

University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Ahmed H. Aliwy

Arabic Morphosyntactic Raw Text
Part of Speech Tagging System

PhD dissertation

Supervisor
Prof. dr hab. Jerzy Tyszkiewicz

Institute of Informatics
University of Warsaw

January 2013

Author’s declaration:

Aware of legal liability I hereby declare that I have written this dissertation

my self and all the contents of the dissertation have been obtained by legal

means.

January 14, 2013 ……………………………

 date Ahmed H. Aliwy

Supervisor’s declaration:

The dissertation is ready to be reviewed

January 14, 2013 …………………………………………

 date Prof. dr hab. Jerzy Tyszkiewicz, UW

Abstract

We present a comprehensive Arabic tagging system: from the raw text to tagging

disambiguation. For each processing step in the tagging system, we analyze the

existing solutions (if any) and use one of them or propose, implement and

evaluate a new one.

This work began with designing a new Arabic tagset suitable for Classical Arabic

(CA) and Modern Standard Arabic (MSA). In addition to the classical

constructions in tag systems, we introduce interleaving of tags. Interleaving is a

relation between tags which, in certain situations, can be attached to the same

occurrence of a word, but each of them can also appear alone. Our tagset makes

this relation explicit.

Then we deal with the preparatory stages for tagging system. The first initial

stage is tokenization and segmentation. We use rule-based and statistical

methods for this task. The second stage is analyzing and extracting the lemma

from the word. We have created our own analyzer compatible with our

requirements. Its main part is a dictionary which provides features, POS and

lemma for each word.

The last part of our work is the tagging algorithm which produces one tag for

each word. We use a hybrid method by combining rules-based and statistical

methods. Three taggers, Hidden Markov Model (HMM), maximum match and Brill

are combined by a new method, which we call master and slaves. Then

handwritten rule-based tagger is also added to master-slaves. The rule based

tagger eliminates incorrect tags, and the master chooses the best one among the

remaining ones, assisted by the other slaves.

Our complete system is ready to be used for annotation of Arabic corpora.

Key words

Arabic tagset, Arabic tagger, Arabic Tokenization, Arabic segmentation, Arabic
lemmatization, master-slaves tagging, tagset interleaving, handwritten rules-
based tagger.

Published papers:

Chapter 3:

Ahmed H. Aliwy (2013): Comparing Arabic tagsets and Designing a

New One. to appear in: Lingwistyka Stosowana "Applied Linguistics” nr

(7) 2013, University of Warsaw, Poland.

Chapter 4:

Ahmed H. Aliwy (2012): Tokenization as Preprocessing for Arabic

Tagging System . In proceeding of International Conference on Knowledge

and Education Technology (ICKET 2012), Paris, 2012. Published in

International Journal of Information and Education Technology Vol.2(4):

348-353.

Chapter 5:

Ahmed H. Aliwy (2012): Arabic Language Analyzer with Lemma

Extraction and Rich Tagset. In proceeding of JapTAL 2012, Japan.

Lecture Notes in Computer Science vol. 7614, pp. 168-179.

Chapter 1 Introduction ... 7

1.1 Introduction ... 7

1.2 The overview of the dissertation ... 8

1.3 Related work .. 9

1.3.1 Tagset related works ... 9

1.3.2 Tokenization related works .. 10

1.3.3 Analyzing and extracting lemma related works.................................. 11

1.3.4 Tagging related works ... 12

1.3.5 Combining taggers related work .. 12

1.3.6 Works related to the complete system .. 13

1.4 Dissertation outline ... 13

Chapter 2 Introduction to Arabic language .. 15

2.1 Introduction .. 15

2.2 Arabic letters... 15

2.3 Arabic Language Varieties .. 16

2.4 Arabic Morphology ... 18

2.5 Morphological rules .. 19

22..55..11 Inflectional rules ... 20

22..55..22 Word formation ... 21

2.6 Arabic patterns (awzaan) ... 22

7.2 Words in the sentences .. 23

Chapter 3 Comapring Arabic tagset and designing a new one 25

3.1 Introduction .. 25

3.1.1 Khoja tagset .. 26

3.1.2 Al Qrainy tagset: ... 27

3.1.3 Majdi Sawalha .. 28

3.1.4 Yahya Elhadj ... 29

3.1.5 Buckwalter tagset .. 32

3.1.6 Reduced Buckwalter tagsets: BIES, KULICK and ERTS 33

3.1.7 The CATIB POS tagset ... 34

3.1.8 The PADT tagset ... 35

3.2 Traditional Arabic POS ... 36

3.2.1 Main Arabic POS .. 36

3.2.2 Arabic Noun Classes ... 36

3.2.3 Arabic Verbs ... 37

3.2.4 Arabic Particles ... 38

3.3 Designing an Arabic Tagset .. 39

3.3.1 Designing criteria .. 39

3.3.2 Tagset Interference or interleaving .. 40

3.4 A New Arabic Tagset .. 41

3.4.1 Main POS ... 41

3.4.2 Arabic noun class in the proposed tagset ... 41

3.4.3 Arabic Verb Classes and Attribuits in our Tagset 43

3.4.4 Particles Classification in the proposed tagset 43

3.4.5 Residuals and punctuation ... 45

3.5 Multilevel tagset ... 46

3.6 Practical representation of the proposed tagset .. 47

3.7 Discussion .. 47

Chapter 4 Segmentation and Tokenizatio .. 49

4.1 Introduction .. 49

4.2 Tokenization System ... 50

4.3 Related Work .. 51

4.4 Word and Sentence Segmentation ... 52

4.4.1 Sentence segmentation .. 52

4.4.2 Word segmentation ... 52

4.5 Normalization ... 52

4.6 Arabic Tokenization .. 53

4.7 Arabic word form .. 53

4.7.1 Word Clitics .. 54

4.8 Tokenization and segmentation techniques and schemes 57

4.9 Challenges of Arabic tokenization ... 58

4.10 Our approach .. 59

4.11 Applying statistical improvement .. 61

4.12 Results .. 61

4.13 Discussion .. 62

Chapter 5 Analyzing and lemma extraction ... 64

5.1 Introduction .. 64

5.2 Lemma, stem and root ... 65

5.3 Morphological analysis with lemma extraction for Arabic 66

5.4 Challenges for lemmatization and analyzing ... 68

5.5 Analyzing as preprocessing ... 69

5.6 The proposed analyzing Approach .. 70

5.6.1 Unknown words processing ... 71

5.7 Building Dictionary .. 74

5.8 Results .. 75

5.9 Related work ... 76

5.10 Discussion and feature work ... 77

Chapter 6 Survey of General and Arabic Tagging System 79

6.1 Introduction .. 79

6.2 Tagging by manually created rules .. 80

6.3 n-grams Model .. 80

6.4 Transformation-Based tagging (Brill) ... 82

6.5 HMM tagger ... 83

6.6 Decision trees .. 84

6.7 Maximum Entropy .. 84

6.8 Neural networks .. 86

6.9 Memory based learning .. 87

6.10 Boosting .. 88

6.11 Relaxation labeling (Padró) .. 89

6.12 Cyclic Dependency Network .. 89

6.13 Finite-State Transducers ... 89

6.14 Genetic Algorithm ... 90

6.15 SVM ... 91

6.16 Fuzzy set theory ... 91

6.17 Best match .. 91

6.18 Combining different taggers .. 92

6.19 POS tagging approaches used for Arabic ... 92

6.20 Arabic POS tagging as a part of toolkits and applications 94

Chapter 7 Combining Taggers in Master-Slaves Technique 95

7.1 Introduction .. 95

7.2 Related work ... 97

7.3 Techniques for combining taggers ... 97

7.4 Maximum match (MM) Tagger ... 98

7.5 HMM tagger ... 99

7.6 First experiment of combining of MM & HMM taggers 99

7.7 Modification for general use ... 101

7.8 Difference between the new and other methods 102

7.9 Experiments .. 102

7.10 Discussion and Further work ... 103

Chapter 8 Combining Rules-based and Master-Slaves Tagger 105

8.1 Introduction .. 105

8.2 Related work ... 106

8.3 Comparing between manually created rule-based taggers and other taggers

 107

8.4 Implementation of an Arabic manually written rule-based tagger 107

8.5 Combining manually written rule-based taggers 109

8.6 Results and discussion .. 110

Chapter 9 Results, Discussion and Future Work .. 111

9.1 Implementation ... 111

9.2 Results and discussion .. 112

9.3 Future work .. 114

APPENDIX A1 Arabic letters family Unicode ... 116

Appendix A2: Arabic verb patterns .. 117

Appendix B: practical Text tagged by the proposed tagset 119

Appendix C: output of our analyzer for simple sentence ... 126

References ……………………………………………………………………….129

Figure 1-1: The overview of the system ... 10

Figure 2-1: Arabic letters. The bold letters are vowels, the underlined letters are not
attached to succeeding letter in the same word. .. 16

Figure 2-2: Arabic diacritics and controls .. 17

Figure 2-3: Arabic numbers .. 17

Figure 2-4: Arabic Language variations ... 17

Figure 2-5: Inflection causes deleting and changing of a letter 19

Figure 2-6: Inflection of merely verb “kataba”-“َََوـزَـت” (write) with gender, person and
number. .. 21

Figure 2-7: Deriving verbs from verb. ... 22

Figure 2-8: Deriving nouns from verb. ... 23

Figure 3-1: Khoja tagset .. 27

Figure 3-2: The Noun and Verbal attributes of Khoja Tgaset .. 27

Figure 3-3: Al Qrainy tagset Hierarchy .. 28

Figure 3-4: Majdi Sawalha main POS classification, letters 1, 2, 3 and 4 only. 30

Figure 3-5: Noun and its sub-categories in Elhadj tagset. ... 31

Figure 3-6: Verb and its temporal-forms in Elhadj tagset. ... 31

Figure 3-7: Main groups of particles in Elhadj tagset. ... 32

Figure 3-8: Buckwalter tagset components. .. 33

Figure 3-9 : The Bies tagset .. 34

Figure 3-10: the CATIB POS tagset .. 35

Figure 3-11: POS for The PADT tagset .. 35

Figure 3-12: the PADT features .. 35

Figure 3-13 : Noun classification according to its types ... 37

Figure 3-14: Noun classification according to its status .. 37

Figure 3-15: Main POS. .. 41

Figure 3-16: Arabic Noun Classes in the proposed tagset. ... 42

Figure 3-17: Noun features in the proposed tagset ... 43

Figure 3-18: Verb classes in the proposed tagset .. 43

Figure 3-19: Verbal attributes in the proposed tagset ... 43

Figure 3-20: The classes of particles (working) in the proposed tagset. 44

Figure 3-21: Particles meaning in the proposed tagset (features). 45

Figure 3-22: Residuals classes. ... 45

Figure 3-23: syntactic classes of noun. ... 46

Figure 3-24: the Levels of the proposed tagset .. 47

Figure 4-1: The Tokenization as pre-processing task for tagging process. The output is
inflected word + clitics for each word. ... 51

Figure 4-2: An example of Arabic letter normalization .. 53

Figure 4-3: Verb proclitics. ... 55

Figure 4-4 Noun proclitics. ... 55

Figure 4-5: Proclitics for pronoun and pronoun as an enclitic according to the priority
number of taking the base. .. 56

Figure 4-6: Enclitics for Noun and Verb .. 57

Figure 4-7: Sample of Arabic tokenized text ... 63

Figure 4-8: Transliteration of Arabic tokenized text .. 63

Figure 5-1: Lemma, stem and root of the word “book” with adding number feature. 65

Figure 5-2: analyzing and extracting lemma as tagging preprocessing 70

Figure 6-1: Examples of Brill Templates. ... 82

Figure 6-2: template in (Ratnaparkhi) .. 85

Figure 6-3: Practical features in ME approach. In a maximum entropy model, the
feature can be simple: this word has this tag, consider morphology or consider tag
sequences. .. 85

Figure 7-1: Combining taggers into a master-slaves tagger. .. 102

Figure 7-2: Results of Master-slaves tagging. ... 103

Figure 8-1: The overview of the tagging system. ... 110

Figure 9-1: Accuracy of using HMM, Brill and MM in master-slaves combination. 114

Figure 9-2: Corpus feedback. .. 115

Chapter 1 Introduction

1.1 Introduction

The topic of this dissertation is morphosyntactic part of speech tagging

(abbreviated POS tagging) for Arabic.

This topic has long and rich history for other languages, mainly for English.

POS tagging provides fundamental information about word forms used in

sentences of natural language. The method of utilizing this information varies

depending on the particular NLP application (information retrieval, machine

translation …), in which it is used.

Tagging is a source of many challenges for researchers. These challenges

depend very much on the language under consideration. In this dissertation we

consider Arabic, a highly inflected language. Although Arabic language is

generally quite regular and there are very few irregular forms, very rich and

complicated structure of inflection, which in many cases changes the structure of

the words, causes high degree of complexity of tagging. The other hard problem is

the lack of Arabic language resources, corpora and other tools. We propose a new

tagset in this dissertation and in this case the scarcity of resources makes the work

Introduction

 8

much more difficult. Tokenization schemes
1
 are also a source of problems in

tagging.

We can distinguish, in our dissertation, online and offline tagging. In both of

them, the problem to be solved is the same, but the trade-off between quality of

tagging and the speed of the process is different.

Online tagging is typically a part of another application, like machine

translation. The speed in this scenario is very important, even at the price of

somewhat decreased accuracy.

Offline tagging can be considered as an independent task, like annotating a

corpus. The accuracy is in this case the crucial factor with much less emphasis on

speed.

In this dissertation we have offline tagging in mind, hence we aim mainly at

increasing accuracy of the process and the quality of information it provides, and

generally disregard efficiency questions.

1.2 The overview of the dissertation

When we work on tagging, in the first place we have to choose a right tagset to

be used. This choice affects the amount of information about forms of words

generated in the process of tagging. One can use an existing tagset or decide to

develop a new one. In this dissertation we present a new tagset, which improves

on the existing ones.

 POS tagging, similarly to other NLP tasks, needs a number of preprocessing

stages. Most of these stages can be considered as separated tasks. We list here all

the stages in our work. Some of these stages are optional in other works. For

example, the analyzer misses in most of resent Arabic POS tagging techniques.

The first one is tokenization and segmentation, i.e., splitting the running text

into tokens. This procedure can be split into several steps:

1. Normalization: unification of variants of letters, deleting Tatweel and the

like.

2. Sentence segmentation: splitting running text into sentences

1
 See (Habash) [45] for more information on tokenization schema. Also, see (Benajiba & Zitouni)

 [19] for schema levels.

Introduction

 9

3. Word segmentation: splitting sentences into words.

4. Word tokenization: splitting words into morphemes.

Many other NLP tasks need this preprocessing, too. In our dissertation, this

preprocessing is a separate task, and therefore our algorithms can be used

independently of the tagging procedure.

The second level of preprocessing is analysis with lemma extraction, which

extracts the lemma of each word, determines the part of speech and features for it.

In many other approaches it is the task of a morphological analyzer to extract the

root or stem of the word rather than the lemma. Extracting lemma for Arabic

received little attention in the literature so far because it was considered to be a

hard problem.

After these two preprocessing steps, the tagging will be achieved by applying

one of the supervised or unsupervised techniques to disambiguate the results of

the previous steps. Figure 1-1 shows the whole system which tries to solve all the

tasks described in this introduction.

1.3 Related work

Our complete system has few counterparts in the literature, because it is a

whole tagging system, and most of the existing papers deal with isolated

fragments of the complete process. Therefore we will list the works which relate,

partially or completely, to our work.

1.3.1 Tagset related works

Tagsets are intimately connected with taggers which use them and are

generally not discussed as standalone objects. (Khoja tagset [57] [59]; Al-Qrainy

tagset [9], Sawalha tagset [82], Alhadj tagset [38], Buckwalter tagset, Reduced

Buckwalter tagset (Bies tagset, Kulick tagset [65] and Extended Reduced tagset)

 [45], KATIB POS tagset [47] [49] and PADT tagset [45]) are the most well-known

Arabic tagsets. We discuss them and their limitations in Chapter 3. Our main goal

in designing a new one was to cover specific elements of Arabic missing in those

tagsets and eliminating unwanted tags. The other goal is for producing a tagset

compatible with Classical Arabic (CA) and Modern Standard Arabic (MSA). See

chapter 3 for more details.

Introduction

 10

We constructed a new tagset by avoiding the limitations of the above

mentioned tasets. It was constructed depending on the Arabic literature and it is

not derived from tagsets dedicated for other languages. Our tagset does not have

interleaving, even though it has many tags. Interleaving is a novel notion

introduced by us. It is likely to occur in highly inflected language with a huge

tagset.

Figure 1-1: The overview of the system

1.3.2 Tokenization related works

Tokenization or segmentation procedures are fragments of the following tools:

(MADA+TOKEN (Habash) [51], Buckwalter Arabic Morphological Analyzer

BAMA (Buckwalter) [26] [25], AMIRA (Mona Diab) [32], Xerox Arabic

Morphological Analyzer and generator (Beesley) [17] [18], Sakhr‟s Arabic

Morphological Analyzer (Sakhr Software) [81], Khoja's stemmer (Khoja) [56] and

almost morphological Analyzers) .

Word and
sentence
Segmentation

Running
text

Words and

Sentences

boundaries

Text

Normalization

Analyzing and

extracting Lemma

Lemmas

&

Features

&

POS

T
o
k
en

iz
at

io
n

Tagging

Tagset

Getting tokens

Normalized

text

Consecutive

morphemes

 (

Inflected word

&

Clitics)

Arabic

Language

resources

Designing a new Arabic tagset

Dictionary

One tag for each word

(POS +Features) and

Lemma

Building Dictionary

Introduction

 11

(Benajiba) [20] presents two segmentation schemes that are morphological

segmentation and Arabic TreeBank segmentation and he shows their impact on an

important natural language processing task: mention detection. Experiments on

Arabic TreeBank corpus show 98.1% accuracy on morphological segmentation.

He did not consider tokenization.

The approach of (Lee) [66] models the word as prefix*-stem-suffix*. The

algorithm uses a trigram language model to determine the most probable

morpheme sequence for a given input. The language model is initially estimated

from a small manually segmented corpus of about 110,000 words. The resulting

Arabic word segmentation system achieves around 97% exact match accuracy on

a test corpus containing 29k words.

The systems of Benajiba and Lee deals with stem rather than lemma.

According to (Habash) [45] stem need not be a legal Arabic word form, unlike

lemma. See Chapter 4 for more details.

Our Arabic tokenizer is constructed using a hybrid unsupervised method, and is

a stand-alone application. It produces all possible tokenizations for each word.

Then, written rules and statistical methods are applied to solve the ambiguities. Its

output is one tokenization for each word. The deleted and changed letters are

retrieved by the tokenizer.

1.3.3 Analyzing and extracting lemma related works

In case of extracting lemma, (El-Shishtawy & El-Ghannam) [39] do

lemmatization in three phases: analyzing, POS tagging and then lemma

generation. This approach was proposed for information retrieval.

Concerning morphological analyzers, there are many works in this field.

MAGEAD (Habash et, al.) [50] provides an analysis for a root+pattern. Darwish

analyzer (Darwish) [31] was only concerned with generating the possible roots of

a given Arabic word. (Gridach-Chenfour) [44] Their approach is based on Arabic

morphological automaton technology. (Elixir-FM) [88] is a functional

morphology systems which models templatic morphology and orthographic rules.

BAMA Buckwalter [26] is based on a lexicon which has morphotactic and

orthographic rules encoded inside it. See Chapter 5 for more details.

Introduction

 12

All of the above mentioned analyzers didn‟t meet our requirements, which

prompted us to build a new one, because we wanted POS and features to be

described by a new very rich tagset. It differs from most of the existing analyzers

because it produces a lemma rather than stem or root, which is a significantly

harder task in Arabic.

1.3.4 Tagging related works

(Diab et,al. & Diab) [33] [32] used suppor vector machines (SVM) for tagging

in her papers. (Habash & Rambow) [46] used SVM with a morphological

analyzer, APT (Khoja) [57] used statistical and rule-based methods, AL-Shamsi

and Guessoum [11] used HMM, (Freeman) [42] used Brill (Transformation)

tagging, (AlGahtani et, al.) [5] used Brill (Transformation) with morphological

analyzer, (Tlili-Guiassa) [89] used rules-based and memory-based methods, (Seth

Kulick) [64] used classifier with regular expressions, (Van den Bosch) [23] used

memory-based learning, (Mohamed and Kübler) [71] used statistical, (Selçuk)

 [62] used HMM without morphological analyzer or lexicon, (El Hadj et, al.) [36]

used HMM with morphological analyzer, (Mansour et, al.) [69] used HMM with

morphological analyzer with lexicon. All these Arabic taggers are summarized in

Chapter 6.

1.3.5 Combining taggers related work

In the paper of (Glass & Bangay) [43] a few taggers are grouped to form a

voting system, but in no case the combined results improve on the individual

accuracies. (Yonghui et, al.) [92] presents a novel data fusion strategy in POS

tagging - correlation voting. They proved that the correlative voting is better than

other fusion methods. The paper (Henrich et, al.) [52] provides an algorithms for

simple and weighted voting. It improved the accuracy by 1.26 – 1.58 % over the

best method among its individual component taggers. The authors of (Loftsson)

 [67] used many combinations of several taggers in a simple voting approach using

three taggers which are TBL, TNT and Ice. Taggers are described in Chapters 7 &

8 in more detail.

We used a new method for combining taggers which we call master-slaves. We

also we used a rule-based tagger, with manually encoded rules, as a special slave.

Introduction

 13

1.3.6 Works related to the complete system

APT by (Khoja) [57] used Statistical and rule-based methods for tagging. Her

tagset will be discussed in chapter 3. Her work did not have lemmatizer or

tokenizer but she had her own stemmer. The statistical method was trained using a

corpus of 50,000 words in Modern Standard Arabic (an extract from the Saudi Al-

Jazirah newspaper). A lexicon derived from this corpus was used in this tagger.

MADA+TOKEN (Habash) [45] where MADA (Morphological Analysis and

Disambiguation for Arabic) is a utility that, given raw Arabic text, adds as much

lexical and morphological information as possible by disambiguating, in one

operation, part-of-speech tags, lexemes, diacritizations and full morphological

analyses. TOKEN is a general tokenizer for Arabic.

AMIRA (Diab) [32] is a successor suite to the ASVMTools (Diab et al.) [34].

The AMIRA toolkit includes a clitic tokenizer (TOK), part of speech tagger (POS)

and base phrase chunker (BPC) - shallow syntactic parser. The accuracy of the

ERTS (Extended Reduced TagSet) tagger is 96.13% and the accuracy of the RTS

(Reduced TagSet) tagger is 96.15%.

The last two works are toolkits for Arabic language. They are composed from

many research tools.

(Kulick) [64] describes an approach to simultaneous tokenization and part-of-

speech tagging that is based on separating the closed and open-class items, and

focusing on the likelihood of the possible stems of the open class words. He used

regular expressions with a reduced tag set. The data set was Arabic Treebank

(ATB3-v3.2) and the accuracy of tagging was 95.147%.

For more Arabic taggers see chapter 6.

1.4 Dissertation outline

The rest of our dissertation is constructed as follows:

Chapter two is a brief introduction to Arabic language; some of the details are

described in later chapters, when they are needed.

Chapter three describes almost all Arabic tagsets with their limits and

specifications and presents the design of a new one.

Introduction

 14

Chapter four is concerned with the first preprocessing task: normalization,

tokenization and segmentation.

Chapter five is concerned with the next preprocessing task: lemmatization and

analyzing, the relation between lemmatization and morphological analyzer.

Chapter six surveys the main tagging techniques which are used in general

and in particular for Arabic language.

Chapter seven describes master-slave technique for combining taggers. It is

implemented and tested on English and Arabic corpora.

Chapter eight describes our implementation of adding handwritten rule-based

tagger to the master-slaves technique.

Chapter nine is the discussion of the results and future work.

Chapter 2 Introduction to
Arabic language

2.1 Introduction

Arabic (اٌؼشث١خ al-arabiyyah) is a name applied to a group of dialects of the

Central Semitic languages, thus related to and classified alongside other Semitic

languages such as Hebrew and the Neo-Aramaic languages. Spoken Arabic

varieties have more speakers than any other language in the Semitic language

family. Arabic is the official language of 22 countries and it is the liturgical

language of Islam since it is the language of the Qur‟an, the Islamic Holy Book. It

is the sixth official language in United Nations. It is written from right to left and

the letters of each word are attached together. The words are split by spaces. The

punctuation is used for specifying sentences, paragraphs and other specification of

written text like.

The history of Arabic language is not exactly known but the grammars of

Arabic language were begun before 1400 years ago.

2.2 Arabic letters

The Arabic formal word, in Classical Arabic (CA), is constructed from letters

and diacritics. The diacritics are optional in Modern Standard Arabic (MSA) but,

in general, are neglected. There are 28 letters, three of them are vowels. Appendix

Introduction to Arabic Language

 16

A1 shows Unicode for Arabic letters. Figure 2-1 shows Arabic character. The

italic letters are vowels. The underlined letters are not attached to the succeeding

letter in the word. The letter Taa can be written as “p”-“ح”or “ـخ” in some cases.

There is a letter “|”-“آ” which represents two letters “O“-أ”and “A”-“ا” i.e. أ+ا≡ََآ .

The diacritics are special symbols used to solve ambiguity in word spelling and

meaning. It was shown in figure 2-2.

The Arabic numbers are shown in figure 2-3. Writing Arabic number follows

the same rules as in English, i.e. they are written and read from left to right.

Figure 2-1: Arabic letters
2
. The bold letters are vowels, the

underlined letters are not attached to succeeding letter in the

same word.

2.3 Arabic Language Varieties

Arabic texts could be either vowelled, as the language of Qur‟an or children‟s

books; or unvowelled ones, used in newspapers, books, and media. Handling the

unvowelled texts is confusing since an unvowelled word may have more than one

2
 We depend on Buckwalter xml transliteration in this figure and we use it in all transliterations in

our dissertation.

Transli-

teration
letter first Middle Last Transli-

teration
letter first Middle Last

A Alef ـب ــب ا D Dhad ـض ، ض ـضـ ضـ

O, I , {,

W, ʼ

Hamza أ، إ ,َ
 ٱ

ـئـ ، ـؤ

 ، ـأ

ـئ، ـؤ

، ـأ ، ـئ

 ، ء

T Daa طــ طـ ـظ ، ط

b Baa ـت ، ة ـجـ ثـ Z Dhaa ـع ، ظ ـظـ ظـ

t Taa ـت ، ت ـتـ تـ E Ain ـغ ، ع ـؼـ ػـ

v Thaa ـج ، ث ـخـ حـ g Gain ـؾ ، ؽ ـــ ؿـ

j Jeem ـذ ، د ـزـ رـ f Faa ـق ، ف ـلـ كـ

H Haa ـش ، س ـضـ صـ q Qaf ـن، م ـوـ هـ

x Khaa ـظ ، ط ـغـ عـ k Kaf ـي ، ى ـٌـ ًـ

d Dal ـؼ ، ػ ـؼ ػ l Lam ـَ ، ٍ ـِـ ُـ

* Thal ـؾ ، ؽ ـؾ ؽ m Meem ـْ ، ّ ـٔـ ٓـ

r Raa ــ ، ؿ ــ ؿ n Noon ـٖ ، ٕ ـ٘ـ ٗـ

z Zai ـق ، ف ـق ف h Haa ـٚ ، ٙ ـٜـ ٛـ

s Seen ـل ، ـنـ مـ

 ك
w Waw ٝ ٞـٞ ، ٝ ـ

$ Sheen ـو ، ـيـ ىـ

 ه
y Yaa ـً ، ي ـٍـ ٌـ

S Sad ـٌ ، ٍـ ٍـ

ً

Introduction to Arabic Language

 17

meaning (Atwell et, al.) [15]. This classification is similar to classification of

Arabic to Classical Arabic and Modern Standard Arabic. Arabic language

varieties are shown in figure 2-4.

Figure 2-2: Arabic diacritics and controls

Figure 2-3: Arabic numbers

Many linguists make a distinction between Classical Arabic (CA), the name of

the literary language of the previous eras, and the modern form of literary Arabic,

commonly known (in English) as Modern Standard Arabic (MSA). In term of

linguistic structure, CA and MSA are largely but not completely similar (Ryding)

 [80].

Figure 2-4: Arabic Language variations

In Classical Arabic words have diacritical marks which solve the ambiguity in

the language. I.e., CA has less ambiguity than MSA. For example the word

“kataba”-“ََوَزَت” (write (he)) has only one meaning “he writes”. Removing

Original (Arabic) 0 1 2 3 4 5 6 7 8 9

Original (Indo) ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠

Arabic language

Spoken Written

Colloquial Classical Arabic (CA) Modern Standard Arabic (MSA)

Diacritic

and

controls
 َ َ َ َ َ َ َ َ

name Fateha Damh Kasra Skon Tanween Tanween Tanween Shada

English

sound
/a/ /u/ /i/ - /an/ /un/ /in/ -

Example

and

spelling

 نََ

 Ka

 نَ

Ku

 نَ

Ki

 نَ

K

 نَ

Kan

 نَ

Kun

 نَ

Kin

 نَ

+ن ن

KK

Introduction to Arabic Language

 18

diacritics, in MSA, creates word-level ambiguity in segmentation process (Badr

et, al.) [16].

MSA is the written language of contemporary literature, journalism, most of

books etc. MSA is a descendant of CA and retains the basic syntactic,

morphological, and phonological systems (Bin-Muqbil) [21]. MSA is highly

ambiguous which results from removing diacritical marks from writing. For

example the word “ktb”-“وزت” can be “kataba”-“ََوَزَت”, “kutub”-“ ز تَ -”kutiba“ ,”و

ز تََ“ which mean “he writes”, ” books”, “ was written” or ”وَزَّتََ“-”and “kat~aba ”و

“he caused to write”, respectively.

2.4 Arabic Morphology

Morphologically, Arabic is a non-concatenative language. The basic problem

with generating Arabic verbal morphology is the large number of variants that

must be generated (Cavalli-Sforza et, al.) [27]. This problem is particularly

difficult when a weak letter occurs in the word. Weak letters can be deleted or

substituted by other letters because of Arabic linguistic theory (Shaalan) [85].

Affixing grammatical morphemes to the stem is a general property of most

European languages, which have concatenative morphology where the word is

prefix, stem
3
 and suffixes. Although there are numerous exceptions, it enables us

to analyze the structure of most words (Nugues) [74].

Concatenative morphology is not universal, however. The Semitic languages,

like Arabic or Hebrew, for instance, have a templatic morphology that

interweaves the grammatical morphemes to the stem (Nugues) [74].

We explain briefly how a word changes by adding clitics
4
 and affixes to it.

