University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Ahmed H. Aliwy

Arabic Morphosyntactic Raw Text
Part of Speech Tagging System

PhD dissertation

Supervisor

Prof. dr hab. Jerzy Tyszkiewicz
Institute of Informatics
University of Warsaw

January 2013

Author’s declaration:
Aware of legal liability | hereby declare that | have written this dissertation
my self and all the contents of the dissertation have been obtained by legal

means.

January 14, 2013
date Ahmed H. Aliwy

Supervisor’s declaration:

The dissertation is ready to be reviewed

January 14, 2013
date Prof. dr hab. Jerzy Tyszkiewicz, UW

Abstract

We present a comprehensive Arabic tagging system: from the raw text to tagging
disambiguation. For each processing step in the tagging system, we analyze the
existing solutions (if any) and use one of them or propose, implement and
evaluate a new one.

This work began with designing a new Arabic tagset suitable for Classical Arabic
(CA) and Modern Standard Arabic (MSA). In addition to the classical
constructions in tag systems, we introduce interleaving of tags. Interleaving is a
relation between tags which, in certain situations, can be attached to the same
occurrence of a word, but each of them can also appear alone. Our tagset makes
this relation explicit.

Then we deal with the preparatory stages for tagging system. The first initial
stage is tokenization and segmentation. We use rule-based and statistical
methods for this task. The second stage is analyzing and extracting the lemma
from the word. We have created our own analyzer compatible with our
requirements. Its main part is a dictionary which provides features, POS and
lemma for each word.

The last part of our work is the tagging algorithm which produces one tag for
each word. We use a hybrid method by combining rules-based and statistical
methods. Three taggers, Hidden Markov Model (HMM), maximum match and Brill
are combined by a new method, which we call master and slaves. Then
handwritten rule-based tagger is also added to master-slaves. The rule based
tagger eliminates incorrect tags, and the master chooses the best one among the
remaining ones, assisted by the other slaves.

Our complete system is ready to be used for annotation of Arabic corpora.

Key words

Arabic tagset, Arabic tagger, Arabic Tokenization, Arabic segmentation, Arabic
lemmatization, master-slaves tagging, tagset interleaving, handwritten rules-
based tagger.

Published papers:

Chapter 3:

Ahmed H. Aliwy (2013): Comparing Arabic tagsets and Designing a
New One. to appear in: Lingwistyka Stosowana "Applied Linguistics” nr
(7) 2013, University of Warsaw, Poland.

Chapter 4:

Ahmed H. Aliwy (2012): Tokenization as Preprocessing for Arabic
Tagging System . In proceeding of International Conference on Knowledge
and Education Technology (ICKET 2012), Paris, 2012. Published in
International Journal of Information and Education Technology Vol.2(4):
348-353.

Chapter 5:

Ahmed H. Aliwy (2012): Arabic Language Analyzer with Lemma
Extraction and Rich Tagset. In proceeding of JapTAL 2012, Japan.
Lecture Notes in Computer Science vol. 7614, pp. 168-179.

Table of

Chapter 1 INErOAUCTIONeeeiiie e e e 7
1.1 INEFOTUCTION ... 7
1.2 The overview of the diSSErtation...........cccoerveiiiieiiieiiee e 8
1.3 RElated WOTK......oooiiiieeiie et 9

1.3.1 Tagset related WOIKS...........oeiiiiiiiie e 9
1.3.2 Tokenization related WOrKS...........ccveviiieiiiie e 10
1.3.3 Analyzing and extracting lemma related Works.............c.ccccovveeivnenen, 11
1.3.4 Tagging related WOTKScccooiiiiiieie e 12
1.35 Combining taggers related WOrkccoceeviieeiiie e, 12
1.3.6 Works related to the complete SyStem..........cccevvieiieiiiniicesicceee, 13
1.4 DiSSertation OULHNEcceoiuieiiieiie et 13

Chapter 2 Introduction to ArabiC 1anguageccccveviiriiienii e 15
2.1 INEFOAUCTION .. 15
2.2 ATADIC LBLEEIS. .. 15
2.3 Arabic Language VarietieS.........cccecoiiieiiiee et 16
2.4 Arabic Morphology........cocooiiiiiii 18
2.5 Morphological TUIESccoiiieeie e 19

2.5.1 Inflectional TUIEScccvveiiiiiece e 20
2.5.2 WOrd fOrmation...........ccoeeiieiiie e 21
2.6 Arabic patterns (AWzaan)..........cccveeiiuieeiiiiee e 22
2.7 WOrds in the SENTENCES........ccuie e 23

Chapter 3 Comapring Arabic tagset and designing a NEW ONe..........ccceeevveereveenne 25

3.1 INEFOAUCTION ..o 25
311 KNOJA TAGSET ...t 26
3.1.2 Al Qrainy tagsel:coiuieie e 27
3.1.3 Majdi SAWAINAooiieiiiiiii 28
3.14 Yahya ElNad).......ccoooimiiiii e 29
3.15 Buckwalter tagSet........ocviiiiiiiie e 32
3.1.6 Reduced Buckwalter tagsets: BIES, KULICK and ERTS 33
3.1.7 The CATIB POS tagSeteccvveeieeiiie ettt 34
3.1.8 The PADT tagSeL.......vviieeiiiiiee ettt a e 35

3.2 Traditional ArabiC POS........cc.oi i 36
3.21 Main ArabiC POS ... 36
3.2.2 ATabiC NOUN CIASSESvieviieeiiiieeiiie e eiie e eee e ee e e e 36
3.2.3 ATADIC VEIDS ... 37
3.24 ATabiC PartiCIESovviiiii i 38

3.3 Designing an ArabiC TAgGSELeeiiureiiieieiiie et 39
3.3.1 DESIGNING CIITEIIA ... vveeieieeeiiie e ciee e e e srae e nnaee e 39
3.3.2 Tagset Interference or iINterleavingcocceeevieeeniie e 40

3.4 A NEW ArabiC TaQSEL....ccuvieeiiieeiiie e rree e e e naee e 41
34.1 MaIN POS ..ot 41

3.4.2 Arabic noun class in the proposed tagsetccccevvveviieeeiiieeecieeenn 41

3.4.3 Arabic Verb Classes and Attribuits in our Tagset..........ccccoeevveeiveenne, 43

3.4.4 Particles Classification in the proposed tagset...........ccoovvevverieennnne 43
3.45 Residuals and punctuationccceeevieeiiie e 45
3.5 MUITHEVET TAGSEL ... 46
3.6 Practical representation of the proposed tagsetcccceevvveiiiveeiiieeiinens 47
3.7 D oW 5] o] o PRSP 47
Chapter 4 Segmentation and TOKENIZAtIOcccevvvveeiiiieeiiiee e 49
4.1 INEFOTUCTION ... neeas 49
4.2 TOKENIZAtION SYSIEMcciiiiiiiie e nrae e 50
4.3 RElAted WOIK ... et 51
4.4 Word and Sentence Segmentationccccoovveeriieeiiiee e 52
441 Sentence SEgMENTATIONc.eeiviiiieiiieiee e 52
4.4.2 WOrd SEgMENtAtIONcccvvieiiieeiiie e 52
4.5 NOIMALIZATION ...t 52
4.6 Arabic TOKENIZALION.cciiiiiieiiieiie e 53
4.7 Arabic WOrd FOrM.......eiiiiie e 53
4.7.1 WOTA CHITICS ...t 54
4.8 Tokenization and segmentation techniques and schemes............c.c.cceeeeene. 57
4.9 Challenges of Arabic tokenization...........cccccocvveiiieeiiie e 58
4,10 OUF @PPIOACK ...ttt 59
4.11 Applying statistical IMProvVemMENt...........cccoeeiiiiieiiie e 61
A.12 RESUIS ...ttt naee e 61
T I T ot U] (o] o [PPSO PR 62
Chapter 5 Analyzing and lemma exXtraCtionccoovveiieeniiiiie e 64
51 INEFOAUCTION ..o 64
5.2 Lemma, StEM and FOOL.......ccooeeeeeeeeeeeeeeeeeeeeeeeeeeee e 65
5.3 Morphological analysis with lemma extraction for Arabic......................... 66
5.4 Challenges for lemmatization and analyzingccccevvieniiiinniiennnne 68
5.5 Analyzing as PreproCeSSING.......ccueeeiueeeiieeeiiieeesiteeesireessteeeasseeesssseessseaens 69
5.6 The proposed analyzing ApProachccccoceerieieiiiieiiiese e 70
5.6.1 UnKNOWN WOrdS ProCeSSING.....cc.vveeiveeeiiieeiiieeciieesitie et e e eseieee e 71
5.7 BUIldING DICHONAIYviiiiiiiiiiiiie e 74
5.8 RESUIS ..ot 75
5.9 RelAted WOTK.......oeiiiicce e 76
5.10 Discussion and feature WOIKccccooiiiiiiiininiie e 77
Chapter 6 Survey of General and Arabic Tagging SyStemccccoovevveiiieiiieennn. 79
6.1 INEFOTUCTION .. 79
6.2 Tagging by manually created rules.........cccooviviiiiiiiiiiie e 80
6.3 N-grams MOdEl..........cuviiiiiie 80
6.4 Transformation-Based tagging (Brill)cccooiiiiiiiii 82
6.5 [LYY/ = Vo o T PP SPSUPPRRPR 83
6.6 DECISION TrEES ..veieiiiieeiiiee et e ettt e et e e s e e e e st e e et e e e s e e e nnneeeneee e e 84
6.7 MaXimum ENLFOPY ..oociiiiiee s 84
6.8 NEUFAL NEEWOTKS ... ettt e e e 86
6.9 Memory based [8arNINGcooiuiiiiiii e 87
O TN T = T To 151 £ 1o OSSPSR 88
6.11 Relaxation labeling (Padro)cccccevieiieiiiieiii e 89
6.12 Cyclic Dependency NetWOrKcocoveiiiieiiiie e 89
6.13 Finite-State TranSAUCEISeeeiuiieiiiie ittt 89

6.14 Genetic AlQOrItNM ... 90

B.15 SVIM o 91

6.16 FUZZY SELTNEOIMY ..ooieeeieiiie e 91
B.17 BESEMALCH ..c.vviiiiiiiie e 91
6.18 Combining different taggers........coveeiiiiiie i 92
6.19 POS tagging approaches used for ArabiC............ccceeviieeiiieeiiiec e 92
6.20 Arabic POS tagging as a part of toolkits and applications.............c.ccccve.e 94
Chapter 7 Combining Taggers in Master-Slaves Technique.............ccccccccveiiieenne 95
7.1 INEFOTUCTION ... neeas 95
7.2 REIAE WOIK....oieiiiii it 97
7.3 Techniques for combining taggers.cocveiiieiiiiiie e 97
7.4 Maximum match (MM) TaQQer.......ccoveiiiieeiiee e 98
7.5 1YY T [0 TR PUPRR 99
7.6 First experiment of combining of MM & HMM taggers.........ccccccovveeiunenne 99
7.7 Modification for general USEccooveiiieiiiiiiiiiee e 101
7.8 Difference between the new and other methods..........c.cccovvveeiiiieiiinns 102
7.9 EXPEIIMENTS ...eiiiiiiiie ittt 102
7.10 Discussion and FUIher WOrK..........cccocoeiiiiiiiiiin e 103
Chapter 8 Combining Rules-based and Master-Slaves Taggercccccevvveennenne 105
8.1 INEFOAUCTION .. 105
8.2 REIAtEd WOTK...... i 106
8.3 Comparing between manually created rule-based taggers and other taggers
107
8.4 Implementation of an Arabic manually written rule-based tagger 107
8.5 Combining manually written rule-based taggers.........ccccoovvvieriincinnns 109
8.6 ReSUlts and diSCUSSIONooviiiiiiiiiieiie e 110
Chapter 9 Results, Discussion and FUture Workccccovvveiiiiniieesiiee e 111
9.1 IMPIEMENTALION ... e 111
9.2 Results and diSCUSSIONccuvieiiiieiiiie e 112
0.3 FULUIE WOTK ..ottt 114
APPENDIX Al Arabic letters family Unicodeccovviiiiiiiiiiiiiic e 116
Appendix A2: Arabic VErb Patternscocveeiiiee i 117
Appendix B: practical Text tagged by the proposed tagset...........ccccevveeriiieiiieininnns 119
Appendix C: output of our analyzer for simple sentence...........ccccceevvveeviieecineeenne, 126

RO O ENCES .o 129

Table of figores

Figure 1-1: The overview of the SYSTEM.........cooiiiiiiiiiie e 10
Figure 2-1: Arabic letters. The bold letters are vowels, the underlined letters are not
attached to succeeding letter in the Same WOKd.cccoviiiiiiie i 16
Figure 2-2: Arabic diacritics and CONTIOISccueiiiiiiiiieie e 17
Figure 2-3: ArabiC NUMDEISiiiiiiiiii et 17
Figure 2-4: Arabic Language Variations...........cccoueiieiieiiieiiesie e 17
Figure 2-5: Inflection causes deleting and changing of a lettercccoooeviviiiiicnnns 19
Figure 2-6: Inflection of merely verb “kataba”-“-<<” (write) with gender, person and
MUIMIDET .ottt b ettt b ettt e et 21
Figure 2-7: Deriving Verbs from VEID..........ccooiiiiiiie e 22
Figure 2-8: Deriving NOUNS Trom VEID.cooiiiiiiiiiiie e 23
Figure 3-1: KNOJA tAgSEL.oiviiiieiieie et 27
Figure 3-2: The Noun and Verbal attributes of Khoja Tgaset...........cccocvvvieiiiiieiiiennns 27
Figure 3-3: Al Qrainy tagset Hierarchy ..o 28
Figure 3-4: Majdi Sawalha main POS classification, letters 1, 2, 3 and 4 only. 30
Figure 3-5: Noun and its sub-categories in Elhadj tagset.ccccooeviiiiiiiiiiiiicis 31
Figure 3-6: Verb and its temporal-forms in Elhadj tagset.ccccooiiiiiiiiiiieiiiiicns 31
Figure 3-7: Main groups of particles in Elhadj tagset............ccccooviiiiiiiiiiiins 32
Figure 3-8: Buckwalter tagset COMPONENTS.ccviiiiiiiiiie e 33
Figure 3-9 1 THe BIeS tAgSELcviiiiiiiiiiie et 34
Figure 3-10: the CATIB POS tagSEL.......cuuiiiiiiiiiieiiii ittt 35
Figure 3-11: POS for The PADT TAGSELuviiiiiiieiieiie ittt 35
Figure 3-12: the PADT TEATUIES.......oiiuiiiiiiie ittt 35
Figure 3-13 : Noun classification according to itS tyPesS.......cccocvvrverieriiiiiiesie e 37
Figure 3-14: Noun classification according t0 itS Statuscccooveriiiiiiiiieiie e 37
Figure 3-15: Main POS.ot 41
Figure 3-16: Arabic Noun Classes in the proposed tagset.cccovvviieiiieiiiniieeiiennns 42
Figure 3-17: Noun features in the proposed tagset..........cccevvieeiiiie v 43
Figure 3-18: Verb classes in the proposed tagset........ccccvvveiiieeiiie e 43
Figure 3-19: Verbal attributes in the proposed tagset.........cccvvveviieeviie e 43
Figure 3-20: The classes of particles (working) in the proposed tagset............cccceevvvveenne. 44

Figure 3-21: Particles meaning in the proposed tagset (features).cccoevvvriviieennns 45

Figure 3-22: ReSIAUAIS CIASSES.coiviiiieiiiiiiei et 45
Figure 3-23: syntactic Classes Of NOUN.coovviiiiiiiii e 46
Figure 3-24: the Levels of the proposed tagset...........cooviiieriiniiiiieic e 47
Figure 4-1: The Tokenization as pre-processing task for tagging process. The output is

inflected word + clitics FOr aCh WOId..........cciiiiiiiiii s 51
Figure 4-2: An example of Arabic letter normalization..............cccooviiiiiiis 53
Figure 4-3: Verh ProClitiCs. ... 55
Figure 4-4 NOUN ProClITICS. ...vviiviiiieiiicie e 55
Figure 4-5: Proclitics for pronoun and pronoun as an enclitic according to the priority

number of taking the DASE.ccvi i 56
Figure 4-6: Enclitics for Noun and Verhccvoiiiiiiiiieee e 57
Figure 4-7: Sample of Arabic toKeNIZed teXt..........ccovviiiiiiiiieii e 63
Figure 4-8: Transliteration of Arabic tokenized teXtcccceviiiiiiiiiiiee e 63
Figure 5-1: Lemma, stem and root of the word “book” with adding number feature.65
Figure 5-2: analyzing and extracting lemma as tagging preprocessingc.c.ccveeverinns 70
Figure 6-1: Examples of Brill TEMPIALES.ccvviiiiiiiiiiiieiie e 82
Figure 6-2: template in (Ratnaparkni) ... 85

Figure 6-3: Practical features in ME approach. In a maximum entropy model, the
feature can be simple: this word has this tag, consider morphology or consider tag

SEOUEBIICES. ...ttt bbb bbb e e 85
Figure 7-1: Combining taggers into a master-slaves tagger.cccoovvevverienieeneenneenne 102
Figure 7-2: Results of Master-slaves tagging.........ccccoivrrriiieiieiieeeee e 103
Figure 8-1: The overview of the tagging SYSteM.........cccviiviiiieiieii e 110
Figure 9-1: Accuracy of using HMM, Brill and MM in master-slaves combination. 114

Figure 9-2: Corpus fEEADACK.ciiiiiiii 115

Chapter 1

1.1 Introduction
The topic of this dissertation is morphosyntactic part of speech tagging
(abbreviated POS tagging) for Arabic.

This topic has long and rich history for other languages, mainly for English.

POS tagging provides fundamental information about word forms used in
sentences of natural language. The method of utilizing this information varies
depending on the particular NLP application (information retrieval, machine

translation ...), in which it is used.

Tagging is a source of many challenges for researchers. These challenges
depend very much on the language under consideration. In this dissertation we
consider Arabic, a highly inflected language. Although Arabic language is
generally quite regular and there are very few irregular forms, very rich and
complicated structure of inflection, which in many cases changes the structure of
the words, causes high degree of complexity of tagging. The other hard problem is
the lack of Arabic language resources, corpora and other tools. We propose a new

tagset in this dissertation and in this case the scarcity of resources makes the work

Introduction

much more difficult. Tokenization schemes' are also a source of problems in
tagging.
We can distinguish, in our dissertation, online and offline tagging. In both of

them, the problem to be solved is the same, but the trade-off between quality of

tagging and the speed of the process is different.

Online tagging is typically a part of another application, like machine
translation. The speed in this scenario is very important, even at the price of

somewhat decreased accuracy.

Offline tagging can be considered as an independent task, like annotating a
corpus. The accuracy is in this case the crucial factor with much less emphasis on

speed.

In this dissertation we have offline tagging in mind, hence we aim mainly at
increasing accuracy of the process and the quality of information it provides, and

generally disregard efficiency questions.

1.2 The overview of the dissertation

When we work on tagging, in the first place we have to choose a right tagset to
be used. This choice affects the amount of information about forms of words
generated in the process of tagging. One can use an existing tagset or decide to
develop a new one. In this dissertation we present a new tagset, which improves

on the existing ones.

POS tagging, similarly to other NLP tasks, needs a number of preprocessing
stages. Most of these stages can be considered as separated tasks. We list here all
the stages in our work. Some of these stages are optional in other works. For

example, the analyzer misses in most of resent Arabic POS tagging techniques.

The first one is tokenization and segmentation, i.e., splitting the running text
into tokens. This procedure can be split into several steps:

1. Normalization: unification of variants of letters, deleting Tatweel and the
like.

2. Sentence segmentation: splitting running text into sentences

! See (Habash) [45] for more information on tokenization schema. Also, see (Benajiba & Zitouni)
[19] for schema levels.

Introduction

3. Word segmentation: splitting sentences into words.
4. Word tokenization: splitting words into morphemes.

Many other NLP tasks need this preprocessing, too. In our dissertation, this
preprocessing is a separate task, and therefore our algorithms can be used

independently of the tagging procedure.

The second level of preprocessing is analysis with lemma extraction, which
extracts the lemma of each word, determines the part of speech and features for it.
In many other approaches it is the task of a morphological analyzer to extract the
root or stem of the word rather than the lemma. Extracting lemma for Arabic
received little attention in the literature so far because it was considered to be a

hard problem.

After these two preprocessing steps, the tagging will be achieved by applying
one of the supervised or unsupervised techniques to disambiguate the results of
the previous steps. Figure 1-1 shows the whole system which tries to solve all the

tasks described in this introduction.

1.3 Related work

Our complete system has few counterparts in the literature, because it is a
whole tagging system, and most of the existing papers deal with isolated
fragments of the complete process. Therefore we will list the works which relate,

partially or completely, to our work.

1.3.1 Tagset related works

Tagsets are intimately connected with taggers which use them and are
generally not discussed as standalone objects. (Khoja tagset [57][59]; Al-Qrainy
tagset [9], Sawalha tagset [82], Alhadj tagset [38], Buckwalter tagset, Reduced
Buckwalter tagset (Bies tagset, Kulick tagset [65] and Extended Reduced tagset)
[45], KATIB POS tagset [47][49] and PADT tagset [45]) are the most well-known
Arabic tagsets. We discuss them and their limitations in Chapter 3. Our main goal
in designing a new one was to cover specific elements of Arabic missing in those
tagsets and eliminating unwanted tags. The other goal is for producing a tagset
compatible with Classical Arabic (CA) and Modern Standard Arabic (MSA). See

chapter 3 for more details.

Introduction

We constructed a new tagset by avoiding the limitations of the above
mentioned tasets. It was constructed depending on the Arabic literature and it is
not derived from tagsets dedicated for other languages. Our tagset does not have
interleaving, even though it has many tags. Interleaving is a novel notion
introduced by us. It is likely to occur in highly inflected language with a huge
tagset.

) Words and
Running "wjord and Sentences Text

text sentence boundaries Normalization

Segmentation
[@
% j=
G
N
. e
Consecutive 9
morphemes |E
Lemmas (Getting tokens| Normalized
& Analyzing and Inflected word text
Features extracting Lemmg | &
& Clitics)
POS
Dictionary é}uilding Dictionary Arabic
Language
resources
Tagset . _
Designing a new Arabic tagset
Tagging One tag for each word
(POS +Features) and
Lemma

Figure 1-1: The overview of the system

1.3.2 Tokenization related works

Tokenization or segmentation procedures are fragments of the following tools:
(MADA+TOKEN (Habash) [51], Buckwalter Arabic Morphological Analyzer
BAMA (Buckwalter) [26][25], AMIRA (Mona Diab) [32], Xerox Arabic
Morphological Analyzer and generator (Beesley) [17][18], Sakhr’s Arabic
Morphological Analyzer (Sakhr Software) [81], Khoja's stemmer (Khoja) [56] and
almost morphological Analyzers) .

10

Introduction

(Benajiba) [20] presents two segmentation schemes that are morphological
segmentation and Arabic TreeBank segmentation and he shows their impact on an
important natural language processing task: mention detection. Experiments on
Arabic TreeBank corpus show 98.1% accuracy on morphological segmentation.

He did not consider tokenization.

The approach of (Lee) [66] models the word as prefix*-stem-suffix*. The
algorithm uses a trigram language model to determine the most probable
morpheme sequence for a given input. The language model is initially estimated
from a small manually segmented corpus of about 110,000 words. The resulting
Arabic word segmentation system achieves around 97% exact match accuracy on

a test corpus containing 29k words.

The systems of Benajiba and Lee deals with stem rather than lemma.
According to (Habash) [45] stem need not be a legal Arabic word form, unlike
lemma. See Chapter 4 for more details.

Our Arabic tokenizer is constructed using a hybrid unsupervised method, and is
a stand-alone application. It produces all possible tokenizations for each word.
Then, written rules and statistical methods are applied to solve the ambiguities. Its
output is one tokenization for each word. The deleted and changed letters are

retrieved by the tokenizer.

1.3.3 Analyzing and extracting lemma related works
In case of extracting lemma, (El-Shishtawy & EI-Ghannam) [39] do
lemmatization in three phases: analyzing, POS tagging and then lemma

generation. This approach was proposed for information retrieval.

Concerning morphological analyzers, there are many works in this field.
MAGEAD (Habash et, al.) [50] provides an analysis for a root+pattern. Darwish
analyzer (Darwish) [31] was only concerned with generating the possible roots of
a given Arabic word. (Gridach-Chenfour) [44] Their approach is based on Arabic
morphological automaton technology. (Elixir-FM) [88] is a functional
morphology systems which models templatic morphology and orthographic rules.
BAMA Buckwalter [26] is based on a lexicon which has morphotactic and

orthographic rules encoded inside it. See Chapter 5 for more details.

11

Introduction

All of the above mentioned analyzers didn’t meet our requirements, which
prompted us to build a new one, because we wanted POS and features to be
described by a new very rich tagset. It differs from most of the existing analyzers
because it produces a lemma rather than stem or root, which is a significantly

harder task in Arabic.

1.3.4 Tagging related works

(Diab et,al. & Diab) [33][32] used suppor vector machines (SVM) for tagging
in her papers. (Habash & Rambow) [46] used SVM with a morphological
analyzer, APT (Khoja) [57] used statistical and rule-based methods, AL-Shamsi
and Guessoum [11] used HMM, (Freeman) [42] used Brill (Transformation)
tagging, (AlGahtani et, al.) [5] used Brill (Transformation) with morphological
analyzer, (Tlili-Guiassa) [89] used rules-based and memory-based methods, (Seth
Kulick) [64] used classifier with regular expressions, (Van den Bosch) [23] used
memory-based learning, (Mohamed and Kibler) [71] used statistical, (Selguk)
[62] used HMM without morphological analyzer or lexicon, (El Hadj et, al.) [36]
used HMM with morphological analyzer, (Mansour et, al.) [69] used HMM with
morphological analyzer with lexicon. All these Arabic taggers are summarized in
Chapter 6.

1.3.5 Combining taggers related work

In the paper of (Glass & Bangay) [43] a few taggers are grouped to form a
voting system, but in no case the combined results improve on the individual
accuracies. (Yonghui et, al.) [92] presents a novel data fusion strategy in POS
tagging - correlation voting. They proved that the correlative voting is better than
other fusion methods. The paper (Henrich et, al.) [52] provides an algorithms for
simple and weighted voting. It improved the accuracy by 1.26 — 1.58 % over the
best method among its individual component taggers. The authors of (Loftsson)
[67] used many combinations of several taggers in a simple voting approach using
three taggers which are TBL, TNT and Ice. Taggers are described in Chapters 7 &

8 in more detail.

We used a new method for combining taggers which we call master-slaves. We

also we used a rule-based tagger, with manually encoded rules, as a special slave.

12

Introduction

1.3.6 Works related to the complete system

APT by (Khoja) [57] used Statistical and rule-based methods for tagging. Her
tagset will be discussed in chapter 3. Her work did not have lemmatizer or
tokenizer but she had her own stemmer. The statistical method was trained using a
corpus of 50,000 words in Modern Standard Arabic (an extract from the Saudi Al-

Jazirah newspaper). A lexicon derived from this corpus was used in this tagger.

MADA+TOKEN (Habash) [45] where MADA (Morphological Analysis and
Disambiguation for Arabic) is a utility that, given raw Arabic text, adds as much
lexical and morphological information as possible by disambiguating, in one
operation, part-of-speech tags, lexemes, diacritizations and full morphological

analyses. TOKEN is a general tokenizer for Arabic.

AMIRA (Diab) [32] is a successor suite to the ASVMTools (Diab et al.) [34].
The AMIRA toolkit includes a clitic tokenizer (TOK), part of speech tagger (POS)
and base phrase chunker (BPC) - shallow syntactic parser. The accuracy of the
ERTS (Extended Reduced TagSet) tagger is 96.13% and the accuracy of the RTS
(Reduced TagSet) tagger is 96.15%.

The last two works are toolkits for Arabic language. They are composed from

many research tools.

(Kulick) [64] describes an approach to simultaneous tokenization and part-of-
speech tagging that is based on separating the closed and open-class items, and
focusing on the likelihood of the possible stems of the open class words. He used
regular expressions with a reduced tag set. The data set was Arabic Treebank
(ATB3-v3.2) and the accuracy of tagging was 95.147%.

For more Arabic taggers see chapter 6.

1.4 Dissertation outline

The rest of our dissertation is constructed as follows:

Chapter two is a brief introduction to Arabic language; some of the details are

described in later chapters, when they are needed.

Chapter three describes almost all Arabic tagsets with their limits and

specifications and presents the design of a new one.

13

Introduction

Chapter four is concerned with the first preprocessing task: normalization,

tokenization and segmentation.

Chapter five is concerned with the next preprocessing task: lemmatization and

analyzing, the relation between lemmatization and morphological analyzer.

Chapter six surveys the main tagging techniques which are used in general

and in particular for Arabic language.

Chapter seven describes master-slave technique for combining taggers. It is

implemented and tested on English and Arabic corpora.

Chapter eight describes our implementation of adding handwritten rule-based

tagger to the master-slaves technique.

Chapter nine is the discussion of the results and future work.

14

Chapter 2

ity

2.1 Introduction

Arabic (=) al-arabiyyah) is a name applied to a group of dialects of the
Central Semitic languages, thus related to and classified alongside other Semitic
languages such as Hebrew and the Neo-Aramaic languages. Spoken Arabic
varieties have more speakers than any other language in the Semitic language
family. Arabic is the official language of 22 countries and it is the liturgical
language of Islam since it is the language of the Qur’an, the Islamic Holy Book. It
is the sixth official language in United Nations. It is written from right to left and
the letters of each word are attached together. The words are split by spaces. The
punctuation is used for specifying sentences, paragraphs and other specification of

written text like.

The history of Arabic language is not exactly known but the grammars of
Arabic language were begun before 1400 years ago.

2.2 Arabic letters

The Arabic formal word, in Classical Arabic (CA), is constructed from letters
and diacritics. The diacritics are optional in Modern Standard Arabic (MSA) but,
in general, are neglected. There are 28 letters, three of them are vowels. Appendix

Introduction to Arabic Language

Al shows Unicode for Arabic letters. Figure 2-1 shows Arabic character. The
italic letters are vowels. The underlined letters are not attached to the succeeding
letter in the word. The letter Taa can be written as “p”-“sor “4” in some cases.

There is a letter “[”-“I”” which represents two letters “O“-”and “A”-“1” j.e. I =1,

The diacritics are special symbols used to solve ambiguity in word spelling and

meaning. It was shown in figure 2-2.

The Arabic numbers are shown in figure 2-3. Writing Arabic number follows

the same rules as in English, i.e. they are written and read from left to right.

Transli- letter first | Middle | Last Transli- | letter first | Middle | Last
teration teration
A Alef) [L D Dhad - | 8« ua
O,1,{ |Hamza |)d, | s+ [[T Daa L |k Lk
w, "’ i L. Lol
&
b Baa = - X V4 Dhaa L A Lok
t Taa] = aca E Ain = 2 £
\Y; Thaa 5 A &odn g Gain £ S ¢ &
j Jeem - | > < Ri Faa 4 14 IR
H Haa N a ce1q Qaf 4 4 d«&
X Khaa A A t&= 1k Kaf = =< ded
d Dal 2 X P Lam - < Jded
* Thal 3 XS Scx I'm Meem | = |- oo
r Raa B > ¢ In Noon = = e or
y4 Zai 3 > J¢> |h Haa 2 |« s A
S Seen — | - coe W Waw 3 s Ses
o
$ Sheen “ | ¢ ua- y Yaa = -+ ¢ e
5]
S Sad -l v} ¢ o
Ul

Figure 2-1: Arabic letters®. The bold letters are vowels, the
underlined letters are not attached to succeeding letter in the
same word.

2.3 Arabic Language Varieties
Arabic texts could be either vowelled, as the language of Qur’an or children’s
books; or unvowelled ones, used in newspapers, books, and media. Handling the

unvowelled texts is confusing since an unvowelled word may have more than one

2 We depend on Buckwalter xml transliteration in this figure and we use it in all transliterations in
our dissertation.

16

Introduction to Arabic Language

meaning (Atwell et, al.) [15]. This classification is similar to classification of
Arabic to Classical Arabic and Modern Standard Arabic. Arabic language

varieties are shown in figure 2-4.

Diacritic
and
controls

name Fateha | Damh | Kasra | Skon | Tanween | Tanween | Tanween | Shada

English

la/ u/ fil - lan/ fun/ /in/ -
sound
&
Example | & 4 &l & el & g
and 8
spelling Ka Ku Ki K Kan Kun Kin
KK

Figure 2-2: Arabic diacritics and controls

Original (Arabic) |0 |1 2 3 4 5 6 7 8
Original (Indo))) v Y ¢ °

Figure 2-3: Arabic numbers

—~
<
>
0O

Many linguists make a distinction between Classical Arabic (CA), the name of
the literary language of the previous eras, and the modern form of literary Arabic,
commonly known (in English) as Modern Standard Arabic (MSA). In term of
linguistic structure, CA and MSA are largely but not completely similar (Ryding)
[80].

Arabic language

—

Colloquial Classical Arabic (CA) Modern Standard Arabic (MSA)

Figure 2-4: Arabic Language variations

In Classical Arabic words have diacritical marks which solve the ambiguity in
the language. l.e., CA has less ambiguity than MSA. For example the word

“kataba”-“X” (write (he)) has only one meaning “he writes”. Removing

17

Introduction to Arabic Language

diacritics, in MSA, creates word-level ambiguity in segmentation process (Badr
et, al.) [16].

MSA is the written language of contemporary literature, journalism, most of
books etc. MSA is a descendant of CA and retains the basic syntactic,
morphological, and phonological systems (Bin-Mugbil) [21]. MSA is highly
ambiguous which results from removing diacritical marks from writing. For
example the word “ktb”-“<<S” can be “kataba”-“ci”, “kutub”-“c&”, “kutiba’-
«i&” and “kat~aba”-“<&” which mean “he writeS”, ” books”, was written” or

“he caused to write”, respectively.
2.4 Arabic Morphology

Morphologically, Arabic is a non-concatenative language. The basic problem
with generating Arabic verbal morphology is the large number of variants that
must be generated (Cavalli-Sforza et, al.) [27]. This problem is particularly
difficult when a weak letter occurs in the word. Weak letters can be deleted or

substituted by other letters because of Arabic linguistic theory (Shaalan) [85].

Affixing grammatical morphemes to the stem is a general property of most
European languages, which have concatenative morphology where the word is
prefix, stem® and suffixes. Although there are numerous exceptions, it enables us

to analyze the structure of most words (Nugues) [74].

Concatenative morphology is not universal, however. The Semitic languages,
like Arabic or Hebrew, for instance, have a templatic morphology that

interweaves the grammatical morphemes to the stem (Nugues) [74].

We explain briefly how a word changes by adding clitics* and affixes to it.
This subject is very rich and explaining all details is out of range of our
dissertation; therefore we will explain the most important cases and leave the

other to next chapters.

We have two opposite processes in any language, word generation (having the
lemma/root and produce all possible words from it) and analyzing (having a word

and extract the lemma/root with features from it). The first task is relatively easy

¥ Stem need not be an Arabic word.
* See chapter 4 for more details about clitics and affixes.

18

Introduction to Arabic Language

in Arabic language because of many unambiguous rules for this task. The second
is very hard®, especially if the lemma is the wanted base unit. For example if we
have the lemma “Asrp”-“¢_~”(family) and the pronoun “hA”-“W” (her) is
attached to it, the result is “AsrthA”-“l ! (her family) according to the rule “if
word ends by Taa marbuta and is attached to a pronoun then change this Taa
marbuta to normal Taa”. But if we have the word “AsrthA”-“l) and we want
to get the lemma then we have many choices: “Asr~at”-Hwl” “As~art”-“ Ll
“ASIP”-5 sl “Asrto”-“c) and so on. This is a simple example but in most
cases there are very hard cases to detect the lemma. The most famous case
happens when one of the Arabic vowels exists in the root and one of the
morphological rules is applied to it. In this case the analyzing is a very hard task.

The important events in this case are deleting or changing the vowels as shown in

figure 2-5.

Ed (2= back)
imperative

Lemma Deleting >

EA 4

(3= back) ™ Changing | yEwd

| (252 back)

present

Figure 2-5: Inflection causes deleting and changing of a letter
Each Arabic word consists of original letters and possibly some extra letters.
The original letters will not be deleted in any inflected form of that word, without
morphological reasons. These original letters can be any letters of the alphabet
excepts, O, I, t, m, w, n,y, hand A. On the opposite side, the extra letters can be
deleted in some inflections without any morphological reasons. The noun can

consist of 3, 4 or 5 original letters. The verb can consist of 3 or 4 original letters.

2.5 Morphological rules
Morphology is the study of the structure and content of word forms. The rules

of construction word forms are depending on the language under consideration.

> In case of Classical Arabic the ambiguity decreases which makes this task easier.

19

Introduction to Arabic Language

They are, in most cases, regular in Semitic languages like Arabic. Morphological

rules can be either inflectional rules or word-formation rules.

2.5.1 Inflectional rules

Inflectional rules relate a lexeme to its forms (which uses kind of affix in order
to form variants of the same word). Inflection is done by adding number, person,
case, gender, tense mood ... etc., to the word. Most of concatenative languages
add affixes to the stem for this purpose. But the situation is different in Arabic
language: letter deletion, insertion and replacing (especially with vowels) are
used. The inflectional rules cover approximately almost all words, which means

that Arabic inflection is regular. Examples of Arabic inflections are shown in

figure 2-6.
Transliteration | verb | meaning Translit- | verb meaning
eration
kataba S | Wrote (he) katabta CactS Wrote (you-
masc-sng)
yaktib i< | Write (he) taktub e Write (you-
masc-sng)
Iktub S | Write katabti T Wrote (you-
(you)(imperative) fem.-sng)
katabat cietS | Wrote (she) tkatubyn | uwi<s | Write (you-
fem.-sng)
taktub &5 | Write (you-masc. | ktaabtmA | LS Wrote (you-
&she) dual)
Iktuby s8] | Write taktubAn | HLsss | Write (you-
) (imperative) dual)
katabA i< | Wrote (they-dual) | katabtuna arfar Wrote (you-
fem.-plural)
yaktubAn ok | Write (they-dual) | taktubna N Write (you-
fem.-plural)
IktubA i) | Write (you-dual- | katabtum arfar Wrote (you-
imperative) masc.-plural)
katabna xS | Wrote (they-fem) | taktabwn | 529K | Write (you-
masc.-plural)
yaktubna Cisy | Write (they-fem) | katabt Gl¥ards wrote (1)
Iktubna 52is) | Write (you-fem- | Oktub i write (1)
imperative)
ktabwA | i€ | Wrote (they- katbnA LS Wrote (we)
masc)
yktabwn 055 | Write (they-masc) | nktbu Sy Write (we)
IktabwA | i) | Write (you-masc-
imperative)

20

Introduction to Arabic Language

Figure 2-6: Inflection of merely verb “kataba”-*“c<is” (write)
with gender, person and number.

2.5.2 Word formation

Word formation is the creation of new words. A number of languages have
extensive non-concatenative morphology, in which morphemes are combined in
complex ways (Jurafsky & Martin) [54]. A specific kind of non-concatenative
morphology is called templatic morphology or root-and-pattern morphology. This
is very common in Arabic, Hebrew, and other Semitic languages (Jurafsky &
Martin) [54]. Word formation can be one of:

1. Derivational rules relate one lexeme to another lexeme (changes a word
from one syntactic category into a word of another syntactic category or
from one meaning to another). Some examples of Arabic derivation are

shown in figures 2-7 and 2-8.

2. Compound (attaches two or more words together to make them one
word). An example of an Arabic compound word is “HDrmwt”-
“Ciga pas” (Hadhramautt). It is compound from two words "HDr"-
“_»as” which means (come) and "mwt"-“< 5" which means (death), but
the meaning of whole word is a name of a city in Yemen. There are
many types of compound words in Arabic language; the previous
example is the easiest one because there is no space between the
compound words. Another example is “AslAm [bAd”-“3Ul 23 (Islam
Abad), i.e. two words separated by space, but the whole is a name of a

city in Pakistan.

21

Introduction to Arabic Language

Verb

New Verbs

Merely

kataba — («=xx)
He wrote

-> Extra

Oktaba - He dictated

(<)

kAtaba - He corresponded

(<=9)

kat~aba - He caused to write

(25)

Inkataba - He was subscribed
(=)

Iktataba - he had a copy made
(=)

takat~aba - It was written on its own
(os)

takAtaba - They wrote to each other
()

Istaktaba - He asked to write
()

Figure 2-7: Deriving verbs from verb®.

2.6 Arabic patterns (awzaan)

Because most of Arabic words are constructed in a regular way, the scientists

describe them by morphological patterns (sometimes called balance). That pattern

(wazen in Arabic) is composed of three origins (letters), which are denoted by f, E

and I, where f corresponds to the first letter, E to the second letter and I to the third

letter. The pattern describes the word construction (Al-Rajhi) [10] (Al-Hamlawy)

[7]. By taking the root and applying the pattern to it, we will get another word

construction. These rules are root—pattern morphology. Appendix A2 shows
examples of using wazen (AL-Bidhani) [3] (Al-Galaiini) [6].

® Merely can be triple or quadruple. Extra can be made from triple or quadruple (by

adding letters)

22

Introduction to Arabic Language

» Verbal Nouns kitaAbap ~ %<S [Inscription
» The Active Participle KkAtib <SS Writer
> The Passive Participle maktwb <siSs peen written /letter

, Exaggeration forms Okataba <=iSi Better in writing than

kataba
(=) 5 Place Noun Maktab ~ <=Ss Office
He wrote
» Time Noun Maktabah 4£iSs | jbrary
. Instrument Noun maktib <354 |n the time of writing

Figure 2-8: Deriving nouns from verb.

2.7 Words in the sentences

As we know Arabic is written from right to left where the letters are attached
together to form the words. In most cases, the particles and pronouns are attached
to the word, i.e., the word can be composed of more than one part of speech. It
adds another problem to Arabic language, which must be solved by tagger. For

example a complete sentence can be compressed in to one word:

wsyktbhA (LS5 and he will write it)

When we talk about sentences, syntax comes into play. As we know, there are
two distinct fields in languages which are morphology and syntax. Morphology
describes the structure of words internally, syntax describes how words are

composed to yield phrases and sentences (Habash) [45].

Arabic sentences can be divided into two types of sentences: verbal sentences
and nominal sentences. Nominal sentences are also called copular/equational
sentences (Habash) [45].

Each word inside a sentence can be affective (that affects what follows),
affected (affected by what is before it) or neither affective nor affected as in the
case of spatial words. The effect is the change of the form of the affected word

enforced by the affective word (Al-Galaiini) [6]. Examples of effect are changes

23

Introduction to Arabic Language

the case to nominative, accusative ... etc. The third category (neither affective

nor affected) is special and very limited (Al-Galaiini) [6].

For example a preposition before a noun causes reduction of that noun. The
reduction is, in this example, the effect (where the noun (affected) followed

preposition (affective) will be in genitive case).

Arabic can be seen as a language with a network of dependency relations in
every phrase or clause, which are key components of the grammatical structure of

the language (Ryding) [80].

24

3.1 Introduction
The first step for the annotation of corpora is the compilation of a tagset that can

accurately describe and cover the whole information about the language (Khoja) [57].
A tagset is a set of tags (symbols) representing information about parts of speech and
about values of grammatical categories (case, gender, etc.) of word forms. Tagset is
the basis of almost all NLP fields. A good tagset is very important in the fields of

NLP and is the foundation stone in these fields.

We believe that before dealing with the Arabic language, we need an Arabic tagset

which contains all or at least the most important Arabic language features.

In this chapter, 10 Arabic tagsets are compared and their limitations indicated. We
present a new Arabic tagset avoiding these limits. The design is intended for Arabic
language only and is not based on tagsets for other languages. It is a multilevel tagset
compatible with CA and MSA. The noun classes have three levels (fixed POS types,
grammatical feature and changed POS types), verbs have two levels (POS types and
grammatical features) and particles have two levels (working and meaning). We also
introduce the notion of tagset interleaving.

Comparing Arabic Tagsets and Designing a New One

The third level (designed for noun only) is not yet implemented and is not
mentioned in the remaining chapters of this disertation. Summary and comparison of

Arabic tagsets

Most of the papers are interested in constructing a tagger and introduce its tagset as
a by-product. In this chapter we consider the following tagsets for Arabic: Khoja
tagset [57][59]; Al-Qarany tagset [9], Majdi Sawalha tagset [82], Yahya Alhadj tagset
[38], Buckwalter tagset, Reduced Buckwalter tagset (and its variants: Bies tagset,
Kulick tagset [65] and Extended Reduced tagset) (Hbash) [45], KATIB POS tagset
[47][49] and PADT tagset (Habash) [45].

Almost all of these taggers either use tagsets derived from English (which is not
appropriate for Arabic) or use summary of all Arabic features (which is more

theoretical than practical).

We summarize the above mentioned Arabic language tagsets with their limits and
specifications.

3.1.1 Khoja tagset
The Khoja tagset, developed by Shereen Khoja, is one of the earliest tagsets for
Arabic (Khoja) [57][59]. Figure 3-1 shows Khoja POS.

The linguistic attributes of nouns and verbal attributes that have been used in this
tagset are shown in figure 3-2. We have a few remarks on this tagset:

1. The attribute “person” in noun class is a mistake here because the word
“Qlis” book has no person. In this way all researchers apply the person
feature to the noun, but the noun is different from verb. The inflections
of the verb always contain the pronoun, but there are inflections of a
noun without any pronoun. So a noun cannot be treated in the same way

as the verb.

2. Particles have no attributes. The classifications of particles are

interleaved among their operation and meaning.

3. Itis a very simple tagset, i.e., many of Arabic classes are not taken into

account.

26

Comparing Arabic Tagsets and Designing a New One

Word
| | _ [|
Noun Verb Particle Residual Negatives
[
| | | - | -y . | - - | -
Perfect | |Imperfect Imperative Preposition Adverbial Conjunction
Common Proper| |Pronoun| | Numeral | [Adjective Interjections Exceptions | |Negatives
I I l I I I
Personal Relative Demonstrative Subordinates Answers Explanations
I |
Specific Common Cardinal Ordinal Numerical
Adjective
Figure 3-1: Khoja tagset
Noun attributes Verb attributes

Gender Masculine Feminine Neuter Gender: | M Masculine | F Feminine N neuter
Number | S Singular Du Dual Pl Plural

Number Singular Dual Plural _ _

Person: 1 First 2 Second 3 Third

Person First Second Third _ _ i

Case: Nominative | Accusative Genitive Mood I'Indicative | S Subjunctive | J Jussive
Definiteness Definiteness | indefiniteness

Figure 3-2: The Noun and Verbal attributes of Khoja Tgaset

3.1.2 Al Qrainy tagset:

It was written by (AlQrainy & Ayesh) [9] for Automated POS tagging in Arabic.
They take the classical classification of Arabic words into noun, verb and particle.
Figure 3-3 shows the main classification of this tagset. The linguistic attributes of
nouns and verbal attributes that have been used in this tagset are the same as in Khoja
(Figure 3-2), but the neuter feature for the verb attribute does not exist.

The same remarks we have made about Khoja tagset apply here, and additionally
punctuations and foreign words are not covered by the Al-Qrainy tagset. There is a
technical error in the figure 3-3, which we took from (AlQrainy & Ayesh) [9]. If we
look at the figure, we understand that the “common” is a part of “demonstrative”,

while indeed they should both be parts of “Noun”.

27

Comparing Arabic Tagsets and Designing a New One

Word
v v v
Verb Noun Particle
[
I I I I
Perfect Imperfect Imperative Preposition Conjunction
[[
Exception Vocative
Common Demonstrative I 1
Annulment Subjunctive
[
Relative Personal Adverb Jussive
Diminutive Instrument Conjunctive Interrogative Proper Adjective

Figure 3-3: Al Qrainy tagset Hierarchy

3.1.3 Sawalha tagset

In the Sawalha tagset (Sawalha) [82], a tag consists of 22 characters; each position
represents a feature and the letter at that location represents a value or attribute of the
morphological feature; the dash “-” represents a feature not applicable to a given
word. The first character shows the main Parts of Speech: noun, verb, particle,
punctuation, and residual. The 2" 3™ and 4™ characters are used to represent
subcategories; traditional Arabic grammar recognizes 34 subclasses of noun (letter 2),
3 subclasses of verb (letter 3), 21 subclasses of particle (letter 4). