasets. It was constructed depending on the Arabic literature and it is 

not derived from tagsets dedicated for other languages. Our tagset does not have 

interleaving, even though it has many tags. Interleaving is a novel notion 

introduced by us. It is likely to occur in highly inflected language with a huge 

tagset.  

 

 
 

Figure 1-1: The overview of the system 

1.3.2 Tokenization related works 

Tokenization or segmentation procedures are fragments of the following tools: 

(MADA+TOKEN (Habash)  [51], Buckwalter Arabic Morphological Analyzer 

BAMA  (Buckwalter)  [26] [25], AMIRA (Mona Diab)  [32], Xerox Arabic 

Morphological Analyzer and generator (Beesley)  [17] [18], Sakhr‟s Arabic 

Morphological Analyzer (Sakhr Software)  [81], Khoja's stemmer (Khoja)  [56] and 

almost morphological Analyzers) .  
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(Benajiba)  [20] presents two segmentation schemes that are morphological 

segmentation and Arabic TreeBank segmentation and he shows their impact on an 

important natural language processing task: mention detection. Experiments on 

Arabic TreeBank corpus show 98.1% accuracy on morphological segmentation. 

He did not consider tokenization. 

The approach of (Lee)  [66] models the word as prefix*-stem-suffix*. The 

algorithm uses a trigram language model to determine the most probable 

morpheme sequence for a given input. The language model is initially estimated 

from a small manually segmented corpus of about 110,000 words. The resulting 

Arabic word segmentation system achieves around 97% exact match accuracy on 

a test corpus containing 29k words.  

The systems of Benajiba and Lee deals with stem rather than lemma. 

According to (Habash)  [45] stem need not be a legal Arabic word form, unlike 

lemma. See Chapter 4 for more details. 

Our Arabic tokenizer is constructed using a hybrid unsupervised method, and is 

a stand-alone application. It produces all possible tokenizations for each word. 

Then, written rules and statistical methods are applied to solve the ambiguities. Its 

output is one tokenization for each word. The deleted and changed letters are 

retrieved by the tokenizer. 

1.3.3 Analyzing and extracting lemma related works 

In case of extracting lemma, (El-Shishtawy & El-Ghannam)  [39] do 

lemmatization in three phases: analyzing, POS tagging and then lemma 

generation. This approach was proposed for information retrieval. 

Concerning morphological analyzers, there are many works in this field. 

MAGEAD (Habash et, al.)  [50] provides an analysis for a root+pattern. Darwish 

analyzer (Darwish)  [31] was only concerned with generating the possible roots of 

a given Arabic word. (Gridach-Chenfour)  [44] Their approach is based on Arabic 

morphological automaton technology. (Elixir-FM)  [88] is a functional 

morphology systems which models templatic morphology and orthographic rules. 

BAMA Buckwalter  [26] is based on a lexicon which has morphotactic and 

orthographic rules encoded inside it. See Chapter 5 for more details. 
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All of the above mentioned analyzers didn‟t meet our requirements, which 

prompted us to build a new one, because we wanted POS and features to be 

described by a new very rich tagset. It differs from most of the existing analyzers 

because it produces a lemma rather than stem or root, which is a significantly 

harder task in Arabic. 

1.3.4 Tagging related works  

(Diab et,al. & Diab)  [33] [32] used suppor vector machines (SVM) for tagging 

in her papers. (Habash & Rambow)  [46] used SVM with a morphological 

analyzer, APT (Khoja)  [57] used statistical and rule-based methods, AL-Shamsi 

and Guessoum  [11] used HMM, (Freeman)  [42] used Brill (Transformation) 

tagging, (AlGahtani et, al.)  [5] used Brill (Transformation) with morphological 

analyzer, (Tlili-Guiassa)  [89] used rules-based and memory-based methods, (Seth 

Kulick)  [64] used classifier with regular expressions, (Van den Bosch)  [23] used 

memory-based learning, (Mohamed and Kübler)  [71] used statistical, (Selçuk) 

 [62] used HMM without morphological analyzer or lexicon, (El Hadj et, al.)  [36] 

used HMM with morphological analyzer, (Mansour et, al.)  [69] used HMM with 

morphological analyzer with lexicon. All these Arabic taggers are summarized in 

Chapter 6.  

1.3.5 Combining taggers related work 

In the paper of (Glass & Bangay)  [43] a few taggers are grouped to form a 

voting system, but in no case the combined results improve on the individual 

accuracies. (Yonghui et, al.)  [92] presents a novel data fusion strategy in POS 

tagging - correlation voting. They proved that the correlative voting is better than 

other fusion methods. The paper (Henrich et, al.)  [52] provides an algorithms for 

simple and weighted voting. It improved the accuracy by 1.26 – 1.58 % over the 

best method among its individual component taggers. The authors of (Loftsson) 

 [67] used many combinations of several taggers in a simple voting approach using 

three taggers which are TBL, TNT and Ice. Taggers are described in Chapters 7 & 

8 in more detail. 

We used a new method for combining taggers which we call master-slaves. We 

also we used a rule-based tagger, with manually encoded rules, as a special slave.  
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1.3.6 Works related to the complete system 

APT by (Khoja)  [57] used Statistical and rule-based methods for tagging. Her 

tagset will be discussed in chapter 3. Her work did not have lemmatizer or 

tokenizer but she had her own stemmer. The statistical method was trained using a 

corpus of 50,000 words in Modern Standard Arabic (an extract from the Saudi Al-

Jazirah newspaper). A lexicon derived from this corpus was used in this tagger.  

MADA+TOKEN (Habash)  [45] where MADA (Morphological Analysis and 

Disambiguation for Arabic) is a utility that, given raw Arabic text, adds as much 

lexical and morphological information as possible by disambiguating, in one 

operation, part-of-speech tags, lexemes, diacritizations and full morphological 

analyses. TOKEN is a general tokenizer for Arabic. 

AMIRA (Diab)  [32] is a successor suite to the ASVMTools (Diab et al.)  [34]. 

The AMIRA toolkit includes a clitic tokenizer (TOK), part of speech tagger (POS) 

and base phrase chunker (BPC) - shallow syntactic parser. The accuracy of the 

ERTS (Extended Reduced TagSet) tagger is 96.13% and the accuracy of the RTS 

(Reduced TagSet) tagger is 96.15%. 

The last two works are toolkits for Arabic language. They are composed from 

many research tools.  

(Kulick)  [64] describes an approach to simultaneous tokenization and part-of-

speech tagging that is based on separating the closed and open-class items, and 

focusing on the likelihood of the possible stems of the open class words. He used 

regular expressions with a reduced tag set. The data set was Arabic Treebank 

(ATB3-v3.2) and the accuracy of tagging was 95.147%. 

For more Arabic taggers see chapter 6. 

1.4 Dissertation outline  

The rest of our dissertation is constructed as follows: 

Chapter two is a brief introduction to Arabic language; some of the details are 

described in later chapters, when they are needed. 

Chapter three describes almost all Arabic tagsets with their limits and 

specifications and presents the design of a new one. 
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Chapter four is concerned with the first preprocessing task: normalization, 

tokenization and segmentation.  

Chapter five is concerned with the next preprocessing task: lemmatization and 

analyzing, the relation between lemmatization and morphological analyzer.  

Chapter six surveys the main tagging techniques which are used in general 

and in particular for Arabic language. 

Chapter seven describes master-slave technique for combining taggers. It is 

implemented and tested on English and Arabic corpora. 

Chapter eight describes our implementation of adding handwritten rule-based 

tagger to the master-slaves technique. 

Chapter nine is the discussion of the results and future work. 

 

 

 

 

 

 

 



 

 

 

 

Chapter 2 Introduction to 
Arabic language 
 

 
 

2.1 Introduction  

Arabic (اٌؼشث١خ al-arabiyyah) is a name applied to a group of dialects of the 

Central Semitic languages, thus related to and classified alongside other Semitic 

languages such as Hebrew and the Neo-Aramaic languages. Spoken Arabic 

varieties have more speakers than any other language in the Semitic language 

family. Arabic is the official language of 22 countries and it is the liturgical 

language of Islam since it is the language of the Qur‟an, the Islamic Holy Book. It 

is the sixth official language in United Nations. It is written from right to left and 

the letters of each word are attached together. The words are split by spaces. The 

punctuation is used for specifying sentences, paragraphs and other specification of 

written text like. 

The history of Arabic language is not exactly known but the grammars of 

Arabic language were begun before 1400 years ago.  

2.2 Arabic letters 

The Arabic formal word, in Classical Arabic (CA), is constructed from letters 

and diacritics. The diacritics are optional in Modern Standard Arabic (MSA) but, 

in general, are neglected. There are 28 letters, three of them are vowels. Appendix 
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A1 shows Unicode for Arabic letters. Figure 2-1 shows Arabic character. The 

italic letters are vowels. The underlined letters are not attached to the succeeding 

letter in the word. The letter Taa can be written as “p”-“ح”or “ـخ” in some cases. 

There is a letter “|”-“آ” which represents two letters “O“-أ”and “A”-“ا” i.e. أ+ا≡ََآ . 

The diacritics are special symbols used to solve ambiguity in word spelling and 

meaning. It was shown in figure 2-2. 

The Arabic numbers are shown in figure 2-3. Writing Arabic number follows 

the same rules as in English, i.e. they are written and read from left to right.  

 

Figure 2-1: Arabic letters
2
. The bold letters are vowels, the 

underlined letters are not attached to succeeding letter in the 

same word. 

2.3 Arabic Language Varieties  

Arabic texts could be either vowelled, as the language of Qur‟an or children‟s 

books; or unvowelled ones, used in newspapers, books, and media. Handling the 

unvowelled texts is confusing since an unvowelled word may have more than one 

                                                
2
 We depend on Buckwalter xml transliteration in this figure and we use it in all transliterations in 

our dissertation. 

Transli-

teration 
letter first Middle  Last  Transli-

teration  
letter first Middle  Last  

A Alef ـب ــب ا D  Dhad ـض ، ض ـضـ ضـ 

O, I , {, 

W,  ʼ 

Hamza أ، إ ,َ
 ٱ

ـئـ ، ـؤ 

 ، ـأ

ـئ، ـؤ 

، ـأ ، ـئ 

 ، ء

T  Daa طــ طـ  ـظ ، ط 

b  Baa ـت ، ة ـجـ  ثـ Z  Dhaa ـع ، ظ ـظـ ظـ 

t  Taa ـت ، ت ـتـ تـ E  Ain ـغ ، ع ـؼـ ػـ 

v  Thaa ـج ، ث ـخـ حـ g  Gain ـؾ ، ؽ ـــ ؿـ 

j  Jeem ـذ ، د ـزـ رـ f  Faa ـق ، ف ـلـ كـ 

H  Haa ـش ، س ـضـ صـ q  Qaf ـن، م ـوـ هـ 

x  Khaa ـظ ، ط ـغـ عـ k  Kaf ـي ، ى ـٌـ ًـ 

d  Dal ـؼ ، ػ ـؼ ػ l  Lam ـَ ، ٍ ـِـ ُـ 

*  Thal ـؾ ، ؽ ـؾ ؽ m  Meem ـْ ، ّ ـٔـ ٓـ 

r  Raa ــ ، ؿ ــ ؿ n  Noon ـٖ ، ٕ ـ٘ـ ٗـ 

z  Zai ـق ، ف ـق ف h  Haa ـٚ ، ٙ ـٜـ ٛـ 

s  Seen ـل ،  ـنـ مـ

 ك
w  Waw ٝ ٞـٞ ، ٝ ـ 

$  Sheen ـو ،  ـيـ ىـ

 ه
y Yaa ـً ، ي ـٍـ ٌـ 

S Sad ـٌ ،  ٍـ ٍـ

ً 
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meaning (Atwell et, al.)  [15]. This classification is similar to classification of 

Arabic to Classical Arabic and Modern Standard Arabic. Arabic language 

varieties are shown in figure 2-4. 

 
Figure 2-2: Arabic diacritics and controls 

 

 
Figure 2-3: Arabic numbers 

Many linguists make a distinction between Classical Arabic (CA), the name of 

the literary language of the previous eras, and the modern form of literary Arabic, 

commonly known (in English) as Modern Standard Arabic (MSA). In term of 

linguistic structure, CA and MSA are largely but not completely similar (Ryding) 

 [80]. 

 

 
Figure 2-4: Arabic Language variations 

 

In Classical Arabic words have diacritical marks which solve the ambiguity in 

the language. I.e., CA has less ambiguity than MSA. For example the word 

“kataba”-“ََوَزَت” (write (he)) has only one meaning “he writes”. Removing 

Original (Arabic)   0 1 2 3 4 5 6 7 8 9 

Original (Indo) ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ 

 

Arabic language 

Spoken                                            Written  

Colloquial              Classical Arabic (CA)        Modern Standard Arabic (MSA) 

Diacritic 

and 

controls 
  َ    َ    َ    َ    َ    َ    َ    َ  

name Fateha  Damh Kasra Skon  Tanween Tanween Tanween Shada  

English 

sound 
/a/ /u/ /i/ - /an/ /un/ /in/ - 

Example 

and 

spelling  

  نََ

 Ka 

 نَ 

Ku 

 نَ 

Ki 

 نَ 

K 

 نَ 

Kan 

 نَ 

Kun 

 نَ 

Kin 

 نَ 

+ن  ن 

KK 
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diacritics, in MSA, creates word-level ambiguity in segmentation process (Badr 

et, al.)  [16]. 

MSA is the written language of contemporary literature, journalism, most of 

books etc. MSA is a descendant of CA and retains the basic syntactic, 

morphological, and phonological systems (Bin-Muqbil)  [21]. MSA is highly 

ambiguous which results from removing diacritical marks from writing.  For 

example the word “ktb”-“وزت” can be “kataba”-“ََوَزَت”, “kutub”-“ ز تَ  -”kutiba“ ,”و 

ز تََ“  which mean “he writes”, ” books”,  “ was written” or ”وَزَّتََ“-”and “kat~aba ”و 

“he caused to write”, respectively. 

2.4 Arabic Morphology 
 

Morphologically, Arabic is a non-concatenative language. The basic problem 

with generating Arabic verbal morphology is the large number of variants that 

must be generated (Cavalli-Sforza et, al.)  [27]. This problem is particularly 

difficult when a weak letter occurs in the word. Weak letters can be deleted or 

substituted by other letters because of Arabic linguistic theory (Shaalan)  [85]. 

Affixing grammatical morphemes to the stem is a general property of most 

European languages, which have concatenative morphology where the word is 

prefix, stem
3
 and suffixes. Although there are numerous exceptions, it enables us 

to analyze the structure of most words (Nugues)  [74]. 

Concatenative morphology is not universal, however. The Semitic languages, 

like Arabic or Hebrew, for instance, have a templatic morphology that 

interweaves the grammatical morphemes to the stem (Nugues)  [74]. 

We explain briefly how a word changes by adding clitics
4
 and affixes to it. 

This subject is very rich and explaining all details is out of range of our 

dissertation; therefore we will explain the most important cases and leave the 

other to next chapters.  

We have two opposite processes in any language, word generation (having the 

lemma/root and produce all possible words from it) and analyzing (having a word 

and extract the lemma/root with features from it). The first task is relatively easy 

                                                
3
 Stem need not be an Arabic word. 

4
 See chapter 4 for more details about clitics and affixes. 
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in Arabic language because of many unambiguous rules for this task. The second 

is very hard
5
, especially if the lemma is the wanted base unit. For example if we 

have the lemma “Asrp”-“اعشح”(family) and the pronoun “hA”-“٘ب” (her) is 

attached to it, the result is “AsrthA”-“اعشرٙب” (her family) according to the rule “if 

word ends by Taa marbuta and is attached to a pronoun then change this Taa 

marbuta to normal Taa”. But if we have the word “AsrthA”-“اعشرٙب” and we want 

to get the lemma then we have many choices: “Asr~at”-“اعشَّد” “As~art”-“اعَّشد” 

“Asrp”-“اعشح”, “Asrto”-“  and so on. This is a simple example but in most ”اعشدَ 

cases there are very hard cases to detect the lemma. The most famous case 

happens when one of the Arabic vowels exists in the root and one of the 

morphological rules is applied to it. In this case the analyzing is a very hard task. 

The important events in this case are deleting or changing the vowels as shown in 

figure 2-5. 

                      
 

Figure 2-5: Inflection causes deleting and changing of a letter 

Each Arabic word consists of original letters and possibly some extra letters. 

The original letters will not be deleted in any inflected form of that word, without 

morphological reasons. These original letters can be any letters of the alphabet 

except s, O, l, t, m, w, n, y, h and A. On the opposite side, the extra letters can be 

deleted in some inflections without any morphological reasons. The noun can 

consist of 3, 4 or 5 original letters. The verb can consist of 3 or 4 original letters.  

2.5 Morphological rules 

Morphology is the study of the structure and content of word forms. The rules 

of construction word forms are depending on the language under consideration. 

                                                
5
 In case of Classical Arabic the ambiguity decreases which makes this task easier.  

Lemma 

EAd  

( دبػ  back)  

Ed (ػذ back) 

imperative 

yEwd  

( د٠ٛؼ  back) 

present 

Deleting  

Changing   
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They are, in most cases, regular in Semitic languages like Arabic. Morphological 

rules can be either inflectional rules or word-formation rules. 

22..55..11  Inflectional rules    

Inflectional rules relate a lexeme to its forms (which uses kind of affix in order 

to form variants of the same word).  Inflection is done by adding number, person, 

case, gender, tense mood … etc., to the word. Most of concatenative languages 

add affixes to the stem for this purpose. But the situation is different in Arabic 

language: letter deletion, insertion and replacing (especially with vowels) are 

used. The inflectional rules cover approximately almost all words, which means 

that Arabic inflection is regular. Examples of Arabic inflections are shown in 

figure 2-6. 

 

 

Transliteration   verb meaning Translit-

eration   

verb meaning 

kataba  َََوـزَـت Wrote (he) katabta  ََوـزَـجَذ Wrote (you-

masc-sng) 

yaktib  ٠ىَز ت Write (he) taktub  رـىَـزـ ت Write (you-

masc-sng) 

Iktub  ئوزـ ت Write 

(you)(imperative) 

katabti   َوـزَـجَذ Wrote (you-

fem.-sng) 

katabat  َوـزَـجَذ Wrote (she) tkatubyn  ٓرىـزَـ ج١ Write (you- 

fem.-sng) 

taktub  رـىَزـ ت Write (you-masc. 

&she) 

ktaabtmA  وزـَجَزّب Wrote (you-

dual) 

Iktuby  ٟئوزـ ج Write 

(imperative) 

taktubAn  ْرـىَزـ جب Write (you- 

dual) 

katabA  وـزَـجَب Wrote (they-dual) katabtuna  ََٓ -Wrote (you وـزَـجَزـ 

fem.-plural) 

yaktubAn  ْ٠ـىَزـ جب Write (they-dual) taktubna  ََٓ -Write (you رـىَزـ ج

fem.-plural) 

IktubA  ئوـزـ جب Write (you-dual-

imperative) 

katabtum   ُ -Wrote (you وـزَـجَزـ

masc.-plural) 

katabna  ََٓ جْٛرـىَزـ  Wrote (they-fem) taktabwn وـزَـجَ  Write (you-

masc.-plural) 

yaktubna  ََٓ  wrote (I) وـزَـجَذ  Write (they-fem) katabt ٠ىَـزـ ج

Iktubna  ََٓئوـز ـ ج  Write (you-fem-

imperative) 

Oktub  أوزـ ت write (I) 

ktabwA  وزـجَٛا Wrote (they-

masc) 

katbnA  وـزَجٕب Wrote (we) 

yktabwn  جْٛىز٠  Write (they-masc) nktbu   َٔىزت Write (we) 

IktabwA جٛازئو  Write (you-masc-

imperative) 
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Figure 2-6: Inflection of merely verb “kataba”-“  ًـ تـ ت” (write) 

with gender, person and number. 

 

 

22..55..22  Word formation  

Word formation is the creation of new words. A number of languages have 

extensive non-concatenative morphology, in which morphemes are combined in 

complex ways (Jurafsky & Martin)  [54]. A specific kind of non-concatenative 

morphology is called templatic morphology or root-and-pattern morphology. This 

is very common in Arabic, Hebrew, and other Semitic languages (Jurafsky & 

Martin)  [54]. Word formation can be one of: 

1. Derivational rules relate one lexeme to another lexeme (changes a word 

from one syntactic category into a word of another syntactic category or 

from one meaning to another). Some examples of Arabic derivation are 

shown in figures 2-7 and 2-8. 

2. Compound (attaches two or more words together to make them one 

word). An example of an Arabic compound word is “HDrmwt”-

-"It is compound from two words "HDr .(Hadhramautt) ”دعشِٛد“

 which means (death), but ”ِٛد“-"which means (come) and "mwt ”دعش“

the meaning of whole word is a name of a city in Yemen. There are 

many types of compound words in Arabic language; the previous 

example is the easiest one because there is no space between the 

compound words. Another example is “AslAm |bAd”-“َآثبد  Islam) ”اعلاَ

Abad), i.e. two words separated by space, but the whole is a name of a 

city in Pakistan. 
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Figure 2-7: Deriving verbs from verb
6
. 

2.6 Arabic patterns (awzaan) 

Because most of Arabic words are constructed in a regular way, the scientists 

describe them by morphological patterns (sometimes called balance). That pattern 

(wazen in Arabic) is composed of three origins (letters), which are denoted by f, E 

and l, where f corresponds to the first letter, E to the second letter and l to the third 

letter. The pattern describes the word construction (Al-Rajhi)  [10] (Al-Hamlawy) 

 [7]. By taking the root and applying the pattern to it, we will get another word 

construction. These rules are root–pattern morphology. Appendix A2 shows 

examples of using wazen (AL-Bidhani)  [3] (Al-Galaiini)  [6]. 

 

                                                
6
 Merely can be triple or quadruple. Extra can be made from triple or quadruple (by 

adding letters) 

Oktaba – He dictated 

( َأكتـبَََ )  

kAtaba – He corresponded 

  (كاتـبَََ )

kat~aba  – He caused to write 

  (كـتَـَّبََ)

Inkataba – He was subscribed  

 (إنكـتَـبَََ)

Iktataba – he had a copy made 

 (إكتـتَـبَََ)

takat~aba – It was written on its own 

 (تـكَـتَـَّبََ)

takAtaba – They wrote to each other 

 (تـكَاتـبَََ)

Istaktaba – He asked to write 
 (إستـكَتـبَََ)

kataba – ( َََكـتَـب) 
He wrote  

New Verbs   
Extra  

Verb 

Merely   
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Figure 2-8: Deriving nouns from verb. 

 

2.7 Words in the sentences 

 

As we know Arabic is written from right to left where the letters are attached 

together to form the words. In most cases, the particles and pronouns are attached 

to the word, i.e., the word can be composed of more than one part of speech. It 

adds another problem to Arabic language, which must be solved by tagger. For 

example a complete sentence can be compressed in to one word: 

 

wsyktbhA (ٚع١ىزجٙب and he will write it) 
 

When we talk about sentences, syntax comes into play. As we know, there are 

two distinct fields in languages which are morphology and syntax. Morphology 

describes the structure of words internally, syntax describes how words are 

composed to yield phrases and sentences (Habash)  [45]. 

Arabic sentences can be divided into two types of sentences: verbal sentences 

and nominal sentences. Nominal sentences are also called copular/equational 

sentences (Habash)  [45]. 

Each word inside a sentence can be affective (that affects what follows), 

affected (affected by what is before it) or neither affective nor affected as in the 

case of spatial words. The effect is the change of the form of the affected word 

enforced by the affective word (Al-Galaiini)  [6]. Examples of effect are changes 

Inscription 

 
Writer 

 
been written /letter  
 

Better in writing than  
 

Office   
 

Library  
 

In the time of writing  
 

 وـ زـبَثخََ 

 

 وـبرـ ت

 
ىـزـٛة َِ 

 

 أوـزَـتَََ
 

ىـزـتَ َِ 
 

ىـزـجََٗ َِ 
 

ىـزـ ت َِ 
 

kitaAbap 

 

kAtib 

 

maktwb 

 

Okataba 

 

Maktab 

 

Maktabah 

 

maktib 

Verbal Nouns  
 
The Active Participle  
 
The Passive Participle 
 
Exaggeration forms 
 
Place Noun 
  
Time Noun 
 
Instrument Noun 
 

kataba  
 (كـتَـبَََ )

He wrote  
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the case to nominative, accusative … etc. The third category (neither affective 

nor affected) is special and very limited (Al-Galaiini)  [6].    

For example a preposition before a noun causes reduction of that noun. The 

reduction is, in this example, the effect (where the noun (affected) followed 

preposition (affective) will be in genitive case). 

Arabic can be seen as a language with a network of dependency relations in 

every phrase or clause, which are key components of the grammatical structure of 

the language (Ryding)  [80]. 



 

 

 

 

 

 

Chapter 3 Comapring Arabic tagset and designing a new one 
 

 
 

3.1 Introduction 

The first step for the annotation of corpora is the compilation of a tagset that can 

accurately describe and cover the whole information about the language (Khoja)  [57]. 

A tagset is a set of tags (symbols) representing information about parts of speech and 

about values of grammatical categories (case, gender, etc.) of word forms. Tagset is 

the basis of almost all NLP fields. A good tagset is very important in the fields of 

NLP and is the foundation stone in these fields. 

We believe that before dealing with the Arabic language, we need an Arabic tagset 

which contains all or at least the most important Arabic language features. 

In this chapter, 10 Arabic tagsets are compared and their limitations indicated. We 

present a new Arabic tagset avoiding these limits. The design is intended for Arabic 

language only and is not based on tagsets for other languages. It is a multilevel tagset 

compatible with CA and MSA. The noun classes have three levels (fixed POS types, 

grammatical feature and changed POS types), verbs have two levels (POS types and 

grammatical features) and particles have two levels (working and meaning). We also 

introduce the notion of tagset interleaving. 
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The third level (designed for noun only) is not yet implemented and is not 

mentioned in the remaining chapters of this disertation. Summary and comparison of 

Arabic tagsets  

Most of the papers are interested in constructing a tagger and introduce its tagset as 

a by-product. In this chapter we consider the following tagsets for Arabic: Khoja 

tagset  [57] [59]; Al-Qarany tagset  [9], Majdi Sawalha tagset  [82], Yahya Alhadj tagset 

 [38], Buckwalter tagset, Reduced Buckwalter tagset (and its variants: Bies tagset, 

Kulick tagset  [65] and Extended Reduced tagset) (Hbash)  [45], KATIB POS tagset 

 [47] [49] and PADT tagset (Habash)  [45]. 

Almost all of these taggers either use tagsets derived from English (which is not 

appropriate for Arabic) or use summary of all Arabic features (which is more 

theoretical than practical). 

We summarize the above mentioned Arabic language tagsets with their limits and 

specifications. 

3.1.1 Khoja tagset 

The Khoja tagset, developed by Shereen Khoja, is one of the earliest tagsets for 

Arabic (Khoja)  [57] [59]. Figure 3-1 shows Khoja POS. 

The linguistic attributes of nouns and verbal attributes that have been used in this 

tagset are shown in figure 3-2. We have a few remarks on this tagset:  

1. The attribute “person” in noun class is a mistake here because the word 

 book has no person. In this way all researchers apply the person ”وزبة“

feature to the noun, but the noun is different from verb. The inflections 

of the verb always contain the pronoun, but there are inflections of a 

noun without any pronoun. So a noun cannot be treated in the same way 

as the verb.  

2. Particles have no attributes. The classifications of particles are 

interleaved among their operation and meaning. 

3. It is a very simple tagset, i.e., many of Arabic classes are not taken into 

account. 
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Figure 3-1: Khoja tagset 

 

Figure 3-2: The Noun and Verbal attributes of Khoja Tgaset  

3.1.2 Al Qrainy tagset:  

It was written by (AlQrainy & Ayesh)  [9] for Automated POS tagging in Arabic. 

They take the classical classification of Arabic words into noun, verb and particle. 

Figure 3-3 shows the main classification of this tagset. The linguistic attributes of 

nouns and verbal attributes that have been used in this tagset are the same as in Khoja 

(Figure 3-2), but the neuter feature for the verb attribute does not exist. 

The same remarks we have made about Khoja tagset apply here, and additionally 

punctuations and foreign words are not covered by the Al-Qrainy tagset. There is a 

technical error in the figure 3-3, which we took from (AlQrainy & Ayesh)  [9]. If we 

look at the figure, we understand that the “common” is a part of “demonstrative”, 

while indeed they should both be parts of “Noun”. 

Word 

Noun Particle  

Preposition 

Exceptions Interjections 

Conjunction Adverbial 

Demonstrative 

Common  

Personal 

Pronoun 

Relative 

Cardinal  Common  Specific  

Adjective Proper Numeral  

Explanations  

Verb  

Imperative Imperfect  Perfect  

Answers  Subordinates  

Negatives  

Residual  Negatives  

Ordinal  Numerical 

Adjective  

Noun attributes  

Gender Masculine Feminine Neuter  

Number Singular Dual Plural 

Person First Second Third 

Case: Nominative  Accusative Genitive  

Definiteness  Definiteness indefiniteness  

 

Verb attributes 

Gender:  M Masculine  F Feminine N neuter 

Number S Singular  Du Dual  Pl Plural  

Person:  1 First  2 Second  3 Third 

Mood I Indicative S Subjunctive J Jussive 
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Figure 3-3: Al Qrainy tagset Hierarchy 

3.1.3 Sawalha tagset 

In the Sawalha tagset (Sawalha)  [82], a tag consists of 22 characters; each position 

represents a feature and the letter at that location represents a value or attribute of the 

morphological feature; the dash “-” represents a feature not applicable to a given 

word. The first character shows the main Parts of Speech: noun, verb, particle, 

punctuation, and residual. The 2
nd

, 3
rd

 and 4
th

 characters are used to represent 

subcategories; traditional Arabic grammar recognizes 34 subclasses of noun (letter 2), 

3 subclasses of verb (letter 3), 21 subclasses of particle (letter 4). Residuals and 

punctuations are represented in letters 5 and 6 respectively. The next letters represent 

traditional morphological features:  

gender (7), number (8), person (9), morphology (10) case & mood (11), case & 

mood markers (12), definiteness (13), voice (14), emphasize (15), transitivity (16), 

humanness (17),  variability and conjugation (18). Finally there are four characters 

representing morphological information which is useful in Arabic text analysis, 

although not all linguists would count these as traditional features: augmented and 

unaugmented (19), number of root letters (20), verb internal structure (21), noun finals 

(22).  

The Majdi Sawalha tagset is not tied to a specific tagging algorithm or theory, and 

other tagsets could be mapped onto this standard, to simplify and promote 

Word 

Noun Particle Verb 

Preposition Imperative Imperfect  Perfect  

Exception 

Annulment 

Conjunction 

Vocative 

Subjunctive 
Demonstrative Common  

Adverb Personal Relative 

Conjunctive Instrument Diminutive Adjective Proper Interrogative 

Jussive 
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comparisons between, and reuse of Arabic taggers and tagged corpora. Figure 3-4 

shows Majdi Sawalha main POS classification. 

We have a few notes on this tagset. In spite of taking most of noun and verb 

classification, it neglects the variation of particles classification. Similarly as Khoja, 

this tagset does not distinguish between working and meaning of particles. For 

example “fklA Ax*nA b*nbh”-“  َٗ ٔبَث زَٔج   (We took each one by/because his sin) ”فىَ لاَّ َأخَز 

the particle b is for caution and preposition at the same time (it is preposition used for 

caution). It means that it should have two tags simultaneously
7
. There are many 

interleavings between types in this tagset. 

Sawalha tagset summarizes almost all the Arabic classifications, especially for 

verbs and nouns. However, some of the classifications (attributes) are useless 

(redundant) tags, for tagging system. For instance, the value at position 20 “number of 

root letters”, position 21 “verb root attribute” can be known if the root is known. The 

same case with position 13 “Definiteness” it is a feature for closed classes of noun 

categories. It seems that this tagset is more theoretical than practical. 

3.1.4 Yahya Elhadj 

(Elhadj)  [38] presented the development of an Arabic part-of-speech tagger that 

can be used for analyzing and annotating traditional Arabic texts, especially the 

Qura‟n text. The developed tagger employed an approach that combined 

morphological analysis with Hidden Markov Models (HMMs) based-on the Arabic 

sentence structure. For this purpose, Elhadj created his own tagset (2009). See figures 

(3-5, 3-6 & 3-7). Figure 3-5 represents the tagset as a DAG (directed acyclic graph), 

which is the choice of the author.  

This tagset has the following limitations: particles have no attributes. It is 

particularly simple with respect to verb and noun classifications. The case of noun 

was excluded which is very important in syntax analyses. It does not show any 

features for verbs and this is not a good choice, because Arabic verbs often have 

implicit pronouns and so on. 

 

                                                
7
 See section 3.4.2 for more details. 
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Figure 3-4: Majdi Sawalha main POS classification, letters 1, 2, 3 

and 4 only. 

Main POS 

Noun Residuals Punctuation Particles Verb 

Pats Verb 

 ِبظٟ

Present verb 

 ِعبسع

imperative 

 اِش

 

 

Adjective  

 اٌصفخَاٌّشجٙخ

Noun of place  

 اعَُِىبْ

Noun of time  

 اعَُصِبْ

Instrumental noun 

 اعَُالاٌخ

Proper noun 

 اعَُاٌؼٍُ

Noun of genus 

 اعَُاٌجٕظ

Numeral noun  

 اعَُاٌؼذد

Verbal noun 

 اعَُاٌفؼً

Five noun 

 الاعّبءَاٌخّغخ

Relative noun 

 اعَُِٕغٛة

Noun of diminution 

 اعَُرصغ١ش

Form of exaggeration 

 ص١غخَِجبٌغخ

Noun of plural form 

 اعَُجّغ

Noun of genus in plural 

form 

 اعَُجٕظَجّؼٟ

Noun of preeminence  

 اعَُرفص١ً

Invented noun 

 اعَُِٕذٛد

Noun of sound 

 اعَُصٛد

 

Gerund 

 اٌّصذس 

Gerund start with mim 

ّصذسَا١ٌّّٟاٌ   

Gerund of one time 

 ِصذسَاٌّشح 

Gerund of state 

 ِصذس١َ٘ئخَِصذسَإٌٛع 

Gerund of emphasize 

 ِصذسَاٌزٛو١ذ 

Gerund of industry  

 اٌّصذسَاٌصٕبػٟ

Pronoun 

 اٌع١ّش 

Demonstrative Noun  

 اعَُالاشبسح

Special relative 

pronoun 

 اعَُاٌّٛصٛيَاٌخبص 

Common relative 

pronoun 

 اعَُاٌّٛصٛيَاٌّشزشن 

Interrogative pronoun 

 اعَُالاعزفٙبَ 

Conditional noun 

 ِصذسَاٌّشح 

Allusive noun 

 اٌىٕب٠خ

Adverb  

 اٌعشف

Active participle 

 اعَُاٌفبػً

Increased Active 

participle 

  ِجبٌغخَاعَُاٌفبػً

 

Exceptive particle  

ءدشفَاعزثٕب  

Interrogative particle  

 دشفَاعزفٙبَ

Particle of futurity  

 دشفَاعزمجبي

Causative particle  

 دشفَرؼ١ًٍ

Negative particle  

 دشفَٔفٟ

Jurative particle  

 دشفَلغُ

Answer particle  

 دشفَاٌجٛاة

Apocopative answer 

particle  

 دشفَششغَجبصَ

Incitement particle  

شفَرذع١طد  

Infinitive particle  

 دشفَِصذسٞ

Attention particle  

 دشفَرٕج١ٗ

Emphasis particle  

 دشفَرٛو١ذ

Explanation particle  

 دشفَرفغ١ش

Simile particleَ 

 دشفَرشج١ٗ

 

Letter of "Jussive"/ 

Apocopative letter  

 دشفَجضَ

Accusative letter  

 دشفَٔصت

Preposition 

 دشفَجش

Annular  

 دشفَٔبعخ

Conjunction  

 دشفَػطف

Partial Accusative 

letter  

 دشفَإٌصتَاٌفشػٟ

Vocative letterَ 

 دشفَٔذاء
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Figure 3-5: Noun and its sub-categories in Elhadj tagset. 

            

 

Figure 3-6: Verb and its temporal-forms in Elhadj tagset. 

Proper 
 ”ػٍُ“

Noun  
 الاعُ

Definite 
 ”ِؼشفخ“

Indefinite-
def_Art 

ٔىشح"-"اي  

Pronoun 

 "ظ١ّش"
Demonstrative  

 "اشبسح"

Separate  
 "ِٕفصً"

Attached 
 "ِزصً"

Indefinite 
 ”ٔىشح“

Relative 

 "ِٛصٛي"

3rd person 
 ”غبئت“

2nd person 
 "ِخبغت"

1st person 

 "ِزىٍُ"

plural 
 ”جّغ“

Dual 
 "ِثٕٝ"

singular 
 "ِفشد"

Feminine  
 ”ِإٔث“

Masculine 

 "ِزوش"

Verb 
 ”اٌفؼً“

Imperative  
 ”أِش“

Imperfect 
 ”ِعبسع“

Perfect 
 ”ِبظٟ“
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Figure 3-7: Main groups of particles in Elhadj tagset. 

3.1.5 Buckwalter tagset 

The Buckwalter tagset (figure 3-8), developed by Tim Buckwalter, is a form-based 

tagset. The Buckwalter tagset is considered very rich for many computational 

problems and approaches. Several tagsets have been developed that reduce it to a 

“manageable” size (Habash)  [45]. 

In this tagset there is no distinction between categories and features for POS. The 

particle classification has no attributes. He does not distinguish between attached 

pronouns or other clitics and inflection of the word (suffixes). The Yaa Alnasabi is 

omitted, and treated as an attached pronoun. 

Particle 
 ”اٌذشف“

Conju 
 ”ػطف“

Answer 
 ”جٛاة“

Vocati 
 ”ٔذاء“

Rebuf 
 ”صجش“

Asthna 
 ”اعزثٕبء“

Genitiv 
 ”جش“

Negat 
 ”ٔفٟ“

Prohibt 
“ٟٙٔ” 

Interrog 
 ”اعزفٙبَ“

Condi 
 ”ششغ“

Others 
 ”آخش“

Confir 
 ”رأو١ذ“

Notifi 
 ”رٕج١ٗ“

Expect 
 ”رٛل١غ“

Wishin 
 ”رّٕٟ“

Plural 
 ”جّغ“

Dual 
 ”رث١ٕخ“

Femini 
 ”رأ١ٔث“

Iterpret 
 ”رفغ١ش“

Def.Art 
 ”رؼش٠ف“

Feminine 
 ”ِإٔث“

Masculine 
 ”ِزوش“
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Figure 3-8: Buckwalter tagset components (the source is (Habash)  

[45]). 

3.1.6 Reduced Buckwalter tagsets: BIES, KULICK and ERTS 

3.1.6.1 BIES tagset  

The Bies tagset (Figure 3-9) was developed by Ann Bies and Dan Bikel as a subset 

of Buckwalter tagset with around 24 tags variants. It was inspired by the Penn English 

Treebank POS tagset (Habash)  [45]. 

It is a very simple set which misses many useful features, in particular many 

classes of nouns, verbs and particles. The nouns, verbs and particles have no 

attributes. 

VERB Nominal 

VERB  

PSEUDO_VERB  

verb 

pseudo-verb 

NOUN  

NOUN_NUM  

NOUN_QUANT  

NOUN.VN  

NOUN_PROP  

noun 

nominal/cardinal number 

quantifier noun 

deverbal noun 

proper noun 

PV  

PV_PASS  

PVSUFF_DO:<PGN>  

PVSUFF_SUBJ:<PGN>  

perfective verb 

perfective passive verb 

direct object of perfective 

verb 

subject of perfective verb 

ADJ  

ADJ_COMP  

ADJ_NUM  

ADJ.VN  

ADJ_PROP  

adjective 

comparative adjective 

adjectival/ordinal number 

deverbal adjective 

proper adjective 

IV  

IV_PASS  

IVSUFF_DO:<PGN>  

IV<PGN>  

IVSUFF_SUBJ:<PGN>  

_MOOD: <Mood> 

imperfective verb 

imperfective passive verb 

imperfective verb direct 

object 

imperfective verb prefix 

imperfective verb subject 

and mood suffix 

ADV  

REL_ADV  

INTERROG_ADV  

adverb 

relative adverb 

interrogative adverb 

CV  

CVSUFF_DO:<PGN>  

CVSUFF_SUBJ:<PGN>  

imperative (command) verb 

imperative verb object 

imperative verb subject 

PRON  

PRON_<PGN>  

POSS_PRON_<PGN>  

DEM_PRON_<GN>  

REL_PRON  

INTERROG_PRON  

pronoun 

personal pronoun 

Possessive personal pronoun 

demonstrative pronoun 

relative pronoun 

interrogative pronoun 

Particles 

PREP  preposition 

CONJ  

SUB_CONJ  

conjunction 

subordinating conjunction 

PART  

CONNEC_PART  

EMPHATIC_PART  

FOCUS_PART  

FUT_PART  

INTERROG_PART  

JUS_PART  

NEG_PART  

RC_PART  

RESTRIC_PART  

VERB_PART  

VOC_PART 

particle 

connective particle 

emphatic particle 

focus particle 

future particle 

interrogative particle 

jussive particle 

negative particle 

response conditional particle 

restrictive particle 

verb particle 

Vocative Particle 

NSUFF<Gen><Num><Cas><Stt>  

CASE<Def><Cas>  

DET  

nominal suffix 

nominal suffix 

determiner 

Other 

PUNC  

ABBREV  

INTERJ  

LATIN  

FOREIGN  

TYPO  

PARTIAL  

DIALECT 

punctuation 

abbreviation 

interjection 

latin script 

foreign word 

typographical error 

partial word 

dialect word 
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Figure 3-9 : The Bies tagset 

3.1.6.2 The Kulick tagset 

The Kulick tagset  [65] was developed by Seth Kulick and shown to be beneficial 

for Arabic parsing (Habash)  [45]. The Kulick tagset contains 43 tags that extend the 

Bies tagset. It is a very simple set which misses many useful features and classes. 

3.1.6.3 The Extended Reduced TagSet (ERTS) 

ERTS is the base tagset used in the Amira system. ERTS has 72 tags. It is a subset 

of the full Buckwalter morphological set defined over tokenized text. ERTS is a 

superset of the Bies/RTS tagset. In addition to the information contained in the Bies 

tags, ERTS encodes additional morphological features such as number, gender, and 

definiteness on nominals only (Habash)  [45].  Again, it is a very simple set. It misses 

many classes of particles. The particles have no attributes. 

3.1.7 The CATIB POS tagset 

The CATiB tagset (figure 3-10) was developed for the Columbia Arabic Treebank 

project (CATiB) (Habash) [47] [49]. There are only six POS tags in CATiB. The 

Nominals DT determiner / demonstrative pronoun, 

NN  RP RP Particle 

NNS IN IN preposition or subordinating conjunction 

NNP singular proper noun Verbs 

NNPS plural/dual proper noun VBP active imperfect verb,  

PRP  personal pronoun, VBN passive imperfect/perfect verb,  

PRP$  possessive personal pronoun, VBD active perfect verb, 

WP relative pronoun VB imperative verb 

JJ adjective, Others 

RB adverb, UH interjection,  

WRB relative adverb, PUNC punctuation, 

 

CD cardinal number, NUMERIC_CO

MMA 

The letter � r used as a 

comma,  

FW Foreign word NO_FUNC unanalyzed word 

Particles   

CC coordinating conjunction,   
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simplicity of the POS tagset is intended to speed up human annotation and yet 

maintain the most important distinctions. It is the simplest tagset, where many classes 

and features are missed. 

 

Figure 3-10: the CATIB POS tagset 

 

3.1.8 The PADT tagset 

The PADT tagset (see figure 3-11 & 3-12), used in the ElixirFM analyzer, was 

developed for use in the Prague Arabic Dependency Treebank (Habash)  [45]. The 

PADT tagset is defined for ATB tokenized Arabic. Each tag consists of two parts: 

POS and Features. It misses many classes and features. Particles have no attributes. 

           

Figure 3-11: POS for The PADT tagset 

      

Figure 3-12: the PADT features 

 

 

Tag  Remark  Tag Remark  

VRB All verb Types PROP proper nouns 

VRB-

PASS 

passive-voice 

verbs 

PRT Particle 

NOM Nominal  PNX punctuation 

marks 

 

Tag  Remark  Tag Remark  Tag Remark 

VI imperfect verb Y Abbreviation C Conjunction 

VP perfect verb S Pronoun P Preposition 

VC imperative verb SD demonstrative 
pronoun 

I Interjection 

N Noun F particle G Graphical symbol 

A Adjective FI interrogative particle Q Number 

D Adverb FN negative particle -- Isolated definite article 

Z Proper noun     

 

Mood  Indicative Subjunctive Jussive  D (ambiguous) 

Voice  Active  Passive   

Person  1 speaker 2 addressee 3 others  

Gender Masculine Masculine    

Number Singular Dual Plural  
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3.2 Traditional Arabic POS 

POS is the most studied field in the Arabic language. The distinctions between 

parts of speech were investigated and specified. We will show, in this section, the 

classical classifications. The detailed explanation of these classes is far too 

complicated to be presented in this dissertation, therefore we will describe only the 

most important classes and features. In this section we will show the main 

classification for Arabic word and the subclasses of these main POS. 

3.2.1 Main Arabic POS 

The first classification of a word in traditional and modern Arabic is noun, verb 

and particle (Al-Rajhi)  [10] (Al-Galaiini)  [6] (Al-Dahdah 1989)  [4]. 

3.2.2 Arabic Noun Classes 

There are many types of noun. A noun can be a described by more than one type or 

status. The summaries of noun classes according to their classification are in figure 3-

13 & 3-14 (Al-Dahdah)  [4]: 
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Figure 3-13 : Noun classification according to its types (the source 

is (Al-Dahdah) [4]) 

 

 
Figure 3-14: Noun classification according to its status (the source is 

(Al-Dahdah) [4]) 

3.2.3 Arabic Verbs 

The verb can be classified according to: 

1. If it has vowels or not: it has approximately 30 subtypes (see (Sawalha) 

 [82]). 

2. If it is complete or incomplete 

3. Voice (passive or active). 

4. If it is merely or has extra letter and the number of letters. 

5. If it has certainty or not  

6. Tense. 

7. Transitivity. 

8. If it has negation or not. 

9. If verbs have special case (interjection verb form ص١غخَاٌزؼجت) or not. 

10. Variability & Conjugation 
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Any verb has features [Gender + Number + Person + Mood]. We can see that there 

are interleavings among all these classifications. 

3.2.4 Arabic Particles  

There are two classifications for the particles according to. 

1. Their working in the sentence. 

2. Their meaning. 

The first classification is done according to the effect of the particle on the 

following word (see Section 2.7). The classes are defined according to the effect: 

nominative, accusative, genitive, jussive… etc. There are also particles which have no 

effect and they are classified as "not working particles". 

The second classification has many classes, in (Al-Galaiin)  [6] there are 31 

interleaved types: negative particle (ٟدشفَٔف), answer particle (دشفَجٛاة), explanation 

particle(َدشف َششغ) conditional particle ,(رفغ١ش َ) exhortation particle ,(دشف دشف

) offering particles ,(رذع١ط ٌؼشضادشفَا ), warning particles (ٗادشفَاٌزٕج١), subordinating 

conjunction (ٞدشفَِصذس), future particle (دشفَاعزمجبي), emphatic particle (دشفَاٌزٛو١ذ), 

interrogative particle (ََاعزفٙب َاٌزّٕٟ) wishing particles ,(دشف  pleasing particles ,(دشف

َاٌزشجٟ) َاٌزشج١ٗ) simile particle ,(دشف َاٌصٍخ) relation particles  ,(دشف  purpose ,(دشف

particle (ًدشفَاٌزؼ١ٍ), aversion particle (دشفَسدع),  l_letter meaning (لاِبد), feminine 

Taa (َاٌزأ١ٔث َاٌغىذ) stopping Haa  ,(ربء َغٍت) request particles ,(٘بء  nunation ,(دشف

particles (َٓر٠ٕٛ َٔذاء) vocative particle ,(دشف َ) coordinating conjunction ,(دشف دشف

َٔصت) accusative particle ,(ػطف  jussive particles  ,(الاِش) imperative particle ,(دشف

 particles similar to ,(دشفَجش) preposition ,(دشفَٟٔٙ) prohibition particle ,(دشفَجضَ)

verbs ( ؼًادشفَِشجَٙٗثبٌف ), particles similar to Laisa (verb) (ادشفَِشجَٙٗث١ٍظ). 

In (Al-Dahdah)  [4] there are 40 interleaved types (some types from (Al-Galaiini 

1990) do not exist in (Al-Dahdah 1989)) which add the following particles: swearing 

 beginning , (اعزثٕبء) exceptive ,(اعزذسان) palinode ,(اعزفزبح) starting ,(ئظشاة) strike ,(لغُ)

) definition ,(رفص١ً) details ,(ِفبجأح) surprise ,(اثزذاء) ٔذثخ(,َ)رذم١ك(,َ)رخ١١ش(,َ)رصذ٠ك(,َ)رؼش٠ف ), 

intention (غب٠خ), adverbial (ظشف١خ), superfluity (ص٠بدح) , increasing (رىث١ش), decreasing 

   .(رم١ًٍ)

(Al-Moradi)  [8] The grammarian limited the particle to approximately 50 types (in 

meaning). 
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3.3 Designing an Arabic Tagset 

There are many reasons for designing a new Arabic tagset. We wanted to construct 

an Arabic tagset compatible with CA and MSA. Also, this tagset should not have the 

limits of other tagsets. We construct this tagset according to Arabic specification. The 

last reason is very practical – we plan to annotate a large Arabic corpus with this 

tagset. The annotators will be students of the departments of Arabic language in the 

University of Mustansiriyah (Baghdad). This idea has already got acceptance from the 

head of that department. Within a few years, we believe that we will have a huge 

annotated corpus, because all the students of this department will work on it. 

Therefore we needed a tagset familiar to them and easy to master in, and rich in 

information. 

3.3.1 Designing criteria 

(Elworthy)  [40] The design of an appropriate tagset is subject to both external and 

internal criteria: 

1. The external criterion is that the tagset must be capable of making the 

linguistic (for example, syntactic or morphological) distinctions required 

in the output corpora. 

2. The internal criterion is that of making the tagging as effective as 

possible.  

The first and second criteria must be balanced. As a part of point 2, we should note 

that very fine-grained distinctions may cause problems for automatic tagging if some 

words can change grammatical tag depending on function and context (Atwell)  [14]. 

The problem of tagset design becomes particularly important for highly inflected 

languages. If all of the syntactic variations which are realized in the inflectional 

system were represented in the tagset, there would be a huge number of tags, and it 

would be practically impossible to implement or train a simple tagger. (Elworthy)  [40] 

has suggested that what is important is to choose the tagset appropriate for the 

application, rather than to optimize it for the tagger. 

(Feldman)  [41] did test on several languages with tagsets of various sizes and 

found out, that there is no clear relationship between tagset size and tagging accuracy. 

However, generally smaller tagsets peform better on unknown words.  

refrence/tlj-afeldman.pdf
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In this chapter we will design an Arabic tagset. The construction is based on the 

deficiencies of the other tagsets. It has two fields for each POS, one for classification 

or working and the second for feature or meaning. We will differentiate between 

classes of POS and grammatical features or between particles working and meaning. 

For example the plural noun is a noun with plural feature.  

Another important factor for adding a tag of a given type is the analysis: is the tag 

useful in translation, semantics, and speech recognition, and so on, or not? From this 

point of view, we can select a tagset. All these criteria were taken into account when 

building the new Arabic POS tagset.  

3.3.2 Tagset Interference or interleaving 

We introduce another design decision to consider when designing a tagset: 

interference or interleaving. This question emerges when we use many syntactical 

classes and unifying many classifications into one. The tagset has interleaving if one 

word has more than one class (POS) at the same time and all these classes are true. It 

is often due to an error in the design of the tagset. According to our analysis of Arabic 

tagsets, the increase of POS numbers in a tagset, without augmentation, increases the 

possibility of interleaving. Most of the simple and small tagsets (such as CATIB and 

PADIT…) don‟t have interleaving. Let us take a practical example of a large tagset:  

Sawalha tagset (Sawalha)  [82]. According to this tagset, for the following example 

“  َٗ َث زَٔج  ٔب  fklA Ax*nA b*nbh” “We took each one by/because his sin” the b (Baa) is“ ”فىَ لاَّ أخَز 

for caution and preposition at the same time (it is preposition used for caution) and 

they are both true. It means that there are two tags (true) simultaneously. So this tagset 

has interleaving. This has happened because it is a large morphosyntactic tagset. We 

must see that interleaving is different than word sense where the word has different 

meanings or tagging where the word has many tags (non-interleaved tags). 

When a word has more than one POS this does not mean there is interleaving but it 

depends on these classes. Let us consider another example for showing interleaving. 

Let the tagset consist of three tags only: noun, verb and particle. This tagset, for sure, 

does not have interleaving. Now, we want to extend this tagset and, mistakenly, we 

add subject as a new tag. Now, this tagset has interleaving because all subjects are 

nouns. If we have a word X, we cannot say it is subject or noun (if it is a subject) 

alone, but we say that it is subject and noun. 
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For this and similar cases, we have two solutions simultaneously. The first solution 

is that we add some of the interleaved classes as classes and the other ones as 

attributes. In the previous example, Noun class is a class and Subject class becomes 

an attribute. The second solution is that we divide the tagset into levels. In the 

previous example, we add a level for morphological classes and a level for syntactic 

classes. Any word will have more than one level. 

In the proposed tagset we collect these two solutions according to the requirements 

as the reader can see in the next sections. 

3.4  A New Arabic Tagset  

3.4.1 Main POS 

The first classification of a word is noun, verb and particle (Al-Rajhi)  [10] (Al-

Galaiini)  [6] (Al-Dahdah)  [4]. But there are symbols used in the written text as 

punctuations, foreign words, numbers, and so on. (Khoja)  [57] [59] used two other 

categories which are residuals and punctuation. This is true for normal Arabic text, 

but in Qur‟an there are other symbols that do not exist in any other text which are 

stopping symbols. These symbols in some cases are taken as sentence ending (by 

force or optional). They can be made a part of the punctuation category or a new 

category (special) can be created for them. Figure 3-15 shows main POS for Arabic, 

the same as in most of other tagsets. 

 

Figure 3-15: Main POS. 

3.4.2 Arabic noun class in the proposed tagset 

If we go back to figures 3-13 & 3-14, we cannot take all these classifications 

because they will cause highly ambiguous results due to the interleaving of these 

classes. According to the two levels idea of our tagset, the nouns classes can have 

class & features only. The final noun classes and subclasses in the proposed tagset are 

Noun N Verb V Particle P Residual R Punctuation Pnc 

Word 
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shown in figure 3-16. The features of the noun in the proposed tagset are shown in 

Figure 3-17. One can observe the following:  

1. Person attribute for nouns was not used here because of the example 

“ktAb”-“وزبة” (book). It is not a person. Therefore “ktAbhA”-“وزبثٙب” 

(her book) has two POS.  

2. The derived nouns are not taken into account because they are 

interleaved with other types as adjectives. 

3. The constant adverb class was added, only, to this level. 

4. The definedness feature was not taken because we deal with the definite 

particle as independent particle and the classes which have definiteness 

feature are constant: pronouns, demonstrative, proper nouns etc. 

The tags of nouns start with letter N followed by Nouns POS followed by Features 

(Number+ Gender + Case + Structured) respectively. For example the tag 

NDem_SMAY is a Demonstrative Noun Singular Masculine Accusative structured. 

 

Figure 3-16: Arabic Noun Classes in the proposed tagset. 

 

 اٌع١ّش

Pronoun 

NPrn 

 اعَُاعزفٙبَ

Interrogative 

NInt 

 ئلاشبسح

Demonstrative 

NDem 

 ِٛصٛي

Relative 

NRel 

 اٌزصغ١ش

 

Reduced 

NRed 

 اٌىٕب٠خ

Allusive 

NAlv 

اعَُ

 اٌجٕظ

Common 

NNou 

 اعَُاٌؼٍُ

Proper 
NPrp 

الاعّبءَ

 اٌخّغخ

Five nouns 

NFiv 

 اعَُاٌؼذد
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 اعَُفؼً

Verbal 

NVrb 

 اٌصفخ

Adjective  

 

 الاصٍٟ
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NNmc 

١جٟاٌزشر  
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NNmo 

 اخشٜ

Other 

NAdo 

 إٌغجخ

Genealogical 

NAdg 

 اٌعشفَغ١شَاٌّزصشف

Constant Adverb 

NAdv 
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Figure 3-17: Noun features in the proposed tagset
8
 

3.4.3 Arabic Verb Classes and Attribuits in our Tagset 

For the previous classification, we can take the verb classes and verbal attributes 

(features) as in figure 3-18 & 3-19 respectively. This classification will remove the 

interleaving which happened by variation of classification. 

 

Figure 3-18: Verb classes in the proposed tagset 

Figure 3-19: Verbal attributes in the proposed tagset 

3.4.4 Particles Classification in the proposed tagset 

The classes of the particle, in our tagset, are defined according to the particle 

working. We summarized all of them in Figure 3-20.  

The particle meaning is an attribute, in our tagset, of particles. As we can see the 

particles have 50 types (in meaning). Some of these classes can be combined into one 

class according to similarity of their meanings, therefore we can reduce the number 

                                                
8
 The word ending will be changed (letter or diacritics) according to the case of the word(nominative 

accusative …). In the case of structured word, the word ending will be constatnt at all word cases 

(nominative, accusative …) 

Gender:  Masculine  Feminine  Common (ِشزشن)   

Number:  Singular   Plural   Dual    

Person:  First  Second   Third    

Mood:  Nominative   Accusative   Jussive  Non 

Certainty  Yes No   

Structured  Yes No   

Voice  Passive  Active    

 

Gender:  Masculine   Feminine   Common 

Number:  Singular   Plural   Dual   

Case:  Nominative   Accusative   Genitive   

Structured Yes   No    

 

Verb  

Past Pst Present Prt  Imperative Imv 
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from 50 to 21 as in Figure 3-21. For example the classes: imperative, exhortation, 

pleasing, wishing, offering are unified to request class and so on. 

Prepositions are a group containing almost all of the previous classes. Each 

preposition has multiple meanings which is a subset of the previous classes. For 

example the preposition "Baa" has 13 different meanings (Al-Galaiini)  [6]. The 

interesting thing in preposition is that it has the same working in the sentence which is 

the reduction. Particles‟ working can be: for-jussive particles, for-reduction (for-

genitive) particles (preposition), for nominative particles, for-accusative particles, for 

conjunction, not-working particles, Prevented. We want to show the difference 

between "for conjunction" and "not working" particles. The first particles translate the 

case of the word before it to the word following it. The second kind of particles does 

not do anything.  

Finally, we will use the following important particle classes as in Figure 3-22 and 

the meaning of particles is shown in Figure 3-23: 

 

 ٌٍٕصت ٌٍؼطف ٌٍجش ٌٍجضَ

 غ١شَػبٍِخ

 اٚ

 ِىفٛفخَػَٓاٌؼًّ

 إٌغخ

)ٔصتَ

 ٚسفغَ(

  وبفخَػَٓاٌؼًّ

 

for 

Jussive9 

Jus 

For 

Reduction10 

(preposition) 

Red 

For 

Conjunction11 

Cnj 

for 

Accusative12 

Acu 

Not working13 

Or Preventive 

Non 

Copier14  

Cop 

Prevent15 

Prv 

Figure 3-20: The classes of particles (working) in the proposed 

tagset. 

                                                
9
 The present tense verb after these particles is in jussive mood. 

10
 The noun after these particles is in genetive case. 

11
 The nouns or verbs conjected by these particles must have the same case. 

12
 The nouns or verbs after these particles are in accusative case. 

13
 They do not have any effect on the following word. 

14
 They have dual effect on the following words. One of the following words is in nominative and the 

other one in accusative case 
15

 Any particle after this particle will be “not working” (i.e., prevented from working).  
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Figure 3-21: Particles meaning in the proposed tagset (features). 

3.4.5 Residuals and punctuation  

Residuals can be symbols of numbers, mathematical formulas, abbreviations, 

acronyms and so on. We must distinguish between the symbol of numbers (1, 2…) 

and nouns of number (one, two…). Figure 3-22 shows residuals classes. 

 

Figure 3-22: Residuals classes. 

Punctuation category contains all punctuation symbols: “،”, “؛“ ,”:“ ,”...“ ,”؟”, “-”, 

“]”, “[”, “=”. All these have one class which is punctuation (CPnc).   

 

Without meaning  

 
 ١ٌظٌَٙبَِؼٕٝ
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Explanation & details 

ََٚرفص١ًرفغ١ش  
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Caution 

 عجت

 

Certainty  

 رٛو١ذ
 رٛو١ذ

 

Answer  

 جٛاة
 جٛاة

 

Increasing & decreasing 

 
 رم١ًٍَٚرىث١ش

 

Vocative 

 ٔذاء

 

Negative 

 ٔفَٟٟٚٔٙ

 

Adverbial  

  شف١خ

 

Conditional  

 ششغ

 

Surprise  

 ِفبجئخ

 

Subordinating 

 ِصذسٞ
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Abbreviations and 
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Residuals and punctuations do not have features or meaning. It means that 

residuals and punctuations are not the same as noun, verb, nor particles; therefore, 

they only have one level. 

3.5  Multilevel tagset 

Residuals and punctuations do not have features or meaning, hence they have one 

level. For particles, there are two levels only, meaning and working. The same 

situation applies to verbs: they have two levels, type and features. The situation for 

nouns is different where there is a third level in addition to POS and feature. The first 

level of POS consists of the properties that do not be change when the position of the 

noun in the sentence is changed. The features of this POS are grammatical features 

(level two). The third level is for syntactic classes which are changed by changing the 

noun position in the sentence. It is well known, that the number of syntactic classes in 

Arabic is much larger than in English. The third level of classes of noun is shown in 

figure 3-23. These classes can be treated as additional features.  We show the levels of 

POS tagset in Figure 3-24. 

 

Figure 3-23: syntactic classes of noun
16

. 

                                                
16

 We intend to design a tagset and build a POS tagger for Arabic. Level three is beyond what tagger 

needs and therefore I used the letter “X” to indicate an unused level for future use. 

 فبػً

(Subject of a verb) 

 ِفؼٛيَثٗ

(Object of a verb) 

 ظشفَِزصشف

(Adverb) 

 ِٕبدٜ

(Vocative) 

 ٔبئتَفبػً

(Passive subject 

representative 

 ِفؼٛيَِطٍك

(Cognate) 

 دبي

(Circumstantial 

accusative) 

 ِعبفَا١ٌٗ

(Possessive 

construction) 

 ِجزذأ

(Subject) 

 ِفؼٛيَلأجٍٗ

(Accusative of 

purpose) 

 ر١١ّض

(Specification), 

 ثذي ,ٔؼذ

(Apposition) 

 خجش

(Predicate of a 

subject) 

 ِفؼٛيَِؼٗ

(Commutative object) 

 ِغزثٕٝ

(Excepted) 
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Figure 3-24: the Levels of the proposed tagset 

3.6 Practical representation of the proposed tagset 

Practically, the tagset is representing classes and features in one block of symbols. 

Representation of tags in the proposed tagset is as follows: 

1. Noun has the form: N+POS_ Number+Gender+Case+Structured 

2. Verb has the form:  

               V+POS_ Person+Number+Gender+Case+Structured+Certinity+Voice 

3. Particles has the form: P+Working_Meaning 

4. Residual has three tags: ROth, RSys or RAcb 

5. Punctuation has one tag: CPnc 

Appendix A shows a practical example of 186 tokens tagged with this tagset. 

Theoretically, the proposed tagset has 3552 tags (excluding the third level). Indeed, 

some of the tag combinations are impossible. By taking third level into account, the 

number of tags will increase to 14892. 

3.7  Discussion 

As we see, some researchers constructed tagsets based on English and missed some 

of the important features of Arabic. Other researchers created tagsets depending on 

the Arabic language and took some features from other languages, but those tagsets 

 First level Second level Third level 

(not used in our 

practical tagset) 

Noun  Noun type which will not 

change at any position in 

the sentence 

Grammatical 

features  

Noun type which can 

change according to it‟s 

position in the sentence 

(mostly syntactic types). 

verb Verb type which will not 

change at any position in 

the sentence 

Grammatical 

features 

 ------ 

Particle Particles working  Particles meaning ------- 

Residuals Residual symbol ------ ------ 

punctuation Punctuation symbol ------ ------ 
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didn't take all the important Arabic language features into account. There has been a 

tagset proposed that includes all Arabic language features, with many useless 

(redundant) tags. 

Building a tagset, as large as possible to include all language features, and as small 

as possible in order to permit relatively efficient tagging, is a hard problem. We 

introduced a new multilevel Arabic tagset compatible with CA (Classical Arabic) and 

MSA (Modern Standard Arabic). It has almost all Arabic features and classes. 

Selecting classes, features and merging them is done carefully. The proposed tagset 

does not have interleaving. The third level of this tagset is beyond the range of this 

dissertation; therefore we will refer to its first two levels, only. 



 

 

 

 

 

 

Chapter 4 Segmentation and Tokenizatio 
 

 
 

 

4.1 Introduction  

Tokenization is the task of separating out words (morphemes) from running 

text (Jurafsky & Martin)  [54]. One of the mophemes typically corresponds to the 

word stem, and there ar ealso inflectional morphemes (Habash)  [45]. We can use 

blanks (white space) to help in this task, but there are hard cases. This definition is 

valid for English, but for Arabic the situation is different. While discussing 

tokenization, it is important to remember that there is no single optimal 

tokenization. What is optimal for IR may not be optimal for SMT. Also, what is 

optimal for a specific SMT implementation may not be the same for another 

(Habash)  [45]. 

Tokenization is a necessary and non-trivial step in natural language processing 

(Bird et, al.)  [22] ( Attia)  [13]. It is closely related to the morphological analysis 

but usually it has been seen as an independent process (Chanod & Tapanainen) 

 [28]. 

(Habash)  [45] shows a number of different levels of tokenization schemes. It 

starts from simple tokenization which is limited to splitting off punctuation and 

numbers from words. Then orthographic normalization unifies various forms of 

letters. Then decliticization schemes split off clitics. The last can be done 

according to stem & affixial morphemes or lemmas & clitics. 
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In our work, there is a little distinction between segmentation and tokenization. 

Segmentation is related to splitting running text into sentences (sentence 

segmentation), into words (word segmentation) and the word to its segments, no 

matter how this word was constructed. On the other hand, tokenization is related 

to getting tokens from running text. But in most cases these two tasks overlap. In 

other words, segmentation is related to splitting all affixes and clitics
17

 and 

tokenization is splitting clitics only with retriving the changed or the deleted 

letters resulting from the inflections. We take the segmentation process as splitting 

running text into sentences (sentence segmentation), into words (word 

segmentation) (Jurafsky & Martin)  [54], and tokenization as splitting the words 

into morphemes. 

In this chapter we propose a hybrid unsupervised method for Arabic 

tokenization, considered as a stand-alone problem. After getting words from 

sentences by segmentation, we use our own analyzer to produce all possible 

tokenizations for each word. Then, manually written rules and statistical methods 

are applied to solve the ambiguities. The output is one tokenization for each word. 

The statistical method was trained using 29k words, manually tokenized (data 

available from http://www.mimuw.edu.pl\~aliwy) from Al-Watan 2004 corpus 

(available from http://sites.google.com/site/mouradabbas9/corpora). The final 

accuracy was 98.83%. 

4.2 Tokenization System 

The whole pre-processing for Arabic tagging system consists of tokenization 

and analyzing. Figure 4-1 shows the whole pre-processing for tagging system. 

After completing all these stages, the final results are lemma and clitics with their 

features. We should note that lemma is an ambiguous term in Arabic and there is 

no consensus among the researchers about its definition. In this dissertation we 

depend on the definition in (Habash)  [45]. In this chapter, we will focus on 

tokenization only. 

                                                
17

 See section 4.7.1 for clitics definition. 
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Figure 4-1: The Tokenization as pre-processing task for tagging 

process. The output is inflected word + clitics for each word. 

4.3 Related Work 

In some works (e.g. MADA+TOKEN (Habash)  [51], BAMA (Buckwalter) 

 [25] [26], AMIRA (Diab)  [32], Xerox Arabic Morphological Analyzer and 

generator (Beesley‟s)  [17] [18], Sakhr‟s Arabic Morphological Analyzer (Sakhr 

Software)  [81], Khoja's stemmer (Khoja)  [58] this step of natural language 

processing is performed (partially or completely) as a preprocessing step.  

(Benajiba)  [20] presents two segmentation schemes that are morphological 

segmentation and Arabic TreeBank segmentation. He shows their impact on an 

important natural language processing task, which is mention detection. 

Experiments on Arabic TreeBank corpus show 98.1% accuracy on morphological 

segmentation. 

(Lee)  [66] depends on the word representation as prefix*-stem-suffix*. The 

algorithm uses a trigram language model to determine the most probable 

morpheme sequence for a given input. The language model is initially estimated 

from a small manually segmented corpus of about 110,000 words. The resulting 

Arabic word segmentation system achieves around 97% exact match accuracy on 

a test corpus containing 28,449 word tokens.  

The systems of Benajiba  [20] and Lee  [66] deal with stem rather than lemma. 

According to Habash  [45] stem is not a legal Arabic word form, unlike lemma. 
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In AMIRA (Diab)  [32] and MADA+TOKEN (Habash)  [51] are packages and 

the tokenization is not a separate task.  They use Support Vector Machine (SVM), 

but Habash  [51] uses morphological analyzer with SVM. They have accuracy of 

tokenization 99.12% and 99.21% respectively. 

4.4 Word and Sentence Segmentation  

4.4.1 Sentence segmentation  

It is the first step in text processing, a crucial one. Segmentation a text into 

sentences is generally based on punctuation (Jurafsky & Martin)  [54]. In Arabic, 

estimating boundaries of a sentence is a relatively simple task, about as difficult as 

in English. The average number of words per sentence is larger than the average 

in English, but it does not affect the segmentation process. The sentence 

boundaries and phrase boundaries can be estimated according to Arabic 

punctuation marks which are ،, ؟,َ...,َ:,َ.,َ؛  ,"" ,- ,[ ] ,=. 

4.4.2 Word segmentation 

Word segmentation is the process of getting words from text. The space is a 

good separator for this task but it will not work in special cases, such as 

compound words. Some compound words are written with a space in the middle 

even though they are single words. Such cases must be solved at this stage. For 

example the word “IslAm |bAd”-“َآثبد  is a name of a city in (Islamabad) ”ئعلاَ

Pakistan. It means that we must have knowledge base with such words. After 

solving this problem, this stage is relatively easy. There is another difficulty, 

when a few words are attached together without spaces, which can happen when 

the first one ends with one of the letters “w”-“ٚ”, “d”-“د”, “r”-“س”, “z”-“ص”, “*”-

 .It is formally a mistake, but may happen when dealing with informal texts .”ر“

Our system assumes to work with correct texts hence we do not offer any solution 

of this particular problem. 

4.5 Normalization 

Orthographic normalization is a basic task which reduces noise in the data 

(Habash)  [45]. This is true regardless of the task: preparing parallel text for 

machine translation, documents for information retrieval or text for language 

modeling. Normalization can be Tatweel removal (removing Tatweel symbol), 
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diacritic removal and letter normalization (variant forms to one form conversion). 

Figure 4-2 shows letter normalization example. 

Figure 4-2: An example of Arabic letter normalization  

This normalization will help us in searching or matching process but after this 

stage, the normalization process will increase the ambiguity in tokenization. For 

example, if we normalize “P”-“ح” (Taa-Marbuta) to “h”-“ٖ” (Ha), the latter will be 

tokenized as a pronoun. For this reason, in our work we consider normalization as 

a temporary stage for matching and searching the dictionaries. 

4.6 Arabic Tokenization 

Arabic words are often ambiguous in their morphological analysis. This is due 

to Arabic‟s rich system of affixation and clitics and the omission of 

disambiguating short vowels and other orthographic diacritics in standard 

orthography (“undiacritized orthography”). On average, a word form in the ATB 

has about 2 morphological analyses (Habash & Rambow)  [46].  

Arabic word is of the form [Proclitics] + [inflected word] + [Enclitics]. Then, 

tokenization here is similar to word segmentation in Chinese, where Arabic word 

corresponds to a sentence in Chinese
18

. 

4.7 Arabic word form 

In written, it is possible that a single word has two or more part of speech 

(POS) categories. It leads to problems in stemming and segmentation. Let‟s 

consider the word “wbsyArthm”-“ُٙٚثغ١بسر” (and by their car). Is it a word? How 

is it constructed? According to the classical
19

 definition of a word, it is a word but, 

as we can see, it has four POSs. 

                                                
18

 Chinese does not delimit words by white-space. Word segmentation is therefore fundamental for 

other language processing tasks in this languages (Peng et, al.) [76]. 
19

 The word is a sequence letters enclosed by two spaces 

 O أ

 I ئ

 | آ
 A ا

ٜ Y ٞ y 

 P ٖ h ح

ب-ؤ „ ء  W-} 
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In this chapter we will distinguish constructing of a word from a number of 

POSs and the inflected word (construction perfect, imperfect, imperative, mood, 

person and so on). I.e., we will distinguish clitics and affixes.  

Arabic clitics attach to the inflected base word (see the next Section 4.7.1) in a 

strict order that can be represented as follows, using general class names (Habash) 

 [45]:   

[QST+ [CNJ+ [PRT+ [DET+ BASE +PRO]]]]
20  

where QST is question, CNJ is conjunction, PRT is particle, DET is 

determinant, BASE is base of the word, and PRO is pronouns, respectively.   

In a more general way, we can represent the word as: 

BASE + affixes + clitics  

 lemma+ morphological features+clitics  

 stem + affixes + clitics  

 inflected word +clitics  

The previous example “wbsyArthm”-“ُٙٚثغ١بسر” will be “w+b#syArp#hm” 

according to the last form where: w, b and hm are clitics and syArp is the inflected 

word. 

Some works do not differentiate between affixes and clitics, assuming the 

Arabic word generally to be of the form (prefixes + stem + suffixes). In our work, 

we will focus on the form (inflected word + clitics), where inflected word consists 

of lemma and morphological features. This will help us encoding word features 

and POS without doing an unwanted segmentation. 

4.7.1 Word Clitics 

Clitic is a unit whose status lies in between that of an affix and a word. The 

phonological behavior of clitics is like affixes; they tend to be short and 

unaccented; their syntactic behavior however is more like words, often acting as 

pronouns, articles, conjunctions or verbs (Jurafsky & Martin)  [54]. Clitics can be 

proclitics which precede the word (like a prefix) or enclitics which follow the 

                                                
20

 Any transliteration written in English should be read from left to right, while the corresponding 

Arabic original phrase should be read from right to left. 
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word (like a suffix). Proclitics can be preceding the verb, noun, pronoun and 

particles. Figures 4-3 & 4-4 list almost all known combinations of verbs and 

nouns proclitics, respectively. There are three levels of verb proclitics, always 

attached in the same order. The use of them is optional. For noun the structure is 

similar, but there are four levels. 

 

Figure 4-3: Verb proclitics. 

 

Figure 4-4 Noun proclitics. 

Figure 4-5 shows cliticization of attached pronouns
21

 with particles. Selecting 

which is the base (inflected word) depends on the priority shown in Figure 4-5 by 

number. The numbers (1, 2 and 3) which are used in figure 4-5 are the priority of 

taking the base of the word. If one word from box 1 exists in the word, then it is 

the base and the remaining ones are clitics; else, if a word from list box is present, 

then it is the base and the other ones are clitics; else the word from box 3 is the 

base and there are no proclitics. Note that at least one word from those lists must 

be present. For example “ُٙٔافا” “AfInhm” “then, are that they” is cliticized as 

follows: “A”-“ا” (are/is) and “f”-“ف” (then) are proclitcs, “In”-“ْئ” (that) is the 

base and “hm”-“ُ٘” (they) is an enclitic. The book (Habash  [45], pages 48-50) is a 

good reference for other special cases in cliticization. 

The particles can appear combined for constructing words, but the easy way for 

dealing with them is by taking these combinations as stop words. 

                                                
21

 In Arabic there are two types of pronouns: attached to a word (us, me..) and separated (I,we…). 

 ا
 ف

 و

 ن

 ي

 ة

 

 اعُ

[‟][w, f][k, l, b][Al][Noun] 

 

 اي

 ا

 ف

 و

 ل

 ي

 ط

 

 فؼًَِصشف

[‟][l, w, f][l, s](inflected Verb) 
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Enclitics follow verb or noun. The enclitic “nA”-“ٔب” (we-our) is ambiguous 

and has two possible roles (either a clitic or an inflection suffix). For example the 

word “qtlnA”-“لزٍٕب” can mean “we killed” or “he killed us”. “nA”-“ٔب” is an affix 

in the first context and an enclitic in the second context.  

All enclitics are pronouns and therefore pronouns themselves don‟t have 

enclitics. Figure 4-6 shows all common enclitics for nouns and verbs with their 

order. They are optional. 

This set of clitics and their order of precedence (summarized here and 

described also in other papers and books) are the base of our algorithm. Adding a 

few rules for deleting unwanted combinations of clitics we can get a good 

segmentation program, as we will see in the implementation section later in this 

chapter. 

 

Figure 4-5: Proclitics for pronoun and pronoun as an enclitic 

according to the priority number of taking the base. 

 ا
 ف

ٚ 

,دبشب,اٌٟ,اْ,ِٓ,فٟ,ػٓ,ة
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 ِغ,١ٌذ,ٌٛلا,ٌىٓ

... 

 ظ١ّش

An, mn, fy, En, b, 

xlA, HA$A, Al , 

ElY, El, EdA, lAkn, 

lEl, kAn, mE, lyt, 

lwlA,… 

 

 ي

‟ 
W 

f 

l 
Pronoun 

1 

1 

3 2 

3 
2 



Segmentation and Tokenization   

57 

 

Figure 4-6: Enclitics for Noun and Verb 

4.8 Tokenization and segmentation techniques 
and schemes  

Habash  [48] shows that tokenization techniques can be as simple as regular 

expressions and/or as complex as morphological analysis (form-based and 

functional). The main classification of tokenization algorithms is into supervised 

and unsupervised ones. Manual analysis of text and writing custom software, 

unsupervised Language Model Based (Lee et al.)  [66] are examples of 

unsupervised methods. Annotating the sample corpus with boundary information 

and using machine learning (ML) is an example of a supervised method. The 

other classification is into language dependent (methods used for one language or 

group of languages, there are many methods of this type) and language 

independent methods. 

Arabic has a middle level of segmentation complexity; it is between English 

(and similar languages) and Chinese (and similar languages). In Arabic words are 

typically separated by spaces (as in English), but it is possible that an Arabic word 

is a whole sentence, like in Chinese. Therefore we should use a hybrid method for 

dealing with segmentation or split the segmentation task into two steps. The 

helpful thing is that the forms of Arabic words are known, which simplifies the 

segmentation of words when compared to Chinese, where one has to apply 

segmentation to sentences. 

Schema defines what the target tokenization is (Habash)  [45]. The same paper 

lists some examples of schemes used in tokenization of Arabic. In this dissertation 

we use scheme D3+ LEM. D3 (decliticization of degree 3) is a scheme that splits 

off clitics: the class of conjunction clitics (w+ and f+), the infrequent interrogative 

 ٔب,وٓ,وُ,وّب,ن,٘ٓ,٘ب,ُ٘,ّ٘ب,ٖ  ٟٔ (فؼً)

 ٞ,ٔب,وٓ,وُ,وّب,ن,٘ٓ,٘ب,ُ٘,ّ٘ب,ٖ  ٟٔ (اعُ)

(Noun) [nA,kn,kmA,k,hn,hA,hm,hmA,h] 

 

(verb)[ny][nA,kn,kmA,k,hn,hA,hm,hmA,h] 
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clitic, the class of particles (l+, k+, b+ and s+), the definite article Al+ and all 

pronominal enclitics. LEM reduces every word to its lemma. 

4.9 Challenges of Arabic tokenization 

There are many challenges to Arabic tokenization. The complexity of the 

morphology together with the under-specification of the orthography creates a 

high degree of ambiguity (Habash et, al.)  [51]. Some of these ambiguities can be 

summarized by: 

 Orthography problems resulting from writing the letter in ambiguous case as 

in “Y”-“ٜ” and “y”-“ٞ” or unification of some forms of a letter as in “A”-“ا”, 

“O”-“أ”, “I”-“ئ” and so on. 

 Encliticization of a word ending with “P”-“ح”:  

                “jmEthm”-“ُٙجّؼز” (collect them)  َُ٘+َجّؼذ 

                “jmEthm”-“ُٙجّؼز” (their Friday)  َُ٘+َجّؼخ  

 

  Encliticization of a word ending with “Y”-“ٜ”: 

                “mstwY”-“ِٜٛغز” (level) + “k”-“ن” (your)  

                “mstwAk”-“ِغزٛان” (your level) 

 “nA”-“ٔب” and “y”-“ٞ” are ambiguous and can be either enclitics or suffixes. 

(see section 6.1). 

 Normalization adds ambiguity, for example normalizing “P”-“ح” to “h”-“ٖ” 

will create false enclitics: the word “Amp”-“اِخ” (nation) after normalization 

will become “Amh”-“ِٗا”, then if we apply the tokenization to the last word, 

it will become “Am+h”-“َٖ+ََا” (him mother) but the right tokenization is “اِخ” 

“nation”. 

 Ambiguity results from decliticization of “l”-“ي”, “A”-“ا” and “Al”-“اي” (the). 

All these and other ambiguities are solved during tokenization stage in our 

system.  

Another class of problems resulting from morphology is solved in this stage. 

For example the word “HmlwnA”-“دٍّٛٔب” (they raise us) after tokenization will 
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be “HmlwA+nA”-“دٍّٛا+ٔب” where the tokenizer adds the removed letter resulting 

from morphological rules.  

There are other encoding problems where the same letter is written in different 

shape with different code. It is solved in this stage, as well. For example 

“zmlA}y”-“ٟصِلائ” (my colleagues) after tokenization will be “zmlAʼ+y”-

  .and so on ”صِلاء+ٞ“

Some of the ambiguities in POS tagging are solved already during 

tokenization. For example the words “bktbnA”-“ثىزجٕب” (by our books) after 

tokenization will be “b+ktb+nA”-“ة+وزت+ٔب” because it has preposition “b”-“ة” 

(by). The other tokenization is “b+ktbnA”-“ة+وزجٕب” (by+we write) which is 

rejected by the tokenizer, because an inflected verb cannot appear after a 

preposition. 

4.10 Our approach 

We use a hybrid method for tokenization which is a combination of 

unsupervised method which depends on rules for getting segments, and statistical 

method for solving ambiguities. Our algorithm works as follows: 

Task 1: As a preparation to the segmentation process, we first compute all 

verb, noun and pronoun proclitics and enclitics storing these combinations in lists. 

Then, the text is segmented into sentences and the sentences into words according 

to space and Arabic punctuations. Segmenting the words into clitics & bases is 

done by analyzer which produces all possible segments for each word. After this 

stage every word may have several segmentations. 

Task 2: Now we remove noise introduced in the first task. We do so by 

deleting segmentations which produced one letter words with proclitics and 

enclitics (which is impossible in Arabic)
22

 and duplicate segmentations (which 

may result from segmenting the same word treated once as a verb and once as a 

noun). We also remove segmentations whose inflected word is not in the 

dictionary (constructed separately from many resources). However, if all produced 

segmentations of a word should be removed, they are all passed to Task 3 for 

                                                
22

 See section 5.8 more details for constructing the dictionary. 
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special treatment. Words whose segmentations are not all removed are passed to 

Task 4. 

Task 3: Because the used dictionary does not cover all words in the language, 

there are many unknown words whose segmentations are passed from Task2 and 

must be processed here as out of vocabulary (OOV). We first choose the 

segmentations which give the largest number of letters in the proclitics and 

enclitics, and among these we choose ones that have the least number of proclitics 

and enclitics. If this does not yield a unique segmentation, the choice is not made 

and the possible segmentations are transferred to Task 4. 

Task 4: Because the system may produce many segmentations for one word, in 

order to get one segmentation for each word, we select the segmentation with the 

least number of segments. If this still does not produce a unique segmentation, we 

use a method similar to that of Task 3. From the candidate segmentations we 

select the segmentations which give the longest possible sequences proclitics and 

enclitics, and among these we choose ones that have the least number of proclitics 

and enclitics. If this does not yield a unique segmentation, we choose the first one 

encountered. 

Task 5: We eliminate, using statistical estimation, ambiguity of results of Task 

1. This task is done in parallel with Tasks2, 3 and 4. This task is described below 

in Section 4.11. 

Task 6: Smoothing or correction rules are used to reduce errors from the 

previous tasks.  

For example, we add the following rule for distinguishing between a word 

ending with “t”-“د” (normal Taa) or “p”-“ح” (Taa Marbuta): 

IF ((the base word has Taa AND has enclitics) AND (has a proclitic of type 

preposition OR the previous base is a preposition)) THEN Change Taa to Taa 

Marbuta.  

There are many other similar rules used in this task derived from Arabic 

grammars (AL-Bidhani)  [3] (Al-Rajhi)  [10] (Al-Hamlawy)  [7] (Al-Galaiini)  [6].  
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4.11 Applying statistical improvement 

Our philosophy of using statistical support is the same as the one we use later 

in POS tagging system. Assume we have a sentence: w1 w2 … wn with n words. 

Let the set of possible tokenizations of word wi in this sentence be {s1… sj}, 

where j is the number of segmentation
23

 of this word. Now we can apply any 

statistical method, like HMM used for tagging, for tokenization.  

We have two facts: in our approach, first we used dictionary and rules for 

tokenization and solving ambiguities. Bigrams are used, and we do not consider n-

grams for n>2. The bigrams equation which we used practically is: 

)|()|(maxarg 1



 iiii
s

i sspswps
i



P(wi | si) is probability of i
th

 word given the segmentation. P(si | si-1) is the 

probability of the segmentation given the previous segmentation. 

4.12 Results  

After applying all the previously described simple methods, we got the 

following results, in which we used bigrams on 45 files
24

 with 29k words.  

Without statistical support and without Task 4 the recall is 0.9877462, 

precision is 0.8617793 and F-measure is 0.920473. Without statistical support 

(one choice for each word using Task 4) the accuracy is 0. 9802977. With 

statistical support (one choice for each word) ten-fold cross-validate accuracy is 

0.9883473.  

In our tests, tokenizations “#Asrt#hA”-“# #٘باعشد ”
25

 and “#Asrp#hA”-

 are assumed to be ”ٔشٜ#٘ب#“-”and “#nrY#hA ”ٔشا#٘ب#“-”nrA#hA#“ ,”اعشح#٘ب#“

errors even though they are only orthographically wrong. In general, any change 

to the ending letter of the word resulting from morphology, if it is not compatible 

with the original letter, is assumed to be an error. Practical tokenized Arabic text 

                                                
23

 s1, …, sj are segmentations, not segments. I.e., each one of these segmentations consist of one or 

more segments. 
24

 The data was chosen randomly from Al-Watan 2004 corpus (available from 

http://sites.google.com/site/mouradabbas9/corpora). The sentences have been tokenized manually 

by ourself. 
25

 Practically the tokenized text has format: proclitics#inflectedWord#enclitics. If there are more 

proclitics/enclitics, they are separated by +. 

http://sites.google.com/site/mouradabbas9/corpora
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and its transliteration are shown in Figures 4-7 and 4-8, respectively
26

. Comparing 

with other works, the best known tokenization results have accuracy 99.12% and 

99.2 % (Diab  [32] and Habash  [51], respectively) on the data of ATB. They did 

not solve the following problems: sometimes they take “AL”-“اي” as a part of a 

word, not as a clitic, which leads to a decreased level of ambiguity between 

“A+L”-“ا+ي” and “AL”-“اي” clitics (i.e., it increases accuracy). Next, in most of 

cases, they did not manipulate the letter changing due to morphology. I.e., the 

errors in the two examples in this section are considered to be correct in their 

approaches. Their algorithms are data dependent because they use statistical 

method. Our method without statistical improvement is only marginally worse, 

being data independent.  

4.13 Discussion  

We can see that we collect more than one method for solving ambiguity in 

tokenization. We introduce simple and effective methods for making decisions in 

tokenization, achieving high accuracy Arabic tokenization system. Our approach 

solves most ambiguities in tokenization. The tokenization is a separate task. It can 

be an efficient tool for annotating large corpora. If an extremely high accuracy is 

needed, wrong cases can be corrected manually. We do so measuring the accuracy 

of the next steps in our tagging system.  

                                                
26

 The 45 tokenized files are freely available from the website: http://www.mimuw.edu.pl/~aliwy. 

http://www.mimuw.edu.pl/~aliwy


Segmentation and Tokenization   

63 

 

Figure 4-7: Sample of Arabic tokenized text 

 

Figure 4-8: Transliteration of Arabic tokenized text  

 

 

 

#mrp# #,# w#qbl# #sntyn# #,# #ktbt# #En# Al#ErAq# #Al*y# #swf# #yEml# 

#ElY# #tgyyr# Al#EAlm# #,# #hl# #h*h# #klmp# #kbyrp# w#mbAlg# #fy#hA 

w#rb#mA #lm# #ysEf# Al#tEbyr# #ElY# #wjh# Al#dqp# w+Al#wDwH# #mn# 

#An# Al#ErAq# Al#qdym# Al#kAmn# #tHt# Al#rmAl# w+Al#ly$n# #,# #hw# 

#*Ak# #Al*y# #swf# #ygyr# Al#EAlm# #,# w#I*A# #ArtOynA# Al#fkrp# #fy# 

Al#wAqE# Al#fEly# #,# f#On# Al#EAlm# w#mn# #xlAl# #E$rp# #|lAf# #tl# 

#|vAry# #,# #lm# #yjr# Al#tnqyb# #fy#hA b+Al#ErAq# #,# #swf# #ymnH# 

#AkAdymyAt# Al#ArD# #frSp# #Elmyp# l#AstEAdp# w#mn# #vm# #tgyyr# 

#tSwrAt#hA w#mfAhym#hA #fy# #mxtlf# #qDAyA# w#$Wwn# Al#HyAp# 

w+Al#tAryx# #..# #A*n# f+Al#EAlm# s#ygyr# #nfs#h #mn# #xlAl# Al#ErAq# 

#mvl#mA #tgyr# #Hyn# #AEAd# Al#mArksywn# Al#nZr# #fy# #tSwrAt#hm 

#En# #nmT# Al#AntAj# Al#Asywy# w#fkrp# #n$wʼ# Al#TbqAt# #HAl#mA 

#Akt$f# Al#Ast$rAq# #mdnA# #mvl# #swmr# w#bAbl# w#|$wr# #,# w#tHrwA# 

#End# #tfASyl#hA #AnZmp# #tsjyl# Al#Ebyd# w+Al#AjrAʼ# w+Al#mwZfyn# 

w#A$kAl# #tnZym# Al#Eml# w#AdArp# Al#dwlp# #,# w#lw# #kAn# 

Al#Ast$rAq# #fy# #zmn# ArtqAʼ# Al#mlkyp# Al#frdyp# w#mnEA# #mn# 

#qyAm# Al#SrAE# Al#Tbqy# #,# w#rb#mA #kAnt# Al#mArksyp# #gyr#hA 

#fy# Al#nZr# #AlY# Al#$rq# w+Al#grb# #lw# #kAn# Al#Ast$rAq# #fy# 

Al#mstwY# Al#tfSyly# k#mA# #jAʼ# #bEd# #mArks# #.#  

َ#٠ؼًّ#َ#عٛف#َ#اٌزٞ#َاي#ػشاق#َ#ػٓ#َ#وزجذ#َ#،#َ#عٕز١ٓ#َٚ#لجً#َ#،#َِشح##

َٚ#سة#ِبَ#فٟ#٘بَٚ#ِجبٌغ#َج١شح##وَ#وٍّخ#َ#٘زٖ#َ#ً٘#َ#،#َاي#ػبٌُ#َ#رغ١١ش#َ#ػٍٝ#

َاي#ػشاق#َ#اْ#َ#ِٓ#َٚ+اي#ٚظٛح#َاي#دلخ#َ#ٚجٗ#َ#ػٍٝ#َاي#رؼج١ش#َ#٠غؼف#َ#ٌُ#

َ#عٛف#َ#اٌزٞ#َ#ران#َ#٘ٛ#َ#،#َٚ+اي#١ٌشٓ#َاي#سِبي#َ#رذذ#َاي#وبِٓ#َاي#لذ٠ُ#

َف#أْ#َ#،#َاي#فؼٍٟ#َاي#ٚالغ#َ#فٟ#َاي#فىشح#َ#اسرأ٠ٕب#َٚ#ئرا#َ#،#َاي#ػبٌُ#َ#٠غ١ش#

َاي#رٕم١ت#َ#٠جش#َ#ٌُ#َ#،#َ#آثبسٞ#َ#رً#َ#آلاف#َ#ػششح#َ#خلاي#َٚ#ِٓ#َػبٌُ#اي#

َ#ػ١ٍّخ#َ#فشصخ#َاي#اسض#َ#اوبد١ّ٠بد#َ#٠ّٕخ#َ#عٛف#َ#،#َة+اي#ػشاق#َ#فٟ#٘ب

َ#لعب٠ب#َ#ِخزٍف#َ#فٟ#َٚ#ِفب١ُ٘#٘بَ#رصٛساد#٘بَ#رغ١١ش#َ#ثُ#َٚ#ِٓ#َي#اعزؼبدح#

َ#ِٓ#َ#ٔفظ#َٖط#٠غ١ش#َ+اي#ػبٌُ#فَ#ارْ#َ#..#َٚ+اي#ربس٠خ#َاي#د١بح#َٚ#شإْٚ#

َ#فٟ#َاي#ٔظش#َاي#ِبسوغ١ْٛ#َ#اػبد#َ#د١ٓ#َ#رغ١ش#َ#ِثً#ِبَاي#ػشاق#َ#خلاي#

َ#دبي#ِبَاي#غجمبد#َ#ٔشٛء#َٚ#فىشح#َاي#اع١ٛٞ#َاي#أزبج#َ#ّٔػ#َ#ػٓ#َ#رصٛساد#ُ٘

َ#ػٕذ#َٚ#رذشٚا#َ#،#َٚ#آشٛس#َٚ#ثبثً#َ#عِٛش#َ#ِثً#َ#ِذٔب#َاي#اعزششاق#َ#اوزشف#

َ#رٕظ١ُ#َٚ#اشىبي#َٚ+اي#ِٛ ف١ٓ#َٚ+اي#اجشاء#َاي#ػج١ذ#َ#رغج١ً#َ#أظّخ#ًَ#٘ب#رفبص١

َ#ِبسوظ#َ#صِٓ#َ#فٟ#َاي#اعزششاق#َ#وبْ#َٚ#ٌٛ#َ#،#َاي#دٌٚخ#َٚ#اداسح#َاي#ػًّ#

َي#ِب#َاي#١ِٛ٠خ#َٚ#دلبئك#٘بَاي#ِذْ#َ#رٍه#َ#اوزشبف#َ#اٌٝ#َ#رٛصً#َ#لذ#َٚ#أجٍظ#

َ#دْٚ#َ#دبلا#َ#اٌٍز٠ٓ#َاي#ثضي#َٚ#ِشىٍخ#َخ#اي#ِشبػَ#اسضاي#َ#ػٓ#َ#ش١ئب#َ#وزجب#

َٚ#سة#ِبَ#،#َاي#غجمٟ#َاي#صشاع#َ#ل١بَ#َ#ِٓ#َٚ#ِٕؼب#َاي#فشد٠خ#َاي#ٍِى١خ#َ#اسرمبء#

َ#ٌٛ#َٚ+اي#غشة#َاي#ششق#َ#اٌٝ#َاي#ٔظش#َ#فٟ#َ#غ١ش#٘بَاي#ِبسوغ١خ#َ#وبٔذ#

  #.# #وظ#ِبسَ#ثؼذ#َ#جبء#َن#ِب#َاي#رفص١ٍٟ#َاي#ِغزٜٛ#َ#فٟ#َاي#اعزششاق#َ#وبْ#
 



 

 

 

 

 

 

Chapter 5 Analyzing and lemma extraction 
 

  
 

 

5.1 Introduction 

The Arabic language is based on inflection and derivation, and words have 

many different forms that result from these procedures. Therefore extracting 

lemma is a hard problem for Arabic language. As a consequence, many 

researchers chose to deal with the stem, which is easier to extract, rather than with 

lemma. For example, in broken (abnormal) plural of nouns the word changes 

completely. In lemmatization the original form must be found, in stemming it is 

not necessary and is therefore easier.  

In this chapter we build an Arabic analyzer which has two goals: the first is 

extracting POS and features of the word. The second is extracting the lemma of 

the word. These two goals are implemented in parallel. We built a dictionary as a 

tool for achieving these two goals.  

The proposed analyzer is not intended for independent use because it was 

designed and implemented as a preprocessing stage for Arabic tagging system 

and, using the context of the word, it will reject some analyses, saving tagger‟s 

work.  
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5.2 Lemma, stem and root 

When we deal with the analyzer, we must differentiate among three terms: 

Lemma, Stem and Root. They have different meaning. The lemma is the 

canonical form, dictionary form, or citation form of a set of words. The stem is 

the part of the word that never changes even when morphologically inflected
27

. 

The root is the original letters
28

 of the word. Moreover, the term “root” is 

ambiguous in Arabic language: some researchers consider it to be the original 

letters, while others to be the imperative verb in 3
rd

 masculine.  

When we deal with the root, then the derivational and inflectional morphology 

is taken into account. When we deal with lemma, then only inflectional 

morphology will be taken into account. When we deal with stem, then part of 

inflectional morphology with part of derivational morphology will be taken into 

account. For example: changing the whole word will not be taken into account as 

broken plural. Figure 5-1 shows the difference between them with adding 

“number” feature to the word “kitAb”-“وزبة” (book). 

 

Figure 5-1: Lemma, stem and root of the word “book” with 

adding number feature
29

. 

 

We can summarize the difference between stem, root and lemma in the 

following points: 

1. Stemming reduces word-forms to (pseudo) stems, whereas 

lemmatization reduces the word-forms to linguistically valid lemmas. 

Getting the root is done by reducing word-forms to original letters 

(root). 

                                                
27

 In Arabic the changes of vowels will be taken into account in stemming. 
28

 See Section 2.4 for more details about original letters. 
29

 The plural is broken for this noun. 

Word  kitAb وزبةََ  

(book) 

kitAbAnَْوزبثب, 

kitAbYn َٓوزبث١ 

(two books) 

kutub ََ ز ت  و   

(books) 

Root ktbَنَدَة ktb نَدَةََ  ktb نَدَةَََ  

Stem  kitAbَوزبة kitAbَوزبة kutubَوزت 

Lemma  kitAbَوزبة kitAbَوزبة kitAb وزبة 
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2. Extracting stem and root is relatively simple and can be done by 

deleting affixes. Extracting Lemma is more sophisticated and must refer 

to dictionary in some cases. 

3. The root and stem are not valid words but lemma is. 

4. More than one lemma can have the same stem; more than one stem can 

have the same root.  

In our work, for verbal classes the lemma is 3
rd

 masculine imperative verb. 

Lemma for the noun classes is the singular masculine, and if it does not exist, the 

singular feminine. For particles, strictly speaking, there is no lemma, so for 

unification we define it to be the particle itself. 

 

5.3 Morphological analysis with lemma extraction 
for Arabic 
 

Morphology is the branch of linguistics that deals with the internal structure of 

words (Al-Sughaiyer & Al-Kharashi)  [12]. Then morphological analysis is the 

task to discover the possible structures of a given word and represent them in a 

desired format. Morphological analysis for Arabic was intensively studied by the 

researchers; some of those works are listed in section “Related work”. From the 

computational point of view we talk about possible algorithms and automated 

techniques of performing morphological analysis. 

Morphological analysis for Arabic can be done in two stages according to the 

word structure: 

1. Dealing with clitics: splitting the words to its morphemes which can be 

done by tokenization. 

2. Dealing with affixes and internal structure (inflected word): One or 

both of the following: 

a. Extracting the origin of the word (root, stem ...). 

b. Extracting the attributes of the word (POS, gender, number...). 

Morphological analyzer, depending on the form of the extracted origin of the 

word, can be: 
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1. Root-based 

2. Stem-based 

3. Lemma-based 

According to the approaches used, Morphological analyzer algorithms can be 

classified as follows  (Al-Sughaiyer & Al-Kharashi)  [12]: 

1. Table lookup approaches (simple method): all valid natural Arabic words 

along with their morphological decompositions are stored in a huge table. A 

given word is analyzed simply by accessing the table and retrieving 

information associated with that entry.  

2. Linguistic approaches (sophisticated rule-based): utilize linguistic rules 

that have been derived through deep analysis of Arabic morphological 

systems. 

3. Combinatorial approaches (brute force): all combinations of letters of a 

given word are tested and compared against a list of roots. 

4. Pattern-based approaches (less sophisticated rule-based): utilizes the 

apparent symmetry of generated natural Arabic words. 

Table lookup approaches are typically not sufficient alone, because it is 

practically impossible to collect all forms of all words of Arabic. But it can be the 

best approach for the irregular forms. The second type of approach requires deep 

knowledge of linguistics, especially of the word construction rules, and any 

omission reduces the quality of the results. The third class of approaches does not 

need so deep linguistic knowledge, but it can give unwanted analyses. The fourth 

one is similar to the second approach, but it needs less knowledge. On the other 

hand, it requires collecting all possible patterns including the very rare ones, 

which can in turn produce wrong analyses in some cases.  

There are many other classifications of morphological analysis algorithms for 

Arabic (see (Al-Sughaiyer & Al-Kharashi)  [12]), but we chose the above one as 

the most useful for us.  

It is clear that there is no single ideal approach to Arabic morphological 

analysis, but it is also clear that the application which will use the analyzed text is 

an important factor to consider when choosing the approach to adopt. 
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In our work the analysis is used to extract the word attributes, such as POS, 

gender, number, etc. 

Lemmatization is the process of relating a given textual item to the actual 

lexical or grammatical morpheme (Dichy)  [35]. It is the process of mapping from 

a word form to a lemma (Jurafsky & Martin)  [54]. From the definition of 

morphological analysis, lemmatization can be a part of it. In our work it is limited 

to extracting the lemma from the word. Without using lexicon, lemmatization 

cannot be done with sufficiently high accuracy for many reasons which will be 

listed in the next section. We do not attempt word sense disambiguation (WSD) in 

our system hence, we accept more than one lemma for a word. 

5.4 Challenges for lemmatization and analyzing 

Due to the morphological complexity of the Arabic language, morphological 

analysis with lemma extraction is a very challenging task. Arabic language is 

regular in most cases of inflection and derivation, which leads to a relatively easy 

generation process. However, for irregular forms, it is more complicated. This 

difficulty grows rapidly also when a nonvowelized text is used
30

. Then the 

analysis process has to consider all possible vowelizations and produce all 

possible correct analyses for them. This huge number of analyses for each 

nonvowelized word leads to much increased probability of producing some wrong 

analyses among them.  

The main challenges are: 

1. A nonvowelized word can correspond to many vowelized words and 

therefore to many possible lemmas: for example the lemmas for the 

word “ktb”-“وزت” can be “kataba”-“َََوَزت” (write), “ktAb”-“وزبة” 

(book) and “kat~aba”-“ تََوَزََّ ” (dedicated to write). 

2. A normalized word can correspond to many unnormalized words 

and therefore to many possible lemmas: for example the lemmas for 

the word “An”-“ْا” can be “On”-“ْأ”, “In”-“ْئ” and “|n”-“ْآ” in 

unvowelized case. 

                                                
30

 Traditionally Qur‟ān is vowelized, and so are children‟s books. The rest of present day texts are 

nonvowelized. 
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3. Deleting or changing some letters, even in regular forms. For 

example the lemma for the word “yqwl”-“٠مٛي” (he say) is “qAl”-

 .(said) ”لبي“

4. Words whose grammatical lemma ends or begins with a sequence of 

letters identical to an affix. The mistake may occur when the 

attributes are extracted from the affixes. For example the letters 

“wn”-“ْٚ” could be falsely interpreted as a suffix and deleted from 

the word “mrhwn”-“ِْٛ٘ش” (pawned). Similarly, the letters “An”-

 could be interpreted as a ”ػذٔبْ“-”in the proper noun “EdnAn ”اْ“

suffix. Similarly, the letter “t”-“د” in the common noun “tEAwn”-

  .could be interpreted as a prefix (cooperation) ”رؼبْٚ“

5. Complete change of the word in regular and irregular cases: broken 

plural is often an example of this phenomenon. The best solution in 

this case is to use a dictionary. 

6. Transliterations of foreign words. Many foreign words, for instance 

foreign proper nouns, have more than one form of Arabic 

transliteration, which affects the analyzing process.  

In our complete system clitics are dealt with during tokenization stage, and 

hence are not listed here. 

5.5 Analyzing as preprocessing 

Arabic analyzing is the second preprocessing step, after tokenization step, of 

the whole tagging system which we propose. Therefore we suppose that the input 

word to analyzing is an inflected word or clitics as in Figure 5-2. The output of 

this stage will be lemma, POS and features in case of nouns and verbs, meaning 

and working in case of particles
31

. 
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  See chapter 3 for more details on our tagset. 
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Figure 5-2: analyzing and extracting lemma as tagging 

preprocessing 

Most of researchers depend basically on patterns for extracting root or stem but 

the pattern, in most cases, is not an efficient way for extracting lemma from the 

word. There is no any standardization for producing lemma from the word form in 

most cases. 

We use our own lemmatizer and analyzer and rather than existing 

morphological analyzers for the following reasons: 

1. We proposed a new Arabic tagset and existing morphological 

analyzers will not extract all the POSs and the features consistent 

with this tagset.  

2. We deal with lemma instead of the root and stem. 

3. We want to implement a complete tagging system. 

4. Most analyzers mix segmentation and analyzing in one stage but we 

separate them into different tasks. 

5.6 The proposed analyzing Approach 

The item to be analyzed is a word without clitics (inflected word alone) or 

clitics alone, but all of them are known to the analyzer, because we assume that 

we are processing text and therefore the context of the present word is known to 

the analyzer. 

Known words processing: no processing is needed because the lemma and 

features are in the dictionary. 
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Unknown words processing: we have more things to do. Unknown words are 

more likely to be nouns, because we use a large and fairly complete database of 

inflected verbs in the dictionary. As we mentioned previously there are many 

classes of nouns which are closed sets (like, e.g., relative nouns). The open classes 

of nouns are: proper, common, adjectives including genealogical and reduced 

nouns
32

.   

We will explain the construction of the dictionary in the next section. Now, we 

will focus on processing of unknown words. 

5.6.1 Unknown words processing 

Our approach to processing of unknown words is to do the most likely 

analyzing, without exhausting all possibilities. The main steps for unknown words 

processing are: 

1. Extracting POS possibilities. 

2. Extracting lemma and features. 

The rules in the next sections are in general of four types: (i) strict positive 

rules, where if the condition is satisfied, then there is only one possibility for POS 

and features. (ii) Non-strict positive rules (“seems to be”), where if the condition 

is satisfied, then the POS and features are added to the list of possible ones, but 

other possibilities are not ruled out. (iii) Strict negative rules, where if the 

condition is satisfied, then some combinations of POS and features are ruled out, 

even if they were or will be added to the list of possible ones by non-strict positive 

rules. (iv) Non-strict negative rules (“seems not to be”), where if the condition is 

satisfied, then this combination of POS and features is an unlikely one. 

It is a very interesting problem to find a good decision in a case of a word for 

which these rules produce a number of, perhaps contradictory, non-strict positive 

and non-strict negative indications. However, it seems that the method of 

resolving this problem has indeed little impact on the final accuracy of the 

analyzer, and therefore a very simple method is used, which treats non-strict 

negative rules as strict ones, in the absence of any strict positive indication. This 
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 Our tagset has 15 subclasses of noun. 
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reduces the number of possible analyzes, which is beneficial. We did not 

encounter any case of a conflict of a strict positive and a strict negative rule.  

5.6.1.1 Extracting the POS possibilities 

First we need to know the main POS to the word (noun, verb or particle); 

however, particle can be eliminated because the particles form a closed set. So 

really we have only two possibilities: noun and verb. Then we will extract the 

POSs according to our tagset.  

1. Extracting the main POS: We must decide: verb or noun in this step. It can 

be done by applying the following classes of rules: 

a. Clitics rules. For example the definition particle “Al”-“اي” “Al” (the) 

appears with noun only. 

b. Affixes and word structure rules. For example, the letter “p”-“ح” 

appears in nouns only. 

c. Context rules. For example: verb cannot follow another verb. 

d. If none of the above rules is applicable, we assume by default that the 

word is a noun.  

5. 2. Extracting the POSs according to our tagset: it can be done separately 

for verbs and noun subclasses:  

a. Identification of past, present, and imperative forms of verbs is achieved 

by: 

i. Clitics: for example if the word has prociltic “s”-“ط” (will) it must be 

a present tense verb. 

ii. Affixes: for example if the word has one of the prefixes “y, A, n, t”-

 .it  seems to be a present tense verb ,”د ,ْ , ا, ٞ“

iii. Preceding word: for example, the word after “ln”-“ٌٓ” (not) must be 

a verb in present tense. Similarly, an imperative verb after “qd”-“لذ” 

(may be) is not possible. 
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b. Induction of noun subclasses: proper, common, reduced and adjective 

(including genealogical)
33

 nouns is achieved as follows: 

i. By the pattern: for example reduced nouns can be identified by their 

pattern because there are exactly three patterns for reduced nouns. 

ii. By the word structure: for example the genealogical can be induced 

by the word ending, because it always ends with “y”-“ٞ”. 

iii. By the affixes: for example if a word ends with “p”-“ح”, it seems not 

to be a proper noun. 

iv. By the context: for example, if the previous word is a verb then the 

current one seems to be a common or proper noun. 

At this stage we do not resolve the ambiguities; instead we find the most 

important analyzing for the word. We may overlook some possibilities, but they 

are very infrequent. 

5.6.1.2 Extracting lemma and features 

After differentiation between classes of words now we do the second phase of 

extracting lemma and features. Verbs and noun subclasses will be processed 

separately, but by the same methodology: 

6.  1. Extracting the features from the affixes. 

7. 2. Extracting the lemma by: 

a. Deleting the affixes. 

b. Retrieving the deleted and (or) the changed letter which resulted from 

the inflection. 

For verbs classes, the above steps will be: 

1. From affixes: for example the verb ending with “yn”-“ٓ٠” seems to be (i) 

plural masculine or (ii) singular feminine or (iii) dual masculine or (iv) 

dual feminine. If a verb begins with “t”-“د” it seems to be (i) masculine 

2
nd

 person or (ii) feminine 2
nd

 person. If we combine these two rules on 

the verb “tqwlyn”-“ٓرم١ٌٛ” (you (feminine) say), we simply induce its 

features to be singular feminine 2
nd

 person. 

2.  
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 We take only these classes of nouns because other noun subclasses are closed.  
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a. Deleting the affixes. “tqwlyn”-“ٓرم١ٌٛ” will give “qwly”-“لٛي”  

b.“لٛي” “qwly” will become “لبي”-“qAl” (he say). Let us note that this 

affects only the vowels “y, A, w”“ َٞ,َاَ,ََٚ ”. 

 

An example for nouns:  

1. By affixes: for example a word ending with “p”-“ح” seems to be singular 

feminine. 

2.  

a. Deleting affixes (with exceptions). For example the word “ftAp”-“فزبح” 

(girl) will become “ftA”-“فزب”. The word “jrvwmy”-“ِٟٛجشث” (bacterial) 

is a genealogical noun
34

 and, by exception, the affix “y”-“ٞ” will not 

be deleted.  

b. Extracting the lemma by retrieving the deleted or changed letters (if 

necessary). “ftA”-“فزب” will become “ftY”-“ٝفز” “boy”. 

 

We must remember that in most cases the word exists in the dictionary, which 

is quite large, especially for verbs, and the above heuristic analysis is done only 

for words which are not in the database. 

5.7 Building Dictionary  

Now we describe the construction of dictionaries, which are used in 

preprocessing. These dictionaries play a similar role to the dictionaries used in 

Buckwalter analyzer, with lemma added to POS and Features.  

For verbs: This dictionary consists of slightly more than 6000 verbs inflected in 

all possible forms according to the templates used by Al-Dahdah  [37] with adding 

certainty and jussive case. Then all these inflections are sorted and encoded in a 

way such that we can find them efficiently. The input to dictionary is an inflected 

verb in any tense or case and the output are its lemma and features. We used this 

large dictionary for one reason which is to get rid the problem of the changing 

which may happen in the inflected verb. The second reason is that verbs seem to 

be an almost closed set, and using about 6000 inflected verbs gives us more 

information than a corpus having 10 Mega words. The reason is that each verb has 

approximately 164 inflections. It means that we have approximately 984000 

inflections, many of which will be missing in a corpus of size 10 Mega words. 

                                                
34

 The ambiguity between “ktAfy”-“ٟوزبث” as (my book) or (genealogical noun) was solved by 

tokenization preprocessing. 
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At present the software does binary search in a full dictionary of about 984000 

inflections and is reasonably fast.   

However, it is possible to encode the dictionary in a smaller and slightly more 

effective data structure, which has separate dictionaries of prefixes, suffixes and 

pairs (stem*, lemma), similarly as in Buckwalter analyzer. Stem* is created 

exactly as a stem, but is some cases can be an illegal word, and therefore not a 

stem in the strict sense. Our task is to induce the possible stems* from the 

inflected form of the verb. For example when the verb “qAl”-“لبي” (he say) is 

inflected, we get as possible stems*: “لبي” “qAl”, “لٛي” “qwl”, “ًل١” “qyl” and “ًل” 

“ql”, all of which point to the same lemma, which is the output. Indeed, only the 

first one of the above words is legal and is therefore a true lemma. In other words, 

the stored stems* of inflected verbs are the forms which appear at least once in an 

inflection of a verb.  

In case of particles we have a list of all particles, each one with its working and 

meaning, and therefore the analyzing process is again a simple search problem, 

like in the in case of verbs.  

In the case of nouns, adjectives and so on, we collected them from the Internet. 

We added inflections and derivations as feminine (if applicable), numbers, 

genealogically (Yaa Alnasabi) and reduced nouns. The object, subject nouns, 

broken plural and so on are not derived by this method; instead they are collected 

from texts which reduces the cost of the code (time of writing code) and applying 

this generation on them if applicable. There are many classes of nouns which are 

closed sets, for example question nouns, numeral nouns and so on. The resulting 

dictionary is updatable.  

5.8 Results 

The proposed analyzer was built as a preprocessing stage of an Arabic tagging 

system. It is therefore not a general purpose analyzer. It produces all possible 

analyses for a given inflected word or clitics. These analyses are POS, features 

and lemma. Because it is used for subsequent tagging, the evaluation of it should 

measure how well it satisfies its function, i.e., generates true combinations of tag 

(POS & features) and lemma. Therefore we will not evaluate it according to 

recall, precision and F-measure.  
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The first important thing is to have the true tag and lemma produced.   

The test dataset was a small corpus of 16 k words, manually annotated by a 

single analysis for each word, correct for this particular use of that word. In the 

test, for 99.67% of words, this correct analysis was among those produced by the 

analyzer. 

The second important thing is that the analyzer almost never produces 

grammatically incorrect analyses.  

In a manual verification of the output of the analyzer, only 0.1% of all analyses 

were grammatically incorrect. Appendix C shows practical analysis for a simple 

sentence. 

5.9 Related work 

Extracting lemma was much less studied than stem in the analysis stage. Many 

researchers dealt with lemma in Arabic language, but they did not explain details 

of the procedure of extracting lemma from the word. Some other researchers did 

not distinguish between lemma and stem and they dealt with them as if they were 

the same. The other researchers dealt with the root, especially in morphological 

analyses. It should be noted that root induction is relatively simpler than stem and 

lemma.  

(El-Shishtawy & El-Ghannam)  [39] do lemmatization in three phases: 

analyzing, POS tagging and then lemma generation. The first phase 

implementation is done with the open source Khoja stemmer (Khoja)  [56], i.e., no 

private analyzer. The second phase is POS tagging which depends basically on 

patterns. The third phase is lemma generation which is related to our approach. 

They depend on patterns and rules for generating the lemma from verb without 

any explanation or examples of these rules. The noun is manipulated in similar 

manner. Our approach at the first glance may appear to be similar to this work, but 

there are many differences: first, they take the output of POS tagging to lemma 

generation and in our work the output of lemmatization and analyzing stage will 

be fed to POS tagging. I.e., our lemma generation is done by the analyzer alone 

and does not depend on tagging. Second, in our work we use our own analyzer, 

while the authors of (El-Shishtawy & El-Ghannam)  [39] use a third-party 

analyzer. Third, in our system at least one lemma is produced for each analysis, 
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while in the other system the lemma is produced only for the previously selected 

POS. Fourth, we use a dictionary of fully inflected forms of the known words and 

templates for unknown verbs. In case of nouns we use rules and a dictionary of 

irregular cases. El-Shishtawy & El-Ghannam  [39] do not explain their approach in 

detail, except that they mention a dictionary of irregular forms. Fifth, their 

approach is limited to IR, and our approach is quite general.  

Concerning morphological analyzers, there are many works in this field.  

MAGEAD (Habash et al.)  [50] provides an analysis for a root+pattern 

representation, it has separate phonological and orthographic representations, and 

it allows for combining morphemes from different dialects.  

Darwish analyzer  [31] was only concerned with generating the possible roots 

of a given Arabic word. It is based on automatically derived rules and statistics.  

(Gridach and Chenfour)  [44] Their approach is based on Arabic morphological 

automaton technology. They take a special representation of Arabic morphology 

(root and scheme) to construct a few morphological automata which were used 

directly in developing a system for Arabic morphological analysis and generation.  

Elixir-FM (Smrz)  [88] is a functional morphology system which models 

templatic morphology and orthographic rules.  

BAMA (Buckwalter)  [26] is based on a lexicon, which has morphotactic and 

orthographic rules encoded inside it. 

5.10 Discussion and feature work 

We have built, implemented and evaluated an Arabic analyzer which extracts 

lemma. The analyzer produces POS, features and lemma of the inflected word or 

clitics. The produced POS and features are described according to our new, very 

rich tagset. Many problems, which can be solved by a tagging system, were 

solved by the analyzer using the context. The context is taken in account only for 

unknown words. According to the previous results, it is suitable to use it in 

tagging. Lemma extraction offers many benefits when compared to extracting 

stem or root. For example, it can be used in word sense disambiguation.  
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Our suggestion is that expanding (i) the number of the inflected verbs used in 

the analyzer and (ii) expanding the database of abnormal inflections of the noun 

subclasses, can lead to still more accurate analyses. 

It would be very beneficial to test the analyzer on a larger corpus. However, it 

is very time-consuming to produce, since it must be done by hand using a new, 

rich tagset. 



 

 

 

 

 

 

Chapter 6 Survey of General and Arabic Tagging System 
 

 
 

6.1 Introduction  

POS tagging is one of the most important natural language problems studied by 

researchers. The significance of POS for language processing is the large amount 

of information they give about a word and its neighbors (Jurafsky & Martin)  [54]. 

POS tagging is the process of assigning a part-of-speech or other syntactic class 

marker to each word in the corpus (Jurafsky & Martin)  [54]. It is, in other words, 

the process of assigning a tag from limited set of tags (tagset) to a word. The 

number of tags in a tagset depends on the language and the intended application. 

If we talk about tagging then we always mean some tagset, perhaps implicitly. See 

Chapter 2 for more details about tagset.  

There are many methods applied to POS tagging. Most of the modern methods 

use some form of machine learning. 

This chapter will focus on methods used for tagging regardless of the language. 

Then we will list the most important approaches applied to Arabic language.  

There are many classifications of POS tagging methods, like the distinction 

between supervised and unsupervised methods, or into rule-based, stochastic and 

hybrid. We do not use these classifications in our presentation below.  
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6.2 Tagging by manually created rules 

It is the oldest morphosyntactic disambiguation method, claimed to be the best, 

but very costly. It requires manual work of experts. Modern and earliest rule-

based approaches to POS tagging are based on two stages architecture (Jurafsky & 

Martin)  [54]. They are dictionary and rule sets. The dictionary is used to assign 

each word a list of possible POS tags. The rule-sets (mostly manually written) are 

used for solving the tagging problem, i.e., choosing the right POS for each word. 

In some cases, these rules can even correctly tag unknown words. 

A rule-based tagger tries to apply some linguistic knowledge to exclude 

sequences of tags that are syntactically incorrect. They can be of the form of 

contextual rules such as: if an unknown term is preceded by a determiner and 

followed by a noun, then label it as an adjective (Jackson & Moulinier)  [53]. The 

main drawback of those early systems are the laborious work of manually coding 

the rules and the requirement of linguistic background (Nitin & Fred)  [73]. 

Probably the first rule-based tagging system was given by Klein and Simpson 

 [61], which was based on a large set of handcrafted rules and a small lexicon to 

handle the exceptions (Nitin & Fred)  [73]. 

Constraint grammar approach is another example of this method and EngCG is 

a tagger based on this approach. It applies a large set of constraints (as many as 

3,744 constraints) to the input sentence to rule out incorrect POS tags (Karlsson et 

al.)  [55]. 

 

6.3 n-grams Model 

n-grams are crucial in many NLP tasks, tagging is one of these tasks. n-gram is 

a contiguous sequence of n items from a given text.  

Initially n-grams were used for predicting the next word in a text, and the chain 

rule of probability of words (in a sentence of length n) was used for that purpose: 
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The n-gram approximation of the above is: 
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The probabilities are taken from counted frequencies in the training corpus: 
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n-grams model is sometimes referred to as the Language Model. The previous 

formula is good for predicting words but how is it used for tagging. If we want to 

apply it to tagging, we may do the following (in the general case): 
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There are special cases of n-grams which are unigram, bigram and trigram, 

where n is 1, 2 and 3, respectively. Unigram is very simple, does not take any 

context information into account (no tag sequence information). Unigram simply 

selects the most probable tag for each specific word. Bigram uses more (but still 

little) information by taking the previous tag into account. Trigram adds even 

more by taking two previous tags into account.  

The following formulas represent unigram, bigram and trigram tagging 

respectively: 
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n-grams simplification is very important in HMM tagger. Some problems arise 

by using n-grams and many stochastic tagging methods, when some n-grams have 

frequency zero in the training corpus. They can be solved by using Laplace or 

Good-Turing smoothing (Jurafsky & Martin)  [54]. When we use n-grams and we 

have no example of a particular n-gram we can use shorter sequences. We can do 
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also weighted interpolation of trigram, bigram and unigram count (Jurafsky & 

Martin)  [54].  

 

6.4 Transformation-Based tagging (Brill) [24] 

It is an approach based on machine learning, and is sometimes called Brill 

tagging. Instead of trying to acquire the linguistic rules manually, Brill describes a 

system that learns a set of correction rules by a methodology called 

transformation-based learning (TBL) (Nitin & Fred)  [73]. It behaves like a 

method with manually written rules, because rules are used to specify tags, and at 

the same time like a stochastic tagging, because machine learning is used, based 

on a manually tagged corpus. 

The algorithm has two main phases (Nitin & Fred)  [73]: 

1. Initial phase. 

2. Learning phase. 

Initial phase is accomplished by labeling every word with its most likely tag, 

for example, by assuming that each word is a noun (which is the most common 

tag) or taking the output of another tagger. 

Learning phase is accomplished by two stages repeated in a loop until there is 

no improvement any more. The first is the examination of every possible 

transformation and selecting one which gives the maximal improvement of the 

tagging. The second is re-tagging corpus applying the rules from the first stage. 

The rules are limited to predefined templates. See Figure 6-1 for an example of 

these templates where a, b, z, and w are POS tags. 

Figure 6-1: Examples of Brill Templates. 

Change tag a to b when the preceding (following) word is tagged z.  

Change tag a to b when the word two before (after) is tagged z. 

Change tag a to b when one of the two preceding (following) words is tagged Z.  

Change tag a to b when one of the three preceding (following) words is tagged z.  

Change tag a to b when the preceding word is tagged z and the following word is tagged w.  

Change tag a to b when the preceding (following) word is tagged z and the word two before (after) is tagged w.  

Change tag a to b when the current word is (is not) capitalized.  

Change tag a to b when the previous word is (is not) capitalized. 
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These templates are used for inducing rules in the same form with different 

data. An example of a rule learned by Brill‟s tagger is “Change tag NN to VB 

when the previous word is tagged TO”.  

The space of transformation sequences we have to search is huge. A naive 

implementation of transformation-based learning will therefore be quite 

inefficient (Manning & Schütze)  [68]. 

6.5 HMM tagger 

Hidden Markov Model (HMM) is the most frequently used technique for POS 

tagging. It is used for tagging one complete sentence at a time, by selecting the 

most likely sequence of tags for its words. 

HMMs allow us to estimate probabilities of unobserved events where observed 

events are the words and the hidden events are part-of-speech tags. It uses the 

formula: 
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We cannot compute it directly, therefore by using Bayes‟ rule with 

simplification the previous formula will be: 
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HMM tagger simplifies this formula by two assumptions. The first assumption 

is that the probability of a word depends on its part-of-speech tag and is 

independent of other words around it, and of the other tags around it: 
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 The second assumption is that the probability of a tag appearing depends only 

on the previous tag, the bigram assumption (Jurafsky & Martin)  [54]: 
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Together they yield the third equation: 
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6.6 Decision trees [83] 

DT tagger was presented in (Schmid)  [83], as an improvement to HMM 

method, avoiding problems of estimating transition probabilities from sparse data. 

In this tagger transition probabilities are estimated using decision tree. The 

decision tree automatically determines the appropriate size of the context which is 

used to estimate the transition probabilities. The most important criterion for the 

success of the learning algorithms based on DTs is the construction of a set of 

questions to be used in the decision procedure (Nitin & Fred)  [73]. DT tagger is a 

Markov model using DT for estimating transition probabilities ( )|( 12  nnn tttp ).  

6.7 Maximum Entropy  

It was proposed by (Ratnaparkhi)  [77] [78]. Maximum entropy (ME) models 

provide us more flexibility in dealing with the context and are used as an 

alternative to HMMs in the domain of POS tagging (Nitin & Fred)  [73]. The 

flexibility comes from the ability to include any template that we consider useful: 

it may be simple (target tag ti depends on ti−1) or complex (ti depends on ti−1 and/or 

ti−2 and/or wi+1) (Nitin & Fred)  [73]: 
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We can express the conditional probability in terms of a log-linear 

(exponential) model (Nitin & Fred)  [73]: 
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Z(h) is to ensure true probability distribution and fj is a feature with binary 

value (see Figure 6-2 and Figure 6-3 for a whole template of features and an 
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example, respectively) and αj is the weight of fj with positive value. t is a tag from 

a tagset T and h is a history from the possible contexts (histories) H. 

 

               
Figure 6-2: template in (Ratnaparkhi) [77]. 

 

 
Figure 6-3: Practical features in ME approach. In a maximum 

entropy model, the feature can be simple: this word has this tag, 

consider morphology or consider tag sequences. 

 

The probability distribution P we seek is the one that maximizes the entropy of 

the distribution under some constraints: 
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)( jfE and )( jfE denote, respectively, the model‟s expectation and the 

observed expectation of feature fj . )( ihP  and ),( ii thP  are the relative frequencies, 

respectively, of context hi and the context-tag pair (hi , ti) in the training data. The 

intuition behind maximizing the entropy is that it gives us the most uncertain 

distribution. In other words, we do not include any information in the distribution 

that is not justified by the empirical evidence available to us. The parameters of 

the distribution P can be obtained using the generalized iterative scaling algorithm 

(Nitin & Fred)  [73]. 

 

6.8 Neural networks 

Neural network is information processing paradigm inspired by biological 

nervous systems, such as our brain. Structurally, it is a large number of highly 

interconnected processing elements (neurons) working together. Like people, they 

learn from experience (by example). Neural networks are configured for a 

specific application, such as pattern recognition or data classification, through a 

learning process. 

In multilayer perceptron networks (MLP-networks), the processing units are 

arranged vertically in several layers. Connections exist only between units in 

adjacent layers. There are three classes of layers which are input layer, hidden 

layer (activations are not visible externally) and output layer. The goal is to find 

the best network to predict, based on the input nodes, the correct output nodes. 

 (Schmid)  [84] introduced neural networks for POS tagging. The Net-Tagger 

consists of an MLP-network and a lexicon. In the output layer of the MLP 

network each unit corresponds to one of the tags in the tagset. The network learns 

during training to activate that output unit that represents the correct tag and to 

deactivate all other output units. Hence, in the trained network, the output unit 

with the highest activation indicates, which tag should be attached to the word that 

is currently being processed. 
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The input of the network comprises all the information that the system has 

about the POS‟s of the current word, the p preceding words and the f following 

words. More specifically, for each POS tag tj and each of the p + 1 + f words in 

the context, there is an input unit whose activation inij represents the probability 

that wi has part of speech ti. So, if there are n possible tags, there are n ∗ (p + 1 + f) 

input nodes. 

For the input word being tagged and its following words, the lexical POS 

probability p(tj|wi) is all we know about the POS. This probability does not take 

any contextual influences into account. For the preceding words, there is more 

information available, because they have already been tagged. 

An artificial neural network gave 96.22% accuracy for English (Schmid)  [84]. 

Although Neural Network (NN) taggers do not seem to outperform the HMM 

taggers in general, they have some attractive properties. First, ambiguous tagging 

can be handled easily without additional computation. When the output nodes of a 

network correspond to the tags in the tagset, normally, given an input word and its 

context during the tagging phase, the output node with the highest activation is 

selected as the tag of the word. However, if there are several output nodes with 

close enough activation values, all of them can be given as candidate tags (Nitin & 

Fred)  [73]. 

Neural network taggers converge to top performances with small amounts of 

training data and they are suitable for languages for which large corpora are not 

available (Nitin & Fred)  [73]. 

 

6.9 Memory based learning [30] 

Memory-based learning is a form of supervised learning based on similarity-

based reasoning. The part of speech tag of a word in a particular context is 

extrapolated from the most similar cases held in memory (Daelemans et, al.)  [30]. 

In AI, the concept has appeared in several disciplines (from computer vision to 

robotics), using terminology such as similarity-based, example-based, memory-

based, exemplar-based, case-based, analogical, lazy, nearest-neighbor, and 

instance-based (Daelemans et, al.)  [30]. 
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In a memory-based approach, a set of cases is kept in memory. Each case 

consists of a word with preceding and following context, and the corresponding 

category for that word in that context. A new sentence is tagged by selecting for 

each word in the sentence and its context the most similar case(s) in memory, and 

extrapolating the category of the word from these 'nearest neighbors'. A memory- 

based approach has features of both learning rule-based taggers (each case as a 

specific rule) and of stochastic taggers (form of k-nearest neighbors modeling). 

The approach in its basic form is computationally expensive, however; each new 

word in context that has to be tagged, has to be compared to each pattern kept in 

memory (Daelemans et, al.)  [30]. 

Memory-based learning is a form of supervised, inductive learning from 

examples. Examples are represented as vectors of feature values with an 

associated category label (Daelemans et, al.)  [30]. 

6.10 Boosting [1] 

Boosting is a machine learning algorithm that was introduced to POS tagging 

by (Abney et al.)  [1].  

The idea of boosting is to combine many simple “rules of thumb” called “weak 

hypotheses”, such as “the current word is a noun if the previous word is the”. The 

main idea of boosting is to combine many such rules in a principled manner to 

produce a single highly accurate classification rule (Abney et, al.)  [1]. 

The boosting algorithm is an iterative one of R rounds, where a new rule of 

thumb is derived from the training data at each round, using a weak learner 

(Jackson & Moulinier)  [53]. 

Boosting is similar to transformation-based learning (Brill), both build 

classifiers by combining simple rules, and both are noted for their resistance to 

overfitting, but they differ in theoretical foundation (Abney et al.)  [1].  
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6.11 Relaxation labeling (Padró) [75]  

Relaxation is a well-known technique used to solve consistent labeling 

problems. 

A consistent labeling problem, given a set of variables, is to assign to each 

variable a label compatible with the labels of the other ones, according to a set of 

compatibility constraints. 

The main idea of using relaxation labeling in POS tagging is to represent POS 

tagging as a constraint satisfaction problem. Then it can be addressed with the 

usual techniques of that field, such as relaxation labeling. 

It seems reasonable to consider POS tagging as a combinatorial problem, in 

which we have a set of variables (words in a sentence), a set of possible labels for 

each one (POS tags), and a set of constraints. 

One can consider weighted labeling, in which a weight is assigned to each 

possible label of each variable, and the task is to maximize the “global 

consistency” by relaxation. The constraints can be gathered automatically from 

the training corpus, too.  

 

6.12 Cyclic Dependency Network [90] 

The conditional probability of tag dependency is assumed unidirectional 

(depending on previous tags) in n-gram based methods, including HMM tagging. 

In CDN this conditional probability of tag dependency is bidirectional (depending 

on previous and following tags). (Toutanova et, al.)  [90] proposes to make an 

explicit use of both preceding and following tag contexts via a dependency 

network representation, using priors in conditional loglinear models. The resulting 

tagger gives 97.24% accuracy on the Penn Treebank WSJ. 

 

 

6.13 Finite-State Transducers [79] 

Finite-state transducers have important applications in many areas of natural 

language processing. 
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A finite-state transducer is a finite-state automaton whose transitions are 

labeled by pairs of symbols. The first symbol is the input and the second is the 

output. Applying a finite-state transducer to an input consists of following a path 

according to the input symbols, and the result is the sequence of output symbols 

encountered on that path. 

(Roche & Schabes)  [79] used FST for speeding up processing the Brill tagger. 

It is constructed in four steps. 

The first step consists of turning each contextual rule found in Brill's tagger 

into a finite-state transducer. Each contextual rule is defined locally; that is, the 

transformation it describes must be applied at each position of the input sequence. 

The second step consists of turning the transducers produced by the preceding 

step into transducers that operate globally on the input in one pass. This 

transformation is performed for each transducer associated with each rule. 

The third step combines all transducers into a single transducer. 

The fourth and final step consists of transforming the finite-state transducer 

obtained in the previous step into an equivalent deterministic transducer. 

(Silfverberg & Lindén)  [86] used parallel weighted finite-state transducers to 

implement a part-of-speech tagger. Their system consists of a weighted lexicon 

and a guesser combined with a bigram model turned into two weighted 

transducers. They reported 98.29% of accuracy on English Europarl corpus. 

6.14 Genetic Algorithm [2] 

Genetic algorithms are a group of very general algorithms to find approximate 

solutions to optimization and search problems. 

(Nitin & Fred)  [73] Although genetic algorithms have accuracies worse than 

those offered by HMM and rule-based approaches, they can be seen as an efficient 

alternative in POS tagging. They reach performances near their top performances 

with small populations and a few iterations. 

(Alba et, al.)  [2] report a genetic algorithm able to solve the tagging problem 

with accuracy no worse than a specific method which was designed for this 
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problem. In addition, GAs can perform the search of the best sequence of tags for 

any context-based model, even if it does not fulfill the Markov assumption. 

 

6.15 SVM 

Support Vector Machines (SVMs) are supervised machine learning algorithms 

for binary classification (Nakagawa et, al.)  [72]. They can handle a large number 

of (overlapping) features with good generalization performance (Diab et, al.)  [33]. 

SVMs can easily handle high-dimensional spaces, with a large number of features 

(Nitin & Fred)  [73] (Mayfield et, al.)  [70]. 

SVMs are known to be resistant to overtraining, because only the training 

vectors that are closest to the hyperplane (called support vectors) determine itse 

parameters (Nitin & Fred)  [73] (Mayfield et, al.)  [70]. 

(Mayfield et, al.)  [70] report tagging accuracy 92.95 %. The data set was the 

Penn Treebank Wall Street Journal collection, which contains about 1.5 million 

tokens annotated with a part of speech for each token. 

 

6.16 Fuzzy set theory [60] 

The taggers formed using the fuzzy set theory are similar to HMM taggers, 

except that probabilities used in the latter are replaced by fuzzy membership 

functions in the former (Nitin & Fred)  [73]. Neural networks are used for 

estimating the transition probabilities and some transformations of lexical 

probabilities for the observation possibilities (Kim & Kim)  [60]. One advantage of 

these taggers is their high performance with small data sizes (Nitin & Fred)  [73]. 

(Kim & Kim)  [60] showed, using fuzzy set theory of second order, the 

accuracy around 95.81 % on 800,000 words from the Brown corpus which is 

included in the Penn Treebank Corpus; the tagset size was 49 tags. 

6.17 Best match 

(Stomp)  [87] “matches the text to be tagged to long continuous strings from the 

training data (as long as possible) and assigns each match the same tags as the 

matching part of the training data”. Back-off, as smoothing, is used with this 

method. The accuracy achieved by this method is 94.5 %. The Stockholm-Umea 



Survey of General and Arabic Tagging systems   

 92 

Corpus (SUC) a manually corrected tagged corpus of Swedish, was used for 

training and testing. This method is described in more detail in Chapter 7 below.  

6.18 Combining different taggers 

Most of the methods and papers quoted above used only one method for 

tagging. However, there are methods to combine them in a way such that the 

accuracy will be improved. Combined taggers can be classified into: 

 Voting (Henrich et, al)  [52]: a few taggers are run independently and the final 

result is selected by voting among these taggers. 

Stacking (Wu et, al.)  [91]: the output of one tagger is fed to another one in a 

serial sequence. 

co-training (Clark)  [29]: two taggers are trained on the output of the other one. 

Fusion: taggers are combined internally. 

Hybrid: combination of two or more of the previous methods.  

For more details see Chapter 7, where they are explained in more detail. We 

describe a new method, called master-slaves, to combine taggers. 

6.19 POS tagging approaches used for Arabic 

SVM: (Diab) (Diab et, al.)  [33] [32] applied SVM to Arabic POS tagging and 

tokenization. The SVM-POS tagger achieved accuracy of 95.49%. The Arabic 

TreeBank consisting of 4519 sentences was used in training and testing. She used 

the LDC's POS tagset, which consists of 24 tags
35

. 

SVM + morphological analyzer: (Habash and Rambow)  [46] applied SVM 

with support of a morphological analyzer for producing all possible analyses. The 

data used came from the Penn Arabic Treebank (Maamouri et al.). Their POS 

evaluation shows accuracy of 97.6% on ATB1 and accuracy of 95.7% on ATB2, 

both based on gold standard tokenization. 

Statistical and rule-based: In (Khoja)  [57], a system is developed, using a 

combination of both statistical and rule-based techniques. It uses a simple tagset. 

A corpus of 50,000 words in Modern Standard Arabic (an extract from the Saudi 

                                                
35

 See chapter 3 for more details 
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Al-Jazirah newspaper, dated 03/03/1999) was tagged using this tagset
36

. She 

achieved accuracy of around  90 %. 

HMM: (AL-Shamsi & Guessoum)  [11] The proposed HMM POS tagger has 

been tested and has achieved performance of 97%. It used a very simple POS 

tagset of 55 tags. The training was done on a special small corpus consisting of 

9.15 MB corpus of native Arabic articles. The authors used a stemmer for 

segmenting and separating affixes from the stem to produce prefix, stem, and 

suffix parts. 

Brill (Transformation) tagging: first, Freeman  [42] presented an Arabic 

tagger based on the Brill tagger. He was using this environment as a tool to semi-

automatically tag text. With every new text he added rules to the tagger's rule files 

by hand, as well as new items to the tagger's lexicon file.  

 Brill (Transformation) + morphological analyzer: (AlGahtani et al.)  [5] 

used transformation-based learning as implemented in the Brill tagger (Brill, 

1994) for POS tagging of Arabic, with segment-based tags. They used the 

Buckwalter morphological analyzer (Buckwalter)  [25]. (AlGahtani et al.) 

evaluated their approach on the whole ATB as well as on ATB1. For ATB1, they 

achieved POS tagging accuracy of 96.9%. Using the whole ATB the accuracy was 

96.1%, even though large parts of the treebank are duplicated between parts, so 

that it is likely that parts of their test set were actually present in the training set 

(AlGahtani et al.)  [5]. 

Rules-based and memory-based: (Tlili-Guiassa)  [89] used a hybrid of rule-

based and a memory-based learning methods. His method is based firstly on rules 

automatically learned from the training corpus (that consider the post-position, 

ending of a word and patterns) and then the anomalies were corrected by adopting 

a memory-based learning method (MBL). Secondly, by checking the exceptional 

cases of rules, more information was made available to the learner for treating 

those exceptional cases. The accuracy was 85 %. The tagset was derived from that 

of Khoja. 

Classifier + regular expressions: (Seth Kulick)  [64] described an approach to 

simultaneous tokenization and part-of-speech tagging that is based on separating 

                                                
36

 See chapter 3 for more details 
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the closed- and open-class items, and focusing on the likelihood of the possible 

stems of the open class words. He used regular expressions with a reduced tagset. 

The data set was ATB3-v3.2 and the accuracy of tagging was 95.147%. 

Memory-based learning: (Van den Bosch et al.)  [23] used memory-based 

learning for both morphological analysis and POS tagging of Arabic. They 

reported an overall accuracy of 91.5%. 

Statistical [71]: (Mohamed & Kübler)  [71] used two approaches. Their first 

approach used complex tags that described full words and did not require any 

word segmentation. The second approach was segmentation-based, using a 

segmenter based on machine learning. They showed that word-based POS tagging 

can yield better results than segment-based tagging (93.93% vs. 93.41%). 

Combining both methods resulted in a word accuracy of 94.37%. POS tagset of 

the Penn Arabic Treebank was used and two sections of the ATB (P1V3 and 

P3V1), since those two sets do not contain duplicate sentences. This data set 

contained approximately 500 000 words. 

HMM tagger without morphological analyzer or lexicon: In (Köprü)  [62] 

the accuracy was 95.51% with a very small Arabic tagset of 17 tags. The data set 

was Penn Arabic Treebank ATB (parts 1, 2 and 3) which consisted of 629,866 

words.  

HMM tagger with morphological analyzer: In (El Hadj et, al.)  [36] the data 

set was 21882 words with a very small, custom tagset of 13 tags. The accuracy 

was 96%.  

HMM tagger with morphological analyzer with lexicon: In (Mansour)  [69] 

the morphological analyzer was Buckwalter's analyzer. This approach was applied 

to Hebrew and Arabic. The data set was ATB (parts 1, 2 and 3). The accuracy was 

96.12%. 

 

6.20 Arabic POS tagging as a part of toolkits and 
applications 

There are many toolkits for specific tasks in Arabic language processing. The 

best known ones which do POS tagging are MADA+TOKEN and AMIRA. 
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MADA (Morphological Analysis and Disambiguation for Arabic) (Habash) 

 [45] is a utility that, given raw Arabic text, adds as much lexical and 

morphological information as possible by disambiguating, in one operation, part-

of-speech tags, lexemes, diacritizations and full morphological analyses (Habash) 

 [45]. TOKEN is a general tokenizer for Arabic. 

AMIRA  [32] is a successor suite of the ASVMTools (Diab et al., 2007). The 

AMIRA toolkit includes a clitic tokenizer (TOK), part of speech tagger (POS) and 

base phrase chunker (BPC) – a shallow syntactic parser. The accuracy of Amira 

using ERTS tagset was reported to be 96.13% and the accuracy using RTS tagset 

to be 96.15%. 

 

 

 

 

Chapter 7 Combining Taggers in Master-Slaves Technique 
 

  
 

 

 

7.1 Introduction 

There are many methods used for POS tagging. Most of modern methods are 

corpus-based and are based on machine learning. HMM is the most studied and 

probably the most frequently used tagging method. We propose a new method to 

combine taggers, which we call master-slave technique. In our approach, HMM 

tagger is used as the master tagger and Brill and MaxMatch (MM) taggers as 
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slaves. The main property of our method is that the master tagger will process 

each sentence with different probabilities (different knowledge), as we will see in 

next sections.  

7.2 Related work 

There are many approaches and works in POS tagging therefore we will 

mention only those used in our approach and some of the combined approaches.  

Stomp  [87] in his MaxMatch tagger “matches the text to be tagged to long 

continuous strings from the training data (as long as possible) and assigns each 

match the same tags as the matching part of the training data”. The same idea but 

in a different context is used as a part of our research. In the paper (Glass & 

Bangay)  [43] first the performance of each used tagger is verified experimentally. 

The taggers are then grouped to form a voting system, but in no cases the 

combined results improve on the individual accuracies. In (Yonghui et, al.)  [92] 

the authors, after studying four corpus-based approaches to part of speech (POS) 

tagging: tranform-based error driven, the decision tree, hidden Markov model and 

maximum entropy, present a novel data fusion strategy in POS tagging – called 

correlation voting. They proved that the correlative voting is better than other 

fusion methods, with an average decrease of 27.85% of the initial tagging error 

rate. In the paper (Henrich et, al.)  [52] combiTagger combines automatically the 

outputs of several taggers. The system, which is open source, provides algorithms 

for simple and weighted voting. It improved the accuracy by 1.26 – 1.58 % over 

the best method of its individual component taggers. The authors of (Loftsson) 

 [67] used many combinations of several taggers in a simple voting approach. The 

combination of TBL, TNT and Ice taggers wins 0.81% over the best individual 

method which was Ice tagger (with accuracy 91.80%).  

The book (Nitin & Fred)  [73] presents many other combinations of taggers by 

using voting or stacking methods. It can be useful for further reading about 

combined taggers.  

7.3 Techniques for combining taggers 

Most of modern taggers, for annotation, are constructed by combining two or 

more approaches in a way such that the accuracy will be increased. Tagger 
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combination methods can be divided into voting, stacking, co-training, fusion and 

hybrid.  

In Voting, several taggers run independently and the final result is selected by 

voting among these tagger outputs. Voting can be simple or weighted. In a simple 

voting all taggers have the same weight. Weighted voting is done by adding more 

weight to the tagger which has higher accuracy (Henrich et, al.)  [52]. The biggest 

problem in voting is when the used taggers are similar in methodology, i.e., they 

make similar errors in similar situations.   

Stacking: The basic concept behind stacking is to train two or more taggers 

sequentially, with each successive tagger incorporating the results of the previous 

ones in some fashion (Wu et, al.)  [91]. The biggest problem in stacking is that the 

errors made by the taggers tend to accumulate. 

Co-training (Clark)  [29] is a method in which two taggers are iteratively 

retrained on each other‟s output. The taggers should be sufficiently different (e.g., 

based on different models) for co-training to be effective (Nitin & Fred)  [73]. 

Fusion tagger is a tagger which combines several tagging approaches 

internally. The final tagger will somehow collect the features of its components. It 

is really not a method to combine arbitrary taggers, because there is no uniform 

way to do it and each such fusion is essentially unique. The tagger in Section 7-7 

is an example of this type.  

Hybrid: where several of the previous combinations are used collectively. For 

example voting and stacking can be used when we use a rule-based tagger for 

eliminating unwanted analyses and the output is fed to other many taggers for 

voting.   

In this chapter we present a new master-slave technique using HMM tagger as 

a master, and Brill and MM taggers as slaves. 

7.4 Maximum match (MM) Tagger 

Maximum match (best match in (Sjobergh)  [87]) tagger finds the longest n-

gram (i.e., with maximal possible n) in the text to be tagged, which is also present 

in the training data, and tags the n-gram in the text copying the tags from its 

counterpart in the training data. This pair of identical n-grams is called a match. If 
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there are several equally long matching n-grams, the most common matching tag 

(in these matches) is chosen. If it is still a tie, the one first encountered is chosen. 

There is also a back-off method for short matches and special treatment of 

unknown words. 

In our work we deal with maximum match in two different contexts. In the first 

we take it as independent tagger, implemented using a very simple version of best 

match (Stomp tagger).  The back-off method, in this case, was not used and the 

unknown words get the “None” tag. It is explained in Section 7.7 how MM can be 

combined with the HMM tagger. 

In the second context for any word w in the input sentence, we record the 

length of the longest match, which contains w. This length is called the maximum 

match for w. For example, if we have sentences “w6, w5, w1, w2” and “w2, w3, w4, 

w6” in the corpus and the input sentence is “w1, w2, w3, w4”, then the maximum 

match is 2, 3, 3 and 3 for the words w1, w2, w3 and w4, respectively. 

7.5 HMM tagger 

HMM is the most frequently used technique for POS tagging. It used for 

tagging one complete sentence at a time by selecting the most likely sequence of 

tags for specific sequence of words. See Chapter 6 for more details. 

 

7.6 First experiment of combining of MM & HMM 
taggers 

Before going further, let us consider what happens if the input sentence 

completely matches a sentence from the training corpus: what is the probability of 

tagging the input sentence same as the one from the training corpus? The answer, 

theoretically, should be one, but practically there is no guarantee for this. The 

same problem arises when a long phrase in the input sentence is also found in the 

training corpus (we call it again a match). In order to increase the chance of 

tagging this phrase in the same way as in the training corpus, we modify the 

HMM tagger. We do this by using MM tagger explained in Section 7.5. The 

easiest way is by multiplying the HMM probabilities by a factor reflecting the 

number of matched tokens to the number of all tokens in the input sentence, 
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thereby privileging the tags which agree with the tags used for words of the match 

found in the training corpus. 

Suppose the length of the input sentence is n. First we want to assign to each 

tag t in our tagset a value mm(t), resulting from processing the input sentence.  It 

is done as follows: 

mm(t) is the length of the longest match between the input sentence and a 

sentence in the training corpus, such that tag t is assigned to at least one word in 

the corpus part of the matching, minus n. 

It is clear that for a tag t which never appears in a matching, mm(t)= –n. 

Then we process the input sentence using HMM tagger whose probabilities are 

modified in the following way: 
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What happens exactly in the previous formula is that we relatively decrease the 

chance of selecting the tags which do not appear in long matches.  

The result of applying this change to the HMM tagger is the following 

equation, which defines the augmented HMM tagger. 
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A tagger using this simple idea has been implemented and tested practically, 

just to see if it works. The accuracy increased from 95.28%, achieved by the 

unmodified HMM to 95.55%, in a test using the Brown corpus of English and 10-

fold cross-validation. This result has encouraged us to generalize this method, in 

particular to more than two taggers. 

We should note that Viterbi algorithm has not been affected, because our 

modification is reflected by the word likelihood probabilities. And Viterbi 

algorithm selects the maximum input to each state (tag) depending on the 

transition probabilities and the word likelihood probabilities. I.e., selecting the 

maximum input to state still works as before. 
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7.7 Modification for general use 

We have used MM as a source of additional information supplied to HMM, for 

modifying its probabilities. Indeed our formula incorporates into HMM tagger 

more than a single sequence of tags, because it changes the factors by which the 

probabilities are multiplied, depending on the length of the local maximal 

matching fragments. While generalizing our method to taggers other than MM, we 

assume that the tagger produces a single sequence of tags and nothing more. 

Indeed, it would be extremely difficult to incorporate with HMM anything beyond 

it, since the internal information produced by each tagger is different.    

Therefore we modify our method of combining taggers relying on the 

sequences of tags produced by the taggers, only. The benefit of it is that we can 

use any tagger now in combination with HMM tagger.  

Let‟s work on the same example of MM and HMM. The role of MM was to 

modify the HMM probabilities, i.e., each sentence was processed using HMM 

with different probabilities. We want to use the same idea using another tagger in 

place of MM, say Brill tagger. Using Brill tagger, we can modify the emission 

probabilities of HMM tagger, multiplying them by a constant factor f smaller than 

1, except the tags produced by the Brill tagger on the same sentence. In general 

the output of a tagger is fed to HMM tagger which then re-estimates its internal 

probabilities (knowledge) according to previous tagger‟s output. The first tagger 

can be seen as a slave (property) and the second, which we call a master. Before 

explaining the details, let us note that the power of the slave depends on f, which 

can and should be selected experimentally. Our goal here is not selecting the best 

f. Definitely, it should be investigated in the future work, in particular 

investigating if f should remain a constant, or perhaps depend on the tagged 

sentence, the tagset used, the kind of tagger used as a slave, and many other 

factors. At present, we report the first experiments, using a fixed f. 

Any number of slave taggers can be used with one master. Assume that we 

have m+1 taggers (T1 … Tm+1). Tm+1 is HMM tagger and will be used as a master, 

the other will be used as slave taggers. The master tagger is trained for estimating 

its probabilities. Then the input sentence is tagged by each of the slave taggers 

T1… Tm. The outputs of all slave taggers are fed to master in parallel for each 

sentence. Then the master changes its probabilities according to the outputs of the 
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slaves for this sentence. Then master does the tagging for this sentence according 

to the new probabilities. The important thing, in this method, is that using 

different probabilities for estimating each sentence. Figure 7-1 shows a block 

diagram for the proposed master and slaves tagger. 

 
Figure 7-1: Combining taggers into a master-slaves tagger. 

7.8 Difference between the new and other methods   

There are many differences between our approach and the existing approaches 

in general. First, each sentence is tagged by the master tagger according to a 

different knowledge, affected by the results of the slaves taggers. We can say that 

we have a new tagger for each sentence. 

There is no limitation for the number of slave taggers, as opposed to voting 

which needs an odd number of them to avoid ties.  

It differs from stacking by using more than one tagger (as slaves) which feed 

their outputs in parallel to the master tagger.  

7.9 Experiments  

We have taken three taggers: HMM, MM (Stomp) and Brill tagger. Each one 

has been tested alone, using 10-fold cross-validation. Then we have done two tests 

where HMM has been the master tagger. In the first test the Brill tagger has been 

the only slave, and in the second we have added MM as the second slave. The 

factor has been constant 0.29 for all tests. It was selected in a few other tests, not 

reported here, as the most effective one. Our goal here was neither selecting the 
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best value of the factor, nor selecting the best way to use the factor. Therefore we 

fixed the value and the approach of using this value which was as follows: when 

the sentence is already tagged by the slaves then the probabilities of all tags a 

specific word wn are multiplied by that factor except that the tag(s) which is/are 

output from the slaves for this word. The data set was Brown corpus which is 

freely available as a part of the NLTK package under Python environment  [22]. 

Also Brill tagger is a built-in tagger in Python. We built very simple 

implementations of MM and HMM taggers. The unknown words are processed, in 

Brill and MM taggers, by giving them “None” tag, and in HMM by giving all tags 

in the tagset equal probabilities. It is not a good method in general, but we wanted 

to test how using of HMM, MM and Brill taggers as master and slaves changes 

the performance, if compared with traditional HMM tagger, under the same 

simple specifications. Figure 7-2 shows the results of these tests. We can see that 

we gain 0.26 % by using Brill tagger as the only slave and 0.42 % by using both 

Brill and MM as slaves. When annotating a corpus of 2 million words, it means 

correcting the tagging of about 8400 words. The other data set for Arabic consists 

of 45 files (29k words) annotated by hand with our new tagset
37

. 

 

Figure 7-2: Results of Master-slaves tagging.  

7.10 Discussion and Further work 

In the previous section we have proposed a new method for combining taggers, 

the master and slaves method. We implemented this method by using three 

taggers which are HMM, MM and Brill tagger. We focused in our implementation 

on proving practically that this method works, not on selecting the best value of 

                                                
37

 See chapter 3 for more details on tagsets. 

Master or 
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tagger 
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words 
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tagged 

words 

Accuracy Accuracy 
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Arabic 

corpus 

Brill ----------- 1161192 1096687 94.44 % 86.43% 

Maxmatch --------- 1161192 1061635 91.5 % 83.26% 

HMM --------- 1161192 1106482 95.28 % 88.81% 

HMM Brill 1161192 1109411 95.54 % 89.40% 

HMM Brill+maxmatch 1161192 1111281 95.70 % 90.05% 
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the factors or selecting a different factor for each slave tagger. We would like to 

mention that the factors can be (i) constant for all slaves (very simple) (ii) 

different for each slave tagger (iii) weighted factors depending on the accuracy of 

each slave tagger (iv) variable factors where for each slave tagger the factor will 

be changed according to some conditions. Any other type of factor can be used 

with the same methodology where the internal probabilities of the master tagger 

will be changed. The gain of accuracy was quite considerable, given the simplicity 

of the approach and very limited tuning of the method. We hope that by using 

weighted or variable factors the gain of accuracy can be increased. The interesting 

thing in the results is that the accuracy of MM was 91.5%, much less than the first 

slave Brill and the master HMM, and still by adding it as the second slave we 

improved the accuracy. Actually we expected the accuracy to drop because of the 

huge difference in the accuracy between HMM and MM. But what happened is 

the reverse: the master tagger still has the control for selecting the best tag among 

the tags suggested by the slaves. It was the main reason for selecting the name of 

the method master and slaves. A successful application of this method to a highly 

a inflected language, such as Arabic, proves its generality. The low accuracies of 

all taggers for Arabic are mainly due to (i) using very small data set (ii) using very 

rich tagset.  

 

 





 

 

 

 

 

 

Chapter 8 Combining Rules-based and Master-Slaves Tagger 
 

  
 

    

 

8.1 Introduction  

In this chapter we will describe an implementation of Arabic POS combined 

tagger. The first tagging technique we use is by using manually written rules. The 

tagger consists of a few hundred of hand-written rules. Most of these rules were 

taken from Arabic traditional grammar books (AL-Bidhani)  [3] (Al-Rajhi)  [10] 

(Al-Hamlawy)  [7] (Al-Galaiini)  [6]. The task of the rule-based tagger is to 

eliminate unwanted tags from the context. It simplifies the work of the next 

tagger. The second tagger is a master-slaves tagger which was constructed in the 

previous chapter. The master is HMM tagger and the slaves are Brill tagger and 

maxmatch tagger (MM). The rules-based tagger is added to the master-slaves 

tagger as a third, special slave. It can alternatively be seen as a separate tagger 

combined with master-slaves using stacking. 

The main reason for adding a rules-based Arabic tagger is that we do not yet 

have a large corpus annotated by our rich tagset. The second reason is that we 

would like to annotate a new, larger Arabic corpus with our rich tagset. We do not 
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focus on the speed of processing because our work is intended to be a tool for 

producing large annotated Arabic corpus. I.e., our tagger will be used offline
38

. 

8.2 Related work 

There are many papers that combine rules-based and statistical taggers. Almost 

all these works use the stacking technique. All the works mentioned in the 

previous Chapter can be mentioned here, e.g., (Yonghui et, al.)  [92] (Henrich et, 

al.)  [52] (Loftsson)  [67]. Book (Nitin & Fred)  [73] presents other combinations of 

taggers by using voting or stacking methods.  

For Arabic, if we consider a morphological analyzer as a light tagger, (Khoja) 

 [57] is an example of a stacking combination. All possible tags for each word with 

its stem are fed from the analyzer to a statistical tagger trained on a corpus, to get 

the best tag for that word. She achieved 90% accuracy on a data set of 50 k words, 

using a simple tagset
39

.  

Our work here is different from the above mentioned works: (i) we have an 

analyzer (ii) we have  manually written rules for eliminating unwanted tags (iii) 

the output of a rules-based tagger is fed to the master-slaves tagger with two slave 

taggers. None of the mentioned papers had all those elements at the same time. 

The earliest POS tagging systems were rule-based systems, in which a set of 

rules was manually constructed and then applied to tag a given text (Nitin & Fred) 

 [73]. Theoretically such taggers should have high accuracy, but constructing such 

a tagger is a very difficult task. Therefore most of the researchers did not construct 

rule-based taggers containing rules for all possible features of the language, 

because it was practically impossible. Then the researchers tried to collect the 

rules from the experts. The main drawback of those early systems was the 

laborious work of manually coding the rules and the requirement of strong 

linguistic background.  

There are also corpus-based rule taggers. The rules, in a corpus-based rule 

tagger, are extracted automatically from the corpus – the Brill tagger is the best 

example of this type. 

                                                
38

 See Chapter 1 for definition of offline and online tagger. 
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 See Chapter 3 for more details on this tagset. 
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8.3 Comparing between manually created rule-
based taggers and other taggers 

In order to compare taggers meaningfully one must take into account the 

training data sets they use (if any), the test data sets and tagsets they use. 

However, one can name a few distinctions between Manually written rule-based 

taggers and statistical taggers, used in our work. 

1. Manually written rule-based taggers do not use (and depend on) a corpus, 

and therefore are more general. 

2. Manually written rule-based taggers are more stable in performance, when 

the test data changes. 

3. Manually written rule-based taggers require human expertise in linguistics, 

which is not necessary to construct statistical taggers. 

4. Manually written rule-based taggers require much more human work and 

are therefore slower to construct. 

5. Manually written rule-based taggers have less problems with unknown 

words than statistical ones, especially those without analyzer. 

6. There are only a few rules (no matter if manually written or generated 

automatically) without any exceptions. 

7. Rule-based taggers have cyclic dependency problems. For example take 

the rule: there are no two consecutive verbs. If there are two words, each 

one can have verb and noun POSs tags, then we cannot get the decision 

from that rule, if there are no other rules to break the cyclic dependency: 

the tag for the first word depends on the tag for the second, and vice versa.  

8.4 Implementation of an Arabic manually written 
rule-based tagger 

There are many difficulties when we implement manually written rule-based 

tagger. The first is that in most cases, the tagger cannot select only one tag for 

each word. This restricts the possibility to combine this kind of tagger with other 

taggers. Another problem that is that the rules written by experts may have 

complicated forms and programming them in one form is difficult.  
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For simplification of the previous problems, we use a unified, restricted form 

of rules we implement. Complicated rules are first split into (perhaps several) 

simple rules, and only then implemented. All rules are used for eliminating 

unwanted tags for specific words in the context, so our goal will not be selecting 

the best tag. The unified form of our rules is: 

“if conditions  then eliminate (list of tags)” 

This form can be implemented in a simple way. 

Here are some randomly selected samples from the rules used in the 

implementation and extracted from (AL-Bidhani)  [3] (Al-Rajhi)  [10] (Al-

Hamlawy)  [7] (Al-Galaiini)  [6]:  

 “if the word is preceded by a reduction particle then eliminate (tags with 

POS<>noun and tags with case<>genitive)”. 

 “if the word preceded by Def particle then eliminate (tags with 

POS<>noun)” 

 “if the word is at the beginning  of a sentence and (POS=noun or 

(POS=verb & mood=present)) then eliminate (tags with case or mood<> 

nominative) 

 “if the word follows a verb without „Al‟ „اي‟ then eliminate (tags with 

POS=adjective) 

 “if the word is preceded by „ط‟ or „عٛف‟ particles then eliminate (tags 

with POS & Mood <> verb & present) 

 “if  „ن‟ is a proclitic then eliminate (tags with POS & working 

<>particle & reduction) 

 “if all the analyses of the preceding word have verb class then 

eliminate(tags with POS= verb) 

 “if all the analyses of the following word have verb class then eliminate 

(tags with POS= verb) 

 “if the preceding word tag has genitive case and the current word has „اي‟ 

as a proclitic  then eliminate (tags with case<> genitive) 

Many such rules are used for building our rule-based tagger. Building this 

tagger, collecting rules, building dictionary and the analyzer were the most time 

consuming tasks in this dissertation.  
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8.5 Combining manually written rule-based taggers  

As we know, the first step in tagging is to assign all the possible tags to each 

word. Most of these tags may be eliminated almost immediately, it is a task for 

the rule-based tagger, which assists this way statistical taggers. 

There are many methods for combining more than one tagger into one tagging 

system
40

. The most frequently used and easiest is voting. But it cannot be used 

according to our specification for rule-based tagger, which may leave several 

possible tags for a single word. Therefore, by using stacking technique, we can 

combine a rule-based tagger with a tagger constructed by master-slaves technique. 

Figure 8-1 shows this combination. An important note here is that stacking can be 

seen as a special case of master-slaves technique.  

Using slaves, in master-slaves technique for a simple (fixed) factor, we modify 

the emission probabilities of a HMM tagger, multiplying them by a constant 

factor smaller than 1, except the tags produced by slaves. The operation we use 

now, eliminating tags, can be described as using the rule-based tagger as a slave 

with factor 0.  

There is another reason to use rule-based tagger with master-slaves. In a rule-

based tagger, the rules are used to eliminate unwanted tags, which in turn 

simplifies the task of the master tagger, since the eliminated tags need not be 

taken into account. This benefit arises when such a tag is selected by another slave 

tagger.   

Figure 8-1 can be understood in two ways: that it presents a rule-based tagger 

attached as a slave with factor zero, or as a tagger combined using stacking 

technique. We prefer the first meaning because it is a part of our general technique 

of master-slaves. Of course, with factor zero the rule-based tagger can eliminate 

any tag completely, which causes the master tagger not to take it into account. 

Therefore it is a special, very powerful slave. 

                                                
40

 See Chapter 7 for more details about taggers combination. 
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Figure 8-1: The overview of the tagging system. 

 

8.6 Results and discussion  

We applied the tagger described above to a data set of 45 files (29k words in 

total), annotated manually with our tagset. The result of using HMM, Brill and 

MM taggers combined as master-slaves was accuracy of 90.05 %. The accuracy 

after adding the rule-based tagger increased to 92.86 %.  

We can see that the accuracy increased by using the rule-based tagger. The 

large increase of accuracy is most likely due to the fact that we use a small corpus, 

which leads to low accuracy of statistical methods. Using the rule-based tagger, 

which is independent of the type and size of corpus, increases the accuracy. We 

expect that when the size of corpus will increase, the gain of accuracy due to rule-

based tagger will diminish. 
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Chapter 9 Results, Discussion and Future Work 
 

  
 

The main goal of our dissertation was to construct a comprehensive tagging 

system, which can be used for annotating Arabic corpora.  

In our dissertation, we did analytical study, implementation and evaluation of 

Arabic tagging system, starting from raw text to tag disambiguation. The system 

was implemented under a new very rich tagset, which was designed and 

developed by us. We split the tagging process to stand alone stages which 

simplified building the whole system.  

Our corpus consists of 45 files with 29k word in total, annotated by our tagset. 

It was used as a training corpus for the statistical methods used in our tagger. The 

accuracy of the tagging was calculated assuming 100% correctness of 

tokenization, which required 1.2% of manual corrections. 

9.1 Implementation 

Our implementation, for all system stages, was done in the C# environment. 

There is one exception: the software testing the master-slaves technique on the 

Brown corpus was written in Python, because the Python taggers are freely 

available. Otherwise we used C# even though it does not contain any special 

library for NLP, for many reasons: the basic goal was to build the whole 

application for Arabic, using input and output without any transliteration. It is an 



Results, Related Work and Future Work   

 112 

easy language comparing to other languages; it combines the power of C++ and 

simplicity of VB. An application with a rich and comfortable user interface, 

important for the annotator, can be created quite easily. The problem of Unicode 

when dealing with Arabic language does not exist. C# is also a relatively fast 

language. The last reason which caused us to select a language rarely used for 

NLP is that we built all the parts of the system: tokenizer, analyzer and tagger 

ourselves, and no parts of them were taken from existing resources. 

It seems to us that manual correction of the tokenization output before tagging 

is desired. This work does not take much time, comparable to the time of just 

reading the text. This operation increases the accuracy of tagging, while manual 

correction of tagging results is definitely more time-consuming. 

The most labour-intensive parts of our dissertation were its practical parts: 

building the dictionaries, the analyzer and collecting the rules for tagging. But the 

result seems worth the effort. 

9.2 Results and discussion 

Tagset: Designing a new Arabic tagset, suitable for Classical Arabic (CA) and 

Modern Standard Arabic (MSA), is a hard problem. In addition to the classical 

constructions in tag systems, we introduced interleaving of tags. Interleaving is a 

relation between tags which, in certain situations, can be attached to the same 

occurrence of a word, but each of them can also appear alone. Our tagset makes 

this relation explicit.  

Tokenization: It is an initial task for almost all Arabic language processing 

applications. This task was achieved, in our system, by rule-based and statistical 

methods. We separated the tokenization process in order to simplify the tagging 

process. The accuracy of this stage was 98.8%. It is comparable to other similar 

works. Because it is an independent task, it can be modified without affecting the 

whole system. In order to increase the accuracy of the subsequent stages, the 

output of tokenization can be corrected manually which should take relatively 

little time. 

Analysis and lemma extraction: as was mentioned in Chapter 5, the goals of 

this task are extracting all the analyses of the word and extracting the lemma. 

These analyses provide POS and features according to our tagset. Our analyzer 
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cannot be used independently, because it is specialized for the needs of our 

complete system. Because we use it for tagging, we evaluated its accuracy 

measuring how often the true analysis is among all analyses produced. For doing 

this evaluation we used a small corpus of 16 k words, manually annotated by a 

single analysis for each word, correct for this particular use of that word. In the 

test, for 99.67% of words, the correct analysis was among those produced by the 

analyzer. On the other hand, in a manual verification of the output of the analyzer, 

only 0.1% of all analyses were grammatically incorrect. 

Tagging: We used two techniques of combining taggers, which are stacking 

and master-slaves techniques. The taggers used by these techniques are manually 

created rule-based tagger, HMM, Brill and MM taggers. HMM, Brill and MM 

taggers are combined with master-slaves technique, with HMM as the master and 

the other as slaves. Rules-based tagger is combined using stacking or, 

equivalently, as a special slave, with the master-slave tagger.  

Master-slaves technique: Independently of the construction of the whole 

system, we have devised a new method for combining taggers, which is master-

slaves technique. The HMM master tagger chooses the best tag according to its 

knowledge, which is modified by the results obtained by the slave taggers. This 

increases the accuracy when compared with normal HMM tagger, even above the 

level of the best accuracy achieved by the component taggers alone. The 

accuracies of using this technique are shown in Figure 9-1. The reader should 

remember that our tagest with several thousand tags is used, and the training 

corpus was relatively small, therefore the accuracy cannot be as high as in the 

cases of taggers using small tagsets and large corpuses.  

We used a rules-based tagger for increasing the accuracy and eliminating 

unwanted tags. Relatively few rules were used in our tagger, and not all features 

of Arabic language were taken into account. Constructing the rules for this tagger 

was one of the most time consuming tasks. Implementation of these rules was not 

an easy task, if compared to the implementation of the statistical methods. The 

accuracy was increased to 92.86 % by adding the rule-based tagger to the master-

slaves one.  
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Figure 9-1: Accuracy of using HMM, Brill and MM in master-

slaves combination. 

 

9.3 Future work 

The rules which used in tagging are of one form: “If this tag not applicable to 

the present word for some reason, then delete it”. This form makes updating them 

easier. Surely, we did not use all rules known in Arabic, because not all of them 

can be represented in this form, and we did not have time and specialized 

knowledge to create the optimal set of rules. One direction of improving the 

system is to extend it by adding more rules written by experts.  

The second obvious way to improve the performance of the system is to use 

much larger corpus for training. This large corpus can be updated in each cycle of 

running the system, as in Figure 9-2, where the output of the tagger, corrected by 

a human annotator, is added to the corpus.  

We also have plans of using other methods of tagging Arabic, such as 

maximum entropy based tagger. In our opinion it is suitable for a highly inflected 

language, such as Arabic, and quite different in methodology, which gives a 

possibility of different results. It can be then used as a yet another slave in the 

master-slaves hybrid tagger. Using more slaves will affect the time of processing, 

but according to our plan of building an offline tagger, speed of processing is not 

a crucial factor.  
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Brill ----------- 1161192 1096687 94.44 % 86.43 % 

Maxmatch --------- 1161192 1061635 91.5 % 83.26 % 

HMM --------- 1161192 1106482 95.28 % 88.81 % 

HMM Brill 1161192 1109411 95.54 % 89.40 % 

HMM Brill+maxmatch 1161192 1111281 95.70 % 
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Figure 9-2: Corpus feedback. 
 

We also think about building a tagger to use the third, syntactical level in our 

tagset. It will require knowledge of the Arabic syntax. The output of our system 

can be used as its input. The good news for this tagger is that in Arabic there are 

strong relations between the case of the class, and the syntactic class itself. 

Finally, we will use our system as an application for annotating of Arabic texts 

taken from Iraqi media. We believe, in next two years, it will see the light for free 

availability.    
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APPENDIX A1 Arabic letters family Unicode 

Arabic letters family Unicode 

 



Appendix A2   

 117 

Appendix A2: Arabic verb patterns  

Arabic verb patterns 
 

Table 1: Trilateral (merely and extra) verb pattern. 

Verb 

Type 

Verb form Pattern 

Transliteration  

Arabic Script 

Merely 

I faEala – yafoEulu    َ ؼ  َ   –ك ـ ٌ ل ؼ   

I faEala – yafoEilu   َل  يَفْع   –فَـعَل  

I faEala – yafoEalu   َل  يَفْعَ  –فَـعَل  

I faEila – yafoEalu   َل يَفْعَل   –فَـع   

I faEula – yafoEulu   َيَفْع ل   –فَـع ل  

I faEila – yafoEilu   َل ل   –فَـع  يَفْع   

Merely 

+Extra 

one 

letter 

II faE~ala – yufaE~ilu   َي فَعِّل   –فَعَّل 

III faAEala – yufaAEilu   َل   –فَاعَل ي فَاع   

IV OafoEala – yufoEilu   َل   –أَفْعَل ي فْع   

Merely 

+Extra 

two 

letters 

V tafaE~ala – yatafaE~alu   َيَتَفَعَّل   –تَفَعَّل  

VI tafaAEala – yatafaAEalu   َيَتَفَاعَل   –تَفَاعَل  

VII AnofaEala – yanofaEilu   َل  يَنْ  –انْفَعَل فَع   

VIII AfotaEala – yafotaEilu   َل   –افْتَعَل يَفْتَع   

IX AfoEal~a – yafoEal~u   َّيَفْعَل   –افْعَل  

Merely 

+Extra 

three 

letters 

X AsotafoEala – yasotafoEilu   َل   –اسْتَفْعَل يَسْتَفْع   

XI AfoEaAl~a – yafoEaAl~u   َّيَفْعَال   –افْعَال   

XII AfoEawoEala – yafoEawoEalu   َيَفْعَوْعَل   –افْعَوْعَل  

XIII AfoEaw~ala – yafoEaw~alu   َل ل   –افْعَوَّ يَفْعَوَّ  

XIV AfoEanolala - yafoEanolalu   َيَفْعَنْلَل   -افْعَنْلَل  
XV AfoEanolaY - yafoEanolaY   يَفْعَنْلَى -افْعَنْلَى  
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Table 2: quadrilateral (merely and extra) verb pattern and the appendix to it from 

trilateral 

Verb 

Type 

Verb 

form 

Pattern- Transliteration Arabic script appendix to it 

from trilateral 

Arabic script 

Merely  I faEolala – yufaEolilu  َي فَعْل ل   –فَعْلَل 
 

 fawoEala – yufawoEilu    َل   –فَوْعَل ي فَوْع   

 fayoEala – yufayoEilu    َل   –فَيْعَل ي فَيْع   

 faEowala – yufaEowilu    َل   –فَعْوَل ي فَعْو   

 faEoyala – yufaEoyulu    َي فَعْي ل   –فَعْيَل  

 faEolala – yufaEolilu    َي فَعْل ل   –فَعْلَل  

 faEolaY – yufaEolaY    ي فَعْلَى –فَعْلَى  

Extra 

one 

letter to 

merely 

II tafaEolal – yatafaEolal  َِ ِ َ – ت ل ؼ  ٌ ت ل ؼ   
 

 tafaEolala – yatafaEolalu    َيَتَفَعْلَل   –تَفَعْلَل  

 tafawoEala – yatafawoEalu    َيَتَفَوْعَل   –تَفَوْعَل  

 tafayoEala – yatafayoEalu    َعَل  يَتَفَيْ  –تَفَيْعَل  

 tafaEowala – yatafaEowalu    َيَتَفَعْوَل   –تَفَعْوَل  

 tafaEolaY – yatafaEolaY    يَتَفَعْلَى –تَفَعْلَى  

Extra 

two 

letter to 

merely 

III AfoEanolal – yafoEanolalu  يَفْعَنْلَل   –افْعَنْلَل  
 

 AfoEanolal – yafoEanolalu    يَفْعَنْلَل   –افْعَنْلَل  

 AfoEanolaY – yafoEanolaY   ى ِ ٘ ٘ ِ ى – اك ؼ  ٌ ل ؼ   

 AftEolY – yaftaEolY  لت ؼ ِى – اكتؼ ِى ٌ  

 IV AfoEalal~a – yfoEalil~u  َّيفْعَل ل   –افْعَلَل  
 

َ



Appendix B   

 119 

Appendix B: practical Text tagged by the proposed tagset 

Practical Text tagged by the proposed 
tagset 

WEtagged practical text by the proposed tagset. The text was taken from 

Assabah journal (formal journal in Iraq). Date of publishing 19-03-2012. The 

title is “Ur 

Chaldeans”

 

 

Arabic 

word Clitics and word base Tag Explanation 

 Token 
Transliterati
on Translation    

  mrp  Once ,Time NNou_SFNN Noun Common Singular Feminine Nominative Not Structured ِشحََ ِشح

، ََ، ,  , CPnc Punctuation 

 ٚلجً

ٚ w  And  PNon_Non Particle Not_have_working have_No_meaning 

  qbl  before NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured لجًََ

  sntyn  Two years NNou_DFGN Noun Common Dual Feminine Genative Not Structured عٕز١ََٓ عٕز١ٓ

، ََ، ,  , CPnc Punctuation 

 ktbt  I wrote VPst_3SMOYNA وزجذََ وزجذ
Verb Past Third Singular Masculine NonMood Structured Not 
Certainty Active  

  En  About PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ػََٓ ػٓ

 اٌؼشاق

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  ErAq  Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ػشاقَ

  Al*y  Which NRel_SMGY Noun Relative Singular Masculine Genative Structured ٌزَٞاَ اٌزٞ

  swf  Will PNon_Fut Particle Not_have_working have_meaning_of_Future عٛفََ عٛف

 yEml  Works VPrt_3SMNNNA ٠ؼًََّ ٠ؼًّ
Verb Present Third Singular Masculine Nominative Not Structured 
Not Certainty Active  

  ElY  At PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ػٍََٝ ػٍٝ

وٍّخَوج١شحَِٚجبٌغَف١ٙبَٚسثّبٌََُ ِشح،َٚلجًَعٕز١ٓ،َوزجذَػَٓاٌؼشاقَاٌزَٞعٛف٠َؼًَّػٍَٝرغ١١شَاٌؼبٌُ،ًََ٘٘زٖ

فَاٌؼشاقَاٌمذ٠َُاٌىبَِٓرذذَاٌشِبيَٚا١ٌٍشٓ،ََ٘ٛرانَاٌزَٞعٛ ٠غؼفَاٌزؼج١شَػٍَٝٚجَٗاٌذلخَٚاٌٛظٛحََِٓاْ

آثبسٞ،٠ٌََُجشَاٌزٕم١تَف١ٙبَ ٚاراَاسرأ٠ٕبَاٌفىشحَفَٟاٌٛالغَاٌفؼٍٟ،َفأَْاٌؼبٌََُِٚٓخلايَػششحَآلافَرً ٠غ١شَاٌؼبٌُ،

َػ١ٍّخ َاوبد١ّ٠بدَالاسضَفشصخ َعٛف٠َّٕخ َِخزٍفَ ثبٌؼشاق، َفٟ َِٚفب١ّ٘ٙب َرصٛسارٙب َرغ١١ش َثُ َِٓٚ لاعزؼبدح

اٌّبسوغ١َْٛإٌظشَ ٔفغََِٗٓخلايَاٌؼشاقَِثٍّبَرغ١شَد١َٓاػبدٚاٌزبس٠خ..َارَْفبٌؼبٌَُع١غ١شَ لعب٠بَٚشإَْٚاٌذ١بح

َاٌطجمبد َٔشٛء َالاع١َٛٞٚفىشح َالأزبج َّٔػ َػٓ َٚثبثًَ فَٟرصٛسارُٙ َِثًَعِٛش َاوزشفَالاعزششاقَِذٔب دبٌّب

َػٕذَرفبص١ٍٙب َاٌذٌٚخ، ٚآشٛس،َٚرذشٚا ٌَٚٛ أظّخَرغج١ًَاٌؼج١ذَٚالاجشاءَٚاٌّٛ ف١َٓٚاشىبيَرٕظ١َُاٌؼًَّٚاداسح

َاٌّذْ َاوزشبفَرٍه َاٌٝ َرٛصً َِبسوظَٚأجٍظَلذ َالاعزششاقَفَٟصِٓ َػَٓ وبْ َش١ئب َوزجب ٌَّب َا١ِٛ١ٌخ ٚدلبئمٙب

 دَْٚاسرمبءَاٌٍّى١خَاٌفشد٠خَِٕٚؼبََِٓل١بََاٌصشاعَاٌطجمٟ،َٚسثّبَوبٔذ الاسضَاٌّشبػخَِٚشىٍخَاٌجضيَاٌٍز٠َٓدبلا

َ.اٌزفص١ٍَٟوّبَجبءَثؼذَِبسوظ زششاقَفَٟاٌّغزٜٛاٌّبسوغ١خَغ١ش٘بَفَٟإٌظشَاٌَٝاٌششقَٚاٌغشةٌََٛوبَْالاع
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  tgyyr  Changing NNou_SMGN Noun Common Singular Masculine Genative Not Structured رغ١١شََ رغ١١ش

 اٌؼبٌُ

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  EAlm  world NNou_SMGN Noun Common Singular Masculine Genative Not Structured ػبٌَُ

، ََ، ,  , CPnc Punctuation 

ً٘ ًََ٘ hl  Is, Are PNon_Int Particle Not_have_working have_meaning_of_Interrogative  

  h*h  This NDem_SMGY Noun Demostrative Singular Masculine Genative Structured ٘زََٖ ٘زٖ

  klmp  Word NNou_SFNN Noun Common Singular Feminine Nominative Not Structured وٍّخََ وٍّخ

  kbyrp  Large NAdo_SFNN Noun Adjective(Other) Singular Feminine Nominative Not Structured وج١شحََ وج١شح

 ِٚجبٌغ

ٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking  

 mbAlg  exaggerate NAdo_SMNN ِجبٌغَ
Noun Adjective(Other) Singular Masculine Nominative Not 
Structured  

 ف١ٙب

 fy  In PRed_Adv PRed_Adv فَٟ

  hA  her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 ٚسثّب

ٚ w  And  PNon_Non Particle Not_have_working have_No_meaning  

  rb  May PNon_Crd Particle Not_have_working have_meaning_of_increasing_decreasing سة

  mA  be PPrv_Non Particle For_Preventing have_No_meaning ِب

ٌُ ٌََُ lm  Not PJus_Neg Particle For_jusive have_meaning_of_Negative  

 ysEf  Ministering VPrt_3SMJNNA ٠غؼفََ ٠غؼف
Verb Present Third Singular Masculine JussiveNot Structured Not 
Certainty Active  

 اٌزؼج١ش

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  tEbyr  expression NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رؼج١شَ

  ElY  At PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ػٍََٝ ػٍٝ

  wjh  Face NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٚجََٗ ٚجٗ

 اٌذلخ

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  dqp   accuracy NNou_SFGN Noun Common Singular Feminine Genative Not Structured دلخَ

 ٚاٌٛظٛح

ٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  wDwH  clarity NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٚظٛحَ

ِٓ ََِٓ mn  Of PRed_Non Particle For_Reduction have_No_meaning  

  On  That PCop_Cer Particle For_copying have_meaning_of_Certainty أََْ أْ

 اٌؼشاق

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  ErAq  Iraq NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured ػشاقَ

 اٌمذ٠ُ

 Al The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  qdym  Old NAdo_SMAN Noun Adjective(Other) Singular Masculine Accusative Not Structured لذ٠َُ

 اٌىبِٓ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  kAmn  latent NAdo_SMAN Noun Adjective(Other) Singular Masculine Accusative Not Structured وبَِٓ

  tHt  Under NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رذذََ رذذ

 اٌشِبي

 اي

Al rmAl  

The  PNon_Def Particle Not_have_working have_meaning_of_Definition 

  sands NNou_PMGN Noun Common Plural Masculine Genative Not Structured سِبيَ

 ٚا١ٌٍشٓ

ٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  ly$n  launch NNou_SMGN Noun Common Singular Masculine Genative Not Structured ١ٌشَٓ

، ََ، ,  , CPnc Punctuation 

ٛ٘ ََٛ٘ hw  He NPrn_SMNY Noun Pronoum Singular Masculine Nominative Structured  

  Ak  That NDem_SMNY Noun Demostrative Singular Masculine Nominative Structured* رانََ ران

  Al*y  Which NRel_SMNY Noun Relative Singular Masculine Nominative Structured اٌزََٞ اٌزٞ

  swf  Will PNon_Fut Particle Not_have_working have_meaning_of_Future عٛفََ عٛف

 ygyr  Change VPrt_3SMNNNA ٠غ١شََ ٠غ١ش
Verb Present Third Singular Masculine Nominative Not Structured 

Not Certainty Active  

 اٌؼبٌُ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  EAlm  world NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ػبٌَُ
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، ََ، ,  , CPnc Punctuation 

 ٚئرا

ٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  I*A  if PNon_Adv Particle Not_have_working have_meaning_of_Adverbial ئراَ

 ArtOynA  We decided VPst_1PCOYNA اسرأ٠ٕبَ اسرأ٠ٕب
Verb Past First Plural Common NonMood Structured Not Certainty 
Active  

 اٌفىشح

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  fkrp  idea NNou_SMAN Noun Common Singular Masculine Accusative Not Structured فىشحَ

  fy  In PRed_Adv Particle For_Reduction have_meaning_of_Adverbial فََٟ فٟ

 اٌٛالغ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  wAqE  reality NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٚالغَ

 اٌفؼٍٟ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 fEly  actual NAdg_SMGN فؼٍَٟ
Noun Adjective(Genealogical) Singular Masculine Genative Not 

Structured  

، ََ، ,  , CPnc Punctuation 

 فأْ

 f  then PNon_Lnk Particle Not_have_working have_meaning_of_Linking ف

  On  that PCop_Cer Particle For_copying have_meaning_of_Certainty أَْ

 اٌؼبٌُ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  EAlm  world NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ػبٌَُ

ِٓٚ 

ٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

َِٓ mn  from PRed_Non Particle For_Reduction have_No_meaning  

  xlAl  Through NAdv_SMGN Noun Adverb Singular Masculine Genative Not Structured خلايَ خلاي

  E$rp  Ten NNod_SFGN Noun Number(Ordinal) Singular Feminine Genative Not Structured ػششحَ ػششح

  lAf  Thousands NNod_PMGN Noun Number(Ordinal) Plural Masculine Genative Not Structured| آلافَ آلاف

  tl  Hill NNou_SMGN Noun Common Singular Masculine Genative Not Structured رًَ رً

  vAry| آثبسَٞ آثبسٞ

Archaeologis

t NAdg_SMGN 
Noun Adjective(Genealogical) Singular Masculine Genative Not 

Structured  

، َ، ,  , CPnc Punctuation 

ٌُ ٌَُ lm  Not PJus_Neg Particle For_jusive have_meaning_of_Negative  

 yjr  happen VPrt_3SMJNNA ٠جشَ ٠جش
Verb Present Third Singular Masculine JussiveNot Structured Not 

Certainty Active  

 اٌزٕم١ت

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  tnqyb  exploration NNou_SMNN Noun Common Singular Masculine Nominative Not Structured رٕم١تَ

 ف١ٙب

 fy  In  PRed_Adv PRed_Adv فٟ

  hA  her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 ثبٌؼشاق

 b  in  PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ة

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  ErAq  Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ػشاقَ

، ََ، ,  , CPnc Punctuation 

  swf  Will PNon_Fut Particle Not_have_working have_meaning_of_Future عٛفََ عٛف

 ymnH  Gives VPrt_3SMNNNA ٠ّٕخََ ٠ّٕخ
Verb Present Third Singular Masculine Nominative Not Structured 

Not Certainty Active  

 اوبد١ّ٠بدََ داوبد١ّ٠ب

AkAdymy

At  Academies NNou_PFNN Noun Common Plural Feminine Nominative Not Structured  

 الاسض

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  ArD  land NNou_SFGN Noun Common Singular Feminine Genative Not Structured اسضَ

  frSp  Opportunity NAdo_SFAN Noun Adjective(Other) Singular Feminine Accusative Not Structured فشصخَ فشصخ

 Elmyp  Scientific NAdg_SFAN ػ١ٍّخَ ػ١ٍّخ
Noun Adjective(Genealogical) Singular Feminine Accusative Not 

Structured  

 لاعزؼبدح

 l  To  PRed_Cau Particle For_Reduction have_meaning_of_Caution ي

  AstEAdp  restore NNou_SFGN Noun Common Singular Feminine Genative Not Structured اعزؼبدحَ

ِٓٚ 

ٚ w  And  PCnj_Non Particle For_Conjection have_No_meaning 

َِٓ mn  from PRed_Non Particle For_Reduction have_No_meaning  

  vm  Then PCnj_Non Particle For_Conjection have_No_meaning ثَُ ثُ

  tgyyr  Change NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رغ١١شَ رغ١١ش

 tSwrAt  her NNou_PFGN Noun Common Plural Feminine Genative Not Structured رصٛساد رصٛسارٙب
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  hA  Perceptions NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘بَ

 ِٚفب١ّ٘ٙب

ٚ w  and  PCnj_Non Particle For_Conjection have_No_meaning 

 mfAhym  concepts NNou_PFGN Noun Common Plural Feminine Genative Not Structured ِفب١َُ٘

  hA  her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

  fy  In PRed_Non Particle For_Reduction have_No_meaning فََٟ فٟ

  mxtlf  Different NNou_SMGN Noun Common Singular Masculine Genative Not Structured ِخزٍفَ ِخزٍف

  qDAyA  Issues NNou_PFGN Noun Common Plural Feminine Genative Not Structured لعب٠بََ لعب٠ب

 َٚشإَْٚ ٚشإْٚ

w  and  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

$Wwn  Affairs NNou_PFGN Noun Common Plural Feminine Genative Not Structured  

 اٌذ١بح

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  HyAp  life NNou_SFGN Noun Common Singular Feminine Genative Not Structured د١بحَ

 ٚاٌزبس٠خ

ٚ w  And  PCnj_Non Particle For_Conjection have_No_meaning 

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  tAryx  date NNou_SMGN Noun Common Singular Masculine Genative Not Structured ربس٠خَ

..  ..  ..  .. CPnc Punctuation 

  A*n  So PNon_Ans Particle Not_have_working have_meaning_of_Answer ارَْ ارْ

 فبٌؼبٌُ

 f  then  PNon_Non Particle Not_have_working have_No_meaning ف

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  EAlm  world NNou_SMNN Noun Common Singular Masculine Nominative Not Structured ػبٌَُ

 ع١غ١ش

 s  will PNon_Fut Particle Not_have_working have_meaning_of_Future ط

 ygyr  change VPrt_3SMNNNA ٠غ١شَ
Verb Present Third Singular Masculine Nominative Not Structured 

Not Certainty Active  

 ٔفغٗ

 nfs  self NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ٔفظ

ٖ h  him NPrn_SMGY Noun Pronoum Singular Masculine Genative Structured  

ِٓ َِٓ mn  from PRed_Non Particle For_Reduction have_No_meaning  

  xlAl  Through NAdv_SMGN Noun Adverb Singular Masculine Genative Not Structured خلايَ خلاي

 اٌؼشاق

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  ErAq  Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ػشاقَ

 ِثٍّب

 mvl  Like  NNou_SMNN Noun Common Singular Masculine Nominative Not Structured ِثً

  mA  what NRel_SMGY Noun Relative Singular Masculine Genative Structured ِبَ

 tgyr  Changed VPst_3SMOYNA رغ١شَ رغ١ش
Verb Past Third Singular Masculine NonMood Structured Not 

Certainty Active  

  Hyn  When NNou_SMAN Noun Common Singular Masculine Accusative Not Structured د١َٓ د١ٓ

 AEAd  Re- VPst_3SMOYNA اػبدَ اػبد
Verb Past Third Singular Masculine NonMood Structured Not 

Certainty Active  

 اٌّبسوغ١ْٛ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

َ

 mArksywn  Marxists NAdg_PMNN ِبسوغ١َْٛ
Noun Adjective(Genealogical) Plural Masculine Nominative Not 

Structured  

 إٌظش

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  nZr  view NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ٔظشَ

  fy  In PRed_Non Particle For_Reduction have_No_meaning فَٟ فٟ

 رصٛسارُٙ

رصٛسادَ

ُ٘ 

tSwrAt  Perceptions  NNou_PMGN Noun Common Plural Masculine Genative Not Structured 

hm  them NPrn_PMGY Noun Pronoum Plural Masculine Genative Structured  

  En  About PRed_Non Particle For_Reduction have_No_meaning ػَٓ ػٓ

  nmT  Pattern NNou_SMGN Noun Common Singular Masculine Genative Not Structured ّٔػَ ػّٔ

 الأزبج

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  AntAj  production NNou_SMGN Noun Common Singular Masculine Genative Not Structured أزبجَ

 الاع١ٛٞ

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Asywy  Asian NAdg_SMGN اع١َٛٞ
Noun Adjective(Genealogical) Singular Masculine Genative Not 

Structured  

 ٚفىشح

َٚ w  And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  fkrp  idea NNou_SFGN Noun Common Singular Feminine Genative Not Structured فىشحَ

  n$wʼ  Emergence NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٔشٛءَ ٔشٛء
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 اٌطجمبد

 Al  The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  TbqAt  layers NNou_PFGN Noun Common Plural Feminine Genative Not Structured غجمبدَ

 دبٌّب

 HAl  event  NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured دبيَ

  mA  that NRel_SMGY Noun Relative Singular Masculine Genative Structured ِبَ

 Akt$f  Discover VPst_3SMOYNA اوزشفَ اوزشف
Verb Past Third Singular Masculine NonMood Structured Not 

Certainty Active  

 الاعزششاق

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 Ast$rAq  Orientalism NAdg_SMNN اعزششاق
Noun Adjective(Other) Singular Masculine Nominative Not 

Structured  

  mdnA  Cities NNou_PMAN Noun Common Plural Masculine Accusative Not Structured ِذٔبَ ِذٔب

  mvl  Such as NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ِثًََ ِثً

  swmr  Sumer NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured عِٛشََ عِٛش

 ٚثبثً

َٚ w  and PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  bAbl  Babylon NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ثبثًَ

 آشٛسٚ

َٚ w  And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  wr   Assyria NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured$| آشٛسَ

، َ، ,  , CPnc Punctuation 

 ٚرذشٚا

َٚ w  And  PCnj_Non Particle For_Conjection have_No_meaning 

  tHrwA رذشٚاَ

made 

inquiries VPst_3PMOYNA 
Verb Past Third Plural Masculine NonMood Structured Not Certainty 

Active  

  End  At NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured ػٕذَ ػٕذ

 رفبص١ٍٙب

 tfASyl  Details  NNou_SMGN Noun Common Singular Masculine Genative Not Structured رفبص١ً

  hA  here NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

  AnZmp  Systems NNou_PMAN Noun Common Plural Masculine Accusative Not Structured أظّخَ أظّخ

  tsjyl  Registration NNou_SMGN Noun Common Singular Masculine Genative Not Structured رغج١ًَ رغج١ً

 اٌؼج١ذ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  Ebyd  slaves NNou_PMGN Noun Common Plural Masculine Genative Not Structured ػج١ذَ

 ٚالاجشاء

َٚ w  And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  AjrAʼ  action NNou_SMAN Noun Common Singular Masculine Accusative Not Structured اجشاءََ

 ٚاٌّٛ ف١ٓ

َٚ w  And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 Al the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

  mwZfyn  staff NNou_PMAN Noun Common Plural Masculine Accusative Not Structured  ِٛ ف١ََٓ

 ٚاشىبي

َٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  A$kAl  forms NNou_PMAN Noun Common Plural Masculine Accusative Not Structured اشىبيَ

  tnZym  Organization NNou_SMGN Noun Common Singular Masculine Genative Not Structured رٕظ١َُ رٕظ١ُ

 اٌؼًّ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  Eml  work NNou_SMGN Noun Common Singular Masculine Genative Not Structured ػًَّ

 ٚاداسح

َٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  AdArp  management NNou_SFGN Noun Common Singular Feminine Genative Not Structured اداسحَ

 اٌذٌٚخ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  dwlp  state NNou_SFGN Noun Common Singular Feminine Genative Not Structured دٌٚخَ

، َ، ,  , CPnc Punctuation 

ٌٛٚ 

َٚ w  And  PNon_Non Particle Not_have_working have_No_meaning 

ٌَٛ lw  if PNon_Con Particle Not_have_working have_meaning_of_Conditional  

 kAn  Was VPst_3SMOYNA وبَْ وبْ
Verb Past Third Singular Masculine NonMood Structured Not 
Certainty Active  

 الاعزششاق

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 Ast$rAq  Orientalism NAdo_SMNN اعزششاقَ
Noun Adjective(Other) Singular Masculine Nominative Not 
Structured  

  fy  In PRed_Adv Particle For_Reduction have_meaning_of_Adverbial فَٟ فٟ

  zmn  Time NNou_SMGN Noun Common Singular Masculine Genative Not Structured صَِٓ صِٓ

  mArks  Marx NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ِبسوظَ ِبسوظ
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 ٚأجٍظ

َٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  Anjls  Angeles NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured أجٍظَ

  qd  May PNon_Rlz Particle Not_have_working have_meaning_of_Realization لذَ لذ

 twSl  Reach VPst_3SMOYNA رٛصًَ رٛصً
Verb Past Third Singular Masculine NonMood Structured Not 

Certainty Active  

  AlY  To PRed_Non Particle For_Reduction have_No_meaning اٌَٝ اٌٝ

  Akt$Af  Discovery NNou_SMGN Noun Common Singular Masculine Genative Not Structured اوزشبفَ اوزشبف

  tlk  That NDem_SFGY Noun Demostrative Singular Feminine Genative Structured رٍهَ رٍه

 اٌّذْ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  mdn  cities NNou_PFGN Noun Common Plural Feminine Genative Not Structured ِذَْ

 ٚدلبئمٙب

َٚ w  and  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 dqA}q  minutes NNou_PFGN Noun Common Plural Feminine Genative Not Structured دلبئكَ

  hA  her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 ا١ِٛ١ٌخ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 ywmyp  day NAdg_SFGN ١ِٛ٠خَ
Noun Adjective(Genealogical) Singular Feminine Genative Not 

Structured  

 ٌّب

 l  For  PNon_Non Particle Not_have_working have_No_meaning يَ

  mA  what PNon_Neg Particle Not_have_working have_meaning_of_Negative ِبَ

 ktbA  they wrote VPst_3DMOYNA وزجبَ وزجب
Verb Past Third Dual Masculine NonMood Structured Not Certainty 

Active  

  y}A  Something NNou_SMAN Noun Common Singular Masculine Accusative Not Structured$ ش١ئبَ ش١ئب

  En  About PRed_Non Particle For_Reduction have_No_meaning ػَٓ ػٓ

 سضالا

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  ArD  land NNou_SFGN Noun Common Singular Feminine Genative Not Structured اسضَ

 اٌّشبػخ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  m$AEp  Commons NAdo_SFGN Noun Adjective(Other) Singular Feminine Genative Not Structured ِشبػخَ

 ِٚشىٍخ

َٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

  m$klp  problem NNou_SFGN Noun Common Singular Feminine Genative Not Structured ِشىٍخَ

 جضياٌ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  bzl  puncture NNou_SMGN Noun Common Singular Masculine Genative Not Structured ثضيَ

  All*yn  Who NRel_DMGY Noun Relative Dual Masculine Genative Structured اٌٍز٠َٓ اٌٍز٠ٓ

 HAlA  prevented  VPst_3DMOYNA دبلاَ بلاد
Verb Past Third Dual Masculine NonMood Structured Not Certainty 
Active  

  dwn  Below NNou_SMAN Noun Common Singular Masculine Accusative Not Structured دَْٚ دْٚ

  ArtqAʼ  Upgrade NNou_SMGN Noun Common Singular Masculine Genative Not Structured اسرمبءَ اسرمبء

 اٌٍّى١خ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 mlkyp  Royal NAdg_SFGN ٍِى١خَ
Noun Adjective(Genealogical) Singular Feminine Genative Not 
Structured  

 اٌفشد٠خ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 frdyp  individual NAdg_SFGN فشد٠خَ
Noun Adjective(Genealogical) Singular Feminine Genative Not 
Structured  

 ِٕٚؼب

َٚ w  And  PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 mnEA  prevented VPst_3DMOYNA ِٕؼبَ
Verb Past Third Dual Masculine NonMood Structured Not Certainty 
Active  

ِٓ َِٓ mn  from PRed_Cau Particle For_Reduction have_meaning_of_Caution  

  qyAm  standin up NNou_SMGN Noun Common Singular Masculine Genative Not Structured ل١بََ ل١بَ

 اٌصشاع

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  SrAE  conflict NNou_SMAN Noun Common Singular Masculine Accusative Not Structured صشاعَ

 اٌطجمٟ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Tbqy  class NAdg_SMGN غجمَٟ
Noun Adjective(Genealogical) Singular Masculine Genative Not 
Structured  

، ََ، ,  , CPnc Punctuation 

 ٚسثّب

َٚ w  And  PNon_Non Particle Not_have_working have_No_meaning 

 rb  may PNon_Crd Particle Not_have_working have_meaning_of_increasing_decreasing سةَ

  mA  be PPrv_Non Particle For_Preventing have_No_meaning ِب
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 kAnt  Was VPst_3SFOYNA وبٔذَ وبٔذ
Verb Past Third Singular Feminine NonMood Structured Not 

Certainty Active  

 اٌّبسوغ١خ

 Al  The  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 mArksyp  Marxist NAdg_SFNN ِبسوغ١خَ
Noun Adjective(Genealogical) Singular Feminine Nominative Not 
Structured  

 غ١ش٘ب

 gyr  changed VPst_3SMOYNA غ١شَ
Verb Past Third Singular Masculine NonMood Structured Not 

Certainty Active 

  hA  it NPrn_SFAY Noun Pronoum Singular Feminine Accusative Structured ٘ب

  fy  in PRed_Non Particle For_Reduction have_No_meaning فَٟ فٟ

 إٌظش

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  nZr  view NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٔظشَ

  AlY  to PRed_Non Particle For_Reduction have_No_meaning اٌَٝ اٌٝ

 اٌششق

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  rq  East NNou_SMGN Noun Common Singular Masculine Genative Not Structured$ ششقَ

 ٚاٌغشة

َٚ w  and PCnj_Lnk Particle For_Conjection have_meaning_of_Linking 

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 grb  west NNou_SMGN Noun Common Singular Masculine Genative Not Structured غشةَ

ٌٛ ٌََٛ lw  If PNon_Con Particle Not_have_working have_meaning_of_Conditional  

 kAn  was VPst_3SMOYNA وبََْ وبْ
Verb Past Third Singular Masculine NonMood Structured Not 
Certainty Active  

 الاعزششاق

 Al  the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Ast$rAq  Orientalism NAdo_SMNN اعزششاقَ
Noun Adjective(Other) Singular Masculine Nominative Not 
Structured  

  fy  in PRed_Non Particle For_Reduction have_No_meaning فََٟ فٟ

 اٌّغزٜٛ

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  mstwY  level NNou_SMGN Noun Common Singular Masculine Genative Not Structured ِغزَٜٛ

 اٌزفص١ٍٟ

 Al  the  PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

  tfSyly  detailed NAdo_SMGN Noun Adjective(Other) Singular Masculine Genative Not Structured رفص١ٍَٟ

 وّب

 k  as  PRed_Sim Particle For_Reduction have_meaning_of_Simile نََ

  mA  what NRel_SMGY Noun Relative Singular Masculine Genative Structured ِبَ

 jAʼ  came VPst_3SMOYNA جبءََ جبء
Verb Past Third Singular Masculine NonMood Structured Not 

Certainty Active  

  bEd  after NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ثؼذََ ثؼذ

 mArks  Marx NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ِبسوظََ ِبسوظ

. ََ. .  . CPnc Punctuation 
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Appendix C: output of our analyzer for simple sentence 

Output of our analyzer for simple 

sentence 
 

wordَ

Tokensَ Lemma Analyzing / Tag  
Arabic 

Transli-

teration 

Trans-

lation 

َاجزّغ AjtmE Met َاجزّغ

 # VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active اِجتَمَعََ

 اِجتَمَعََ
VImv_2SMOYNA Verb Imperative Second Singular Masculine NonMoodStructured Not Certainty 

Active # 

 اِجتَمَعََ
VPrt_1SMNNNA Verb Present First Singular Masculine Nominative Not Structured Not Certainty 

Active # 

 اِجتَمَعََ
VPrt_1SMJNNA Verb Present First Singular Masculine JussiveNot Structured Not Certainty Active 

# 

 اِجتَمَعََ
VPrt_1SMANNA Verb Present First Singular Masculine Accusative Not Structured Not Certainty 

Active # 

 # VPst_3SMOYNP Verb Past Third Singular Masculine NonMoodStructured Not Certainty Passive اِجتَمَعََ

 اِجتَمَعََ
VPrt_1SMNNNP Verb Present First Singular Masculine Nominative Not Structured Not Certainty 

Passive # 

 اِجتَمَعََ
VPrt_1SMJNNP Verb Present First Singular Masculine JussiveNot Structured Not Certainty Passive 

# 

 اِجتَمَعََ
VPrt_1SMANNP Verb Present First Singular Masculine Accusative Not Structured Not Certainty 

Passive # 

 zEmAʼ صػّبء
Leader

s 
 صػّبء

 # NAdo_PMNN Noun Adjective(Other) Plural Masculine Nominative Not Structured زَعيمَ 

 # NAdo_PMAN Noun Adjective(Other) Plural Masculine Accusative Not Structured زَعيمَ 

 # NAdo_PMGN Noun Adjective(Other) Plural Masculine Genative Not Structured زَعيمَ 

 Aldwl States اٌذٚي

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 دٚي

 # NNou_PFNN Noun Common Plural Feminine Nominative Not Structured دَوْلَةَ 
 # NNou_PFAN Noun Common Plural Feminine Accusative Not Structured دَوْلَةَ 
 # NNou_PFGN Noun Common Plural Feminine Genative Not Structured دَوْلَةَ 

AlErby اٌؼشث١خ

p 
The 

Arabic 

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 ػشث١خ
 # NAdg_SFNN Noun Adjective(Genealogical) Singular Feminine Nominative Not Structured عربي

 # NAdg_SFAN Noun Adjective(Genealogical) Singular Feminine Accusative Not Structured عربي

 # NAdg_SFGN Noun Adjective(Genealogical) Singular Feminine Genative Not Structured عربي

 fy فٟ
In 
 

 فٟ

 # PRed_Non Particle For_Reduction have_No_meaning في

 # PRed_Cau Particle For_Reduction have_meaning_of_Caution في

 # PRed_Adv Particle For_Reduction have_meaning_of_Adverbial في

 # NFiv_SMGN Noun Five_Noun Singular Masculine Genative Not Structured في

 وَفَى
VImv_2SFOYNA Verb Imperative Second Singular Feminine NonMoodStructured Not Certainty 

Active # 

 bgdAd ثغذاد
Baghd

ad 
 

 ثغذاد

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured بغداد

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured بغداد

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured بغداد

 # NNou_SMNN Noun Common Singular Masculine Nominative Not Structured بَغْدادَ 

 # NNou_SMAN Noun Common Singular Masculine Accusative Not Structured بَغْدادَ 

 # NNou_SMGN Noun Common Singular Masculine Genative Not Structured بَغْدادَ 

wAjmE ٚاجّؼٛا

wA 

And 
gather 

 # PCnj_Lnk Particle For_Conjection have_meaning_of_Linking و ٚ

 اجّؼٛا

 # PRed_Cer Particle For_Reduction have_meaning_of_Certainty و

 # PRed_Non Particle For_Reduction have_No_meaning و

 # VPst_3PMOYNA Verb Past Third Plural Masculine NonMoodStructured Not Certainty Active أجمَعََ

 أجمَعََ
VImv_2PMOYNA Verb Imperative Second Plural Masculine NonMoodStructured Not Certainty 

Active # 

 # VPst_3PMOYNP Verb Past Third Plural Masculine NonMoodStructured Not Certainty Passive أجمَعََ

 جَمَعََ
VImv_2PMOYNA Verb Imperative Second Plural Masculine NonMoodStructured Not Certainty 

Active # 

 ػٍٝ ElY To/on ػٍٝ

 # PRed_Lnk Particle For_Reduction have_meaning_of_Linking على

 # PRed_Non Particle For_Reduction have_No_meaning على

 # PRed_Adv Particle For_Reduction have_meaning_of_Adverbial على

 # PRed_Cnd Particle For_Reduction have_meaning_of_Conditional على

 # PRed_Cau Particle For_Reduction have_meaning_of_Caution على

 # VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active عَلَّى

 اْ An That اْ

 # PCop_Cer Particle For_copying have_meaning_of_Certainty إنََّ

 # PCop_Cer Particle For_copying have_meaning_of_Certainty أنََّ

 # PNon_Non Particle Not_have_working have_No_meaning إنََّ

 # PNon_Non Particle Not_have_working have_No_meaning أنََّ

 # PNon_Neg Particle Not_have_working have_meaning_of_Negative إنَْ

 # PNon_Non Particle Not_have_working have_No_meaning إنَْ

 # PNon_Non Particle Not_have_working have_No_meaning أنَْ
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 # PAcu_Sub Particle For_Accusative have_meaning_of_Subordinating أنَْ

 # VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active أنَََّ

 # VPst_3SMOYNP Verb Past Third Singular Masculine NonMoodStructured Not Certainty Passive أنَََّ

 وَنَى
VPrt_1SMJNNA Verb Present First Singular Masculine JussiveNot Structured Not Certainty Active 

# 

ysAnd ٠غبٔذٚا

wA 

They 
suppor

t 
 

 ٠غبٔذٚا

 # VPrt_3PMJNNA Verb Present Third Plural Masculine JussiveNot Structured Not Certainty Active سَانَدََ

 سَانَدََ
VPrt_3PMANNA Verb Present Third Plural Masculine Accusative Not Structured Not Certainty 

Active # 

 # VPrt_3PMJNNP Verb Present Third Plural Masculine JussiveNot Structured Not Certainty Passive سَانَدََ

 سَانَدََ
VPrt_3PMANNP Verb Present Third Plural Masculine Accusative Not Structured Not Certainty 

Passive # 

 AlrbyE اٌشث١غ

The 
spring 

 

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 سث١غ

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured ربيع

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured ربيع

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ربيع

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured ربيع

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured ربيع

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ربيع

 # NNou_SMNN Noun Common Singular Masculine Nominative Not Structured رَبيِعَ 

 # NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رَبيِعَ 

 # NNou_SMGN Noun Common Singular Masculine Genative Not Structured رَبيِعَ 

 AlErby اٌؼشثٟ
The 

Arabic 

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 ػشثٟ

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured عربي

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured عربي

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured عربي

رَْ  # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured بيع 

رْبي  # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured ع 

رْبي  # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured ع 

 # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured عَرَبي

 # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured عَرَبي

 # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured عَرَبي

 # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured عَرَبِيَ 

 # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured عَرَبِيَ 

 # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured عَرَبِيَ 

 # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured عَرِبي

 # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured عَرِبي

 # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured عَرِبي

بََ  عَرَّ
VImv_2SFOYNA Verb Imperative Second Singular Feminine NonMoodStructured Not Certainty 

Active # 
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