This subject is very rich and explaining all details is out of range of our

dissertation; therefore we will explain the most important cases and leave the

other to next chapters.

We have two opposite processes in any language, word generation (having the

lemma/root and produce all possible words from it) and analyzing (having a word

and extract the lemma/root with features from it). The first task is relatively easy

3
 Stem need not be an Arabic word.

4
 See chapter 4 for more details about clitics and affixes.

Introduction to Arabic Language

 19

in Arabic language because of many unambiguous rules for this task. The second

is very hard
5
, especially if the lemma is the wanted base unit. For example if we

have the lemma “Asrp”-“اعشح”(family) and the pronoun “hA”-“٘ب” (her) is

attached to it, the result is “AsrthA”-“اعشرٙب” (her family) according to the rule “if

word ends by Taa marbuta and is attached to a pronoun then change this Taa

marbuta to normal Taa”. But if we have the word “AsrthA”-“اعشرٙب” and we want

to get the lemma then we have many choices: “Asr~at”-“اعشَّد” “As~art”-“اعَّشد”

“Asrp”-“اعشح”, “Asrto”-“ and so on. This is a simple example but in most ”اعشدَ

cases there are very hard cases to detect the lemma. The most famous case

happens when one of the Arabic vowels exists in the root and one of the

morphological rules is applied to it. In this case the analyzing is a very hard task.

The important events in this case are deleting or changing the vowels as shown in

figure 2-5.

Figure 2-5: Inflection causes deleting and changing of a letter

Each Arabic word consists of original letters and possibly some extra letters.

The original letters will not be deleted in any inflected form of that word, without

morphological reasons. These original letters can be any letters of the alphabet

except s, O, l, t, m, w, n, y, h and A. On the opposite side, the extra letters can be

deleted in some inflections without any morphological reasons. The noun can

consist of 3, 4 or 5 original letters. The verb can consist of 3 or 4 original letters.

2.5 Morphological rules

Morphology is the study of the structure and content of word forms. The rules

of construction word forms are depending on the language under consideration.

5
 In case of Classical Arabic the ambiguity decreases which makes this task easier.

Lemma

EAd

(دبػ back)

Ed (ػذ back)

imperative

yEwd

(د٠ٛؼ back)

present

Deleting

Changing

Introduction to Arabic Language

 20

They are, in most cases, regular in Semitic languages like Arabic. Morphological

rules can be either inflectional rules or word-formation rules.

22..55..11 Inflectional rules

Inflectional rules relate a lexeme to its forms (which uses kind of affix in order

to form variants of the same word). Inflection is done by adding number, person,

case, gender, tense mood … etc., to the word. Most of concatenative languages

add affixes to the stem for this purpose. But the situation is different in Arabic

language: letter deletion, insertion and replacing (especially with vowels) are

used. The inflectional rules cover approximately almost all words, which means

that Arabic inflection is regular. Examples of Arabic inflections are shown in

figure 2-6.

Transliteration verb meaning Translit-

eration

verb meaning

kataba َََوـزَـت Wrote (he) katabta ََوـزَـجَذ Wrote (you-

masc-sng)

yaktib ٠ىَز ت Write (he) taktub رـىَـزـ ت Write (you-

masc-sng)

Iktub ئوزـ ت Write

(you)(imperative)

katabti َوـزَـجَذ Wrote (you-

fem.-sng)

katabat َوـزَـجَذ Wrote (she) tkatubyn ٓرىـزَـ ج١ Write (you-

fem.-sng)

taktub رـىَزـ ت Write (you-masc.

&she)

ktaabtmA وزـَجَزّب Wrote (you-

dual)

Iktuby ٟئوزـ ج Write

(imperative)

taktubAn ْرـىَزـ جب Write (you-

dual)

katabA وـزَـجَب Wrote (they-dual) katabtuna ََٓ -Wrote (you وـزَـجَزـ

fem.-plural)

yaktubAn ْ٠ـىَزـ جب Write (they-dual) taktubna ََٓ -Write (you رـىَزـ ج

fem.-plural)

IktubA ئوـزـ جب Write (you-dual-

imperative)

katabtum ُ -Wrote (you وـزَـجَزـ

masc.-plural)

katabna ََٓ جْٛرـىَزـ Wrote (they-fem) taktabwn وـزَـجَ Write (you-

masc.-plural)

yaktubna ََٓ wrote (I) وـزَـجَذ Write (they-fem) katabt ٠ىَـزـ ج

Iktubna ََٓئوـز ـ ج Write (you-fem-

imperative)

Oktub أوزـ ت write (I)

ktabwA وزـجَٛا Wrote (they-

masc)

katbnA وـزَجٕب Wrote (we)

yktabwn جْٛىز٠ Write (they-masc) nktbu َٔىزت Write (we)

IktabwA جٛازئو Write (you-masc-

imperative)

Introduction to Arabic Language

 21

Figure 2-6: Inflection of merely verb “kataba”-“ ًـ تـ ت” (write)

with gender, person and number.

22..55..22 Word formation

Word formation is the creation of new words. A number of languages have

extensive non-concatenative morphology, in which morphemes are combined in

complex ways (Jurafsky & Martin) [54]. A specific kind of non-concatenative

morphology is called templatic morphology or root-and-pattern morphology. This

is very common in Arabic, Hebrew, and other Semitic languages (Jurafsky &

Martin) [54]. Word formation can be one of:

1. Derivational rules relate one lexeme to another lexeme (changes a word

from one syntactic category into a word of another syntactic category or

from one meaning to another). Some examples of Arabic derivation are

shown in figures 2-7 and 2-8.

2. Compound (attaches two or more words together to make them one

word). An example of an Arabic compound word is “HDrmwt”-

-"It is compound from two words "HDr .(Hadhramautt) ”دعشِٛد“

 which means (death), but ”ِٛد“-"which means (come) and "mwt ”دعش“

the meaning of whole word is a name of a city in Yemen. There are

many types of compound words in Arabic language; the previous

example is the easiest one because there is no space between the

compound words. Another example is “AslAm |bAd”-“َآثبد Islam) ”اعلاَ

Abad), i.e. two words separated by space, but the whole is a name of a

city in Pakistan.

Introduction to Arabic Language

 22

Figure 2-7: Deriving verbs from verb
6
.

2.6 Arabic patterns (awzaan)

Because most of Arabic words are constructed in a regular way, the scientists

describe them by morphological patterns (sometimes called balance). That pattern

(wazen in Arabic) is composed of three origins (letters), which are denoted by f, E

and l, where f corresponds to the first letter, E to the second letter and l to the third

letter. The pattern describes the word construction (Al-Rajhi) [10] (Al-Hamlawy)

 [7]. By taking the root and applying the pattern to it, we will get another word

construction. These rules are root–pattern morphology. Appendix A2 shows

examples of using wazen (AL-Bidhani) [3] (Al-Galaiini) [6].

6
 Merely can be triple or quadruple. Extra can be made from triple or quadruple (by

adding letters)

Oktaba – He dictated

(َأكتـبَََ)

kAtaba – He corresponded

 (كاتـبَََ)

kat~aba – He caused to write

 (كـتَـَّبََ)

Inkataba – He was subscribed

 (إنكـتَـبَََ)

Iktataba – he had a copy made

 (إكتـتَـبَََ)

takat~aba – It was written on its own

 (تـكَـتَـَّبََ)

takAtaba – They wrote to each other

 (تـكَاتـبَََ)

Istaktaba – He asked to write
 (إستـكَتـبَََ)

kataba – (َََكـتَـب)
He wrote

New Verbs
Extra

Verb

Merely

Introduction to Arabic Language

 23

Figure 2-8: Deriving nouns from verb.

2.7 Words in the sentences

As we know Arabic is written from right to left where the letters are attached

together to form the words. In most cases, the particles and pronouns are attached

to the word, i.e., the word can be composed of more than one part of speech. It

adds another problem to Arabic language, which must be solved by tagger. For

example a complete sentence can be compressed in to one word:

wsyktbhA (ٚع١ىزجٙب and he will write it)

When we talk about sentences, syntax comes into play. As we know, there are

two distinct fields in languages which are morphology and syntax. Morphology

describes the structure of words internally, syntax describes how words are

composed to yield phrases and sentences (Habash) [45].

Arabic sentences can be divided into two types of sentences: verbal sentences

and nominal sentences. Nominal sentences are also called copular/equational

sentences (Habash) [45].

Each word inside a sentence can be affective (that affects what follows),

affected (affected by what is before it) or neither affective nor affected as in the

case of spatial words. The effect is the change of the form of the affected word

enforced by the affective word (Al-Galaiini) [6]. Examples of effect are changes

Inscription

Writer

been written /letter

Better in writing than

Office

Library

In the time of writing

 وـ زـبَثخََ

 وـبرـ ت

ىـزـٛة َِ

 أوـزَـتَََ

ىـزـتَ َِ

ىـزـجََٗ َِ

ىـزـ ت َِ

kitaAbap

kAtib

maktwb

Okataba

Maktab

Maktabah

maktib

Verbal Nouns

The Active Participle

The Passive Participle

Exaggeration forms

Place Noun

Time Noun

Instrument Noun

kataba
 (كـتَـبَََ)

He wrote

Introduction to Arabic Language

 24

the case to nominative, accusative … etc. The third category (neither affective

nor affected) is special and very limited (Al-Galaiini) [6].

For example a preposition before a noun causes reduction of that noun. The

reduction is, in this example, the effect (where the noun (affected) followed

preposition (affective) will be in genitive case).

Arabic can be seen as a language with a network of dependency relations in

every phrase or clause, which are key components of the grammatical structure of

the language (Ryding) [80].

Chapter 3 Comapring Arabic tagset and designing a new one

3.1 Introduction

The first step for the annotation of corpora is the compilation of a tagset that can

accurately describe and cover the whole information about the language (Khoja) [57].

A tagset is a set of tags (symbols) representing information about parts of speech and

about values of grammatical categories (case, gender, etc.) of word forms. Tagset is

the basis of almost all NLP fields. A good tagset is very important in the fields of

NLP and is the foundation stone in these fields.

We believe that before dealing with the Arabic language, we need an Arabic tagset

which contains all or at least the most important Arabic language features.

In this chapter, 10 Arabic tagsets are compared and their limitations indicated. We

present a new Arabic tagset avoiding these limits. The design is intended for Arabic

language only and is not based on tagsets for other languages. It is a multilevel tagset

compatible with CA and MSA. The noun classes have three levels (fixed POS types,

grammatical feature and changed POS types), verbs have two levels (POS types and

grammatical features) and particles have two levels (working and meaning). We also

introduce the notion of tagset interleaving.

Comparing Arabic Tagsets and Designing a New One

 26

The third level (designed for noun only) is not yet implemented and is not

mentioned in the remaining chapters of this disertation. Summary and comparison of

Arabic tagsets

Most of the papers are interested in constructing a tagger and introduce its tagset as

a by-product. In this chapter we consider the following tagsets for Arabic: Khoja

tagset [57] [59]; Al-Qarany tagset [9], Majdi Sawalha tagset [82], Yahya Alhadj tagset

 [38], Buckwalter tagset, Reduced Buckwalter tagset (and its variants: Bies tagset,

Kulick tagset [65] and Extended Reduced tagset) (Hbash) [45], KATIB POS tagset

 [47] [49] and PADT tagset (Habash) [45].

Almost all of these taggers either use tagsets derived from English (which is not

appropriate for Arabic) or use summary of all Arabic features (which is more

theoretical than practical).

We summarize the above mentioned Arabic language tagsets with their limits and

specifications.

3.1.1 Khoja tagset

The Khoja tagset, developed by Shereen Khoja, is one of the earliest tagsets for

Arabic (Khoja) [57] [59]. Figure 3-1 shows Khoja POS.

The linguistic attributes of nouns and verbal attributes that have been used in this

tagset are shown in figure 3-2. We have a few remarks on this tagset:

1. The attribute “person” in noun class is a mistake here because the word

 book has no person. In this way all researchers apply the person ”وزبة“

feature to the noun, but the noun is different from verb. The inflections

of the verb always contain the pronoun, but there are inflections of a

noun without any pronoun. So a noun cannot be treated in the same way

as the verb.

2. Particles have no attributes. The classifications of particles are

interleaved among their operation and meaning.

3. It is a very simple tagset, i.e., many of Arabic classes are not taken into

account.

Comparing Arabic Tagsets and Designing a New One

 27

Figure 3-1: Khoja tagset

Figure 3-2: The Noun and Verbal attributes of Khoja Tgaset

3.1.2 Al Qrainy tagset:

It was written by (AlQrainy & Ayesh) [9] for Automated POS tagging in Arabic.

They take the classical classification of Arabic words into noun, verb and particle.

Figure 3-3 shows the main classification of this tagset. The linguistic attributes of

nouns and verbal attributes that have been used in this tagset are the same as in Khoja

(Figure 3-2), but the neuter feature for the verb attribute does not exist.

The same remarks we have made about Khoja tagset apply here, and additionally

punctuations and foreign words are not covered by the Al-Qrainy tagset. There is a

technical error in the figure 3-3, which we took from (AlQrainy & Ayesh) [9]. If we

look at the figure, we understand that the “common” is a part of “demonstrative”,

while indeed they should both be parts of “Noun”.

Word

Noun Particle

Preposition

Exceptions Interjections

Conjunction Adverbial

Demonstrative

Common

Personal

Pronoun

Relative

Cardinal Common Specific

Adjective Proper Numeral

Explanations

Verb

Imperative Imperfect Perfect

Answers Subordinates

Negatives

Residual Negatives

Ordinal Numerical

Adjective

Noun attributes

Gender Masculine Feminine Neuter

Number Singular Dual Plural

Person First Second Third

Case: Nominative Accusative Genitive

Definiteness Definiteness indefiniteness

Verb attributes

Gender: M Masculine F Feminine N neuter

Number S Singular Du Dual Pl Plural

Person: 1 First 2 Second 3 Third

Mood I Indicative S Subjunctive J Jussive

Comparing Arabic Tagsets and Designing a New One

 28

Figure 3-3: Al Qrainy tagset Hierarchy

3.1.3 Sawalha tagset

In the Sawalha tagset (Sawalha) [82], a tag consists of 22 characters; each position

represents a feature and the letter at that location represents a value or attribute of the

morphological feature; the dash “-” represents a feature not applicable to a given

word. The first character shows the main Parts of Speech: noun, verb, particle,

punctuation, and residual. The 2
nd

, 3
rd

 and 4
th

 characters are used to represent

subcategories; traditional Arabic grammar recognizes 34 subclasses of noun (letter 2),

3 subclasses of verb (letter 3), 21 subclasses of particle (letter 4). Residuals and

punctuations are represented in letters 5 and 6 respectively. The next letters represent

traditional morphological features:

gender (7), number (8), person (9), morphology (10) case & mood (11), case &

mood markers (12), definiteness (13), voice (14), emphasize (15), transitivity (16),

humanness (17), variability and conjugation (18). Finally there are four characters

representing morphological information which is useful in Arabic text analysis,

although not all linguists would count these as traditional features: augmented and

unaugmented (19), number of root letters (20), verb internal structure (21), noun finals

(22).

The Majdi Sawalha tagset is not tied to a specific tagging algorithm or theory, and

other tagsets could be mapped onto this standard, to simplify and promote

Word

Noun Particle Verb

Preposition Imperative Imperfect Perfect

Exception

Annulment

Conjunction

Vocative

Subjunctive
Demonstrative Common

Adverb Personal Relative

Conjunctive Instrument Diminutive Adjective Proper Interrogative

Jussive

Comparing Arabic Tagsets and Designing a New One

 29

comparisons between, and reuse of Arabic taggers and tagged corpora. Figure 3-4

shows Majdi Sawalha main POS classification.

We have a few notes on this tagset. In spite of taking most of noun and verb

classification, it neglects the variation of particles classification. Similarly as Khoja,

this tagset does not distinguish between working and meaning of particles. For

example “fklA Ax*nA b*nbh”-“ َٗ ٔبَث زَٔج (We took each one by/because his sin) ”فىَ لاَّ َأخَز

the particle b is for caution and preposition at the same time (it is preposition used for

caution). It means that it should have two tags simultaneously
7
. There are many

interleavings between types in this tagset.

Sawalha tagset summarizes almost all the Arabic classifications, especially for

verbs and nouns. However, some of the classifications (attributes) are useless

(redundant) tags, for tagging system. For instance, the value at position 20 “number of

root letters”, position 21 “verb root attribute” can be known if the root is known. The

same case with position 13 “Definiteness” it is a feature for closed classes of noun

categories. It seems that this tagset is more theoretical than practical.

3.1.4 Yahya Elhadj

(Elhadj) [38] presented the development of an Arabic part-of-speech tagger that

can be used for analyzing and annotating traditional Arabic texts, especially the

Qura‟n text. The developed tagger employed an approach that combined

morphological analysis with Hidden Markov Models (HMMs) based-on the Arabic

sentence structure. For this purpose, Elhadj created his own tagset (2009). See figures

(3-5, 3-6 & 3-7). Figure 3-5 represents the tagset as a DAG (directed acyclic graph),

which is the choice of the author.

This tagset has the following limitations: particles have no attributes. It is

particularly simple with respect to verb and noun classifications. The case of noun

was excluded which is very important in syntax analyses. It does not show any

features for verbs and this is not a good choice, because Arabic verbs often have

implicit pronouns and so on.

7
 See section 3.4.2 for more details.

Comparing Arabic Tagsets and Designing a New One

 30

Figure 3-4: Majdi Sawalha main POS classification, letters 1, 2, 3

and 4 only.

Main POS

Noun Residuals Punctuation Particles Verb

Pats Verb

 ِبظٟ

Present verb

 ِعبسع

imperative

 اِش

Adjective

 اٌصفخَاٌّشجٙخ

Noun of place

 اعَُِىبْ

Noun of time

 اعَُصِبْ

Instrumental noun

 اعَُالاٌخ

Proper noun

 اعَُاٌؼٍُ

Noun of genus

 اعَُاٌجٕظ

Numeral noun

 اعَُاٌؼذد

Verbal noun

 اعَُاٌفؼً

Five noun

 الاعّبءَاٌخّغخ

Relative noun

 اعَُِٕغٛة

Noun of diminution

 اعَُرصغ١ش

Form of exaggeration

 ص١غخَِجبٌغخ

Noun of plural form

 اعَُجّغ

Noun of genus in plural

form

 اعَُجٕظَجّؼٟ

Noun of preeminence

 اعَُرفص١ً

Invented noun

 اعَُِٕذٛد

Noun of sound

 اعَُصٛد

Gerund

 اٌّصذس

Gerund start with mim

ّصذسَا١ٌّّٟاٌ

Gerund of one time

 ِصذسَاٌّشح

Gerund of state

 ِصذس١َ٘ئخَِصذسَإٌٛع

Gerund of emphasize

 ِصذسَاٌزٛو١ذ

Gerund of industry

 اٌّصذسَاٌصٕبػٟ

Pronoun

 اٌع١ّش

Demonstrative Noun

 اعَُالاشبسح

Special relative

pronoun

 اعَُاٌّٛصٛيَاٌخبص

Common relative

pronoun

 اعَُاٌّٛصٛيَاٌّشزشن

Interrogative pronoun

 اعَُالاعزفٙبَ

Conditional noun

 ِصذسَاٌّشح

Allusive noun

 اٌىٕب٠خ

Adverb

 اٌعشف

Active participle

 اعَُاٌفبػً

Increased Active

participle

 ِجبٌغخَاعَُاٌفبػً

Exceptive particle

ءدشفَاعزثٕب

Interrogative particle

 دشفَاعزفٙبَ

Particle of futurity

 دشفَاعزمجبي

Causative particle

 دشفَرؼ١ًٍ

Negative particle

 دشفَٔفٟ

Jurative particle

 دشفَلغُ

Answer particle

 دشفَاٌجٛاة

Apocopative answer

particle

 دشفَششغَجبصَ

Incitement particle

شفَرذع١طد

Infinitive particle

 دشفَِصذسٞ

Attention particle

 دشفَرٕج١ٗ

Emphasis particle

 دشفَرٛو١ذ

Explanation particle

 دشفَرفغ١ش

Simile particleَ

 دشفَرشج١ٗ

Letter of "Jussive"/

Apocopative letter

 دشفَجضَ

Accusative letter

 دشفَٔصت

Preposition

 دشفَجش

Annular

 دشفَٔبعخ

Conjunction

 دشفَػطف

Partial Accusative

letter

 دشفَإٌصتَاٌفشػٟ

Vocative letterَ

 دشفَٔذاء

Comparing Arabic Tagsets and Designing a New One

 31

Figure 3-5: Noun and its sub-categories in Elhadj tagset.

Figure 3-6: Verb and its temporal-forms in Elhadj tagset.

Proper
 ”ػٍُ“

Noun
 الاعُ

Definite
 ”ِؼشفخ“

Indefinite-
def_Art

ٔىشح"-"اي

Pronoun

 "ظ١ّش"
Demonstrative

 "اشبسح"

Separate
 "ِٕفصً"

Attached
 "ِزصً"

Indefinite
 ”ٔىشح“

Relative

 "ِٛصٛي"

3rd person
 ”غبئت“

2nd person
 "ِخبغت"

1st person

 "ِزىٍُ"

plural
 ”جّغ“

Dual
 "ِثٕٝ"

singular
 "ِفشد"

Feminine
 ”ِإٔث“

Masculine

 "ِزوش"

Verb
 ”اٌفؼً“

Imperative
 ”أِش“

Imperfect
 ”ِعبسع“

Perfect
 ”ِبظٟ“

Comparing Arabic Tagsets and Designing a New One

 32

Figure 3-7: Main groups of particles in Elhadj tagset.

3.1.5 Buckwalter tagset

The Buckwalter tagset (figure 3-8), developed by Tim Buckwalter, is a form-based

tagset. The Buckwalter tagset is considered very rich for many computational

problems and approaches. Several tagsets have been developed that reduce it to a

“manageable” size (Habash) [45].

In this tagset there is no distinction between categories and features for POS. The

particle classification has no attributes. He does not distinguish between attached

pronouns or other clitics and inflection of the word (suffixes). The Yaa Alnasabi is

omitted, and treated as an attached pronoun.

Particle
 ”اٌذشف“

Conju
 ”ػطف“

Answer
 ”جٛاة“

Vocati
 ”ٔذاء“

Rebuf
 ”صجش“

Asthna
 ”اعزثٕبء“

Genitiv
 ”جش“

Negat
 ”ٔفٟ“

Prohibt
“ٟٙٔ”

Interrog
 ”اعزفٙبَ“

Condi
 ”ششغ“

Others
 ”آخش“

Confir
 ”رأو١ذ“

Notifi
 ”رٕج١ٗ“

Expect
 ”رٛل١غ“

Wishin
 ”رّٕٟ“

Plural
 ”جّغ“

Dual
 ”رث١ٕخ“

Femini
 ”رأ١ٔث“

Iterpret
 ”رفغ١ش“

Def.Art
 ”رؼش٠ف“

Feminine
 ”ِإٔث“

Masculine
 ”ِزوش“

Comparing Arabic Tagsets and Designing a New One

 33

Figure 3-8: Buckwalter tagset components (the source is (Habash)

[45]).

3.1.6 Reduced Buckwalter tagsets: BIES, KULICK and ERTS

3.1.6.1 BIES tagset

The Bies tagset (Figure 3-9) was developed by Ann Bies and Dan Bikel as a subset

of Buckwalter tagset with around 24 tags variants. It was inspired by the Penn English

Treebank POS tagset (Habash) [45].

It is a very simple set which misses many useful features, in particular many

classes of nouns, verbs and particles. The nouns, verbs and particles have no

attributes.

VERB Nominal

VERB

PSEUDO_VERB

verb

pseudo-verb

NOUN

NOUN_NUM

NOUN_QUANT

NOUN.VN

NOUN_PROP

noun

nominal/cardinal number

quantifier noun

deverbal noun

proper noun

PV

PV_PASS

PVSUFF_DO:<PGN>

PVSUFF_SUBJ:<PGN>

perfective verb

perfective passive verb

direct object of perfective

verb

subject of perfective verb

ADJ

ADJ_COMP

ADJ_NUM

ADJ.VN

ADJ_PROP

adjective

comparative adjective

adjectival/ordinal number

deverbal adjective

proper adjective

IV

IV_PASS

IVSUFF_DO:<PGN>

IV<PGN>

IVSUFF_SUBJ:<PGN>

_MOOD: <Mood>

imperfective verb

imperfective passive verb

imperfective verb direct

object

imperfective verb prefix

imperfective verb subject

and mood suffix

ADV

REL_ADV

INTERROG_ADV

adverb

relative adverb

interrogative adverb

CV

CVSUFF_DO:<PGN>

CVSUFF_SUBJ:<PGN>

imperative (command) verb

imperative verb object

imperative verb subject

PRON

PRON_<PGN>

POSS_PRON_<PGN>

DEM_PRON_<GN>

REL_PRON

INTERROG_PRON

pronoun

personal pronoun

Possessive personal pronoun

demonstrative pronoun

relative pronoun

interrogative pronoun

Particles

PREP preposition

CONJ

SUB_CONJ

conjunction

subordinating conjunction

PART

CONNEC_PART

EMPHATIC_PART

FOCUS_PART

FUT_PART

INTERROG_PART

JUS_PART

NEG_PART

RC_PART

RESTRIC_PART

VERB_PART

VOC_PART

particle

connective particle

emphatic particle

focus particle

future particle

interrogative particle

jussive particle

negative particle

response conditional particle

restrictive particle

verb particle

Vocative Particle

NSUFF<Gen><Num><Cas><Stt>

CASE<Def><Cas>

DET

nominal suffix

nominal suffix

determiner

Other

PUNC

ABBREV

INTERJ

LATIN

FOREIGN

TYPO

PARTIAL

DIALECT

punctuation

abbreviation

interjection

latin script

foreign word

typographical error

partial word

dialect word

Comparing Arabic Tagsets and Designing a New One

 34

Figure 3-9 : The Bies tagset

3.1.6.2 The Kulick tagset

The Kulick tagset [65] was developed by Seth Kulick and shown to be beneficial

for Arabic parsing (Habash) [45]. The Kulick tagset contains 43 tags that extend the

Bies tagset. It is a very simple set which misses many useful features and classes.

3.1.6.3 The Extended Reduced TagSet (ERTS)

ERTS is the base tagset used in the Amira system. ERTS has 72 tags. It is a subset

of the full Buckwalter morphological set defined over tokenized text. ERTS is a

superset of the Bies/RTS tagset. In addition to the information contained in the Bies

tags, ERTS encodes additional morphological features such as number, gender, and

definiteness on nominals only (Habash) [45]. Again, it is a very simple set. It misses

many classes of particles. The particles have no attributes.

3.1.7 The CATIB POS tagset

The CATiB tagset (figure 3-10) was developed for the Columbia Arabic Treebank

project (CATiB) (Habash) [47] [49]. There are only six POS tags in CATiB. The

Nominals DT determiner / demonstrative pronoun,

NN RP RP Particle

NNS IN IN preposition or subordinating conjunction

NNP singular proper noun Verbs

NNPS plural/dual proper noun VBP active imperfect verb,

PRP personal pronoun, VBN passive imperfect/perfect verb,

PRP$ possessive personal pronoun, VBD active perfect verb,

WP relative pronoun VB imperative verb

JJ adjective, Others

RB adverb, UH interjection,

WRB relative adverb, PUNC punctuation,

CD cardinal number, NUMERIC_CO

MMA

The letter � r used as a

comma,

FW Foreign word NO_FUNC unanalyzed word

Particles

CC coordinating conjunction,

Comparing Arabic Tagsets and Designing a New One

 35

simplicity of the POS tagset is intended to speed up human annotation and yet

maintain the most important distinctions. It is the simplest tagset, where many classes

and features are missed.

Figure 3-10: the CATIB POS tagset

3.1.8 The PADT tagset

The PADT tagset (see figure 3-11 & 3-12), used in the ElixirFM analyzer, was

developed for use in the Prague Arabic Dependency Treebank (Habash) [45]. The

PADT tagset is defined for ATB tokenized Arabic. Each tag consists of two parts:

POS and Features. It misses many classes and features. Particles have no attributes.

Figure 3-11: POS for The PADT tagset

Figure 3-12: the PADT features

Tag Remark Tag Remark

VRB All verb Types PROP proper nouns

VRB-

PASS

passive-voice

verbs

PRT Particle

NOM Nominal PNX punctuation

marks

Tag Remark Tag Remark Tag Remark

VI imperfect verb Y Abbreviation C Conjunction

VP perfect verb S Pronoun P Preposition

VC imperative verb SD demonstrative
pronoun

I Interjection

N Noun F particle G Graphical symbol

A Adjective FI interrogative particle Q Number

D Adverb FN negative particle -- Isolated definite article

Z Proper noun

Mood Indicative Subjunctive Jussive D (ambiguous)

Voice Active Passive

Person 1 speaker 2 addressee 3 others

Gender Masculine Masculine

Number Singular Dual Plural

Comparing Arabic Tagsets and Designing a New One

 36

3.2 Traditional Arabic POS

POS is the most studied field in the Arabic language. The distinctions between

parts of speech were investigated and specified. We will show, in this section, the

classical classifications. The detailed explanation of these classes is far too

complicated to be presented in this dissertation, therefore we will describe only the

most important classes and features. In this section we will show the main

classification for Arabic word and the subclasses of these main POS.

3.2.1 Main Arabic POS

The first classification of a word in traditional and modern Arabic is noun, verb

and particle (Al-Rajhi) [10] (Al-Galaiini) [6] (Al-Dahdah 1989) [4].

3.2.2 Arabic Noun Classes

There are many types of noun. A noun can be a described by more than one type or

status. The summaries of noun classes according to their classification are in figure 3-

13 & 3-14 (Al-Dahdah) [4]:

Comparing Arabic Tagsets and Designing a New One

 37

Figure 3-13 : Noun classification according to its types (the source

is (Al-Dahdah) [4])

Figure 3-14: Noun classification according to its status (the source is

(Al-Dahdah) [4])

3.2.3 Arabic Verbs

The verb can be classified according to:

1. If it has vowels or not: it has approximately 30 subtypes (see (Sawalha)

 [82]).

2. If it is complete or incomplete

3. Voice (passive or active).

4. If it is merely or has extra letter and the number of letters.

5. If it has certainty or not

6. Tense.

7. Transitivity.

8. If it has negation or not.

9. If verbs have special case (interjection verb form ص١غخَاٌزؼجت) or not.

10. Variability & Conjugation

Comparing Arabic Tagsets and Designing a New One

 38

Any verb has features [Gender + Number + Person + Mood]. We can see that there

are interleavings among all these classifications.

3.2.4 Arabic Particles

There are two classifications for the particles according to.

1. Their working in the sentence.

2. Their meaning.

The first classification is done according to the effect of the particle on the

following word (see Section 2.7). The classes are defined according to the effect:

nominative, accusative, genitive, jussive… etc. There are also particles which have no

effect and they are classified as "not working particles".

The second classification has many classes, in (Al-Galaiin) [6] there are 31

interleaved types: negative particle (ٟدشفَٔف), answer particle (دشفَجٛاة), explanation

particle(َدشف َششغ) conditional particle ,(رفغ١ش َ) exhortation particle ,(دشف دشف

) offering particles ,(رذع١ط ٌؼشضادشفَا), warning particles (ٗادشفَاٌزٕج١), subordinating

conjunction (ٞدشفَِصذس), future particle (دشفَاعزمجبي), emphatic particle (دشفَاٌزٛو١ذ),

interrogative particle (ََاعزفٙب َاٌزّٕٟ) wishing particles ,(دشف pleasing particles ,(دشف

َاٌزشجٟ) َاٌزشج١ٗ) simile particle ,(دشف َاٌصٍخ) relation particles ,(دشف purpose ,(دشف

particle (ًدشفَاٌزؼ١ٍ), aversion particle (دشفَسدع), l_letter meaning (لاِبد), feminine

Taa (َاٌزأ١ٔث َاٌغىذ) stopping Haa ,(ربء َغٍت) request particles ,(٘بء nunation ,(دشف

particles (َٓر٠ٕٛ َٔذاء) vocative particle ,(دشف َ) coordinating conjunction ,(دشف دشف

َٔصت) accusative particle ,(ػطف jussive particles ,(الاِش) imperative particle ,(دشف

 particles similar to ,(دشفَجش) preposition ,(دشفَٟٔٙ) prohibition particle ,(دشفَجضَ)

verbs (ؼًادشفَِشجَٙٗثبٌف), particles similar to Laisa (verb) (ادشفَِشجَٙٗث١ٍظ).

In (Al-Dahdah) [4] there are 40 interleaved types (some types from (Al-Galaiini

1990) do not exist in (Al-Dahdah 1989)) which add the following particles: swearing

 beginning , (اعزثٕبء) exceptive ,(اعزذسان) palinode ,(اعزفزبح) starting ,(ئظشاة) strike ,(لغُ)

) definition ,(رفص١ً) details ,(ِفبجأح) surprise ,(اثزذاء) ٔذثخ(,َ)رذم١ك(,َ)رخ١١ش(,َ)رصذ٠ك(,َ)رؼش٠ف),

intention (غب٠خ), adverbial (ظشف١خ), superfluity (ص٠بدح) , increasing (رىث١ش), decreasing

 .(رم١ًٍ)

(Al-Moradi) [8] The grammarian limited the particle to approximately 50 types (in

meaning).

Comparing Arabic Tagsets and Designing a New One

 39

3.3 Designing an Arabic Tagset

There are many reasons for designing a new Arabic tagset. We wanted to construct

an Arabic tagset compatible with CA and MSA. Also, this tagset should not have the

limits of other tagsets. We construct this tagset according to Arabic specification. The

last reason is very practical – we plan to annotate a large Arabic corpus with this

tagset. The annotators will be students of the departments of Arabic language in the

University of Mustansiriyah (Baghdad). This idea has already got acceptance from the

head of that department. Within a few years, we believe that we will have a huge

annotated corpus, because all the students of this department will work on it.

Therefore we needed a tagset familiar to them and easy to master in, and rich in

information.

3.3.1 Designing criteria

(Elworthy) [40] The design of an appropriate tagset is subject to both external and

internal criteria:

1. The external criterion is that the tagset must be capable of making the

linguistic (for example, syntactic or morphological) distinctions required

in the output corpora.

2. The internal criterion is that of making the tagging as effective as

possible.

The first and second criteria must be balanced. As a part of point 2, we should note

that very fine-grained distinctions may cause problems for automatic tagging if some

words can change grammatical tag depending on function and context (Atwell) [14].

The problem of tagset design becomes particularly important for highly inflected

languages. If all of the syntactic variations which are realized in the inflectional

system were represented in the tagset, there would be a huge number of tags, and it

would be practically impossible to implement or train a simple tagger. (Elworthy) [40]

has suggested that what is important is to choose the tagset appropriate for the

application, rather than to optimize it for the tagger.

(Feldman) [41] did test on several languages with tagsets of various sizes and

found out, that there is no clear relationship between tagset size and tagging accuracy.

However, generally smaller tagsets peform better on unknown words.

refrence/tlj-afeldman.pdf

Comparing Arabic Tagsets and Designing a New One

 40

In this chapter we will design an Arabic tagset. The construction is based on the

deficiencies of the other tagsets. It has two fields for each POS, one for classification

or working and the second for feature or meaning. We will differentiate between

classes of POS and grammatical features or between particles working and meaning.

For example the plural noun is a noun with plural feature.

Another important factor for adding a tag of a given type is the analysis: is the tag

useful in translation, semantics, and speech recognition, and so on, or not? From this

point of view, we can select a tagset. All these criteria were taken into account when

building the new Arabic POS tagset.

3.3.2 Tagset Interference or interleaving

We introduce another design decision to consider when designing a tagset:

interference or interleaving. This question emerges when we use many syntactical

classes and unifying many classifications into one. The tagset has interleaving if one

word has more than one class (POS) at the same time and all these classes are true. It

is often due to an error in the design of the tagset. According to our analysis of Arabic

tagsets, the increase of POS numbers in a tagset, without augmentation, increases the

possibility of interleaving. Most of the simple and small tagsets (such as CATIB and

PADIT…) don‟t have interleaving. Let us take a practical example of a large tagset:

Sawalha tagset (Sawalha) [82]. According to this tagset, for the following example

“ َٗ َث زَٔج ٔب fklA Ax*nA b*nbh” “We took each one by/because his sin” the b (Baa) is“ ”فىَ لاَّ أخَز

for caution and preposition at the same time (it is preposition used for caution) and

they are both true. It means that there are two tags (true) simultaneously. So this tagset

has interleaving. This has happened because it is a large morphosyntactic tagset. We

must see that interleaving is different than word sense where the word has different

meanings or tagging where the word has many tags (non-interleaved tags).

When a word has more than one POS this does not mean there is interleaving but it

depends on these classes. Let us consider another example for showing interleaving.

Let the tagset consist of three tags only: noun, verb and particle. This tagset, for sure,

does not have interleaving. Now, we want to extend this tagset and, mistakenly, we

add subject as a new tag. Now, this tagset has interleaving because all subjects are

nouns. If we have a word X, we cannot say it is subject or noun (if it is a subject)

alone, but we say that it is subject and noun.

Comparing Arabic Tagsets and Designing a New One

 41

For this and similar cases, we have two solutions simultaneously. The first solution

is that we add some of the interleaved classes as classes and the other ones as

attributes. In the previous example, Noun class is a class and Subject class becomes

an attribute. The second solution is that we divide the tagset into levels. In the

previous example, we add a level for morphological classes and a level for syntactic

classes. Any word will have more than one level.

In the proposed tagset we collect these two solutions according to the requirements

as the reader can see in the next sections.

3.4 A New Arabic Tagset

3.4.1 Main POS

The first classification of a word is noun, verb and particle (Al-Rajhi) [10] (Al-

Galaiini) [6] (Al-Dahdah) [4]. But there are symbols used in the written text as

punctuations, foreign words, numbers, and so on. (Khoja) [57] [59] used two other

categories which are residuals and punctuation. This is true for normal Arabic text,

but in Qur‟an there are other symbols that do not exist in any other text which are

stopping symbols. These symbols in some cases are taken as sentence ending (by

force or optional). They can be made a part of the punctuation category or a new

category (special) can be created for them. Figure 3-15 shows main POS for Arabic,

the same as in most of other tagsets.

Figure 3-15: Main POS.

3.4.2 Arabic noun class in the proposed tagset

If we go back to figures 3-13 & 3-14, we cannot take all these classifications

because they will cause highly ambiguous results due to the interleaving of these

classes. According to the two levels idea of our tagset, the nouns classes can have

class & features only. The final noun classes and subclasses in the proposed tagset are

Noun N Verb V Particle P Residual R Punctuation Pnc

Word

Comparing Arabic Tagsets and Designing a New One

 42

shown in figure 3-16. The features of the noun in the proposed tagset are shown in

Figure 3-17. One can observe the following:

1. Person attribute for nouns was not used here because of the example

“ktAb”-“وزبة” (book). It is not a person. Therefore “ktAbhA”-“وزبثٙب”

(her book) has two POS.

2. The derived nouns are not taken into account because they are

interleaved with other types as adjectives.

3. The constant adverb class was added, only, to this level.

4. The definedness feature was not taken because we deal with the definite

particle as independent particle and the classes which have definiteness

feature are constant: pronouns, demonstrative, proper nouns etc.

The tags of nouns start with letter N followed by Nouns POS followed by Features

(Number+ Gender + Case + Structured) respectively. For example the tag

NDem_SMAY is a Demonstrative Noun Singular Masculine Accusative structured.

Figure 3-16: Arabic Noun Classes in the proposed tagset.

 اٌع١ّش

Pronoun

NPrn

 اعَُاعزفٙبَ

Interrogative

NInt

 ئلاشبسح

Demonstrative

NDem

 ِٛصٛي

Relative

NRel

 اٌزصغ١ش

Reduced

NRed

 اٌىٕب٠خ

Allusive

NAlv

اعَُ

 اٌجٕظ

Common

NNou

 اعَُاٌؼٍُ

Proper
NPrp

الاعّبءَ

 اٌخّغخ

Five nouns

NFiv

 اعَُاٌؼذد

Numeral

Nouns

 اعَُفؼً

Verbal

NVrb

 اٌصفخ

Adjective

 الاصٍٟ

Cardinal

NNmc

١جٟاٌزشر

Ordinal

NNmo

 اخشٜ

Other

NAdo

 إٌغجخ

Genealogical

NAdg

 اٌعشفَغ١شَاٌّزصشف

Constant Adverb

NAdv

Comparing Arabic Tagsets and Designing a New One

 43

Figure 3-17: Noun features in the proposed tagset
8

3.4.3 Arabic Verb Classes and Attribuits in our Tagset

For the previous classification, we can take the verb classes and verbal attributes

(features) as in figure 3-18 & 3-19 respectively. This classification will remove the

interleaving which happened by variation of classification.

Figure 3-18: Verb classes in the proposed tagset

Figure 3-19: Verbal attributes in the proposed tagset

3.4.4 Particles Classification in the proposed tagset

The classes of the particle, in our tagset, are defined according to the particle

working. We summarized all of them in Figure 3-20.

The particle meaning is an attribute, in our tagset, of particles. As we can see the

particles have 50 types (in meaning). Some of these classes can be combined into one

class according to similarity of their meanings, therefore we can reduce the number

8
 The word ending will be changed (letter or diacritics) according to the case of the word(nominative

accusative …). In the case of structured word, the word ending will be constatnt at all word cases

(nominative, accusative …)

Gender: Masculine Feminine Common (ِشزشن)

Number: Singular Plural Dual

Person: First Second Third

Mood: Nominative Accusative Jussive Non

Certainty Yes No

Structured Yes No

Voice Passive Active

Gender: Masculine Feminine Common

Number: Singular Plural Dual

Case: Nominative Accusative Genitive

Structured Yes No

Verb

Past Pst Present Prt Imperative Imv

Comparing Arabic Tagsets and Designing a New One

 44

from 50 to 21 as in Figure 3-21. For example the classes: imperative, exhortation,

pleasing, wishing, offering are unified to request class and so on.

Prepositions are a group containing almost all of the previous classes. Each

preposition has multiple meanings which is a subset of the previous classes. For

example the preposition "Baa" has 13 different meanings (Al-Galaiini) [6]. The

interesting thing in preposition is that it has the same working in the sentence which is

the reduction. Particles‟ working can be: for-jussive particles, for-reduction (for-

genitive) particles (preposition), for nominative particles, for-accusative particles, for

conjunction, not-working particles, Prevented. We want to show the difference

between "for conjunction" and "not working" particles. The first particles translate the

case of the word before it to the word following it. The second kind of particles does

not do anything.

Finally, we will use the following important particle classes as in Figure 3-22 and

the meaning of particles is shown in Figure 3-23:

 ٌٍٕصت ٌٍؼطف ٌٍجش ٌٍجضَ

 غ١شَػبٍِخ

 اٚ

 ِىفٛفخَػَٓاٌؼًّ

 إٌغخ

)ٔصتَ

 ٚسفغَ(

 وبفخَػَٓاٌؼًّ

for

Jussive9

Jus

For

Reduction10

(preposition)

Red

For

Conjunction11

Cnj

for

Accusative12

Acu

Not working13

Or Preventive

Non

Copier14

Cop

Prevent15

Prv

Figure 3-20: The classes of particles (working) in the proposed

tagset.

9
 The present tense verb after these particles is in jussive mood.

10
 The noun after these particles is in genetive case.

11
 The nouns or verbs conjected by these particles must have the same case.

12
 The nouns or verbs after these particles are in accusative case.

13
 They do not have any effect on the following word.

14
 They have dual effect on the following words. One of the following words is in nominative and the

other one in accusative case
15

 Any particle after this particle will be “not working” (i.e., prevented from working).

Comparing Arabic Tagsets and Designing a New One

 45

Figure 3-21: Particles meaning in the proposed tagset (features).

3.4.5 Residuals and punctuation

Residuals can be symbols of numbers, mathematical formulas, abbreviations,

acronyms and so on. We must distinguish between the symbol of numbers (1, 2…)

and nouns of number (one, two…). Figure 3-22 shows residuals classes.

Figure 3-22: Residuals classes.

Punctuation category contains all punctuation symbols: “،”, “؛“ ,”:“ ,”...“ ,”؟”, “-”,

“]”, “[”, “=”. All these have one class which is punctuation (CPnc).

Without meaning

 ١ٌظٌَٙبَِؼٕٝ

Particles

meaning

Exceptive

 اعزثٕبء

Linking

 سثػ
 سثػ

Interrogative

 اعزفٙبَ

Future

 اعزمجبي

Exclamatio

n
 رؼجت

Definition

 ايَاٌزؼش٠ف

Simile

 اٌزشج١ٗ

Request

 غٍت

Realization

 رذم١ك

Explanation & details

ََٚرفص١ًرفغ١ش
ََٚرفص١ًرفغ١ش

Caution

 عجت

Certainty

 رٛو١ذ
 رٛو١ذ

Answer

 جٛاة
 جٛاة

Increasing & decreasing

 رم١ًٍَٚرىث١ش

Vocative

 ٔذاء

Negative

 ٔفَٟٟٚٔٙ

Adverbial

 شف١خ

Conditional

 ششغ

Surprise

 ِفبجئخ

Subordinating

 ِصذسٞ

Residual

Symbol

RSym

Abbreviations and

Acronym RAbc

Not Classified

RNcl

Comparing Arabic Tagsets and Designing a New One

 46

Residuals and punctuations do not have features or meaning. It means that

residuals and punctuations are not the same as noun, verb, nor particles; therefore,

they only have one level.

3.5 Multilevel tagset

Residuals and punctuations do not have features or meaning, hence they have one

level. For particles, there are two levels only, meaning and working. The same

situation applies to verbs: they have two levels, type and features. The situation for

nouns is different where there is a third level in addition to POS and feature. The first

level of POS consists of the properties that do not be change when the position of the

noun in the sentence is changed. The features of this POS are grammatical features

(level two). The third level is for syntactic classes which are changed by changing the

noun position in the sentence. It is well known, that the number of syntactic classes in

Arabic is much larger than in English. The third level of classes of noun is shown in

figure 3-23. These classes can be treated as additional features. We show the levels of

POS tagset in Figure 3-24.

Figure 3-23: syntactic classes of noun
16

.

16

 We intend to design a tagset and build a POS tagger for Arabic. Level three is beyond what tagger

needs and therefore I used the letter “X” to indicate an unused level for future use.

 فبػً

(Subject of a verb)

 ِفؼٛيَثٗ

(Object of a verb)

 ظشفَِزصشف

(Adverb)

 ِٕبدٜ

(Vocative)

 ٔبئتَفبػً

(Passive subject

representative

 ِفؼٛيَِطٍك

(Cognate)

 دبي

(Circumstantial

accusative)

 ِعبفَا١ٌٗ

(Possessive

construction)

 ِجزذأ

(Subject)

 ِفؼٛيَلأجٍٗ

(Accusative of

purpose)

 ر١١ّض

(Specification),

 ثذي ,ٔؼذ

(Apposition)

 خجش

(Predicate of a

subject)

 ِفؼٛيَِؼٗ

(Commutative object)

 ِغزثٕٝ

(Excepted)

X

NOT USED

Comparing Arabic Tagsets and Designing a New One

 47

Figure 3-24: the Levels of the proposed tagset

3.6 Practical representation of the proposed tagset

Practically, the tagset is representing classes and features in one block of symbols.

Representation of tags in the proposed tagset is as follows:

1. Noun has the form: N+POS_ Number+Gender+Case+Structured

2. Verb has the form:

 V+POS_ Person+Number+Gender+Case+Structured+Certinity+Voice

3. Particles has the form: P+Working_Meaning

4. Residual has three tags: ROth, RSys or RAcb

5. Punctuation has one tag: CPnc

Appendix A shows a practical example of 186 tokens tagged with this tagset.

Theoretically, the proposed tagset has 3552 tags (excluding the third level). Indeed,

some of the tag combinations are impossible. By taking third level into account, the

number of tags will increase to 14892.

3.7 Discussion

As we see, some researchers constructed tagsets based on English and missed some

of the important features of Arabic. Other researchers created tagsets depending on

the Arabic language and took some features from other languages, but those tagsets

 First level Second level Third level

(not used in our

practical tagset)

Noun Noun type which will not

change at any position in

the sentence

Grammatical

features

Noun type which can

change according to it‟s

position in the sentence

(mostly syntactic types).

verb Verb type which will not

change at any position in

the sentence

Grammatical

features

Particle Particles working Particles meaning -------

Residuals Residual symbol ------ ------

punctuation Punctuation symbol ------ ------

Comparing Arabic Tagsets and Designing a New One

 48

didn't take all the important Arabic language features into account. There has been a

tagset proposed that includes all Arabic language features, with many useless

(redundant) tags.

Building a tagset, as large as possible to include all language features, and as small

as possible in order to permit relatively efficient tagging, is a hard problem. We

introduced a new multilevel Arabic tagset compatible with CA (Classical Arabic) and

MSA (Modern Standard Arabic). It has almost all Arabic features and classes.

Selecting classes, features and merging them is done carefully. The proposed tagset

does not have interleaving. The third level of this tagset is beyond the range of this

dissertation; therefore we will refer to its first two levels, only.

Chapter 4 Segmentation and Tokenizatio

4.1 Introduction

Tokenization is the task of separating out words (morphemes) from running

text (Jurafsky & Martin) [54]. One of the mophemes typically corresponds to the

word stem, and there ar ealso inflectional morphemes (Habash) [45]. We can use

blanks (white space) to help in this task, but there are hard cases. This definition is

valid for English, but for Arabic the situation is different. While discussing

tokenization, it is important to remember that there is no single optimal

tokenization. What is optimal for IR may not be optimal for SMT. Also, what is

optimal for a specific SMT implementation may not be the same for another

(Habash) [45].

Tokenization is a necessary and non-trivial step in natural language processing

(Bird et, al.) [22] (Attia) [13]. It is closely related to the morphological analysis

but usually it has been seen as an independent process (Chanod & Tapanainen)

 [28].

(Habash) [45] shows a number of different levels of tokenization schemes. It

starts from simple tokenization which is limited to splitting off punctuation and

numbers from words. Then orthographic normalization unifies various forms of

letters. Then decliticization schemes split off clitics. The last can be done

according to stem & affixial morphemes or lemmas & clitics.

Segmentation and Tokenization

50

In our work, there is a little distinction between segmentation and tokenization.

Segmentation is related to splitting running text into sentences (sentence

segmentation), into words (word segmentation) and the word to its segments, no

matter how this word was constructed. On the other hand, tokenization is related

to getting tokens from running text. But in most cases these two tasks overlap. In

other words, segmentation is related to splitting all affixes and clitics
17

 and

tokenization is splitting clitics only with retriving the changed or the deleted

letters resulting from the inflections. We take the segmentation process as splitting

running text into sentences (sentence segmentation), into words (word

segmentation) (Jurafsky & Martin) [54], and tokenization as splitting the words

into morphemes.

In this chapter we propose a hybrid unsupervised method for Arabic

tokenization, considered as a stand-alone problem. After getting words from

sentences by segmentation, we use our own analyzer to produce all possible

tokenizations for each word. Then, manually written rules and statistical methods

are applied to solve the ambiguities. The output is one tokenization for each word.

The statistical method was trained using 29k words, manually tokenized (data

available from http://www.mimuw.edu.pl\~aliwy) from Al-Watan 2004 corpus

(available from http://sites.google.com/site/mouradabbas9/corpora). The final

accuracy was 98.83%.

4.2 Tokenization System

The whole pre-processing for Arabic tagging system consists of tokenization

and analyzing. Figure 4-1 shows the whole pre-processing for tagging system.

After completing all these stages, the final results are lemma and clitics with their

features. We should note that lemma is an ambiguous term in Arabic and there is

no consensus among the researchers about its definition. In this dissertation we

depend on the definition in (Habash) [45]. In this chapter, we will focus on

tokenization only.

17

 See section 4.7.1 for clitics definition.

Segmentation and Tokenization

51

Figure 4-1: The Tokenization as pre-processing task for tagging

process. The output is inflected word + clitics for each word.

4.3 Related Work

In some works (e.g. MADA+TOKEN (Habash) [51], BAMA (Buckwalter)

 [25] [26], AMIRA (Diab) [32], Xerox Arabic Morphological Analyzer and

generator (Beesley‟s) [17] [18], Sakhr‟s Arabic Morphological Analyzer (Sakhr

Software) [81], Khoja's stemmer (Khoja) [58] this step of natural language

processing is performed (partially or completely) as a preprocessing step.

(Benajiba) [20] presents two segmentation schemes that are morphological

segmentation and Arabic TreeBank segmentation. He shows their impact on an

important natural language processing task, which is mention detection.

Experiments on Arabic TreeBank corpus show 98.1% accuracy on morphological

segmentation.

(Lee) [66] depends on the word representation as prefix*-stem-suffix*. The

algorithm uses a trigram language model to determine the most probable

morpheme sequence for a given input. The language model is initially estimated

from a small manually segmented corpus of about 110,000 words. The resulting

Arabic word segmentation system achieves around 97% exact match accuracy on

a test corpus containing 28,449 word tokens.

The systems of Benajiba [20] and Lee [66] deal with stem rather than lemma.

According to Habash [45] stem is not a legal Arabic word form, unlike lemma.

Consecutive

morphemes

(Inflected

word

&Clitics)

Word and

sentence

Segmentation

Running

text

Words and

Sentences

boundaries

Text

Normalization

Segmentation

into morphemes

Normalized

text

T
o
k
en

iz
at

io
n

Segmentation and Tokenization

52

In AMIRA (Diab) [32] and MADA+TOKEN (Habash) [51] are packages and

the tokenization is not a separate task. They use Support Vector Machine (SVM),

but Habash [51] uses morphological analyzer with SVM. They have accuracy of

tokenization 99.12% and 99.21% respectively.

4.4 Word and Sentence Segmentation

4.4.1 Sentence segmentation

It is the first step in text processing, a crucial one. Segmentation a text into

sentences is generally based on punctuation (Jurafsky & Martin) [54]. In Arabic,

estimating boundaries of a sentence is a relatively simple task, about as difficult as

in English. The average number of words per sentence is larger than the average

in English, but it does not affect the segmentation process. The sentence

boundaries and phrase boundaries can be estimated according to Arabic

punctuation marks which are ،, ؟,َ...,َ:,َ.,َ؛ ,"" ,- ,[] ,=.

4.4.2 Word segmentation

Word segmentation is the process of getting words from text. The space is a

good separator for this task but it will not work in special cases, such as

compound words. Some compound words are written with a space in the middle

even though they are single words. Such cases must be solved at this stage. For

example the word “IslAm |bAd”-“َآثبد is a name of a city in (Islamabad) ”ئعلاَ

Pakistan. It means that we must have knowledge base with such words. After

solving this problem, this stage is relatively easy. There is another difficulty,

when a few words are attached together without spaces, which can happen when

the first one ends with one of the letters “w”-“ٚ”, “d”-“د”, “r”-“س”, “z”-“ص”, “*”-

 .It is formally a mistake, but may happen when dealing with informal texts .”ر“

Our system assumes to work with correct texts hence we do not offer any solution

of this particular problem.

4.5 Normalization

Orthographic normalization is a basic task which reduces noise in the data

(Habash) [45]. This is true regardless of the task: preparing parallel text for

machine translation, documents for information retrieval or text for language

modeling. Normalization can be Tatweel removal (removing Tatweel symbol),

Segmentation and Tokenization

53

diacritic removal and letter normalization (variant forms to one form conversion).

Figure 4-2 shows letter normalization example.

Figure 4-2: An example of Arabic letter normalization

This normalization will help us in searching or matching process but after this

stage, the normalization process will increase the ambiguity in tokenization. For

example, if we normalize “P”-“ح” (Taa-Marbuta) to “h”-“ٖ” (Ha), the latter will be

tokenized as a pronoun. For this reason, in our work we consider normalization as

a temporary stage for matching and searching the dictionaries.

4.6 Arabic Tokenization

Arabic words are often ambiguous in their morphological analysis. This is due

to Arabic‟s rich system of affixation and clitics and the omission of

disambiguating short vowels and other orthographic diacritics in standard

orthography (“undiacritized orthography”). On average, a word form in the ATB

has about 2 morphological analyses (Habash & Rambow) [46].

Arabic word is of the form [Proclitics] + [inflected word] + [Enclitics]. Then,

tokenization here is similar to word segmentation in Chinese, where Arabic word

corresponds to a sentence in Chinese
18

.

4.7 Arabic word form

In written, it is possible that a single word has two or more part of speech

(POS) categories. It leads to problems in stemming and segmentation. Let‟s

consider the word “wbsyArthm”-“ُٙٚثغ١بسر” (and by their car). Is it a word? How

is it constructed? According to the classical
19

 definition of a word, it is a word but,

as we can see, it has four POSs.

18

 Chinese does not delimit words by white-space. Word segmentation is therefore fundamental for

other language processing tasks in this languages (Peng et, al.) [76].
19

 The word is a sequence letters enclosed by two spaces

 O أ

 I ئ

 | آ
 A ا

ٜ Y ٞ y

 P ٖ h ح

ب-ؤ „ ء W-}

Segmentation and Tokenization

54

In this chapter we will distinguish constructing of a word from a number of

POSs and the inflected word (construction perfect, imperfect, imperative, mood,

person and so on). I.e., we will distinguish clitics and affixes.

Arabic clitics attach to the inflected base word (see the next Section 4.7.1) in a

strict order that can be represented as follows, using general class names (Habash)

 [45]:

[QST+ [CNJ+ [PRT+ [DET+ BASE +PRO]]]]
20

where QST is question, CNJ is conjunction, PRT is particle, DET is

determinant, BASE is base of the word, and PRO is pronouns, respectively.

In a more general way, we can represent the word as:

BASE + affixes + clitics

 lemma+ morphological features+clitics

 stem + affixes + clitics

 inflected word +clitics

The previous example “wbsyArthm”-“ُٙٚثغ١بسر” will be “w+b#syArp#hm”

according to the last form where: w, b and hm are clitics and syArp is the inflected

word.

Some works do not differentiate between affixes and clitics, assuming the

Arabic word generally to be of the form (prefixes + stem + suffixes). In our work,

we will focus on the form (inflected word + clitics), where inflected word consists

of lemma and morphological features. This will help us encoding word features

and POS without doing an unwanted segmentation.

4.7.1 Word Clitics

Clitic is a unit whose status lies in between that of an affix and a word. The

phonological behavior of clitics is like affixes; they tend to be short and

unaccented; their syntactic behavior however is more like words, often acting as

pronouns, articles, conjunctions or verbs (Jurafsky & Martin) [54]. Clitics can be

proclitics which precede the word (like a prefix) or enclitics which follow the

20

 Any transliteration written in English should be read from left to right, while the corresponding

Arabic original phrase should be read from right to left.

Segmentation and Tokenization

55

word (like a suffix). Proclitics can be preceding the verb, noun, pronoun and

particles. Figures 4-3 & 4-4 list almost all known combinations of verbs and

nouns proclitics, respectively. There are three levels of verb proclitics, always

attached in the same order. The use of them is optional. For noun the structure is

similar, but there are four levels.

Figure 4-3: Verb proclitics.

Figure 4-4 Noun proclitics.

Figure 4-5 shows cliticization of attached pronouns
21

 with particles. Selecting

which is the base (inflected word) depends on the priority shown in Figure 4-5 by

number. The numbers (1, 2 and 3) which are used in figure 4-5 are the priority of

taking the base of the word. If one word from box 1 exists in the word, then it is

the base and the remaining ones are clitics; else, if a word from list box is present,

then it is the base and the other ones are clitics; else the word from box 3 is the

base and there are no proclitics. Note that at least one word from those lists must

be present. For example “ُٙٔافا” “AfInhm” “then, are that they” is cliticized as

follows: “A”-“ا” (are/is) and “f”-“ف” (then) are proclitcs, “In”-“ْئ” (that) is the

base and “hm”-“ُ٘” (they) is an enclitic. The book (Habash [45], pages 48-50) is a

good reference for other special cases in cliticization.

The particles can appear combined for constructing words, but the easy way for

dealing with them is by taking these combinations as stop words.

21

 In Arabic there are two types of pronouns: attached to a word (us, me..) and separated (I,we…).

 ا
 ف

 و

 ن

 ي

 ة

 اعُ

[‟][w, f][k, l, b][Al][Noun]

 اي

 ا

 ف

 و

 ل

 ي

 ط

 فؼًَِصشف

[‟][l, w, f][l, s](inflected Verb)

Segmentation and Tokenization

56

Enclitics follow verb or noun. The enclitic “nA”-“ٔب” (we-our) is ambiguous

and has two possible roles (either a clitic or an inflection suffix). For example the

word “qtlnA”-“لزٍٕب” can mean “we killed” or “he killed us”. “nA”-“ٔب” is an affix

in the first context and an enclitic in the second context.

All enclitics are pronouns and therefore pronouns themselves don‟t have

enclitics. Figure 4-6 shows all common enclitics for nouns and verbs with their

order. They are optional.

This set of clitics and their order of precedence (summarized here and

described also in other papers and books) are the base of our algorithm. Adding a

few rules for deleting unwanted combinations of clitics we can get a good

segmentation program, as we will see in the implementation section later in this

chapter.

Figure 4-5: Proclitics for pronoun and pronoun as an enclitic

according to the priority number of taking the base.

 ا
 ف

ٚ

,دبشب,اٌٟ,اْ,ِٓ,فٟ,ػٓ,ة

,ٌؼً,وبْ,ػٍٟ,ػً,ػذا,خلا

 ِغ,١ٌذ,ٌٛلا,ٌىٓ

...

 ظ١ّش

An, mn, fy, En, b,

xlA, HA$A, Al ,

ElY, El, EdA, lAkn,

lEl, kAn, mE, lyt,

lwlA,…

 ي

‟
W

f

l
Pronoun

1

1

3 2

3
2

Segmentation and Tokenization

57

Figure 4-6: Enclitics for Noun and Verb

4.8 Tokenization and segmentation techniques
and schemes

Habash [48] shows that tokenization techniques can be as simple as regular

expressions and/or as complex as morphological analysis (form-based and

functional). The main classification of tokenization algorithms is into supervised

and unsupervised ones. Manual analysis of text and writing custom software,

unsupervised Language Model Based (Lee et al.) [66] are examples of

unsupervised methods. Annotating the sample corpus with boundary information

and using machine learning (ML) is an example of a supervised method. The

other classification is into language dependent (methods used for one language or

group of languages, there are many methods of this type) and language

independent methods.

Arabic has a middle level of segmentation complexity; it is between English

(and similar languages) and Chinese (and similar languages). In Arabic words are

typically separated by spaces (as in English), but it is possible that an Arabic word

is a whole sentence, like in Chinese. Therefore we should use a hybrid method for

dealing with segmentation or split the segmentation task into two steps. The

helpful thing is that the forms of Arabic words are known, which simplifies the

segmentation of words when compared to Chinese, where one has to apply

segmentation to sentences.

Schema defines what the target tokenization is (Habash) [45]. The same paper

lists some examples of schemes used in tokenization of Arabic. In this dissertation

we use scheme D3+ LEM. D3 (decliticization of degree 3) is a scheme that splits

off clitics: the class of conjunction clitics (w+ and f+), the infrequent interrogative

 ٔب,وٓ,وُ,وّب,ن,٘ٓ,٘ب,ُ٘,ّ٘ب,ٖ ٟٔ (فؼً)

 ٞ,ٔب,وٓ,وُ,وّب,ن,٘ٓ,٘ب,ُ٘,ّ٘ب,ٖ ٟٔ (اعُ)

(Noun) [nA,kn,kmA,k,hn,hA,hm,hmA,h]

(verb)[ny][nA,kn,kmA,k,hn,hA,hm,hmA,h]

Segmentation and Tokenization

58

clitic, the class of particles (l+, k+, b+ and s+), the definite article Al+ and all

pronominal enclitics. LEM reduces every word to its lemma.

4.9 Challenges of Arabic tokenization

There are many challenges to Arabic tokenization. The complexity of the

morphology together with the under-specification of the orthography creates a

high degree of ambiguity (Habash et, al.) [51]. Some of these ambiguities can be

summarized by:

 Orthography problems resulting from writing the letter in ambiguous case as

in “Y”-“ٜ” and “y”-“ٞ” or unification of some forms of a letter as in “A”-“ا”,

“O”-“أ”, “I”-“ئ” and so on.

 Encliticization of a word ending with “P”-“ح”:

 “jmEthm”-“ُٙجّؼز” (collect them) َُ٘+َجّؼذ

 “jmEthm”-“ُٙجّؼز” (their Friday) َُ٘+َجّؼخ

 Encliticization of a word ending with “Y”-“ٜ”:

 “mstwY”-“ِٜٛغز” (level) + “k”-“ن” (your)

 “mstwAk”-“ِغزٛان” (your level)

 “nA”-“ٔب” and “y”-“ٞ” are ambiguous and can be either enclitics or suffixes.

(see section 6.1).

 Normalization adds ambiguity, for example normalizing “P”-“ح” to “h”-“ٖ”

will create false enclitics: the word “Amp”-“اِخ” (nation) after normalization

will become “Amh”-“ِٗا”, then if we apply the tokenization to the last word,

it will become “Am+h”-“َٖ+ََا” (him mother) but the right tokenization is “اِخ”

“nation”.

 Ambiguity results from decliticization of “l”-“ي”, “A”-“ا” and “Al”-“اي” (the).

All these and other ambiguities are solved during tokenization stage in our

system.

Another class of problems resulting from morphology is solved in this stage.

For example the word “HmlwnA”-“دٍّٛٔب” (they raise us) after tokenization will

Segmentation and Tokenization

59

be “HmlwA+nA”-“دٍّٛا+ٔب” where the tokenizer adds the removed letter resulting

from morphological rules.

There are other encoding problems where the same letter is written in different

shape with different code. It is solved in this stage, as well. For example

“zmlA}y”-“ٟصِلائ” (my colleagues) after tokenization will be “zmlAʼ+y”-

 .and so on ”صِلاء+ٞ“

Some of the ambiguities in POS tagging are solved already during

tokenization. For example the words “bktbnA”-“ثىزجٕب” (by our books) after

tokenization will be “b+ktb+nA”-“ة+وزت+ٔب” because it has preposition “b”-“ة”

(by). The other tokenization is “b+ktbnA”-“ة+وزجٕب” (by+we write) which is

rejected by the tokenizer, because an inflected verb cannot appear after a

preposition.

4.10 Our approach

We use a hybrid method for tokenization which is a combination of

unsupervised method which depends on rules for getting segments, and statistical

method for solving ambiguities. Our algorithm works as follows:

Task 1: As a preparation to the segmentation process, we first compute all

verb, noun and pronoun proclitics and enclitics storing these combinations in lists.

Then, the text is segmented into sentences and the sentences into words according

to space and Arabic punctuations. Segmenting the words into clitics & bases is

done by analyzer which produces all possible segments for each word. After this

stage every word may have several segmentations.

Task 2: Now we remove noise introduced in the first task. We do so by

deleting segmentations which produced one letter words with proclitics and

enclitics (which is impossible in Arabic)
22

 and duplicate segmentations (which

may result from segmenting the same word treated once as a verb and once as a

noun). We also remove segmentations whose inflected word is not in the

dictionary (constructed separately from many resources). However, if all produced

segmentations of a word should be removed, they are all passed to Task 3 for

22

 See section 5.8 more details for constructing the dictionary.

Segmentation and Tokenization

60

special treatment. Words whose segmentations are not all removed are passed to

Task 4.

Task 3: Because the used dictionary does not cover all words in the language,

there are many unknown words whose segmentations are passed from Task2 and

must be processed here as out of vocabulary (OOV). We first choose the

segmentations which give the largest number of letters in the proclitics and

enclitics, and among these we choose ones that have the least number of proclitics

and enclitics. If this does not yield a unique segmentation, the choice is not made

and the possible segmentations are transferred to Task 4.

Task 4: Because the system may produce many segmentations for one word, in

order to get one segmentation for each word, we select the segmentation with the

least number of segments. If this still does not produce a unique segmentation, we

use a method similar to that of Task 3. From the candidate segmentations we

select the segmentations which give the longest possible sequences proclitics and

enclitics, and among these we choose ones that have the least number of proclitics

and enclitics. If this does not yield a unique segmentation, we choose the first one

encountered.

Task 5: We eliminate, using statistical estimation, ambiguity of results of Task

1. This task is done in parallel with Tasks2, 3 and 4. This task is described below

in Section 4.11.

Task 6: Smoothing or correction rules are used to reduce errors from the

previous tasks.

For example, we add the following rule for distinguishing between a word

ending with “t”-“د” (normal Taa) or “p”-“ح” (Taa Marbuta):

IF ((the base word has Taa AND has enclitics) AND (has a proclitic of type

preposition OR the previous base is a preposition)) THEN Change Taa to Taa

Marbuta.

There are many other similar rules used in this task derived from Arabic

grammars (AL-Bidhani) [3] (Al-Rajhi) [10] (Al-Hamlawy) [7] (Al-Galaiini) [6].

Segmentation and Tokenization

61

4.11 Applying statistical improvement

Our philosophy of using statistical support is the same as the one we use later

in POS tagging system. Assume we have a sentence: w1 w2 … wn with n words.

Let the set of possible tokenizations of word wi in this sentence be {s1… sj},

where j is the number of segmentation
23

 of this word. Now we can apply any

statistical method, like HMM used for tagging, for tokenization.

We have two facts: in our approach, first we used dictionary and rules for

tokenization and solving ambiguities. Bigrams are used, and we do not consider n-

grams for n>2. The bigrams equation which we used practically is:

)|()|(maxarg 1

 iiii
s

i sspswps
i

P(wi | si) is probability of i
th

 word given the segmentation. P(si | si-1) is the

probability of the segmentation given the previous segmentation.

4.12 Results

After applying all the previously described simple methods, we got the

following results, in which we used bigrams on 45 files
24

 with 29k words.

Without statistical support and without Task 4 the recall is 0.9877462,

precision is 0.8617793 and F-measure is 0.920473. Without statistical support

(one choice for each word using Task 4) the accuracy is 0. 9802977. With

statistical support (one choice for each word) ten-fold cross-validate accuracy is

0.9883473.

In our tests, tokenizations “#Asrt#hA”-“# #٘باعشد ”
25

 and “#Asrp#hA”-

 are assumed to be ”ٔشٜ#٘ب#“-”and “#nrY#hA ”ٔشا#٘ب#“-”nrA#hA#“ ,”اعشح#٘ب#“

errors even though they are only orthographically wrong. In general, any change

to the ending letter of the word resulting from morphology, if it is not compatible

with the original letter, is assumed to be an error. Practical tokenized Arabic text

23

 s1, …, sj are segmentations, not segments. I.e., each one of these segmentations consist of one or

more segments.
24

 The data was chosen randomly from Al-Watan 2004 corpus (available from

http://sites.google.com/site/mouradabbas9/corpora). The sentences have been tokenized manually

by ourself.
25

 Practically the tokenized text has format: proclitics#inflectedWord#enclitics. If there are more

proclitics/enclitics, they are separated by +.

http://sites.google.com/site/mouradabbas9/corpora

Segmentation and Tokenization

62

and its transliteration are shown in Figures 4-7 and 4-8, respectively
26

. Comparing

with other works, the best known tokenization results have accuracy 99.12% and

99.2 % (Diab [32] and Habash [51], respectively) on the data of ATB. They did

not solve the following problems: sometimes they take “AL”-“اي” as a part of a

word, not as a clitic, which leads to a decreased level of ambiguity between

“A+L”-“ا+ي” and “AL”-“اي” clitics (i.e., it increases accuracy). Next, in most of

cases, they did not manipulate the letter changing due to morphology. I.e., the

errors in the two examples in this section are considered to be correct in their

approaches. Their algorithms are data dependent because they use statistical

method. Our method without statistical improvement is only marginally worse,

being data independent.

4.13 Discussion

We can see that we collect more than one method for solving ambiguity in

tokenization. We introduce simple and effective methods for making decisions in

tokenization, achieving high accuracy Arabic tokenization system. Our approach

solves most ambiguities in tokenization. The tokenization is a separate task. It can

be an efficient tool for annotating large corpora. If an extremely high accuracy is

needed, wrong cases can be corrected manually. We do so measuring the accuracy

of the next steps in our tagging system.

26

 The 45 tokenized files are freely available from the website: http://www.mimuw.edu.pl/~aliwy.

http://www.mimuw.edu.pl/~aliwy

Segmentation and Tokenization

63

Figure 4-7: Sample of Arabic tokenized text

Figure 4-8: Transliteration of Arabic tokenized text

#mrp# #,# w#qbl# #sntyn# #,# #ktbt# #En# Al#ErAq# #Al*y# #swf# #yEml#

#ElY# #tgyyr# Al#EAlm# #,# #hl# #h*h# #klmp# #kbyrp# w#mbAlg# #fy#hA

w#rb#mA #lm# #ysEf# Al#tEbyr# #ElY# #wjh# Al#dqp# w+Al#wDwH# #mn#

#An# Al#ErAq# Al#qdym# Al#kAmn# #tHt# Al#rmAl# w+Al#ly$n# #,# #hw#

#*Ak# #Al*y# #swf# #ygyr# Al#EAlm# #,# w#I*A# #ArtOynA# Al#fkrp# #fy#

Al#wAqE# Al#fEly# #,# f#On# Al#EAlm# w#mn# #xlAl# #E$rp# #|lAf# #tl#

#|vAry# #,# #lm# #yjr# Al#tnqyb# #fy#hA b+Al#ErAq# #,# #swf# #ymnH#

#AkAdymyAt# Al#ArD# #frSp# #Elmyp# l#AstEAdp# w#mn# #vm# #tgyyr#

#tSwrAt#hA w#mfAhym#hA #fy# #mxtlf# #qDAyA# w#$Wwn# Al#HyAp#

w+Al#tAryx# #..# #A*n# f+Al#EAlm# s#ygyr# #nfs#h #mn# #xlAl# Al#ErAq#

#mvl#mA #tgyr# #Hyn# #AEAd# Al#mArksywn# Al#nZr# #fy# #tSwrAt#hm

#En# #nmT# Al#AntAj# Al#Asywy# w#fkrp# #n$wʼ# Al#TbqAt# #HAl#mA

#Akt$f# Al#Ast$rAq# #mdnA# #mvl# #swmr# w#bAbl# w#|$wr# #,# w#tHrwA#

#End# #tfASyl#hA #AnZmp# #tsjyl# Al#Ebyd# w+Al#AjrAʼ# w+Al#mwZfyn#

w#A$kAl# #tnZym# Al#Eml# w#AdArp# Al#dwlp# #,# w#lw# #kAn#

Al#Ast$rAq# #fy# #zmn# ArtqAʼ# Al#mlkyp# Al#frdyp# w#mnEA# #mn#

#qyAm# Al#SrAE# Al#Tbqy# #,# w#rb#mA #kAnt# Al#mArksyp# #gyr#hA

#fy# Al#nZr# #AlY# Al#$rq# w+Al#grb# #lw# #kAn# Al#Ast$rAq# #fy#

Al#mstwY# Al#tfSyly# k#mA# #jAʼ# #bEd# #mArks# #.#

َ#٠ؼًّ#َ#عٛف#َ#اٌزٞ#َاي#ػشاق#َ#ػٓ#َ#وزجذ#َ#،#َ#عٕز١ٓ#َٚ#لجً#َ#،#َِشح##

َٚ#سة#ِبَ#فٟ#٘بَٚ#ِجبٌغ#َج١شح##وَ#وٍّخ#َ#٘زٖ#َ#ً٘#َ#،#َاي#ػبٌُ#َ#رغ١١ش#َ#ػٍٝ#

َاي#ػشاق#َ#اْ#َ#ِٓ#َٚ+اي#ٚظٛح#َاي#دلخ#َ#ٚجٗ#َ#ػٍٝ#َاي#رؼج١ش#َ#٠غؼف#َ#ٌُ#

َ#عٛف#َ#اٌزٞ#َ#ران#َ#٘ٛ#َ#،#َٚ+اي#١ٌشٓ#َاي#سِبي#َ#رذذ#َاي#وبِٓ#َاي#لذ٠ُ#

َف#أْ#َ#،#َاي#فؼٍٟ#َاي#ٚالغ#َ#فٟ#َاي#فىشح#َ#اسرأ٠ٕب#َٚ#ئرا#َ#،#َاي#ػبٌُ#َ#٠غ١ش#

َاي#رٕم١ت#َ#٠جش#َ#ٌُ#َ#،#َ#آثبسٞ#َ#رً#َ#آلاف#َ#ػششح#َ#خلاي#َٚ#ِٓ#َػبٌُ#اي#

َ#ػ١ٍّخ#َ#فشصخ#َاي#اسض#َ#اوبد١ّ٠بد#َ#٠ّٕخ#َ#عٛف#َ#،#َة+اي#ػشاق#َ#فٟ#٘ب

َ#لعب٠ب#َ#ِخزٍف#َ#فٟ#َٚ#ِفب١ُ٘#٘بَ#رصٛساد#٘بَ#رغ١١ش#َ#ثُ#َٚ#ِٓ#َي#اعزؼبدح#

َ#ِٓ#َ#ٔفظ#َٖط#٠غ١ش#َ+اي#ػبٌُ#فَ#ارْ#َ#..#َٚ+اي#ربس٠خ#َاي#د١بح#َٚ#شإْٚ#

َ#فٟ#َاي#ٔظش#َاي#ِبسوغ١ْٛ#َ#اػبد#َ#د١ٓ#َ#رغ١ش#َ#ِثً#ِبَاي#ػشاق#َ#خلاي#

َ#دبي#ِبَاي#غجمبد#َ#ٔشٛء#َٚ#فىشح#َاي#اع١ٛٞ#َاي#أزبج#َ#ّٔػ#َ#ػٓ#َ#رصٛساد#ُ٘

َ#ػٕذ#َٚ#رذشٚا#َ#،#َٚ#آشٛس#َٚ#ثبثً#َ#عِٛش#َ#ِثً#َ#ِذٔب#َاي#اعزششاق#َ#اوزشف#

َ#رٕظ١ُ#َٚ#اشىبي#َٚ+اي#ِٛ ف١ٓ#َٚ+اي#اجشاء#َاي#ػج١ذ#َ#رغج١ً#َ#أظّخ#ًَ#٘ب#رفبص١

َ#ِبسوظ#َ#صِٓ#َ#فٟ#َاي#اعزششاق#َ#وبْ#َٚ#ٌٛ#َ#،#َاي#دٌٚخ#َٚ#اداسح#َاي#ػًّ#

َي#ِب#َاي#١ِٛ٠خ#َٚ#دلبئك#٘بَاي#ِذْ#َ#رٍه#َ#اوزشبف#َ#اٌٝ#َ#رٛصً#َ#لذ#َٚ#أجٍظ#

َ#دْٚ#َ#دبلا#َ#اٌٍز٠ٓ#َاي#ثضي#َٚ#ِشىٍخ#َخ#اي#ِشبػَ#اسضاي#َ#ػٓ#َ#ش١ئب#َ#وزجب#

َٚ#سة#ِبَ#،#َاي#غجمٟ#َاي#صشاع#َ#ل١بَ#َ#ِٓ#َٚ#ِٕؼب#َاي#فشد٠خ#َاي#ٍِى١خ#َ#اسرمبء#

َ#ٌٛ#َٚ+اي#غشة#َاي#ششق#َ#اٌٝ#َاي#ٔظش#َ#فٟ#َ#غ١ش#٘بَاي#ِبسوغ١خ#َ#وبٔذ#

 #.# #وظ#ِبسَ#ثؼذ#َ#جبء#َن#ِب#َاي#رفص١ٍٟ#َاي#ِغزٜٛ#َ#فٟ#َاي#اعزششاق#َ#وبْ#

Chapter 5 Analyzing and lemma extraction

5.1 Introduction

The Arabic language is based on inflection and derivation, and words have

many different forms that result from these procedures. Therefore extracting

lemma is a hard problem for Arabic language. As a consequence, many

researchers chose to deal with the stem, which is easier to extract, rather than with

lemma. For example, in broken (abnormal) plural of nouns the word changes

completely. In lemmatization the original form must be found, in stemming it is

not necessary and is therefore easier.

In this chapter we build an Arabic analyzer which has two goals: the first is

extracting POS and features of the word. The second is extracting the lemma of

the word. These two goals are implemented in parallel. We built a dictionary as a

tool for achieving these two goals.

The proposed analyzer is not intended for independent use because it was

designed and implemented as a preprocessing stage for Arabic tagging system

and, using the context of the word, it will reject some analyses, saving tagger‟s

work.

Analyzing and lemma extraction

 65

5.2 Lemma, stem and root

When we deal with the analyzer, we must differentiate among three terms:

Lemma, Stem and Root. They have different meaning. The lemma is the

canonical form, dictionary form, or citation form of a set of words. The stem is

the part of the word that never changes even when morphologically inflected
27

.

The root is the original letters
28

 of the word. Moreover, the term “root” is

ambiguous in Arabic language: some researchers consider it to be the original

letters, while others to be the imperative verb in 3
rd

 masculine.

When we deal with the root, then the derivational and inflectional morphology

is taken into account. When we deal with lemma, then only inflectional

morphology will be taken into account. When we deal with stem, then part of

inflectional morphology with part of derivational morphology will be taken into

account. For example: changing the whole word will not be taken into account as

broken plural. Figure 5-1 shows the difference between them with adding

“number” feature to the word “kitAb”-“وزبة” (book).

Figure 5-1: Lemma, stem and root of the word “book” with

adding number feature
29

.

We can summarize the difference between stem, root and lemma in the

following points:

1. Stemming reduces word-forms to (pseudo) stems, whereas

lemmatization reduces the word-forms to linguistically valid lemmas.

Getting the root is done by reducing word-forms to original letters

(root).

27

 In Arabic the changes of vowels will be taken into account in stemming.
28

 See Section 2.4 for more details about original letters.
29

 The plural is broken for this noun.

Word kitAb وزبةََ

(book)

kitAbAnَْوزبثب,

kitAbYn َٓوزبث١

(two books)

kutub ََ ز ت و

(books)

Root ktbَنَدَة ktb نَدَةََ ktb نَدَةَََ

Stem kitAbَوزبة kitAbَوزبة kutubَوزت

Lemma kitAbَوزبة kitAbَوزبة kitAb وزبة

Analyzing and lemma extraction

 66

2. Extracting stem and root is relatively simple and can be done by

deleting affixes. Extracting Lemma is more sophisticated and must refer

to dictionary in some cases.

3. The root and stem are not valid words but lemma is.

4. More than one lemma can have the same stem; more than one stem can

have the same root.

In our work, for verbal classes the lemma is 3
rd

 masculine imperative verb.

Lemma for the noun classes is the singular masculine, and if it does not exist, the

singular feminine. For particles, strictly speaking, there is no lemma, so for

unification we define it to be the particle itself.

5.3 Morphological analysis with lemma extraction
for Arabic

Morphology is the branch of linguistics that deals with the internal structure of

words (Al-Sughaiyer & Al-Kharashi) [12]. Then morphological analysis is the

task to discover the possible structures of a given word and represent them in a

desired format. Morphological analysis for Arabic was intensively studied by the

researchers; some of those works are listed in section “Related work”. From the

computational point of view we talk about possible algorithms and automated

techniques of performing morphological analysis.

Morphological analysis for Arabic can be done in two stages according to the

word structure:

1. Dealing with clitics: splitting the words to its morphemes which can be

done by tokenization.

2. Dealing with affixes and internal structure (inflected word): One or

both of the following:

a. Extracting the origin of the word (root, stem ...).

b. Extracting the attributes of the word (POS, gender, number...).

Morphological analyzer, depending on the form of the extracted origin of the

word, can be:

Analyzing and lemma extraction

 67

1. Root-based

2. Stem-based

3. Lemma-based

According to the approaches used, Morphological analyzer algorithms can be

classified as follows (Al-Sughaiyer & Al-Kharashi) [12]:

1. Table lookup approaches (simple method): all valid natural Arabic words

along with their morphological decompositions are stored in a huge table. A

given word is analyzed simply by accessing the table and retrieving

information associated with that entry.

2. Linguistic approaches (sophisticated rule-based): utilize linguistic rules

that have been derived through deep analysis of Arabic morphological

systems.

3. Combinatorial approaches (brute force): all combinations of letters of a

given word are tested and compared against a list of roots.

4. Pattern-based approaches (less sophisticated rule-based): utilizes the

apparent symmetry of generated natural Arabic words.

Table lookup approaches are typically not sufficient alone, because it is

practically impossible to collect all forms of all words of Arabic. But it can be the

best approach for the irregular forms. The second type of approach requires deep

knowledge of linguistics, especially of the word construction rules, and any

omission reduces the quality of the results. The third class of approaches does not

need so deep linguistic knowledge, but it can give unwanted analyses. The fourth

one is similar to the second approach, but it needs less knowledge. On the other

hand, it requires collecting all possible patterns including the very rare ones,

which can in turn produce wrong analyses in some cases.

There are many other classifications of morphological analysis algorithms for

Arabic (see (Al-Sughaiyer & Al-Kharashi) [12]), but we chose the above one as

the most useful for us.

It is clear that there is no single ideal approach to Arabic morphological

analysis, but it is also clear that the application which will use the analyzed text is

an important factor to consider when choosing the approach to adopt.

Analyzing and lemma extraction

 68

In our work the analysis is used to extract the word attributes, such as POS,

gender, number, etc.

Lemmatization is the process of relating a given textual item to the actual

lexical or grammatical morpheme (Dichy) [35]. It is the process of mapping from

a word form to a lemma (Jurafsky & Martin) [54]. From the definition of

morphological analysis, lemmatization can be a part of it. In our work it is limited

to extracting the lemma from the word. Without using lexicon, lemmatization

cannot be done with sufficiently high accuracy for many reasons which will be

listed in the next section. We do not attempt word sense disambiguation (WSD) in

our system hence, we accept more than one lemma for a word.

5.4 Challenges for lemmatization and analyzing

Due to the morphological complexity of the Arabic language, morphological

analysis with lemma extraction is a very challenging task. Arabic language is

regular in most cases of inflection and derivation, which leads to a relatively easy

generation process. However, for irregular forms, it is more complicated. This

difficulty grows rapidly also when a nonvowelized text is used
30

. Then the

analysis process has to consider all possible vowelizations and produce all

possible correct analyses for them. This huge number of analyses for each

nonvowelized word leads to much increased probability of producing some wrong

analyses among them.

The main challenges are:

1. A nonvowelized word can correspond to many vowelized words and

therefore to many possible lemmas: for example the lemmas for the

word “ktb”-“وزت” can be “kataba”-“َََوَزت” (write), “ktAb”-“وزبة”

(book) and “kat~aba”-“ تََوَزََّ ” (dedicated to write).

2. A normalized word can correspond to many unnormalized words

and therefore to many possible lemmas: for example the lemmas for

the word “An”-“ْا” can be “On”-“ْأ”, “In”-“ْئ” and “|n”-“ْآ” in

unvowelized case.

30

 Traditionally Qur‟ān is vowelized, and so are children‟s books. The rest of present day texts are

nonvowelized.

Analyzing and lemma extraction

 69

3. Deleting or changing some letters, even in regular forms. For

example the lemma for the word “yqwl”-“٠مٛي” (he say) is “qAl”-

 .(said) ”لبي“

4. Words whose grammatical lemma ends or begins with a sequence of

letters identical to an affix. The mistake may occur when the

attributes are extracted from the affixes. For example the letters

“wn”-“ْٚ” could be falsely interpreted as a suffix and deleted from

the word “mrhwn”-“ِْٛ٘ش” (pawned). Similarly, the letters “An”-

 could be interpreted as a ”ػذٔبْ“-”in the proper noun “EdnAn ”اْ“

suffix. Similarly, the letter “t”-“د” in the common noun “tEAwn”-

 .could be interpreted as a prefix (cooperation) ”رؼبْٚ“

5. Complete change of the word in regular and irregular cases: broken

plural is often an example of this phenomenon. The best solution in

this case is to use a dictionary.

6. Transliterations of foreign words. Many foreign words, for instance

foreign proper nouns, have more than one form of Arabic

transliteration, which affects the analyzing process.

In our complete system clitics are dealt with during tokenization stage, and

hence are not listed here.

5.5 Analyzing as preprocessing

Arabic analyzing is the second preprocessing step, after tokenization step, of

the whole tagging system which we propose. Therefore we suppose that the input

word to analyzing is an inflected word or clitics as in Figure 5-2. The output of

this stage will be lemma, POS and features in case of nouns and verbs, meaning

and working in case of particles
31

.

31

 See chapter 3 for more details on our tagset.

Analyzing and lemma extraction

 70

Figure 5-2: analyzing and extracting lemma as tagging

preprocessing

Most of researchers depend basically on patterns for extracting root or stem but

the pattern, in most cases, is not an efficient way for extracting lemma from the

word. There is no any standardization for producing lemma from the word form in

most cases.

We use our own lemmatizer and analyzer and rather than existing

morphological analyzers for the following reasons:

1. We proposed a new Arabic tagset and existing morphological

analyzers will not extract all the POSs and the features consistent

with this tagset.

2. We deal with lemma instead of the root and stem.

3. We want to implement a complete tagging system.

4. Most analyzers mix segmentation and analyzing in one stage but we

separate them into different tasks.

5.6 The proposed analyzing Approach

The item to be analyzed is a word without clitics (inflected word alone) or

clitics alone, but all of them are known to the analyzer, because we assume that

we are processing text and therefore the context of the present word is known to

the analyzer.

Known words processing: no processing is needed because the lemma and

features are in the dictionary.

Tokenization O/P

Consecutive

morphemes

(Inflected word

& Clitics)

Lemmatization and

analyzing

Lemmas

&

Features

&

POS

Tagset

Arabic

Language

resources

Designing a new Arabic Tagset

Dictionary Building Dictionary

Analyzing and lemma extraction

 71

Unknown words processing: we have more things to do. Unknown words are

more likely to be nouns, because we use a large and fairly complete database of

inflected verbs in the dictionary. As we mentioned previously there are many

classes of nouns which are closed sets (like, e.g., relative nouns). The open classes

of nouns are: proper, common, adjectives including genealogical and reduced

nouns
32

.

We will explain the construction of the dictionary in the next section. Now, we

will focus on processing of unknown words.

5.6.1 Unknown words processing

Our approach to processing of unknown words is to do the most likely

analyzing, without exhausting all possibilities. The main steps for unknown words

processing are:

1. Extracting POS possibilities.

2. Extracting lemma and features.

The rules in the next sections are in general of four types: (i) strict positive

rules, where if the condition is satisfied, then there is only one possibility for POS

and features. (ii) Non-strict positive rules (“seems to be”), where if the condition

is satisfied, then the POS and features are added to the list of possible ones, but

other possibilities are not ruled out. (iii) Strict negative rules, where if the

condition is satisfied, then some combinations of POS and features are ruled out,

even if they were or will be added to the list of possible ones by non-strict positive

rules. (iv) Non-strict negative rules (“seems not to be”), where if the condition is

satisfied, then this combination of POS and features is an unlikely one.

It is a very interesting problem to find a good decision in a case of a word for

which these rules produce a number of, perhaps contradictory, non-strict positive

and non-strict negative indications. However, it seems that the method of

resolving this problem has indeed little impact on the final accuracy of the

analyzer, and therefore a very simple method is used, which treats non-strict

negative rules as strict ones, in the absence of any strict positive indication. This

32

 Our tagset has 15 subclasses of noun.

Analyzing and lemma extraction

 72

reduces the number of possible analyzes, which is beneficial. We did not

encounter any case of a conflict of a strict positive and a strict negative rule.

5.6.1.1 Extracting the POS possibilities

First we need to know the main POS to the word (noun, verb or particle);

however, particle can be eliminated because the particles form a closed set. So

really we have only two possibilities: noun and verb. Then we will extract the

POSs according to our tagset.

1. Extracting the main POS: We must decide: verb or noun in this step. It can

be done by applying the following classes of rules:

a. Clitics rules. For example the definition particle “Al”-“اي” “Al” (the)

appears with noun only.

b. Affixes and word structure rules. For example, the letter “p”-“ح”

appears in nouns only.

c. Context rules. For example: verb cannot follow another verb.

d. If none of the above rules is applicable, we assume by default that the

word is a noun.

5. 2. Extracting the POSs according to our tagset: it can be done separately

for verbs and noun subclasses:

a. Identification of past, present, and imperative forms of verbs is achieved

by:

i. Clitics: for example if the word has prociltic “s”-“ط” (will) it must be

a present tense verb.

ii. Affixes: for example if the word has one of the prefixes “y, A, n, t”-

 .it seems to be a present tense verb ,”د ,ْ , ا, ٞ“

iii. Preceding word: for example, the word after “ln”-“ٌٓ” (not) must be

a verb in present tense. Similarly, an imperative verb after “qd”-“لذ”

(may be) is not possible.

Analyzing and lemma extraction

 73

b. Induction of noun subclasses: proper, common, reduced and adjective

(including genealogical)
33

 nouns is achieved as follows:

i. By the pattern: for example reduced nouns can be identified by their

pattern because there are exactly three patterns for reduced nouns.

ii. By the word structure: for example the genealogical can be induced

by the word ending, because it always ends with “y”-“ٞ”.

iii. By the affixes: for example if a word ends with “p”-“ح”, it seems not

to be a proper noun.

iv. By the context: for example, if the previous word is a verb then the

current one seems to be a common or proper noun.

At this stage we do not resolve the ambiguities; instead we find the most

important analyzing for the word. We may overlook some possibilities, but they

are very infrequent.

5.6.1.2 Extracting lemma and features

After differentiation between classes of words now we do the second phase of

extracting lemma and features. Verbs and noun subclasses will be processed

separately, but by the same methodology:

6. 1. Extracting the features from the affixes.

7. 2. Extracting the lemma by:

a. Deleting the affixes.

b. Retrieving the deleted and (or) the changed letter which resulted from

the inflection.

For verbs classes, the above steps will be:

1. From affixes: for example the verb ending with “yn”-“ٓ٠” seems to be (i)

plural masculine or (ii) singular feminine or (iii) dual masculine or (iv)

dual feminine. If a verb begins with “t”-“د” it seems to be (i) masculine

2
nd

 person or (ii) feminine 2
nd

 person. If we combine these two rules on

the verb “tqwlyn”-“ٓرم١ٌٛ” (you (feminine) say), we simply induce its

features to be singular feminine 2
nd

 person.

2.

33

 We take only these classes of nouns because other noun subclasses are closed.

Analyzing and lemma extraction

 74

a. Deleting the affixes. “tqwlyn”-“ٓرم١ٌٛ” will give “qwly”-“لٛي”

b.“لٛي” “qwly” will become “لبي”-“qAl” (he say). Let us note that this

affects only the vowels “y, A, w”“ َٞ,َاَ,ََٚ ”.

An example for nouns:

1. By affixes: for example a word ending with “p”-“ح” seems to be singular

feminine.

2.

a. Deleting affixes (with exceptions). For example the word “ftAp”-“فزبح”

(girl) will become “ftA”-“فزب”. The word “jrvwmy”-“ِٟٛجشث” (bacterial)

is a genealogical noun
34

 and, by exception, the affix “y”-“ٞ” will not

be deleted.

b. Extracting the lemma by retrieving the deleted or changed letters (if

necessary). “ftA”-“فزب” will become “ftY”-“ٝفز” “boy”.

We must remember that in most cases the word exists in the dictionary, which

is quite large, especially for verbs, and the above heuristic analysis is done only

for words which are not in the database.

5.7 Building Dictionary

Now we describe the construction of dictionaries, which are used in

preprocessing. These dictionaries play a similar role to the dictionaries used in

Buckwalter analyzer, with lemma added to POS and Features.

For verbs: This dictionary consists of slightly more than 6000 verbs inflected in

all possible forms according to the templates used by Al-Dahdah [37] with adding

certainty and jussive case. Then all these inflections are sorted and encoded in a

way such that we can find them efficiently. The input to dictionary is an inflected

verb in any tense or case and the output are its lemma and features. We used this

large dictionary for one reason which is to get rid the problem of the changing

which may happen in the inflected verb. The second reason is that verbs seem to

be an almost closed set, and using about 6000 inflected verbs gives us more

information than a corpus having 10 Mega words. The reason is that each verb has

approximately 164 inflections. It means that we have approximately 984000

inflections, many of which will be missing in a corpus of size 10 Mega words.

34

 The ambiguity between “ktAfy”-“ٟوزبث” as (my book) or (genealogical noun) was solved by

tokenization preprocessing.

Analyzing and lemma extraction

 75

At present the software does binary search in a full dictionary of about 984000

inflections and is reasonably fast.

However, it is possible to encode the dictionary in a smaller and slightly more

effective data structure, which has separate dictionaries of prefixes, suffixes and

pairs (stem*, lemma), similarly as in Buckwalter analyzer. Stem* is created

exactly as a stem, but is some cases can be an illegal word, and therefore not a

stem in the strict sense. Our task is to induce the possible stems* from the

inflected form of the verb. For example when the verb “qAl”-“لبي” (he say) is

inflected, we get as possible stems*: “لبي” “qAl”, “لٛي” “qwl”, “ًل١” “qyl” and “ًل”

“ql”, all of which point to the same lemma, which is the output. Indeed, only the

first one of the above words is legal and is therefore a true lemma. In other words,

the stored stems* of inflected verbs are the forms which appear at least once in an

inflection of a verb.

In case of particles we have a list of all particles, each one with its working and

meaning, and therefore the analyzing process is again a simple search problem,

like in the in case of verbs.

In the case of nouns, adjectives and so on, we collected them from the Internet.

We added inflections and derivations as feminine (if applicable), numbers,

genealogically (Yaa Alnasabi) and reduced nouns. The object, subject nouns,

broken plural and so on are not derived by this method; instead they are collected

from texts which reduces the cost of the code (time of writing code) and applying

this generation on them if applicable. There are many classes of nouns which are

closed sets, for example question nouns, numeral nouns and so on. The resulting

dictionary is updatable.

5.8 Results

The proposed analyzer was built as a preprocessing stage of an Arabic tagging

system. It is therefore not a general purpose analyzer. It produces all possible

analyses for a given inflected word or clitics. These analyses are POS, features

and lemma. Because it is used for subsequent tagging, the evaluation of it should

measure how well it satisfies its function, i.e., generates true combinations of tag

(POS & features) and lemma. Therefore we will not evaluate it according to

recall, precision and F-measure.

Analyzing and lemma extraction

 76

The first important thing is to have the true tag and lemma produced.

The test dataset was a small corpus of 16 k words, manually annotated by a

single analysis for each word, correct for this particular use of that word. In the

test, for 99.67% of words, this correct analysis was among those produced by the

analyzer.

The second important thing is that the analyzer almost never produces

grammatically incorrect analyses.

In a manual verification of the output of the analyzer, only 0.1% of all analyses

were grammatically incorrect. Appendix C shows practical analysis for a simple

sentence.

5.9 Related work

Extracting lemma was much less studied than stem in the analysis stage. Many

researchers dealt with lemma in Arabic language, but they did not explain details

of the procedure of extracting lemma from the word. Some other researchers did

not distinguish between lemma and stem and they dealt with them as if they were

the same. The other researchers dealt with the root, especially in morphological

analyses. It should be noted that root induction is relatively simpler than stem and

lemma.

(El-Shishtawy & El-Ghannam) [39] do lemmatization in three phases:

analyzing, POS tagging and then lemma generation. The first phase

implementation is done with the open source Khoja stemmer (Khoja) [56], i.e., no

private analyzer. The second phase is POS tagging which depends basically on

patterns. The third phase is lemma generation which is related to our approach.

They depend on patterns and rules for generating the lemma from verb without

any explanation or examples of these rules. The noun is manipulated in similar

manner. Our approach at the first glance may appear to be similar to this work, but

there are many differences: first, they take the output of POS tagging to lemma

generation and in our work the output of lemmatization and analyzing stage will

be fed to POS tagging. I.e., our lemma generation is done by the analyzer alone

and does not depend on tagging. Second, in our work we use our own analyzer,

while the authors of (El-Shishtawy & El-Ghannam) [39] use a third-party

analyzer. Third, in our system at least one lemma is produced for each analysis,

Analyzing and lemma extraction

 77

while in the other system the lemma is produced only for the previously selected

POS. Fourth, we use a dictionary of fully inflected forms of the known words and

templates for unknown verbs. In case of nouns we use rules and a dictionary of

irregular cases. El-Shishtawy & El-Ghannam [39] do not explain their approach in

detail, except that they mention a dictionary of irregular forms. Fifth, their

approach is limited to IR, and our approach is quite general.

Concerning morphological analyzers, there are many works in this field.

MAGEAD (Habash et al.) [50] provides an analysis for a root+pattern

representation, it has separate phonological and orthographic representations, and

it allows for combining morphemes from different dialects.

Darwish analyzer [31] was only concerned with generating the possible roots

of a given Arabic word. It is based on automatically derived rules and statistics.

(Gridach and Chenfour) [44] Their approach is based on Arabic morphological

automaton technology. They take a special representation of Arabic morphology

(root and scheme) to construct a few morphological automata which were used

directly in developing a system for Arabic morphological analysis and generation.

Elixir-FM (Smrz) [88] is a functional morphology system which models

templatic morphology and orthographic rules.

BAMA (Buckwalter) [26] is based on a lexicon, which has morphotactic and

orthographic rules encoded inside it.

5.10 Discussion and feature work

We have built, implemented and evaluated an Arabic analyzer which extracts

lemma. The analyzer produces POS, features and lemma of the inflected word or

clitics. The produced POS and features are described according to our new, very

rich tagset. Many problems, which can be solved by a tagging system, were

solved by the analyzer using the context. The context is taken in account only for

unknown words. According to the previous results, it is suitable to use it in

tagging. Lemma extraction offers many benefits when compared to extracting

stem or root. For example, it can be used in word sense disambiguation.

Analyzing and lemma extraction

 78

Our suggestion is that expanding (i) the number of the inflected verbs used in

the analyzer and (ii) expanding the database of abnormal inflections of the noun

subclasses, can lead to still more accurate analyses.

It would be very beneficial to test the analyzer on a larger corpus. However, it

is very time-consuming to produce, since it must be done by hand using a new,

rich tagset.

Chapter 6 Survey of General and Arabic Tagging System

6.1 Introduction

POS tagging is one of the most important natural language problems studied by

researchers. The significance of POS for language processing is the large amount

of information they give about a word and its neighbors (Jurafsky & Martin) [54].

POS tagging is the process of assigning a part-of-speech or other syntactic class

marker to each word in the corpus (Jurafsky & Martin) [54]. It is, in other words,

the process of assigning a tag from limited set of tags (tagset) to a word. The

number of tags in a tagset depends on the language and the intended application.

If we talk about tagging then we always mean some tagset, perhaps implicitly. See

Chapter 2 for more details about tagset.

There are many methods applied to POS tagging. Most of the modern methods

use some form of machine learning.

This chapter will focus on methods used for tagging regardless of the language.

Then we will list the most important approaches applied to Arabic language.

There are many classifications of POS tagging methods, like the distinction

between supervised and unsupervised methods, or into rule-based, stochastic and

hybrid. We do not use these classifications in our presentation below.

Survey of General and Arabic Tagging systems

 80

6.2 Tagging by manually created rules

It is the oldest morphosyntactic disambiguation method, claimed to be the best,

but very costly. It requires manual work of experts. Modern and earliest rule-

based approaches to POS tagging are based on two stages architecture (Jurafsky &

Martin) [54]. They are dictionary and rule sets. The dictionary is used to assign

each word a list of possible POS tags. The rule-sets (mostly manually written) are

used for solving the tagging problem, i.e., choosing the right POS for each word.

In some cases, these rules can even correctly tag unknown words.

A rule-based tagger tries to apply some linguistic knowledge to exclude

sequences of tags that are syntactically incorrect. They can be of the form of

contextual rules such as: if an unknown term is preceded by a determiner and

followed by a noun, then label it as an adjective (Jackson & Moulinier) [53]. The

main drawback of those early systems are the laborious work of manually coding

the rules and the requirement of linguistic background (Nitin & Fred) [73].

Probably the first rule-based tagging system was given by Klein and Simpson

 [61], which was based on a large set of handcrafted rules and a small lexicon to

handle the exceptions (Nitin & Fred) [73].

Constraint grammar approach is another example of this method and EngCG is

a tagger based on this approach. It applies a large set of constraints (as many as

3,744 constraints) to the input sentence to rule out incorrect POS tags (Karlsson et

al.) [55].

6.3 n-grams Model

n-grams are crucial in many NLP tasks, tagging is one of these tasks. n-gram is

a contiguous sequence of n items from a given text.

Initially n-grams were used for predicting the next word in a text, and the chain

rule of probability of words (in a sentence of length n) was used for that purpose:

)|()|()...|()|()()(1

1

1

1

1

2

131211

 k
n

k

k

n

n

n wwPwwPwwPwwPwPwP

Here)|(2

13 wwP is the probability of 3
rd

 word given the sequence of 1
st
 word

and 2
nd

 word, etc.

Survey of General and Arabic Tagging systems

 81

The n-gram approximation of the above is:

)|()(1

1

1

1

k

Nk

n

k

k

n wwPwP

The probabilities are taken from counted frequencies in the training corpus:

)(

)(
)|(

1

1

1

11

1

n

Nn

n

n

Nnn

Nnn
wC

wwC
wwP

n-grams model is sometimes referred to as the Language Model. The previous

formula is good for predicting words but how is it used for tagging. If we want to

apply it to tagging, we may do the following (in the general case):

)|t)P(t|tip(w

t
i

t i

Niii

i

1

1maxarg

There are special cases of n-grams which are unigram, bigram and trigram,

where n is 1, 2 and 3, respectively. Unigram is very simple, does not take any

context information into account (no tag sequence information). Unigram simply

selects the most probable tag for each specific word. Bigram uses more (but still

little) information by taking the previous tag into account. Trigram adds even

more by taking two previous tags into account.

The following formulas represent unigram, bigram and trigram tagging

respectively:

Unigram simplification)|(maxarg ii
t

i twpt
j

Bigram simplification)|()|(maxarg 1

 iiii
t

i ttptwpt
j

Trigram simplification)|()|(maxarg 12

 iiiii
t

i tttptwpt
j

n-grams simplification is very important in HMM tagger. Some problems arise

by using n-grams and many stochastic tagging methods, when some n-grams have

frequency zero in the training corpus. They can be solved by using Laplace or

Good-Turing smoothing (Jurafsky & Martin) [54]. When we use n-grams and we

have no example of a particular n-gram we can use shorter sequences. We can do

Survey of General and Arabic Tagging systems

 82

also weighted interpolation of trigram, bigram and unigram count (Jurafsky &

Martin) [54].

6.4 Transformation-Based tagging (Brill) [24]

It is an approach based on machine learning, and is sometimes called Brill

tagging. Instead of trying to acquire the linguistic rules manually, Brill describes a

system that learns a set of correction rules by a methodology called

transformation-based learning (TBL) (Nitin & Fred) [73]. It behaves like a

method with manually written rules, because rules are used to specify tags, and at

the same time like a stochastic tagging, because machine learning is used, based

on a manually tagged corpus.

The algorithm has two main phases (Nitin & Fred) [73]:

1. Initial phase.

2. Learning phase.

Initial phase is accomplished by labeling every word with its most likely tag,

for example, by assuming that each word is a noun (which is the most common

tag) or taking the output of another tagger.

Learning phase is accomplished by two stages repeated in a loop until there is

no improvement any more. The first is the examination of every possible

transformation and selecting one which gives the maximal improvement of the

tagging. The second is re-tagging corpus applying the rules from the first stage.

The rules are limited to predefined templates. See Figure 6-1 for an example of

these templates where a, b, z, and w are POS tags.

Figure 6-1: Examples of Brill Templates.

Change tag a to b when the preceding (following) word is tagged z.

Change tag a to b when the word two before (after) is tagged z.

Change tag a to b when one of the two preceding (following) words is tagged Z.

Change tag a to b when one of the three preceding (following) words is tagged z.

Change tag a to b when the preceding word is tagged z and the following word is tagged w.

Change tag a to b when the preceding (following) word is tagged z and the word two before (after) is tagged w.

Change tag a to b when the current word is (is not) capitalized.

Change tag a to b when the previous word is (is not) capitalized.

Survey of General and Arabic Tagging systems

 83

These templates are used for inducing rules in the same form with different

data. An example of a rule learned by Brill‟s tagger is “Change tag NN to VB

when the previous word is tagged TO”.

The space of transformation sequences we have to search is huge. A naive

implementation of transformation-based learning will therefore be quite

inefficient (Manning & Schütze) [68].

6.5 HMM tagger

Hidden Markov Model (HMM) is the most frequently used technique for POS

tagging. It is used for tagging one complete sentence at a time, by selecting the

most likely sequence of tags for its words.

HMMs allow us to estimate probabilities of unobserved events where observed

events are the words and the hidden events are part-of-speech tags. It uses the

formula:

)|(maxarg 111

1

nn

t

n wtpt
n

We cannot compute it directly, therefore by using Bayes‟ rule with

simplification the previous formula will be:

)()|(maxarg 1111

1

nnn

t

n tptwpt
n

HMM tagger simplifies this formula by two assumptions. The first assumption

is that the probability of a word depends on its part-of-speech tag and is

independent of other words around it, and of the other tags around it:

n

i
i

t
i

wpntnwp
1

)|()
1

|
1

(

 The second assumption is that the probability of a tag appearing depends only

on the previous tag, the bigram assumption (Jurafsky & Martin) [54]:

n

i i
t

i
tpntp

1
)

1
|()

1
(

Together they yield the third equation:

Survey of General and Arabic Tagging systems

 84

n

i i
t

i
tp

i
t

i
wp

nt

nwntp
nt

nt
1

)
1

|()|(

1

maxarg)
1

|
1

(

1

maxarg
1

6.6 Decision trees [83]

DT tagger was presented in (Schmid) [83], as an improvement to HMM

method, avoiding problems of estimating transition probabilities from sparse data.

In this tagger transition probabilities are estimated using decision tree. The

decision tree automatically determines the appropriate size of the context which is

used to estimate the transition probabilities. The most important criterion for the

success of the learning algorithms based on DTs is the construction of a set of

questions to be used in the decision procedure (Nitin & Fred) [73]. DT tagger is a

Markov model using DT for estimating transition probabilities ()|(12 nnn tttp).

6.7 Maximum Entropy

It was proposed by (Ratnaparkhi) [77] [78]. Maximum entropy (ME) models

provide us more flexibility in dealing with the context and are used as an

alternative to HMMs in the domain of POS tagging (Nitin & Fred) [73]. The

flexibility comes from the ability to include any template that we consider useful:

it may be simple (target tag ti depends on ti−1) or complex (ti depends on ti−1 and/or

ti−2 and/or wi+1) (Nitin & Fred) [73]:

)|(maxarg 111

1

nn

t

n wtpt
n

n

i

ii
t

htp
n

1

)|(maxarg
1

We can express the conditional probability in terms of a log-linear

(exponential) model (Nitin & Fred) [73]:

k

j

htf

j
j

hZ
htp

1

),(

)(

1
)|(

t

k

j

htf

j
jhZ

1

),(
)(

Z(h) is to ensure true probability distribution and fj is a feature with binary

value (see Figure 6-2 and Figure 6-3 for a whole template of features and an

Survey of General and Arabic Tagging systems

 85

example, respectively) and αj is the weight of fj with positive value. t is a tag from

a tagset T and h is a history from the possible contexts (histories) H.

Figure 6-2: template in (Ratnaparkhi) [77].

Figure 6-3: Practical features in ME approach. In a maximum

entropy model, the feature can be simple: this word has this tag,

consider morphology or consider tag sequences.

The probability distribution P we seek is the one that maximizes the entropy of

the distribution under some constraints:

Tt

Hh
p hthtPhP)|log()|()(maxarg

subject to

 kjfEfE jj 1)()(

otherwise

VBtandlikewif
thf

ii

iij
0

1
),(

otherwise

VBGtandingwsuffixif
thf

ii

iij
0

"")(1
),(

otherwise

INtandNNStandDETtandaboutwif
thf

iiii

iij
0

1
),(

12

Survey of General and Arabic Tagging systems

 86

n

i

iijii

n

i

iijiii thfthPthfhtPhP
11

),(),(),()|()(

)(jfE and)(jfE denote, respectively, the model‟s expectation and the

observed expectation of feature fj .)(ihP and),(ii thP are the relative frequencies,

respectively, of context hi and the context-tag pair (hi , ti) in the training data. The

intuition behind maximizing the entropy is that it gives us the most uncertain

distribution. In other words, we do not include any information in the distribution

that is not justified by the empirical evidence available to us. The parameters of

the distribution P can be obtained using the generalized iterative scaling algorithm

(Nitin & Fred) [73].

6.8 Neural networks

Neural network is information processing paradigm inspired by biological

nervous systems, such as our brain. Structurally, it is a large number of highly

interconnected processing elements (neurons) working together. Like people, they

learn from experience (by example). Neural networks are configured for a

specific application, such as pattern recognition or data classification, through a

learning process.

In multilayer perceptron networks (MLP-networks), the processing units are

arranged vertically in several layers. Connections exist only between units in

adjacent layers. There are three classes of layers which are input layer, hidden

layer (activations are not visible externally) and output layer. The goal is to find

the best network to predict, based on the input nodes, the correct output nodes.

 (Schmid) [84] introduced neural networks for POS tagging. The Net-Tagger

consists of an MLP-network and a lexicon. In the output layer of the MLP

network each unit corresponds to one of the tags in the tagset. The network learns

during training to activate that output unit that represents the correct tag and to

deactivate all other output units. Hence, in the trained network, the output unit

with the highest activation indicates, which tag should be attached to the word that

is currently being processed.

Survey of General and Arabic Tagging systems

 87

The input of the network comprises all the information that the system has

about the POS‟s of the current word, the p preceding words and the f following

words. More specifically, for each POS tag tj and each of the p + 1 + f words in

the context, there is an input unit whose activation inij represents the probability

that wi has part of speech ti. So, if there are n possible tags, there are n ∗ (p + 1 + f)

input nodes.

For the input word being tagged and its following words, the lexical POS

probability p(tj|wi) is all we know about the POS. This probability does not take

any contextual influences into account. For the preceding words, there is more

information available, because they have already been tagged.

An artificial neural network gave 96.22% accuracy for English (Schmid) [84].

Although Neural Network (NN) taggers do not seem to outperform the HMM

taggers in general, they have some attractive properties. First, ambiguous tagging

can be handled easily without additional computation. When the output nodes of a

network correspond to the tags in the tagset, normally, given an input word and its

context during the tagging phase, the output node with the highest activation is

selected as the tag of the word. However, if there are several output nodes with

close enough activation values, all of them can be given as candidate tags (Nitin &

Fred) [73].

Neural network taggers converge to top performances with small amounts of

training data and they are suitable for languages for which large corpora are not

available (Nitin & Fred) [73].

6.9 Memory based learning [30]

Memory-based learning is a form of supervised learning based on similarity-

based reasoning. The part of speech tag of a word in a particular context is

extrapolated from the most similar cases held in memory (Daelemans et, al.) [30].

In AI, the concept has appeared in several disciplines (from computer vision to

robotics), using terminology such as similarity-based, example-based, memory-

based, exemplar-based, case-based, analogical, lazy, nearest-neighbor, and

instance-based (Daelemans et, al.) [30].

Survey of General and Arabic Tagging systems

 88

In a memory-based approach, a set of cases is kept in memory. Each case

consists of a word with preceding and following context, and the corresponding

category for that word in that context. A new sentence is tagged by selecting for

each word in the sentence and its context the most similar case(s) in memory, and

extrapolating the category of the word from these 'nearest neighbors'. A memory-

based approach has features of both learning rule-based taggers (each case as a

specific rule) and of stochastic taggers (form of k-nearest neighbors modeling).

The approach in its basic form is computationally expensive, however; each new

word in context that has to be tagged, has to be compared to each pattern kept in

memory (Daelemans et, al.) [30].

Memory-based learning is a form of supervised, inductive learning from

examples. Examples are represented as vectors of feature values with an

associated category label (Daelemans et, al.) [30].

6.10 Boosting [1]

Boosting is a machine learning algorithm that was introduced to POS tagging

by (Abney et al.) [1].

The idea of boosting is to combine many simple “rules of thumb” called “weak

hypotheses”, such as “the current word is a noun if the previous word is the”. The

main idea of boosting is to combine many such rules in a principled manner to

produce a single highly accurate classification rule (Abney et, al.) [1].

The boosting algorithm is an iterative one of R rounds, where a new rule of

thumb is derived from the training data at each round, using a weak learner

(Jackson & Moulinier) [53].

Boosting is similar to transformation-based learning (Brill), both build

classifiers by combining simple rules, and both are noted for their resistance to

overfitting, but they differ in theoretical foundation (Abney et al.) [1].

Survey of General and Arabic Tagging systems

 89

6.11 Relaxation labeling (Padró) [75]

Relaxation is a well-known technique used to solve consistent labeling

problems.

A consistent labeling problem, given a set of variables, is to assign to each

variable a label compatible with the labels of the other ones, according to a set of

compatibility constraints.

The main idea of using relaxation labeling in POS tagging is to represent POS

tagging as a constraint satisfaction problem. Then it can be addressed with the

usual techniques of that field, such as relaxation labeling.

It seems reasonable to consider POS tagging as a combinatorial problem, in

which we have a set of variables (words in a sentence), a set of possible labels for

each one (POS tags), and a set of constraints.

One can consider weighted labeling, in which a weight is assigned to each

possible label of each variable, and the task is to maximize the “global

consistency” by relaxation. The constraints can be gathered automatically from

the training corpus, too.

6.12 Cyclic Dependency Network [90]

The conditional probability of tag dependency is assumed unidirectional

(depending on previous tags) in n-gram based methods, including HMM tagging.

In CDN this conditional probability of tag dependency is bidirectional (depending

on previous and following tags). (Toutanova et, al.) [90] proposes to make an

explicit use of both preceding and following tag contexts via a dependency

network representation, using priors in conditional loglinear models. The resulting

tagger gives 97.24% accuracy on the Penn Treebank WSJ.

6.13 Finite-State Transducers [79]

Finite-state transducers have important applications in many areas of natural

language processing.

Survey of General and Arabic Tagging systems

 90

A finite-state transducer is a finite-state automaton whose transitions are

labeled by pairs of symbols. The first symbol is the input and the second is the

output. Applying a finite-state transducer to an input consists of following a path

according to the input symbols, and the result is the sequence of output symbols

encountered on that path.

(Roche & Schabes) [79] used FST for speeding up processing the Brill tagger.

It is constructed in four steps.

The first step consists of turning each contextual rule found in Brill's tagger

into a finite-state transducer. Each contextual rule is defined locally; that is, the

transformation it describes must be applied at each position of the input sequence.

The second step consists of turning the transducers produced by the preceding

step into transducers that operate globally on the input in one pass. This

transformation is performed for each transducer associated with each rule.

The third step combines all transducers into a single transducer.

The fourth and final step consists of transforming the finite-state transducer

obtained in the previous step into an equivalent deterministic transducer.

(Silfverberg & Lindén) [86] used parallel weighted finite-state transducers to

implement a part-of-speech tagger. Their system consists of a weighted lexicon

and a guesser combined with a bigram model turned into two weighted

transducers. They reported 98.29% of accuracy on English Europarl corpus.

6.14 Genetic Algorithm [2]

Genetic algorithms are a group of very general algorithms to find approximate

solutions to optimization and search problems.

(Nitin & Fred) [73] Although genetic algorithms have accuracies worse than

those offered by HMM and rule-based approaches, they can be seen as an efficient

alternative in POS tagging. They reach performances near their top performances

with small populations and a few iterations.

(Alba et, al.) [2] report a genetic algorithm able to solve the tagging problem

with accuracy no worse than a specific method which was designed for this

Survey of General and Arabic Tagging systems

 91

problem. In addition, GAs can perform the search of the best sequence of tags for

any context-based model, even if it does not fulfill the Markov assumption.

6.15 SVM

Support Vector Machines (SVMs) are supervised machine learning algorithms

for binary classification (Nakagawa et, al.) [72]. They can handle a large number

of (overlapping) features with good generalization performance (Diab et, al.) [33].

SVMs can easily handle high-dimensional spaces, with a large number of features

(Nitin & Fred) [73] (Mayfield et, al.) [70].

SVMs are known to be resistant to overtraining, because only the training

vectors that are closest to the hyperplane (called support vectors) determine itse

parameters (Nitin & Fred) [73] (Mayfield et, al.) [70].

(Mayfield et, al.) [70] report tagging accuracy 92.95 %. The data set was the

Penn Treebank Wall Street Journal collection, which contains about 1.5 million

tokens annotated with a part of speech for each token.

6.16 Fuzzy set theory [60]

The taggers formed using the fuzzy set theory are similar to HMM taggers,

except that probabilities used in the latter are replaced by fuzzy membership

functions in the former (Nitin & Fred) [73]. Neural networks are used for

estimating the transition probabilities and some transformations of lexical

probabilities for the observation possibilities (Kim & Kim) [60]. One advantage of

these taggers is their high performance with small data sizes (Nitin & Fred) [73].

(Kim & Kim) [60] showed, using fuzzy set theory of second order, the

accuracy around 95.81 % on 800,000 words from the Brown corpus which is

included in the Penn Treebank Corpus; the tagset size was 49 tags.

6.17 Best match

(Stomp) [87] “matches the text to be tagged to long continuous strings from the

training data (as long as possible) and assigns each match the same tags as the

matching part of the training data”. Back-off, as smoothing, is used with this

method. The accuracy achieved by this method is 94.5 %. The Stockholm-Umea

Survey of General and Arabic Tagging systems

 92

Corpus (SUC) a manually corrected tagged corpus of Swedish, was used for

training and testing. This method is described in more detail in Chapter 7 below.

6.18 Combining different taggers

Most of the methods and papers quoted above used only one method for

tagging. However, there are methods to combine them in a way such that the

accuracy will be improved. Combined taggers can be classified into:

 Voting (Henrich et, al) [52]: a few taggers are run independently and the final

result is selected by voting among these taggers.

Stacking (Wu et, al.) [91]: the output of one tagger is fed to another one in a

serial sequence.

co-training (Clark) [29]: two taggers are trained on the output of the other one.

Fusion: taggers are combined internally.

Hybrid: combination of two or more of the previous methods.

For more details see Chapter 7, where they are explained in more detail. We

describe a new method, called master-slaves, to combine taggers.

6.19 POS tagging approaches used for Arabic

SVM: (Diab) (Diab et, al.) [33] [32] applied SVM to Arabic POS tagging and

tokenization. The SVM-POS tagger achieved accuracy of 95.49%. The Arabic

TreeBank consisting of 4519 sentences was used in training and testing. She used

the LDC's POS tagset, which consists of 24 tags
35

.

SVM + morphological analyzer: (Habash and Rambow) [46] applied SVM

with support of a morphological analyzer for producing all possible analyses. The

data used came from the Penn Arabic Treebank (Maamouri et al.). Their POS

evaluation shows accuracy of 97.6% on ATB1 and accuracy of 95.7% on ATB2,

both based on gold standard tokenization.

Statistical and rule-based: In (Khoja) [57], a system is developed, using a

combination of both statistical and rule-based techniques. It uses a simple tagset.

A corpus of 50,000 words in Modern Standard Arabic (an extract from the Saudi

35

 See chapter 3 for more details

Survey of General and Arabic Tagging systems

 93

Al-Jazirah newspaper, dated 03/03/1999) was tagged using this tagset
36

. She

achieved accuracy of around 90 %.

HMM: (AL-Shamsi & Guessoum) [11] The proposed HMM POS tagger has

been tested and has achieved performance of 97%. It used a very simple POS

tagset of 55 tags. The training was done on a special small corpus consisting of

9.15 MB corpus of native Arabic articles. The authors used a stemmer for

segmenting and separating affixes from the stem to produce prefix, stem, and

suffix parts.

Brill (Transformation) tagging: first, Freeman [42] presented an Arabic

tagger based on the Brill tagger. He was using this environment as a tool to semi-

automatically tag text. With every new text he added rules to the tagger's rule files

by hand, as well as new items to the tagger's lexicon file.

 Brill (Transformation) + morphological analyzer: (AlGahtani et al.) [5]

used transformation-based learning as implemented in the Brill tagger (Brill,

1994) for POS tagging of Arabic, with segment-based tags. They used the

Buckwalter morphological analyzer (Buckwalter) [25]. (AlGahtani et al.)

evaluated their approach on the whole ATB as well as on ATB1. For ATB1, they

achieved POS tagging accuracy of 96.9%. Using the whole ATB the accuracy was

96.1%, even though large parts of the treebank are duplicated between parts, so

that it is likely that parts of their test set were actually present in the training set

(AlGahtani et al.) [5].

Rules-based and memory-based: (Tlili-Guiassa) [89] used a hybrid of rule-

based and a memory-based learning methods. His method is based firstly on rules

automatically learned from the training corpus (that consider the post-position,

ending of a word and patterns) and then the anomalies were corrected by adopting

a memory-based learning method (MBL). Secondly, by checking the exceptional

cases of rules, more information was made available to the learner for treating

those exceptional cases. The accuracy was 85 %. The tagset was derived from that

of Khoja.

Classifier + regular expressions: (Seth Kulick) [64] described an approach to

simultaneous tokenization and part-of-speech tagging that is based on separating

36

 See chapter 3 for more details

Survey of General and Arabic Tagging systems

 94

the closed- and open-class items, and focusing on the likelihood of the possible

stems of the open class words. He used regular expressions with a reduced tagset.

The data set was ATB3-v3.2 and the accuracy of tagging was 95.147%.

Memory-based learning: (Van den Bosch et al.) [23] used memory-based

learning for both morphological analysis and POS tagging of Arabic. They

reported an overall accuracy of 91.5%.

Statistical [71]: (Mohamed & Kübler) [71] used two approaches. Their first

approach used complex tags that described full words and did not require any

word segmentation. The second approach was segmentation-based, using a

segmenter based on machine learning. They showed that word-based POS tagging

can yield better results than segment-based tagging (93.93% vs. 93.41%).

Combining both methods resulted in a word accuracy of 94.37%. POS tagset of

the Penn Arabic Treebank was used and two sections of the ATB (P1V3 and

P3V1), since those two sets do not contain duplicate sentences. This data set

contained approximately 500 000 words.

HMM tagger without morphological analyzer or lexicon: In (Köprü) [62]

the accuracy was 95.51% with a very small Arabic tagset of 17 tags. The data set

was Penn Arabic Treebank ATB (parts 1, 2 and 3) which consisted of 629,866

words.

HMM tagger with morphological analyzer: In (El Hadj et, al.) [36] the data

set was 21882 words with a very small, custom tagset of 13 tags. The accuracy

was 96%.

HMM tagger with morphological analyzer with lexicon: In (Mansour) [69]

the morphological analyzer was Buckwalter's analyzer. This approach was applied

to Hebrew and Arabic. The data set was ATB (parts 1, 2 and 3). The accuracy was

96.12%.

6.20 Arabic POS tagging as a part of toolkits and
applications

There are many toolkits for specific tasks in Arabic language processing. The

best known ones which do POS tagging are MADA+TOKEN and AMIRA.

Survey of General and Arabic Tagging systems

 95

MADA (Morphological Analysis and Disambiguation for Arabic) (Habash)

 [45] is a utility that, given raw Arabic text, adds as much lexical and

morphological information as possible by disambiguating, in one operation, part-

of-speech tags, lexemes, diacritizations and full morphological analyses (Habash)

 [45]. TOKEN is a general tokenizer for Arabic.

AMIRA [32] is a successor suite of the ASVMTools (Diab et al., 2007). The

AMIRA toolkit includes a clitic tokenizer (TOK), part of speech tagger (POS) and

base phrase chunker (BPC) – a shallow syntactic parser. The accuracy of Amira

using ERTS tagset was reported to be 96.13% and the accuracy using RTS tagset

to be 96.15%.

Chapter 7 Combining Taggers in Master-Slaves Technique

7.1 Introduction

There are many methods used for POS tagging. Most of modern methods are

corpus-based and are based on machine learning. HMM is the most studied and

probably the most frequently used tagging method. We propose a new method to

combine taggers, which we call master-slave technique. In our approach, HMM

tagger is used as the master tagger and Brill and MaxMatch (MM) taggers as

Combining Taggers in Master-slaves technique

 97

slaves. The main property of our method is that the master tagger will process

each sentence with different probabilities (different knowledge), as we will see in

next sections.

7.2 Related work

There are many approaches and works in POS tagging therefore we will

mention only those used in our approach and some of the combined approaches.

Stomp [87] in his MaxMatch tagger “matches the text to be tagged to long

continuous strings from the training data (as long as possible) and assigns each

match the same tags as the matching part of the training data”. The same idea but

in a different context is used as a part of our research. In the paper (Glass &

Bangay) [43] first the performance of each used tagger is verified experimentally.

The taggers are then grouped to form a voting system, but in no cases the

combined results improve on the individual accuracies. In (Yonghui et, al.) [92]

the authors, after studying four corpus-based approaches to part of speech (POS)

tagging: tranform-based error driven, the decision tree, hidden Markov model and

maximum entropy, present a novel data fusion strategy in POS tagging – called

correlation voting. They proved that the correlative voting is better than other

fusion methods, with an average decrease of 27.85% of the initial tagging error

rate. In the paper (Henrich et, al.) [52] combiTagger combines automatically the

outputs of several taggers. The system, which is open source, provides algorithms

for simple and weighted voting. It improved the accuracy by 1.26 – 1.58 % over

the best method of its individual component taggers. The authors of (Loftsson)

 [67] used many combinations of several taggers in a simple voting approach. The

combination of TBL, TNT and Ice taggers wins 0.81% over the best individual

method which was Ice tagger (with accuracy 91.80%).

The book (Nitin & Fred) [73] presents many other combinations of taggers by

using voting or stacking methods. It can be useful for further reading about

combined taggers.

7.3 Techniques for combining taggers

Most of modern taggers, for annotation, are constructed by combining two or

more approaches in a way such that the accuracy will be increased. Tagger

Combining Taggers in Master-slaves technique

 98

combination methods can be divided into voting, stacking, co-training, fusion and

hybrid.

In Voting, several taggers run independently and the final result is selected by

voting among these tagger outputs. Voting can be simple or weighted. In a simple

voting all taggers have the same weight. Weighted voting is done by adding more

weight to the tagger which has higher accuracy (Henrich et, al.) [52]. The biggest

problem in voting is when the used taggers are similar in methodology, i.e., they

make similar errors in similar situations.

Stacking: The basic concept behind stacking is to train two or more taggers

sequentially, with each successive tagger incorporating the results of the previous

ones in some fashion (Wu et, al.) [91]. The biggest problem in stacking is that the

errors made by the taggers tend to accumulate.

Co-training (Clark) [29] is a method in which two taggers are iteratively

retrained on each other‟s output. The taggers should be sufficiently different (e.g.,

based on different models) for co-training to be effective (Nitin & Fred) [73].

Fusion tagger is a tagger which combines several tagging approaches

internally. The final tagger will somehow collect the features of its components. It

is really not a method to combine arbitrary taggers, because there is no uniform

way to do it and each such fusion is essentially unique. The tagger in Section 7-7

is an example of this type.

Hybrid: where several of the previous combinations are used collectively. For

example voting and stacking can be used when we use a rule-based tagger for

eliminating unwanted analyses and the output is fed to other many taggers for

voting.

In this chapter we present a new master-slave technique using HMM tagger as

a master, and Brill and MM taggers as slaves.

7.4 Maximum match (MM) Tagger

Maximum match (best match in (Sjobergh) [87]) tagger finds the longest n-

gram (i.e., with maximal possible n) in the text to be tagged, which is also present

in the training data, and tags the n-gram in the text copying the tags from its

counterpart in the training data. This pair of identical n-grams is called a match. If

Combining Taggers in Master-slaves technique

 99

there are several equally long matching n-grams, the most common matching tag

(in these matches) is chosen. If it is still a tie, the one first encountered is chosen.

There is also a back-off method for short matches and special treatment of

unknown words.

In our work we deal with maximum match in two different contexts. In the first

we take it as independent tagger, implemented using a very simple version of best

match (Stomp tagger). The back-off method, in this case, was not used and the

unknown words get the “None” tag. It is explained in Section 7.7 how MM can be

combined with the HMM tagger.

In the second context for any word w in the input sentence, we record the

length of the longest match, which contains w. This length is called the maximum

match for w. For example, if we have sentences “w6, w5, w1, w2” and “w2, w3, w4,

w6” in the corpus and the input sentence is “w1, w2, w3, w4”, then the maximum

match is 2, 3, 3 and 3 for the words w1, w2, w3 and w4, respectively.

7.5 HMM tagger

HMM is the most frequently used technique for POS tagging. It used for

tagging one complete sentence at a time by selecting the most likely sequence of

tags for specific sequence of words. See Chapter 6 for more details.

7.6 First experiment of combining of MM & HMM
taggers

Before going further, let us consider what happens if the input sentence

completely matches a sentence from the training corpus: what is the probability of

tagging the input sentence same as the one from the training corpus? The answer,

theoretically, should be one, but practically there is no guarantee for this. The

same problem arises when a long phrase in the input sentence is also found in the

training corpus (we call it again a match). In order to increase the chance of

tagging this phrase in the same way as in the training corpus, we modify the

HMM tagger. We do this by using MM tagger explained in Section 7.5. The

easiest way is by multiplying the HMM probabilities by a factor reflecting the

number of matched tokens to the number of all tokens in the input sentence,

Combining Taggers in Master-slaves technique

 100

thereby privileging the tags which agree with the tags used for words of the match

found in the training corpus.

Suppose the length of the input sentence is n. First we want to assign to each

tag t in our tagset a value mm(t), resulting from processing the input sentence. It

is done as follows:

mm(t) is the length of the longest match between the input sentence and a

sentence in the training corpus, such that tag t is assigned to at least one word in

the corpus part of the matching, minus n.

It is clear that for a tag t which never appears in a matching, mm(t)= –n.

Then we process the input sentence using HMM tagger whose probabilities are

modified in the following way:

)(

11).|()|(:)|()|(itmm

iiiiiiii ettptwpttptwp

What happens exactly in the previous formula is that we relatively decrease the

chance of selecting the tags which do not appear in long matches.

The result of applying this change to the HMM tagger is the following

equation, which defines the augmented HMM tagger.

n

i

tmm

iiii
t

nn

t

n i

nn

ettptwpwtpt
1

)(

1111).|()|(maxarg)|(maxarg
11

A tagger using this simple idea has been implemented and tested practically,

just to see if it works. The accuracy increased from 95.28%, achieved by the

unmodified HMM to 95.55%, in a test using the Brown corpus of English and 10-

fold cross-validation. This result has encouraged us to generalize this method, in

particular to more than two taggers.

We should note that Viterbi algorithm has not been affected, because our

modification is reflected by the word likelihood probabilities. And Viterbi

algorithm selects the maximum input to each state (tag) depending on the

transition probabilities and the word likelihood probabilities. I.e., selecting the

maximum input to state still works as before.

Combining Taggers in Master-slaves technique

 101

7.7 Modification for general use

We have used MM as a source of additional information supplied to HMM, for

modifying its probabilities. Indeed our formula incorporates into HMM tagger

more than a single sequence of tags, because it changes the factors by which the

probabilities are multiplied, depending on the length of the local maximal

matching fragments. While generalizing our method to taggers other than MM, we

assume that the tagger produces a single sequence of tags and nothing more.

Indeed, it would be extremely difficult to incorporate with HMM anything beyond

it, since the internal information produced by each tagger is different.

Therefore we modify our method of combining taggers relying on the

sequences of tags produced by the taggers, only. The benefit of it is that we can

use any tagger now in combination with HMM tagger.

Let‟s work on the same example of MM and HMM. The role of MM was to

modify the HMM probabilities, i.e., each sentence was processed using HMM

with different probabilities. We want to use the same idea using another tagger in

place of MM, say Brill tagger. Using Brill tagger, we can modify the emission

probabilities of HMM tagger, multiplying them by a constant factor f smaller than

1, except the tags produced by the Brill tagger on the same sentence. In general

the output of a tagger is fed to HMM tagger which then re-estimates its internal

probabilities (knowledge) according to previous tagger‟s output. The first tagger

can be seen as a slave (property) and the second, which we call a master. Before

explaining the details, let us note that the power of the slave depends on f, which

can and should be selected experimentally. Our goal here is not selecting the best

f. Definitely, it should be investigated in the future work, in particular

investigating if f should remain a constant, or perhaps depend on the tagged

sentence, the tagset used, the kind of tagger used as a slave, and many other

factors. At present, we report the first experiments, using a fixed f.

Any number of slave taggers can be used with one master. Assume that we

have m+1 taggers (T1 … Tm+1). Tm+1 is HMM tagger and will be used as a master,

the other will be used as slave taggers. The master tagger is trained for estimating

its probabilities. Then the input sentence is tagged by each of the slave taggers

T1… Tm. The outputs of all slave taggers are fed to master in parallel for each

sentence. Then the master changes its probabilities according to the outputs of the

Combining Taggers in Master-slaves technique

 102

slaves for this sentence. Then master does the tagging for this sentence according

to the new probabilities. The important thing, in this method, is that using

different probabilities for estimating each sentence. Figure 7-1 shows a block

diagram for the proposed master and slaves tagger.

Figure 7-1: Combining taggers into a master-slaves tagger.

7.8 Difference between the new and other methods

There are many differences between our approach and the existing approaches

in general. First, each sentence is tagged by the master tagger according to a

different knowledge, affected by the results of the slaves taggers. We can say that

we have a new tagger for each sentence.

There is no limitation for the number of slave taggers, as opposed to voting

which needs an odd number of them to avoid ties.

It differs from stacking by using more than one tagger (as slaves) which feed

their outputs in parallel to the master tagger.

7.9 Experiments

We have taken three taggers: HMM, MM (Stomp) and Brill tagger. Each one

has been tested alone, using 10-fold cross-validation. Then we have done two tests

where HMM has been the master tagger. In the first test the Brill tagger has been

the only slave, and in the second we have added MM as the second slave. The

factor has been constant 0.29 for all tests. It was selected in a few other tests, not

reported here, as the most effective one. Our goal here was neither selecting the

Input

(may be one sentence)

T1 Tm

Factors

Training

Master

Tagger Tm+1

O/P

. . . Slave taggers . . .

O/P O/P

Combining Taggers in Master-slaves technique

 103

best value of the factor, nor selecting the best way to use the factor. Therefore we

fixed the value and the approach of using this value which was as follows: when

the sentence is already tagged by the slaves then the probabilities of all tags a

specific word wn are multiplied by that factor except that the tag(s) which is/are

output from the slaves for this word. The data set was Brown corpus which is

freely available as a part of the NLTK package under Python environment [22].

Also Brill tagger is a built-in tagger in Python. We built very simple

implementations of MM and HMM taggers. The unknown words are processed, in

Brill and MM taggers, by giving them “None” tag, and in HMM by giving all tags

in the tagset equal probabilities. It is not a good method in general, but we wanted

to test how using of HMM, MM and Brill taggers as master and slaves changes

the performance, if compared with traditional HMM tagger, under the same

simple specifications. Figure 7-2 shows the results of these tests. We can see that

we gain 0.26 % by using Brill tagger as the only slave and 0.42 % by using both

Brill and MM as slaves. When annotating a corpus of 2 million words, it means

correcting the tagging of about 8400 words. The other data set for Arabic consists

of 45 files (29k words) annotated by hand with our new tagset
37

.

Figure 7-2: Results of Master-slaves tagging.

7.10 Discussion and Further work

In the previous section we have proposed a new method for combining taggers,

the master and slaves method. We implemented this method by using three

taggers which are HMM, MM and Brill tagger. We focused in our implementation

on proving practically that this method works, not on selecting the best value of

37

 See chapter 3 for more details on tagsets.

Master or

Original

tagger

Slave tagger Total

words

Correctly

tagged

words

Accuracy Accuracy

on the

Arabic

corpus

Brill ----------- 1161192 1096687 94.44 % 86.43%

Maxmatch --------- 1161192 1061635 91.5 % 83.26%

HMM --------- 1161192 1106482 95.28 % 88.81%

HMM Brill 1161192 1109411 95.54 % 89.40%

HMM Brill+maxmatch 1161192 1111281 95.70 % 90.05%

Combining Taggers in Master-slaves technique

 104

the factors or selecting a different factor for each slave tagger. We would like to

mention that the factors can be (i) constant for all slaves (very simple) (ii)

different for each slave tagger (iii) weighted factors depending on the accuracy of

each slave tagger (iv) variable factors where for each slave tagger the factor will

be changed according to some conditions. Any other type of factor can be used

with the same methodology where the internal probabilities of the master tagger

will be changed. The gain of accuracy was quite considerable, given the simplicity

of the approach and very limited tuning of the method. We hope that by using

weighted or variable factors the gain of accuracy can be increased. The interesting

thing in the results is that the accuracy of MM was 91.5%, much less than the first

slave Brill and the master HMM, and still by adding it as the second slave we

improved the accuracy. Actually we expected the accuracy to drop because of the

huge difference in the accuracy between HMM and MM. But what happened is

the reverse: the master tagger still has the control for selecting the best tag among

the tags suggested by the slaves. It was the main reason for selecting the name of

the method master and slaves. A successful application of this method to a highly

a inflected language, such as Arabic, proves its generality. The low accuracies of

all taggers for Arabic are mainly due to (i) using very small data set (ii) using very

rich tagset.

Chapter 8 Combining Rules-based and Master-Slaves Tagger

8.1 Introduction

In this chapter we will describe an implementation of Arabic POS combined

tagger. The first tagging technique we use is by using manually written rules. The

tagger consists of a few hundred of hand-written rules. Most of these rules were

taken from Arabic traditional grammar books (AL-Bidhani) [3] (Al-Rajhi) [10]

(Al-Hamlawy) [7] (Al-Galaiini) [6]. The task of the rule-based tagger is to

eliminate unwanted tags from the context. It simplifies the work of the next

tagger. The second tagger is a master-slaves tagger which was constructed in the

previous chapter. The master is HMM tagger and the slaves are Brill tagger and

maxmatch tagger (MM). The rules-based tagger is added to the master-slaves

tagger as a third, special slave. It can alternatively be seen as a separate tagger

combined with master-slaves using stacking.

The main reason for adding a rules-based Arabic tagger is that we do not yet

have a large corpus annotated by our rich tagset. The second reason is that we

would like to annotate a new, larger Arabic corpus with our rich tagset. We do not

Combining Rules-based and Master-Slaves Taggers

 106

focus on the speed of processing because our work is intended to be a tool for

producing large annotated Arabic corpus. I.e., our tagger will be used offline
38

.

8.2 Related work

There are many papers that combine rules-based and statistical taggers. Almost

all these works use the stacking technique. All the works mentioned in the

previous Chapter can be mentioned here, e.g., (Yonghui et, al.) [92] (Henrich et,

al.) [52] (Loftsson) [67]. Book (Nitin & Fred) [73] presents other combinations of

taggers by using voting or stacking methods.

For Arabic, if we consider a morphological analyzer as a light tagger, (Khoja)

 [57] is an example of a stacking combination. All possible tags for each word with

its stem are fed from the analyzer to a statistical tagger trained on a corpus, to get

the best tag for that word. She achieved 90% accuracy on a data set of 50 k words,

using a simple tagset
39

.

Our work here is different from the above mentioned works: (i) we have an

analyzer (ii) we have manually written rules for eliminating unwanted tags (iii)

the output of a rules-based tagger is fed to the master-slaves tagger with two slave

taggers. None of the mentioned papers had all those elements at the same time.

The earliest POS tagging systems were rule-based systems, in which a set of

rules was manually constructed and then applied to tag a given text (Nitin & Fred)

 [73]. Theoretically such taggers should have high accuracy, but constructing such

a tagger is a very difficult task. Therefore most of the researchers did not construct

rule-based taggers containing rules for all possible features of the language,

because it was practically impossible. Then the researchers tried to collect the

rules from the experts. The main drawback of those early systems was the

laborious work of manually coding the rules and the requirement of strong

linguistic background.

There are also corpus-based rule taggers. The rules, in a corpus-based rule

tagger, are extracted automatically from the corpus – the Brill tagger is the best

example of this type.

38

 See Chapter 1 for definition of offline and online tagger.
39

 See Chapter 3 for more details on this tagset.

Combining Rules-based and Master-Slaves Taggers

 107

8.3 Comparing between manually created rule-
based taggers and other taggers

In order to compare taggers meaningfully one must take into account the

training data sets they use (if any), the test data sets and tagsets they use.

However, one can name a few distinctions between Manually written rule-based

taggers and statistical taggers, used in our work.

1. Manually written rule-based taggers do not use (and depend on) a corpus,

and therefore are more general.

2. Manually written rule-based taggers are more stable in performance, when

the test data changes.

3. Manually written rule-based taggers require human expertise in linguistics,

which is not necessary to construct statistical taggers.

4. Manually written rule-based taggers require much more human work and

are therefore slower to construct.

5. Manually written rule-based taggers have less problems with unknown

words than statistical ones, especially those without analyzer.

6. There are only a few rules (no matter if manually written or generated

automatically) without any exceptions.

7. Rule-based taggers have cyclic dependency problems. For example take

the rule: there are no two consecutive verbs. If there are two words, each

one can have verb and noun POSs tags, then we cannot get the decision

from that rule, if there are no other rules to break the cyclic dependency:

the tag for the first word depends on the tag for the second, and vice versa.

8.4 Implementation of an Arabic manually written
rule-based tagger

There are many difficulties when we implement manually written rule-based

tagger. The first is that in most cases, the tagger cannot select only one tag for

each word. This restricts the possibility to combine this kind of tagger with other

taggers. Another problem that is that the rules written by experts may have

complicated forms and programming them in one form is difficult.

Combining Rules-based and Master-Slaves Taggers

 108

For simplification of the previous problems, we use a unified, restricted form

of rules we implement. Complicated rules are first split into (perhaps several)

simple rules, and only then implemented. All rules are used for eliminating

unwanted tags for specific words in the context, so our goal will not be selecting

the best tag. The unified form of our rules is:

“if conditions then eliminate (list of tags)”

This form can be implemented in a simple way.

Here are some randomly selected samples from the rules used in the

implementation and extracted from (AL-Bidhani) [3] (Al-Rajhi) [10] (Al-

Hamlawy) [7] (Al-Galaiini) [6]:

 “if the word is preceded by a reduction particle then eliminate (tags with

POS<>noun and tags with case<>genitive)”.

 “if the word preceded by Def particle then eliminate (tags with

POS<>noun)”

 “if the word is at the beginning of a sentence and (POS=noun or

(POS=verb & mood=present)) then eliminate (tags with case or mood<>

nominative)

 “if the word follows a verb without „Al‟ „اي‟ then eliminate (tags with

POS=adjective)

 “if the word is preceded by „ط‟ or „عٛف‟ particles then eliminate (tags

with POS & Mood <> verb & present)

 “if „ن‟ is a proclitic then eliminate (tags with POS & working

<>particle & reduction)

 “if all the analyses of the preceding word have verb class then

eliminate(tags with POS= verb)

 “if all the analyses of the following word have verb class then eliminate

(tags with POS= verb)

 “if the preceding word tag has genitive case and the current word has „اي‟

as a proclitic then eliminate (tags with case<> genitive)

Many such rules are used for building our rule-based tagger. Building this

tagger, collecting rules, building dictionary and the analyzer were the most time

consuming tasks in this dissertation.

Combining Rules-based and Master-Slaves Taggers

 109

8.5 Combining manually written rule-based taggers

As we know, the first step in tagging is to assign all the possible tags to each

word. Most of these tags may be eliminated almost immediately, it is a task for

the rule-based tagger, which assists this way statistical taggers.

There are many methods for combining more than one tagger into one tagging

system
40

. The most frequently used and easiest is voting. But it cannot be used

according to our specification for rule-based tagger, which may leave several

possible tags for a single word. Therefore, by using stacking technique, we can

combine a rule-based tagger with a tagger constructed by master-slaves technique.

Figure 8-1 shows this combination. An important note here is that stacking can be

seen as a special case of master-slaves technique.

Using slaves, in master-slaves technique for a simple (fixed) factor, we modify

the emission probabilities of a HMM tagger, multiplying them by a constant

factor smaller than 1, except the tags produced by slaves. The operation we use

now, eliminating tags, can be described as using the rule-based tagger as a slave

with factor 0.

There is another reason to use rule-based tagger with master-slaves. In a rule-

based tagger, the rules are used to eliminate unwanted tags, which in turn

simplifies the task of the master tagger, since the eliminated tags need not be

taken into account. This benefit arises when such a tag is selected by another slave

tagger.

Figure 8-1 can be understood in two ways: that it presents a rule-based tagger

attached as a slave with factor zero, or as a tagger combined using stacking

technique. We prefer the first meaning because it is a part of our general technique

of master-slaves. Of course, with factor zero the rule-based tagger can eliminate

any tag completely, which causes the master tagger not to take it into account.

Therefore it is a special, very powerful slave.

40

 See Chapter 7 for more details about taggers combination.

Combining Rules-based and Master-Slaves Taggers

 110

Figure 8-1: The overview of the tagging system.

8.6 Results and discussion

We applied the tagger described above to a data set of 45 files (29k words in

total), annotated manually with our tagset. The result of using HMM, Brill and

MM taggers combined as master-slaves was accuracy of 90.05 %. The accuracy

after adding the rule-based tagger increased to 92.86 %.

We can see that the accuracy increased by using the rule-based tagger. The

large increase of accuracy is most likely due to the fact that we use a small corpus,

which leads to low accuracy of statistical methods. Using the rule-based tagger,

which is independent of the type and size of corpus, increases the accuracy. We

expect that when the size of corpus will increase, the gain of accuracy due to rule-

based tagger will diminish.

Input

(may be one sentence)

T1 Tm

Factors

Training

Master

Tagger

O/P

. . . Slaves Tggers . . .

O/P O/P

Rule-based

Tagger M
as

te
r-

sl
av

es
 t

ag
g
er

Results, Related Work and Future Work

Chapter 9 Results, Discussion and Future Work

The main goal of our dissertation was to construct a comprehensive tagging

system, which can be used for annotating Arabic corpora.

In our dissertation, we did analytical study, implementation and evaluation of

Arabic tagging system, starting from raw text to tag disambiguation. The system

was implemented under a new very rich tagset, which was designed and

developed by us. We split the tagging process to stand alone stages which

simplified building the whole system.

Our corpus consists of 45 files with 29k word in total, annotated by our tagset.

It was used as a training corpus for the statistical methods used in our tagger. The

accuracy of the tagging was calculated assuming 100% correctness of

tokenization, which required 1.2% of manual corrections.

9.1 Implementation

Our implementation, for all system stages, was done in the C# environment.

There is one exception: the software testing the master-slaves technique on the

Brown corpus was written in Python, because the Python taggers are freely

available. Otherwise we used C# even though it does not contain any special

library for NLP, for many reasons: the basic goal was to build the whole

application for Arabic, using input and output without any transliteration. It is an

Results, Related Work and Future Work

 112

easy language comparing to other languages; it combines the power of C++ and

simplicity of VB. An application with a rich and comfortable user interface,

important for the annotator, can be created quite easily. The problem of Unicode

when dealing with Arabic language does not exist. C# is also a relatively fast

language. The last reason which caused us to select a language rarely used for

NLP is that we built all the parts of the system: tokenizer, analyzer and tagger

ourselves, and no parts of them were taken from existing resources.

It seems to us that manual correction of the tokenization output before tagging

is desired. This work does not take much time, comparable to the time of just

reading the text. This operation increases the accuracy of tagging, while manual

correction of tagging results is definitely more time-consuming.

The most labour-intensive parts of our dissertation were its practical parts:

building the dictionaries, the analyzer and collecting the rules for tagging. But the

result seems worth the effort.

9.2 Results and discussion

Tagset: Designing a new Arabic tagset, suitable for Classical Arabic (CA) and

Modern Standard Arabic (MSA), is a hard problem. In addition to the classical

constructions in tag systems, we introduced interleaving of tags. Interleaving is a

relation between tags which, in certain situations, can be attached to the same

occurrence of a word, but each of them can also appear alone. Our tagset makes

this relation explicit.

Tokenization: It is an initial task for almost all Arabic language processing

applications. This task was achieved, in our system, by rule-based and statistical

methods. We separated the tokenization process in order to simplify the tagging

process. The accuracy of this stage was 98.8%. It is comparable to other similar

works. Because it is an independent task, it can be modified without affecting the

whole system. In order to increase the accuracy of the subsequent stages, the

output of tokenization can be corrected manually which should take relatively

little time.

Analysis and lemma extraction: as was mentioned in Chapter 5, the goals of

this task are extracting all the analyses of the word and extracting the lemma.

These analyses provide POS and features according to our tagset. Our analyzer

Results, Related Work and Future Work

 113

cannot be used independently, because it is specialized for the needs of our

complete system. Because we use it for tagging, we evaluated its accuracy

measuring how often the true analysis is among all analyses produced. For doing

this evaluation we used a small corpus of 16 k words, manually annotated by a

single analysis for each word, correct for this particular use of that word. In the

test, for 99.67% of words, the correct analysis was among those produced by the

analyzer. On the other hand, in a manual verification of the output of the analyzer,

only 0.1% of all analyses were grammatically incorrect.

Tagging: We used two techniques of combining taggers, which are stacking

and master-slaves techniques. The taggers used by these techniques are manually

created rule-based tagger, HMM, Brill and MM taggers. HMM, Brill and MM

taggers are combined with master-slaves technique, with HMM as the master and

the other as slaves. Rules-based tagger is combined using stacking or,

equivalently, as a special slave, with the master-slave tagger.

Master-slaves technique: Independently of the construction of the whole

system, we have devised a new method for combining taggers, which is master-

slaves technique. The HMM master tagger chooses the best tag according to its

knowledge, which is modified by the results obtained by the slave taggers. This

increases the accuracy when compared with normal HMM tagger, even above the

level of the best accuracy achieved by the component taggers alone. The

accuracies of using this technique are shown in Figure 9-1. The reader should

remember that our tagest with several thousand tags is used, and the training

corpus was relatively small, therefore the accuracy cannot be as high as in the

cases of taggers using small tagsets and large corpuses.

We used a rules-based tagger for increasing the accuracy and eliminating

unwanted tags. Relatively few rules were used in our tagger, and not all features

of Arabic language were taken into account. Constructing the rules for this tagger

was one of the most time consuming tasks. Implementation of these rules was not

an easy task, if compared to the implementation of the statistical methods. The

accuracy was increased to 92.86 % by adding the rule-based tagger to the master-

slaves one.

Results, Related Work and Future Work

 114

Figure 9-1: Accuracy of using HMM, Brill and MM in master-

slaves combination.

9.3 Future work

The rules which used in tagging are of one form: “If this tag not applicable to

the present word for some reason, then delete it”. This form makes updating them

easier. Surely, we did not use all rules known in Arabic, because not all of them

can be represented in this form, and we did not have time and specialized

knowledge to create the optimal set of rules. One direction of improving the

system is to extend it by adding more rules written by experts.

The second obvious way to improve the performance of the system is to use

much larger corpus for training. This large corpus can be updated in each cycle of

running the system, as in Figure 9-2, where the output of the tagger, corrected by

a human annotator, is added to the corpus.

We also have plans of using other methods of tagging Arabic, such as

maximum entropy based tagger. In our opinion it is suitable for a highly inflected

language, such as Arabic, and quite different in methodology, which gives a

possibility of different results. It can be then used as a yet another slave in the

master-slaves hybrid tagger. Using more slaves will affect the time of processing,

but according to our plan of building an offline tagger, speed of processing is not

a crucial factor.

Master or

original

Slave Brown corpus Accuracy of

Private Arabic

corpus Total

words

Matched

words

Accuracy

Brill ----------- 1161192 1096687 94.44 % 86.43 %

Maxmatch --------- 1161192 1061635 91.5 % 83.26 %

HMM --------- 1161192 1106482 95.28 % 88.81 %

HMM Brill 1161192 1109411 95.54 % 89.40 %

HMM Brill+maxmatch 1161192 1111281 95.70 %

90.05 %

Results, Related Work and Future Work

 115

Figure 9-2: Corpus feedback.

We also think about building a tagger to use the third, syntactical level in our

tagset. It will require knowledge of the Arabic syntax. The output of our system

can be used as its input. The good news for this tagger is that in Arabic there are

strong relations between the case of the class, and the syntactic class itself.

Finally, we will use our system as an application for annotating of Arabic texts

taken from Iraqi media. We believe, in next two years, it will see the light for free

availability.

Large

annotated

corpus
Tagger

O/P

Annotator

Appendix A1

 116

APPENDIX A1 Arabic letters family Unicode

Arabic letters family Unicode

Appendix A2

 117

Appendix A2: Arabic verb patterns

Arabic verb patterns

Table 1: Trilateral (merely and extra) verb pattern.

Verb

Type

Verb form Pattern

Transliteration

Arabic Script

Merely

I faEala – yafoEulu َ ؼ َ –ك ـ ٌ ل ؼ

I faEala – yafoEilu َل يَفْع –فَـعَل

I faEala – yafoEalu َل يَفْعَ –فَـعَل

I faEila – yafoEalu َل يَفْعَل –فَـع

I faEula – yafoEulu َيَفْع ل –فَـع ل

I faEila – yafoEilu َل ل –فَـع يَفْع

Merely

+Extra

one

letter

II faE~ala – yufaE~ilu َي فَعِّل –فَعَّل

III faAEala – yufaAEilu َل –فَاعَل ي فَاع

IV OafoEala – yufoEilu َل –أَفْعَل ي فْع

Merely

+Extra

two

letters

V tafaE~ala – yatafaE~alu َيَتَفَعَّل –تَفَعَّل

VI tafaAEala – yatafaAEalu َيَتَفَاعَل –تَفَاعَل

VII AnofaEala – yanofaEilu َل يَنْ –انْفَعَل فَع

VIII AfotaEala – yafotaEilu َل –افْتَعَل يَفْتَع

IX AfoEal~a – yafoEal~u َّيَفْعَل –افْعَل

Merely

+Extra

three

letters

X AsotafoEala – yasotafoEilu َل –اسْتَفْعَل يَسْتَفْع

XI AfoEaAl~a – yafoEaAl~u َّيَفْعَال –افْعَال

XII AfoEawoEala – yafoEawoEalu َيَفْعَوْعَل –افْعَوْعَل

XIII AfoEaw~ala – yafoEaw~alu َل ل –افْعَوَّ يَفْعَوَّ

XIV AfoEanolala - yafoEanolalu َيَفْعَنْلَل -افْعَنْلَل
XV AfoEanolaY - yafoEanolaY يَفْعَنْلَى -افْعَنْلَى

Appendix A2

 118

Table 2: quadrilateral (merely and extra) verb pattern and the appendix to it from

trilateral

Verb

Type

Verb

form

Pattern- Transliteration Arabic script appendix to it

from trilateral

Arabic script

Merely I faEolala – yufaEolilu َي فَعْل ل –فَعْلَل

 fawoEala – yufawoEilu َل –فَوْعَل ي فَوْع

 fayoEala – yufayoEilu َل –فَيْعَل ي فَيْع

 faEowala – yufaEowilu َل –فَعْوَل ي فَعْو

 faEoyala – yufaEoyulu َي فَعْي ل –فَعْيَل

 faEolala – yufaEolilu َي فَعْل ل –فَعْلَل

 faEolaY – yufaEolaY ي فَعْلَى –فَعْلَى

Extra

one

letter to

merely

II tafaEolal – yatafaEolal َِ ِ َ – ت ل ؼ ٌ ت ل ؼ

 tafaEolala – yatafaEolalu َيَتَفَعْلَل –تَفَعْلَل

 tafawoEala – yatafawoEalu َيَتَفَوْعَل –تَفَوْعَل

 tafayoEala – yatafayoEalu َعَل يَتَفَيْ –تَفَيْعَل

 tafaEowala – yatafaEowalu َيَتَفَعْوَل –تَفَعْوَل

 tafaEolaY – yatafaEolaY يَتَفَعْلَى –تَفَعْلَى

Extra

two

letter to

merely

III AfoEanolal – yafoEanolalu يَفْعَنْلَل –افْعَنْلَل

 AfoEanolal – yafoEanolalu يَفْعَنْلَل –افْعَنْلَل

 AfoEanolaY – yafoEanolaY ى ِ ٘ ٘ ِ ى – اك ؼ ٌ ل ؼ

 AftEolY – yaftaEolY لت ؼ ِى – اكتؼ ِى ٌ

 IV AfoEalal~a – yfoEalil~u َّيفْعَل ل –افْعَلَل

َ

Appendix B

 119

Appendix B: practical Text tagged by the proposed tagset

Practical Text tagged by the proposed
tagset

WEtagged practical text by the proposed tagset. The text was taken from

Assabah journal (formal journal in Iraq). Date of publishing 19-03-2012. The

title is “Ur

Chaldeans”

Arabic

word Clitics and word base Tag Explanation

 Token
Transliterati
on Translation

 mrp Once ,Time NNou_SFNN Noun Common Singular Feminine Nominative Not Structured ِشحََ ِشح

، ََ، , , CPnc Punctuation

 ٚلجً

ٚ w And PNon_Non Particle Not_have_working have_No_meaning

 qbl before NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured لجًََ

 sntyn Two years NNou_DFGN Noun Common Dual Feminine Genative Not Structured عٕز١ََٓ عٕز١ٓ

، ََ، , , CPnc Punctuation

 ktbt I wrote VPst_3SMOYNA وزجذََ وزجذ
Verb Past Third Singular Masculine NonMood Structured Not
Certainty Active

 En About PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ػََٓ ػٓ

 اٌؼشاق

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 ErAq Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ػشاقَ

 Al*y Which NRel_SMGY Noun Relative Singular Masculine Genative Structured ٌزَٞاَ اٌزٞ

 swf Will PNon_Fut Particle Not_have_working have_meaning_of_Future عٛفََ عٛف

 yEml Works VPrt_3SMNNNA ٠ؼًََّ ٠ؼًّ
Verb Present Third Singular Masculine Nominative Not Structured
Not Certainty Active

 ElY At PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ػٍََٝ ػٍٝ

وٍّخَوج١شحَِٚجبٌغَف١ٙبَٚسثّبٌََُ ِشح،َٚلجًَعٕز١ٓ،َوزجذَػَٓاٌؼشاقَاٌزَٞعٛف٠َؼًَّػٍَٝرغ١١شَاٌؼبٌُ،ًََ٘٘زٖ

فَاٌؼشاقَاٌمذ٠َُاٌىبَِٓرذذَاٌشِبيَٚا١ٌٍشٓ،ََ٘ٛرانَاٌزَٞعٛ ٠غؼفَاٌزؼج١شَػٍَٝٚجَٗاٌذلخَٚاٌٛظٛحََِٓاْ

آثبسٞ،٠ٌََُجشَاٌزٕم١تَف١ٙبَ ٚاراَاسرأ٠ٕبَاٌفىشحَفَٟاٌٛالغَاٌفؼٍٟ،َفأَْاٌؼبٌََُِٚٓخلايَػششحَآلافَرً ٠غ١شَاٌؼبٌُ،

َػ١ٍّخ َاوبد١ّ٠بدَالاسضَفشصخ َعٛف٠َّٕخ َِخزٍفَ ثبٌؼشاق، َفٟ َِٚفب١ّ٘ٙب َرصٛسارٙب َرغ١١ش َثُ َِٓٚ لاعزؼبدح

اٌّبسوغ١َْٛإٌظشَ ٔفغََِٗٓخلايَاٌؼشاقَِثٍّبَرغ١شَد١َٓاػبدٚاٌزبس٠خ..َارَْفبٌؼبٌَُع١غ١شَ لعب٠بَٚشإَْٚاٌذ١بح

َاٌطجمبد َٔشٛء َالاع١َٛٞٚفىشح َالأزبج َّٔػ َػٓ َٚثبثًَ فَٟرصٛسارُٙ َِثًَعِٛش َاوزشفَالاعزششاقَِذٔب دبٌّب

َػٕذَرفبص١ٍٙب َاٌذٌٚخ، ٚآشٛس،َٚرذشٚا ٌَٚٛ أظّخَرغج١ًَاٌؼج١ذَٚالاجشاءَٚاٌّٛ ف١َٓٚاشىبيَرٕظ١َُاٌؼًَّٚاداسح

َاٌّذْ َاوزشبفَرٍه َاٌٝ َرٛصً َِبسوظَٚأجٍظَلذ َالاعزششاقَفَٟصِٓ َػَٓ وبْ َش١ئب َوزجب ٌَّب َا١ِٛ١ٌخ ٚدلبئمٙب

 دَْٚاسرمبءَاٌٍّى١خَاٌفشد٠خَِٕٚؼبََِٓل١بََاٌصشاعَاٌطجمٟ،َٚسثّبَوبٔذ الاسضَاٌّشبػخَِٚشىٍخَاٌجضيَاٌٍز٠َٓدبلا

َ.اٌزفص١ٍَٟوّبَجبءَثؼذَِبسوظ زششاقَفَٟاٌّغزٜٛاٌّبسوغ١خَغ١ش٘بَفَٟإٌظشَاٌَٝاٌششقَٚاٌغشةٌََٛوبَْالاع

Appendix B

 120

 tgyyr Changing NNou_SMGN Noun Common Singular Masculine Genative Not Structured رغ١١شََ رغ١١ش

 اٌؼبٌُ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 EAlm world NNou_SMGN Noun Common Singular Masculine Genative Not Structured ػبٌَُ

، ََ، , , CPnc Punctuation

ً٘ ًََ٘ hl Is, Are PNon_Int Particle Not_have_working have_meaning_of_Interrogative

 h*h This NDem_SMGY Noun Demostrative Singular Masculine Genative Structured ٘زََٖ ٘زٖ

 klmp Word NNou_SFNN Noun Common Singular Feminine Nominative Not Structured وٍّخََ وٍّخ

 kbyrp Large NAdo_SFNN Noun Adjective(Other) Singular Feminine Nominative Not Structured وج١شحََ وج١شح

 ِٚجبٌغ

ٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 mbAlg exaggerate NAdo_SMNN ِجبٌغَ
Noun Adjective(Other) Singular Masculine Nominative Not
Structured

 ف١ٙب

 fy In PRed_Adv PRed_Adv فَٟ

 hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 ٚسثّب

ٚ w And PNon_Non Particle Not_have_working have_No_meaning

 rb May PNon_Crd Particle Not_have_working have_meaning_of_increasing_decreasing سة

 mA be PPrv_Non Particle For_Preventing have_No_meaning ِب

ٌُ ٌََُ lm Not PJus_Neg Particle For_jusive have_meaning_of_Negative

 ysEf Ministering VPrt_3SMJNNA ٠غؼفََ ٠غؼف
Verb Present Third Singular Masculine JussiveNot Structured Not
Certainty Active

 اٌزؼج١ش

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 tEbyr expression NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رؼج١شَ

 ElY At PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ػٍََٝ ػٍٝ

 wjh Face NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٚجََٗ ٚجٗ

 اٌذلخ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 dqp accuracy NNou_SFGN Noun Common Singular Feminine Genative Not Structured دلخَ

 ٚاٌٛظٛح

ٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 wDwH clarity NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٚظٛحَ

ِٓ ََِٓ mn Of PRed_Non Particle For_Reduction have_No_meaning

 On That PCop_Cer Particle For_copying have_meaning_of_Certainty أََْ أْ

 اٌؼشاق

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 ErAq Iraq NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured ػشاقَ

 اٌمذ٠ُ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 qdym Old NAdo_SMAN Noun Adjective(Other) Singular Masculine Accusative Not Structured لذ٠َُ

 اٌىبِٓ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 kAmn latent NAdo_SMAN Noun Adjective(Other) Singular Masculine Accusative Not Structured وبَِٓ

 tHt Under NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رذذََ رذذ

 اٌشِبي

 اي

Al rmAl

The PNon_Def Particle Not_have_working have_meaning_of_Definition

 sands NNou_PMGN Noun Common Plural Masculine Genative Not Structured سِبيَ

 ٚا١ٌٍشٓ

ٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 ly$n launch NNou_SMGN Noun Common Singular Masculine Genative Not Structured ١ٌشَٓ

، ََ، , , CPnc Punctuation

ٛ٘ ََٛ٘ hw He NPrn_SMNY Noun Pronoum Singular Masculine Nominative Structured

 Ak That NDem_SMNY Noun Demostrative Singular Masculine Nominative Structured* رانََ ران

 Al*y Which NRel_SMNY Noun Relative Singular Masculine Nominative Structured اٌزََٞ اٌزٞ

 swf Will PNon_Fut Particle Not_have_working have_meaning_of_Future عٛفََ عٛف

 ygyr Change VPrt_3SMNNNA ٠غ١شََ ٠غ١ش
Verb Present Third Singular Masculine Nominative Not Structured

Not Certainty Active

 اٌؼبٌُ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 EAlm world NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ػبٌَُ

Appendix B

 121

، ََ، , , CPnc Punctuation

 ٚئرا

ٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 I*A if PNon_Adv Particle Not_have_working have_meaning_of_Adverbial ئراَ

 ArtOynA We decided VPst_1PCOYNA اسرأ٠ٕبَ اسرأ٠ٕب
Verb Past First Plural Common NonMood Structured Not Certainty
Active

 اٌفىشح

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 fkrp idea NNou_SMAN Noun Common Singular Masculine Accusative Not Structured فىشحَ

 fy In PRed_Adv Particle For_Reduction have_meaning_of_Adverbial فََٟ فٟ

 اٌٛالغ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 wAqE reality NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٚالغَ

 اٌفؼٍٟ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 fEly actual NAdg_SMGN فؼٍَٟ
Noun Adjective(Genealogical) Singular Masculine Genative Not

Structured

، ََ، , , CPnc Punctuation

 فأْ

 f then PNon_Lnk Particle Not_have_working have_meaning_of_Linking ف

 On that PCop_Cer Particle For_copying have_meaning_of_Certainty أَْ

 اٌؼبٌُ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 EAlm world NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ػبٌَُ

ِٓٚ

ٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

َِٓ mn from PRed_Non Particle For_Reduction have_No_meaning

 xlAl Through NAdv_SMGN Noun Adverb Singular Masculine Genative Not Structured خلايَ خلاي

 E$rp Ten NNod_SFGN Noun Number(Ordinal) Singular Feminine Genative Not Structured ػششحَ ػششح

 lAf Thousands NNod_PMGN Noun Number(Ordinal) Plural Masculine Genative Not Structured| آلافَ آلاف

 tl Hill NNou_SMGN Noun Common Singular Masculine Genative Not Structured رًَ رً

 vAry| آثبسَٞ آثبسٞ

Archaeologis

t NAdg_SMGN
Noun Adjective(Genealogical) Singular Masculine Genative Not

Structured

، َ، , , CPnc Punctuation

ٌُ ٌَُ lm Not PJus_Neg Particle For_jusive have_meaning_of_Negative

 yjr happen VPrt_3SMJNNA ٠جشَ ٠جش
Verb Present Third Singular Masculine JussiveNot Structured Not

Certainty Active

 اٌزٕم١ت

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 tnqyb exploration NNou_SMNN Noun Common Singular Masculine Nominative Not Structured رٕم١تَ

 ف١ٙب

 fy In PRed_Adv PRed_Adv فٟ

 hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 ثبٌؼشاق

 b in PRed_Adv Particle For_Reduction have_meaning_of_Adverbial ة

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 ErAq Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ػشاقَ

، ََ، , , CPnc Punctuation

 swf Will PNon_Fut Particle Not_have_working have_meaning_of_Future عٛفََ عٛف

 ymnH Gives VPrt_3SMNNNA ٠ّٕخََ ٠ّٕخ
Verb Present Third Singular Masculine Nominative Not Structured

Not Certainty Active

 اوبد١ّ٠بدََ داوبد١ّ٠ب

AkAdymy

At Academies NNou_PFNN Noun Common Plural Feminine Nominative Not Structured

 الاسض

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 ArD land NNou_SFGN Noun Common Singular Feminine Genative Not Structured اسضَ

 frSp Opportunity NAdo_SFAN Noun Adjective(Other) Singular Feminine Accusative Not Structured فشصخَ فشصخ

 Elmyp Scientific NAdg_SFAN ػ١ٍّخَ ػ١ٍّخ
Noun Adjective(Genealogical) Singular Feminine Accusative Not

Structured

 لاعزؼبدح

 l To PRed_Cau Particle For_Reduction have_meaning_of_Caution ي

 AstEAdp restore NNou_SFGN Noun Common Singular Feminine Genative Not Structured اعزؼبدحَ

ِٓٚ

ٚ w And PCnj_Non Particle For_Conjection have_No_meaning

َِٓ mn from PRed_Non Particle For_Reduction have_No_meaning

 vm Then PCnj_Non Particle For_Conjection have_No_meaning ثَُ ثُ

 tgyyr Change NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رغ١١شَ رغ١١ش

 tSwrAt her NNou_PFGN Noun Common Plural Feminine Genative Not Structured رصٛساد رصٛسارٙب

Appendix B

 122

 hA Perceptions NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘بَ

 ِٚفب١ّ٘ٙب

ٚ w and PCnj_Non Particle For_Conjection have_No_meaning

 mfAhym concepts NNou_PFGN Noun Common Plural Feminine Genative Not Structured ِفب١َُ٘

 hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 fy In PRed_Non Particle For_Reduction have_No_meaning فََٟ فٟ

 mxtlf Different NNou_SMGN Noun Common Singular Masculine Genative Not Structured ِخزٍفَ ِخزٍف

 qDAyA Issues NNou_PFGN Noun Common Plural Feminine Genative Not Structured لعب٠بََ لعب٠ب

 َٚشإَْٚ ٚشإْٚ

w and PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

$Wwn Affairs NNou_PFGN Noun Common Plural Feminine Genative Not Structured

 اٌذ١بح

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 HyAp life NNou_SFGN Noun Common Singular Feminine Genative Not Structured د١بحَ

 ٚاٌزبس٠خ

ٚ w And PCnj_Non Particle For_Conjection have_No_meaning

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 tAryx date NNou_SMGN Noun Common Singular Masculine Genative Not Structured ربس٠خَ

.. CPnc Punctuation

 A*n So PNon_Ans Particle Not_have_working have_meaning_of_Answer ارَْ ارْ

 فبٌؼبٌُ

 f then PNon_Non Particle Not_have_working have_No_meaning ف

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 EAlm world NNou_SMNN Noun Common Singular Masculine Nominative Not Structured ػبٌَُ

 ع١غ١ش

 s will PNon_Fut Particle Not_have_working have_meaning_of_Future ط

 ygyr change VPrt_3SMNNNA ٠غ١شَ
Verb Present Third Singular Masculine Nominative Not Structured

Not Certainty Active

 ٔفغٗ

 nfs self NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ٔفظ

ٖ h him NPrn_SMGY Noun Pronoum Singular Masculine Genative Structured

ِٓ َِٓ mn from PRed_Non Particle For_Reduction have_No_meaning

 xlAl Through NAdv_SMGN Noun Adverb Singular Masculine Genative Not Structured خلايَ خلاي

 اٌؼشاق

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 ErAq Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ػشاقَ

 ِثٍّب

 mvl Like NNou_SMNN Noun Common Singular Masculine Nominative Not Structured ِثً

 mA what NRel_SMGY Noun Relative Singular Masculine Genative Structured ِبَ

 tgyr Changed VPst_3SMOYNA رغ١شَ رغ١ش
Verb Past Third Singular Masculine NonMood Structured Not

Certainty Active

 Hyn When NNou_SMAN Noun Common Singular Masculine Accusative Not Structured د١َٓ د١ٓ

 AEAd Re- VPst_3SMOYNA اػبدَ اػبد
Verb Past Third Singular Masculine NonMood Structured Not

Certainty Active

 اٌّبسوغ١ْٛ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

َ

 mArksywn Marxists NAdg_PMNN ِبسوغ١َْٛ
Noun Adjective(Genealogical) Plural Masculine Nominative Not

Structured

 إٌظش

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 nZr view NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ٔظشَ

 fy In PRed_Non Particle For_Reduction have_No_meaning فَٟ فٟ

 رصٛسارُٙ

رصٛسادَ

ُ٘

tSwrAt Perceptions NNou_PMGN Noun Common Plural Masculine Genative Not Structured

hm them NPrn_PMGY Noun Pronoum Plural Masculine Genative Structured

 En About PRed_Non Particle For_Reduction have_No_meaning ػَٓ ػٓ

 nmT Pattern NNou_SMGN Noun Common Singular Masculine Genative Not Structured ّٔػَ ػّٔ

 الأزبج

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 AntAj production NNou_SMGN Noun Common Singular Masculine Genative Not Structured أزبجَ

 الاع١ٛٞ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Asywy Asian NAdg_SMGN اع١َٛٞ
Noun Adjective(Genealogical) Singular Masculine Genative Not

Structured

 ٚفىشح

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 fkrp idea NNou_SFGN Noun Common Singular Feminine Genative Not Structured فىشحَ

 n$wʼ Emergence NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٔشٛءَ ٔشٛء

Appendix B

 123

 اٌطجمبد

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 TbqAt layers NNou_PFGN Noun Common Plural Feminine Genative Not Structured غجمبدَ

 دبٌّب

 HAl event NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured دبيَ

 mA that NRel_SMGY Noun Relative Singular Masculine Genative Structured ِبَ

 Akt$f Discover VPst_3SMOYNA اوزشفَ اوزشف
Verb Past Third Singular Masculine NonMood Structured Not

Certainty Active

 الاعزششاق

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 Ast$rAq Orientalism NAdg_SMNN اعزششاق
Noun Adjective(Other) Singular Masculine Nominative Not

Structured

 mdnA Cities NNou_PMAN Noun Common Plural Masculine Accusative Not Structured ِذٔبَ ِذٔب

 mvl Such as NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ِثًََ ِثً

 swmr Sumer NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured عِٛشََ عِٛش

 ٚثبثً

َٚ w and PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 bAbl Babylon NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ثبثًَ

 آشٛسٚ

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 wr Assyria NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured$| آشٛسَ

، َ، , , CPnc Punctuation

 ٚرذشٚا

َٚ w And PCnj_Non Particle For_Conjection have_No_meaning

 tHrwA رذشٚاَ

made

inquiries VPst_3PMOYNA
Verb Past Third Plural Masculine NonMood Structured Not Certainty

Active

 End At NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured ػٕذَ ػٕذ

 رفبص١ٍٙب

 tfASyl Details NNou_SMGN Noun Common Singular Masculine Genative Not Structured رفبص١ً

 hA here NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 AnZmp Systems NNou_PMAN Noun Common Plural Masculine Accusative Not Structured أظّخَ أظّخ

 tsjyl Registration NNou_SMGN Noun Common Singular Masculine Genative Not Structured رغج١ًَ رغج١ً

 اٌؼج١ذ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Ebyd slaves NNou_PMGN Noun Common Plural Masculine Genative Not Structured ػج١ذَ

 ٚالاجشاء

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 AjrAʼ action NNou_SMAN Noun Common Singular Masculine Accusative Not Structured اجشاءََ

 ٚاٌّٛ ف١ٓ

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 mwZfyn staff NNou_PMAN Noun Common Plural Masculine Accusative Not Structured ِٛ ف١ََٓ

 ٚاشىبي

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 A$kAl forms NNou_PMAN Noun Common Plural Masculine Accusative Not Structured اشىبيَ

 tnZym Organization NNou_SMGN Noun Common Singular Masculine Genative Not Structured رٕظ١َُ رٕظ١ُ

 اٌؼًّ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Eml work NNou_SMGN Noun Common Singular Masculine Genative Not Structured ػًَّ

 ٚاداسح

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 AdArp management NNou_SFGN Noun Common Singular Feminine Genative Not Structured اداسحَ

 اٌذٌٚخ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 dwlp state NNou_SFGN Noun Common Singular Feminine Genative Not Structured دٌٚخَ

، َ، , , CPnc Punctuation

ٌٛٚ

َٚ w And PNon_Non Particle Not_have_working have_No_meaning

ٌَٛ lw if PNon_Con Particle Not_have_working have_meaning_of_Conditional

 kAn Was VPst_3SMOYNA وبَْ وبْ
Verb Past Third Singular Masculine NonMood Structured Not
Certainty Active

 الاعزششاق

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition اي

 Ast$rAq Orientalism NAdo_SMNN اعزششاقَ
Noun Adjective(Other) Singular Masculine Nominative Not
Structured

 fy In PRed_Adv Particle For_Reduction have_meaning_of_Adverbial فَٟ فٟ

 zmn Time NNou_SMGN Noun Common Singular Masculine Genative Not Structured صَِٓ صِٓ

 mArks Marx NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ِبسوظَ ِبسوظ

Appendix B

 124

 ٚأجٍظ

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 Anjls Angeles NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured أجٍظَ

 qd May PNon_Rlz Particle Not_have_working have_meaning_of_Realization لذَ لذ

 twSl Reach VPst_3SMOYNA رٛصًَ رٛصً
Verb Past Third Singular Masculine NonMood Structured Not

Certainty Active

 AlY To PRed_Non Particle For_Reduction have_No_meaning اٌَٝ اٌٝ

 Akt$Af Discovery NNou_SMGN Noun Common Singular Masculine Genative Not Structured اوزشبفَ اوزشبف

 tlk That NDem_SFGY Noun Demostrative Singular Feminine Genative Structured رٍهَ رٍه

 اٌّذْ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 mdn cities NNou_PFGN Noun Common Plural Feminine Genative Not Structured ِذَْ

 ٚدلبئمٙب

َٚ w and PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 dqA}q minutes NNou_PFGN Noun Common Plural Feminine Genative Not Structured دلبئكَ

 hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured ٘ب

 ا١ِٛ١ٌخ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 ywmyp day NAdg_SFGN ١ِٛ٠خَ
Noun Adjective(Genealogical) Singular Feminine Genative Not

Structured

 ٌّب

 l For PNon_Non Particle Not_have_working have_No_meaning يَ

 mA what PNon_Neg Particle Not_have_working have_meaning_of_Negative ِبَ

 ktbA they wrote VPst_3DMOYNA وزجبَ وزجب
Verb Past Third Dual Masculine NonMood Structured Not Certainty

Active

 y}A Something NNou_SMAN Noun Common Singular Masculine Accusative Not Structured$ ش١ئبَ ش١ئب

 En About PRed_Non Particle For_Reduction have_No_meaning ػَٓ ػٓ

 سضالا

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 ArD land NNou_SFGN Noun Common Singular Feminine Genative Not Structured اسضَ

 اٌّشبػخ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 m$AEp Commons NAdo_SFGN Noun Adjective(Other) Singular Feminine Genative Not Structured ِشبػخَ

 ِٚشىٍخ

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 m$klp problem NNou_SFGN Noun Common Singular Feminine Genative Not Structured ِشىٍخَ

 جضياٌ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 bzl puncture NNou_SMGN Noun Common Singular Masculine Genative Not Structured ثضيَ

 All*yn Who NRel_DMGY Noun Relative Dual Masculine Genative Structured اٌٍز٠َٓ اٌٍز٠ٓ

 HAlA prevented VPst_3DMOYNA دبلاَ بلاد
Verb Past Third Dual Masculine NonMood Structured Not Certainty
Active

 dwn Below NNou_SMAN Noun Common Singular Masculine Accusative Not Structured دَْٚ دْٚ

 ArtqAʼ Upgrade NNou_SMGN Noun Common Singular Masculine Genative Not Structured اسرمبءَ اسرمبء

 اٌٍّى١خ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 mlkyp Royal NAdg_SFGN ٍِى١خَ
Noun Adjective(Genealogical) Singular Feminine Genative Not
Structured

 اٌفشد٠خ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 frdyp individual NAdg_SFGN فشد٠خَ
Noun Adjective(Genealogical) Singular Feminine Genative Not
Structured

 ِٕٚؼب

َٚ w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 mnEA prevented VPst_3DMOYNA ِٕؼبَ
Verb Past Third Dual Masculine NonMood Structured Not Certainty
Active

ِٓ َِٓ mn from PRed_Cau Particle For_Reduction have_meaning_of_Caution

 qyAm standin up NNou_SMGN Noun Common Singular Masculine Genative Not Structured ل١بََ ل١بَ

 اٌصشاع

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 SrAE conflict NNou_SMAN Noun Common Singular Masculine Accusative Not Structured صشاعَ

 اٌطجمٟ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Tbqy class NAdg_SMGN غجمَٟ
Noun Adjective(Genealogical) Singular Masculine Genative Not
Structured

، ََ، , , CPnc Punctuation

 ٚسثّب

َٚ w And PNon_Non Particle Not_have_working have_No_meaning

 rb may PNon_Crd Particle Not_have_working have_meaning_of_increasing_decreasing سةَ

 mA be PPrv_Non Particle For_Preventing have_No_meaning ِب

Appendix B

 125

 kAnt Was VPst_3SFOYNA وبٔذَ وبٔذ
Verb Past Third Singular Feminine NonMood Structured Not

Certainty Active

 اٌّبسوغ١خ

 Al The PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 mArksyp Marxist NAdg_SFNN ِبسوغ١خَ
Noun Adjective(Genealogical) Singular Feminine Nominative Not
Structured

 غ١ش٘ب

 gyr changed VPst_3SMOYNA غ١شَ
Verb Past Third Singular Masculine NonMood Structured Not

Certainty Active

 hA it NPrn_SFAY Noun Pronoum Singular Feminine Accusative Structured ٘ب

 fy in PRed_Non Particle For_Reduction have_No_meaning فَٟ فٟ

 إٌظش

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 nZr view NNou_SMGN Noun Common Singular Masculine Genative Not Structured ٔظشَ

 AlY to PRed_Non Particle For_Reduction have_No_meaning اٌَٝ اٌٝ

 اٌششق

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 rq East NNou_SMGN Noun Common Singular Masculine Genative Not Structured$ ششقَ

 ٚاٌغشة

َٚ w and PCnj_Lnk Particle For_Conjection have_meaning_of_Linking

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 grb west NNou_SMGN Noun Common Singular Masculine Genative Not Structured غشةَ

ٌٛ ٌََٛ lw If PNon_Con Particle Not_have_working have_meaning_of_Conditional

 kAn was VPst_3SMOYNA وبََْ وبْ
Verb Past Third Singular Masculine NonMood Structured Not
Certainty Active

 الاعزششاق

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 Ast$rAq Orientalism NAdo_SMNN اعزششاقَ
Noun Adjective(Other) Singular Masculine Nominative Not
Structured

 fy in PRed_Non Particle For_Reduction have_No_meaning فََٟ فٟ

 اٌّغزٜٛ

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 mstwY level NNou_SMGN Noun Common Singular Masculine Genative Not Structured ِغزَٜٛ

 اٌزفص١ٍٟ

 Al the PNon_Def Particle Not_have_working have_meaning_of_Definition ايَ

 tfSyly detailed NAdo_SMGN Noun Adjective(Other) Singular Masculine Genative Not Structured رفص١ٍَٟ

 وّب

 k as PRed_Sim Particle For_Reduction have_meaning_of_Simile نََ

 mA what NRel_SMGY Noun Relative Singular Masculine Genative Structured ِبَ

 jAʼ came VPst_3SMOYNA جبءََ جبء
Verb Past Third Singular Masculine NonMood Structured Not

Certainty Active

 bEd after NNou_SMAN Noun Common Singular Masculine Accusative Not Structured ثؼذََ ثؼذ

 mArks Marx NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ِبسوظََ ِبسوظ

. ََ. . . CPnc Punctuation

Appendix C

 126

Appendix C: output of our analyzer for simple sentence

Output of our analyzer for simple

sentence

wordَ

Tokensَ Lemma Analyzing / Tag
Arabic

Transli-

teration

Trans-

lation

َاجزّغ AjtmE Met َاجزّغ

 # VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active اِجتَمَعََ

 اِجتَمَعََ
VImv_2SMOYNA Verb Imperative Second Singular Masculine NonMoodStructured Not Certainty

Active #

 اِجتَمَعََ
VPrt_1SMNNNA Verb Present First Singular Masculine Nominative Not Structured Not Certainty

Active #

 اِجتَمَعََ
VPrt_1SMJNNA Verb Present First Singular Masculine JussiveNot Structured Not Certainty Active

 اِجتَمَعََ
VPrt_1SMANNA Verb Present First Singular Masculine Accusative Not Structured Not Certainty

Active #

 # VPst_3SMOYNP Verb Past Third Singular Masculine NonMoodStructured Not Certainty Passive اِجتَمَعََ

 اِجتَمَعََ
VPrt_1SMNNNP Verb Present First Singular Masculine Nominative Not Structured Not Certainty

Passive #

 اِجتَمَعََ
VPrt_1SMJNNP Verb Present First Singular Masculine JussiveNot Structured Not Certainty Passive

 اِجتَمَعََ
VPrt_1SMANNP Verb Present First Singular Masculine Accusative Not Structured Not Certainty

Passive #

 zEmAʼ صػّبء
Leader

s
 صػّبء

 # NAdo_PMNN Noun Adjective(Other) Plural Masculine Nominative Not Structured زَعيمَ

 # NAdo_PMAN Noun Adjective(Other) Plural Masculine Accusative Not Structured زَعيمَ

 # NAdo_PMGN Noun Adjective(Other) Plural Masculine Genative Not Structured زَعيمَ

 Aldwl States اٌذٚي

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 دٚي

 # NNou_PFNN Noun Common Plural Feminine Nominative Not Structured دَوْلَةَ
 # NNou_PFAN Noun Common Plural Feminine Accusative Not Structured دَوْلَةَ
 # NNou_PFGN Noun Common Plural Feminine Genative Not Structured دَوْلَةَ

AlErby اٌؼشث١خ

p
The

Arabic

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 ػشث١خ
 # NAdg_SFNN Noun Adjective(Genealogical) Singular Feminine Nominative Not Structured عربي

 # NAdg_SFAN Noun Adjective(Genealogical) Singular Feminine Accusative Not Structured عربي

 # NAdg_SFGN Noun Adjective(Genealogical) Singular Feminine Genative Not Structured عربي

 fy فٟ
In

 فٟ

 # PRed_Non Particle For_Reduction have_No_meaning في

 # PRed_Cau Particle For_Reduction have_meaning_of_Caution في

 # PRed_Adv Particle For_Reduction have_meaning_of_Adverbial في

 # NFiv_SMGN Noun Five_Noun Singular Masculine Genative Not Structured في

 وَفَى
VImv_2SFOYNA Verb Imperative Second Singular Feminine NonMoodStructured Not Certainty

Active #

 bgdAd ثغذاد
Baghd

ad

 ثغذاد

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured بغداد

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured بغداد

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured بغداد

 # NNou_SMNN Noun Common Singular Masculine Nominative Not Structured بَغْدادَ

 # NNou_SMAN Noun Common Singular Masculine Accusative Not Structured بَغْدادَ

 # NNou_SMGN Noun Common Singular Masculine Genative Not Structured بَغْدادَ

wAjmE ٚاجّؼٛا

wA

And
gather

 # PCnj_Lnk Particle For_Conjection have_meaning_of_Linking و ٚ

 اجّؼٛا

 # PRed_Cer Particle For_Reduction have_meaning_of_Certainty و

 # PRed_Non Particle For_Reduction have_No_meaning و

 # VPst_3PMOYNA Verb Past Third Plural Masculine NonMoodStructured Not Certainty Active أجمَعََ

 أجمَعََ
VImv_2PMOYNA Verb Imperative Second Plural Masculine NonMoodStructured Not Certainty

Active #

 # VPst_3PMOYNP Verb Past Third Plural Masculine NonMoodStructured Not Certainty Passive أجمَعََ

 جَمَعََ
VImv_2PMOYNA Verb Imperative Second Plural Masculine NonMoodStructured Not Certainty

Active #

 ػٍٝ ElY To/on ػٍٝ

 # PRed_Lnk Particle For_Reduction have_meaning_of_Linking على

 # PRed_Non Particle For_Reduction have_No_meaning على

 # PRed_Adv Particle For_Reduction have_meaning_of_Adverbial على

 # PRed_Cnd Particle For_Reduction have_meaning_of_Conditional على

 # PRed_Cau Particle For_Reduction have_meaning_of_Caution على

 # VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active عَلَّى

 اْ An That اْ

 # PCop_Cer Particle For_copying have_meaning_of_Certainty إنََّ

 # PCop_Cer Particle For_copying have_meaning_of_Certainty أنََّ

 # PNon_Non Particle Not_have_working have_No_meaning إنََّ

 # PNon_Non Particle Not_have_working have_No_meaning أنََّ

 # PNon_Neg Particle Not_have_working have_meaning_of_Negative إنَْ

 # PNon_Non Particle Not_have_working have_No_meaning إنَْ

 # PNon_Non Particle Not_have_working have_No_meaning أنَْ

Appendix C

 127

 # PAcu_Sub Particle For_Accusative have_meaning_of_Subordinating أنَْ

 # VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active أنَََّ

 # VPst_3SMOYNP Verb Past Third Singular Masculine NonMoodStructured Not Certainty Passive أنَََّ

 وَنَى
VPrt_1SMJNNA Verb Present First Singular Masculine JussiveNot Structured Not Certainty Active

ysAnd ٠غبٔذٚا

wA

They
suppor

t

 ٠غبٔذٚا

 # VPrt_3PMJNNA Verb Present Third Plural Masculine JussiveNot Structured Not Certainty Active سَانَدََ

 سَانَدََ
VPrt_3PMANNA Verb Present Third Plural Masculine Accusative Not Structured Not Certainty

Active #

 # VPrt_3PMJNNP Verb Present Third Plural Masculine JussiveNot Structured Not Certainty Passive سَانَدََ

 سَانَدََ
VPrt_3PMANNP Verb Present Third Plural Masculine Accusative Not Structured Not Certainty

Passive #

 AlrbyE اٌشث١غ

The
spring

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 سث١غ

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured ربيع

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured ربيع

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ربيع

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured ربيع

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured ربيع

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured ربيع

 # NNou_SMNN Noun Common Singular Masculine Nominative Not Structured رَبيِعَ

 # NNou_SMAN Noun Common Singular Masculine Accusative Not Structured رَبيِعَ

 # NNou_SMGN Noun Common Singular Masculine Genative Not Structured رَبيِعَ

 AlErby اٌؼشثٟ
The

Arabic

 # PNon_Def Particle Not_have_working have_meaning_of_Definition ال اي

 ػشثٟ

 # NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured عربي

 # NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured عربي

 # NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured عربي

رَْ # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured بيع

رْبي # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured ع

رْبي # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured ع

 # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured عَرَبي

 # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured عَرَبي

 # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured عَرَبي

 # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured عَرَبِيَ

 # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured عَرَبِيَ

 # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured عَرَبِيَ

 # NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured عَرِبي

 # NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured عَرِبي

 # NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured عَرِبي

بََ عَرَّ
VImv_2SFOYNA Verb Imperative Second Singular Feminine NonMoodStructured Not Certainty

Active #

 128

References

 129

References

[1]. Abney S., Schapire R. and Singer Y. (1999). Boosting Applied to Tagging and PP

Attachment. Proceedings of the Joint SIGDAT Conference on Empirical Methods

in Natural Language Processing and Very Large Corpora, USA.

[2]. Alba E., Luque G., Araujo L. (2006). Natural language tagging with genetic

algorithms. Information Processing Letters journal, Volume 100 (No 5).

[3]. AL-Bidhani S. (2000). Nuzhat Altarf for explanation of verb construction in the

science of morphology. (by) Al-Ain, UAE, (Arabic Book).

[4]. Al-Dahdah A. (1989). Lexicon of Arabic language Grammar in tables and

tablets. 4
th

 edition. Maktabat-Lebnan-Nashiroon, Beirut, Lebanon, (Arabic Book).

[5]. AlGahtani S., Black W., and McNaught J. (2009). Arabic part-of-speech-tagging

using transformation-based learning. Proceeedings of the 2
nd

 International

Conference on Arabic Language Resources and Tools, Cairo, Egypt.

[6]. Al-Galaiini M. (1990). Jamia Al-drooss Al-Arabia 1
st
 edition, (by) Dar Al-Karkh,

(Arabic book).

[7]. Al-Hamlawy A.(1957). Shaza Al-Orf in the art of morphology. (by) Dar Al-

Kiaan, Riadh, KSA, (Arabic book).

[8]. Al-Moradi I. (1992). Al-Juna Al-Dani in particles of meaning. 1
st
 edition, (by)

Dar al-kotob al-ilmiyah, Beirut, Lebanon, (Arabic Book).

[9]. AlQrainy S. and Ayeshi A. (2006). Developing a tagset for automated POS

tagging in Arabic. WSEAS Transactions on Computers Vol 5.

[10]. Al-Rajhi A. (1979). The application of morphology. (by) Dar Al-Nahdha Al-

Arabia Beirut, (Arabic book).

[11]. AL-Shamsi F. and Guessoum A. (2006). A Hidden Markov Model-Based POS

Tagger for Arabic. 8
es

 Journees Internationales d'Analyse statistique des Donnees

Textuelles.

[12]. Al-Sughaiyer I. and Al-Kharashi I. (2004). Arabic morphological analysis

techniques: A comprehensive survey. Journal of the American Society for

Information Science and Technology Vol. 55 (No. 3).

[13]. Attia M. (2007). Arabic tokenization system. Proceedings of the Workshop on

Computational Approaches to Semitic Languages (Semitic '07): Common Issues

and Resources. Stroudsburg, PA, USA.

[14]. Atwell E. (2008). Development of tag sets for part-of-speech tagging. Ludeling

A, Kyto M (ed.) Corpus Linguistics: An International Handbook, Vol 1, Mouton

de Gruyter.

[15]. Atwell E., Al.Sulaiti L., Al.Osaimi S. and Abu.Shawar B. (2004). A Review of

Arabic Corpus Analysis Tools. Proceedings of JEP.TALN'04 Arabic Language

Processing, Fes, Morocco.

[16]. Badr I., Zbib R. and Glass J. (2008). Segmentation for English-to-Arabic

Statistical Machine Translation. Proceedings of the 46th Annual Meeting of the

Association for Computational Linguistics on Human Language Technologies.

Columbus, Ohio, USA.

References

 130

[17]. Beesley K. (1996). Arabic finite-state morphological analysis and generation. In

Proceedings of the 16
th

 International Conference on Computational Linguistics

(COLING-96), Copenhagen, Denmark.

[18]. Beesley K. (2001). Finite-State Morphological Analysis and Generation of

Arabic at Xerox Research: Proceedings of the Arabic Language Processing: Status

and Prospect: 39
th

 Annual Meeting of the Association for Computational

Linguistics. Toulouse, France.

[19]. Benajiba Y. and Zitouni I. (2010). Arabic Mention Detection: toward better unit

of analysis. Proceeding of Human Language Technologies: The 11
th

 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics. Stroudsburg, PA, USA.

[20]. Benajiba Y., Zitouni I. (2010): Arabic Word Segmentation for Better Unit of

Analysis. Proceedings of the 7
th

 International Conference on Language Resources

and Evaluation (LREC'10). European Language Resources Association (ELRA),

Malta.

[21]. Bin-Muqbil M. (2006). Phonetic and Phonological Aspects of Arabic Emphatics

and Gutturals. PhD dissertation, University of Wisconsin-Madison, USA.

[22]. Bird S., Klein E. and Loper E. (2009). Natural Language Processing with Python.

(by) Published by O‟Reilly Media, USA.

[23]. Bosch A., Marsi E., and Soudi A. (2007). Memory-based morphological analysis

and part-of-speech tagging of Arabic. Arabic Computational Morphology:

knowledge-based and empirical methods, Kluwer / Springer Publications.

[24]. Brill E. (1995). Transformation-based error-driven learning and natural

language processing: A case study in part-of-speech tagging. Computational

Lingustics, Vol 21(No. 4).

[25]. Buckwalter T. (2002). Buckwalter Arabic Morphological Analyzer Version 1.0.

Linguistic Data Consortium, University of Pennsylvania.

[26]. Buckwalter T. (2004). Isues in Arabic Orthography and morphology Analysis.

Proceedings of the Workshop on Computational Approaches to Arabic Script-

based Languages, USA.

[27]. Cavalli-Sforza V., Soudi A. and Mitamura T. (2000). Arabic Morphology

Generation Using a Concatenative Strategy. Proceedings of the 1st North

American chapter of the Association for Computational Linguistics conference

(NAACL 2000). Seattle, Washington, USA.

[28]. Chanod J. and Tapanainen P. (1996): A Non-deterministic Tokeniser for Finite-

State Parsing. Proceeding of 12
th

 European Conference on Artificial Intelligence,

Budabest, Hungary.

[29]. Clark A. (2003). Combining distributional and morphological information for

part of speech induction. Proceeding of 10
th

 of Annual meeting of EACL,

Budapest, Hungary.

[30]. Daelemans W., Zavrel J., Berck P. and Gillis S. (1996). MBT: A memory-based

part of speech tagger generator. Proceedings of the Fourth Workshop on Very

Large Corpora / ACL SIGDAT, Cobenhagen, Denmark.

[31]. Darwish K. (2002): Building a Shallow Arabic Morphological Analyzer in One

Day. Proceedings of the ACL-02 workshop on Computational approaches to

Semitic languages. PA, USA.

References

 131

[32]. Diab M. (2009). Second Generation AMIRA Tools for Arabic Processing: Fast

and Robust Tokenization, POS tagging, and Base Phrase Chunking.

Proceedings of the Second International Conference on Arabic Language

Resources and Tools, Cairo, Egypt.

[33]. Diab M., Hacioglu K. and Jurafsky D. (2004). Automatic Tagging of Arabic Text:

From Raw Text to Base Phrase Chunks. Proceedings of Human Language

Technology Conference (HLT-NAACL), Boston, Massachusetts, USA.

[34]. Diab M., Hacioglu K. and Jurafsky D. (2007). Automated Methods for Processing

Arabic Text: From Tokenization to Base Phrase Chunking. Arabic

Computational Morphology: Knowledge-based and Empirical Methods. Kluwer /

Springer Publications.

[35]. Dichy J. (2001). On lemmatization in Arabic, A formal definition of the Arabic

entries of multilingual lexical databases. Proceding in Arabic NLP Workshop at

ACL/EACL, Toulouse, France.

[36]. El Hadj Y., Al-Sughayeir I. and Al-Ansari A. (2009). Arabic Part-Of-Speech

Tagging using the Sentence Structure. Proceedings of the Second International

Conference on Arabic Language Resources and Tools, Cairo, Egypt.

[37]. El-Dahdah A. (1994): An Intermediate Dictionary of Verb Conjugation. 1
st

edition, Libaririe Du Liban Publisher, Beirut, Lebnan. (Aabic book).

[38]. Elhadj Y. (2009). Statistical Part-of-Speech Tagger for Traditional Arabic Texts.

Journal of Computer Science Vol5 (No.11).

[39]. El-Shishtawy T. and El-Ghannam F. (2012). An Accurate Arabic Root-Based

Lemmatizer for Information Retrieval Purposes. International Journal of

Computer Science Issues(IJCSI), Vol. 9, (No. 1).

[40]. Elworthy D. (1995). Tagset Design and Inflected Languages. In: Proceedings of

the ACL SIGDAT Workshop, Dublin.

[41]. Feldman A. (2008) .TagsetDesign,InflectedLanguages, and N-gram Tagging.

The Linguistics Journal Vol. 3 (No. 1).

[42]. Freeman A. (2001): Brill’s POS tagger and a morphology parser for Arabic.

Proceding of ACL/EACL-Workshop on Arabic Language Processing: Status and

Prospects, Toulouse, France.

[43]. Glass K. and Bangay S. (2005). Evaluating parts-of-speech taggers for use in a

text-to-scene conversion system. Proceeding of SAICSIT, White River, South

Africa.

[44]. Gridach M. and Chenfour N. (2011). Developing a New System for Arabic

Morphological Analysis and Generation. Proceedings of the 2
nd

 Workshop on

South and Southeast Asian Natural Language Processing (WSSANLP)-IJCNLP,

Chiang Mai, Thailand.

[45]. Habash N. (2010). Introduction to Arabic Natural Language Processing.

Synthesis Lecture on Human Langauge Technologies. A Publication in the Morgan

& Claypool Publishers series, UAS.

[46]. Habash N. and Rambow O. (2005). Arabic Tokenization, Part-of-Speech Tagging

and Morphological Disambiguation in One Fell Swoop. Proceedings of the 43
rd

Annual Meeting of the ACL, Michigan, USA.

[47]. Habash N. and Roth R. (2009). CATiB: The Columbia Arabic Treebank.

Proceedings of the ACL-IJCNLP, Suntec, Singapore.

References

 132

[48]. Habash N. and Sadat F. (2006). Arabic Preprocessing Schemes for Statistical

Machine Translation. published in the Proceedings of Human Language

Technology Conference/North American Chapter of the Association for

Computational Linguistics (HLT/NAACL), New York, USA.

[49]. Habash N., Faraj R., and Roth R. (2009). Syntactic Annotation in the Columbia

Arabic Treebank. In Proceedings of MEDAR International Conference on Arabic

Language Resources and Tools, Cairo, Egypt.

[50]. Habash N., Rambow O. and Kiraz G. (2005). Morphological Analysis and

Generation for Arabic Dialects. Proceedings of the ACL Workshop on

Computational Approaches to Semitic Languages, Michigan, USA.

[51]. Habash N., Rambow O. and Roth R. (2009). MADA+TOKAN: A Toolkit for

Arabic Tokenization, Diacritization, Morphological, Disambiguation, POS

Tagging, Stemming and Lemmatization. Proceedings of the 2nd International

Conference on Arabic Language Resources and Tools (MEDAR), Cairo, Egypt.

[52]. Henrich V., Reuter T. and Loftsson H. (2009): CombiTagger: A System for

Developing Combined Taggers. Proceedings of the Twenty-Second International

FLAIRS Conference, Sanibel Island, Florida, USA.

[53]. Jackson P. and Moulinier I. (2002). Natural Language Processing for Online

Applications Text Retrieval Extraction and Categorization. John Benjamins

Publishing Company, Amsterdam, Philadelphia.

[54]. Jurafsky D. and Martin J. (2008). Speech and Language Processing: An

introduction to natural language processing, computational linguistics, and

speech recognition. (by) Prentice Hall, USA.

[55]. Karlsson F., Voutilainen A., Heikkila J. and Anttila A. (1995). Constraint

Grammar: A Language-Independent System for Parsing Unrestricted Text.

Mouton de Gruyter, berlin, Germany.

[56]. Khoja S. (1999): Stemming Arabic Text. Computing Department, Lancaster

University, Lancaster, U.K.

[57]. Khoja S. (2001). APT: Arabic Part-of-Speech Tagger. In Proceedings Student

Workshop at the Second Meeting of (NAACL2001), Pittsburgh, Pennsylvania.

[58]. Khoja S. and Garside R. (1999). Stemming Arabic Text. Lancaster, UK,

Computing Department, Lancaster University.

http://www.comp.lancs.ac.uk/computing/users/khoja/stemmer.ps.

[59]. Khoja S., Garside R., and Knowles G. (2001). A tagset for themorphosyntactic

tagging of Arabic. In Proceedings of Corpus Linguistics, Lancaster, UK.

[60]. Kim J., Kim G. (1996): Fuzzy Network Model for Part-of-Speech Tagging under

Small Training Data. Natural Language Engineering, Vol. 2 (No 2).

[61]. Klein S. and Simpson R. (1963). A computational approach to grammatical

coding of English words. Journal of ACM Vol. 10(No. 3).

[62]. Köprü S. (2011): An efficient part-of-speech Tagger for Arabic. Proceedings of

the 12
th

 international conference on Computational linguistics and intelligent text

processing (CICLing'11), Tokyo, Japan.

[63]. Kuba A., Felföldi L. and Kocsor A. (2005). POS tag-ger combinations on

Hungarian text. Proceedings of the 2nd International Joint Conference on Natural

LanguageProcessing (IJCNLP-05), Heidelberg, Germany.

References

 133

[64]. Kulick S. (2010). Simultaneous Tokenization and Part-of-Speech Tagging for

Arabic without a Morphological Analyzer. Proceedings of the Association for

Computational Linguistics (ACL) Conference Short Papers, Uppsala, Sweden.

[65]. Kulick S., Gabbard R., and Marcus M. (2006). Parsing the Arabic Treebank:

Analysis and Improvements. Proceedings of theTreebanks and LinguisticTheories

Conference, Prague, Czech Republic.

[66]. Lee Y., Papineni K. and Roukos S. (Emam O. and Hassan H.) (2003). Language

Model Based Arabic Word Segmentation. Proceedings of the 41st Annual

Meeting of the Association for Computational Linguistics. Sapporo, Japan.

[67]. Loftsson H. (2006): Tagging Icelandic text: An experiment with integrations and

combinations of taggers. Language Resources and Evaluation Vol. 40 (No. 2).

[68]. Manning C. and Schütze H. (1999). Foundations of Statistical Natural Language

Processing. (by) MIT Press. Cambridge, London, UK.

[69]. Mansour S., Sima'an K. and Winter Y. (2007). Smoothing a Lexicon-based POS

Tagger for Arabic and Hebrew. Proceedings of the 2007 Workshop on

Computational Approaches to Semitic Languages (Semitic '07): Common Issues

and Resources, Prague, Czech Republic.

[70]. Mayfield J., McNamee P., Piatko C. and Pearce C. (2003): Lattice-based Tagging

using Support Vector Machines. Proceedings of the twelfth international

conference on Information and knowledge management (CIKM '03), Louisiana,

USA.

[71]. Mohamed E. and Kübler S. (2010). Arabic Part of Speech Tagging. Proceedings

of the Seventh International Conference on Language Resources and Evaluation

(LREC'10), Valletta, Malta.

[72]. Nakagawa T., Kudoh T. and Matsumoto Y. (2001). Unknown Word Guessing and

Part-of-Speech Tagging Using Support Vector Machines. Proceedings of the 6
th

Natural Language Processing Pacific Rim Symposium, Tokyo, Japan.

[73]. Nitin I. and Fred J. (2010). Handbook of Natural Language Processing, Second

Edition. Chapman & Hall/CRC Machine Learning & Pattern Recognition, USA.

[74]. Nugues P. (2006). An Introduction to Language Processing with Perl and

Prolog. (by) Springer-Verlag, Berlin Heidelberg, Germany.

[75]. Padró L. (1996): POS tagging using relaxation labeling. Proceedings of the 16
th

conference on Computational linguistics (COLING), Copenhagen, Denmark.

[76]. Peng F., Feng F. and McCallum A. (2004). Chinese segmentation and new word

detection using conditional random fields. In Proceedings of the 20th

international conference on Computational Linguistics (COLING '04), University

of Geneva, Switzerland.
[77]. Ratnaparkhi A. (1996). A Maximum Entropy Model for Part-Of-Speech Tagging.

Proceedings of the Empirical Methods in Natural Language Processing Conference

(EMNLP), University of Pennsylvania, USA.

[78]. Ratnaparkhi A. (1998). Maximum entropy models for natural language

ambiguity resolution. PhD dissertation, University of Pennsylvania, Philadelphia.

[79]. Roche E. and Schabes Y. (1995). Deterministic part-of-speech tagging with

finite-state transducers. In: Computational Linguistics Journal

http://dl.acm.org/citation.cfm?id=211200, Vol. 21 (No. 2).

http://dl.acm.org/citation.cfm?id=211200

References

 134

[80]. Ryding K. (2005). A Reference Grammar of Modern Standard Arabic. (by)

Unversity Press, Cambridge, UK.

[81]. Sakhr Software, Arabic Morphological Analyzer http://www.sakhr.com.

[82]. Sawalha M. (2011). Open-source Resources and Standards for Arabic Word

Structure Analysis: Fine Grained Morphological Analysis of Arabic Text Corpora

TAGGING. PhD dissertation, School of Computing, University of Leeds, UK.

[83]. Schmid H. (1994). A Probabilistic Part-of-Speech Tagging Using Decision Trees.

Proceedings of International Conference on New Methods in Language

Processing, Manchester, UK.

[84]. Schmid H. (1994). Part-of-Speech Tagging with Neural Networks. Proceedings

of the 15th International Conference on Computational Linguistics (COLING-94),

Kyoto, Japan.

[85]. Shaalan K. (2010). Rule-based Approach in Arabic Natural Language

Processing. International Journal on Information and Communication

Technologies, Vol. 3(No. 3).

[86]. Silfverberg M. and Lindén K. (2010). Part-of-Speech Tagging Using Parallel

Weighted Finite-State Transducers. Proceeding of 7
th

 International Conference on

Natural Language Processing (IceTAL), Reykjavik, Iceland.

[87]. Sjobergh J. (2003). Stomp, a POS-tagger with a Different View. Proceeding of

Recent Advances in Natural Language Processing (RANLP-2003). Borovets,

Bulgaria.

[88]. Smrz O. (2007). Functional Arabic Morphology, Formal System and

Implementation. Ph.D. thesis, institute of formal and applied Linguistics, Faculty

of mathematics and physics, Charles University in Prague.

[89]. Tlili-Guiassa Y. (2006): Hybrid Method for Tagging Arabic Text. Journal of

Computer Science Vol 2 (No 3).

[90]. Toutanova K., Klein D., Manning C. and Singer Y. (2003). Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Network. Proceeding of Human

Language Technology Conference (HLT-NAACL 2003), Edmonton, Canada.

[91]. Wu D., Ngai G. and Carpuat M. (2003). A Stacked, Voted, Stacked Model for

Named Entity Recognition. precceding of 7
th

 Conference on Natural Language

Learning (CoNLL-2003), Edmonton, Canada.

[92]. Yonghui G., Baomin W., Changyuan L., and Bingxi W. (2006). Correlation voting

fusion strategy for part of speech tagging. Proceeding of 8
th

 International

Conference on Signal Processing (ICSP), IEEE conference, Guilin, China.

http://www.sakhr.com/

References

 63

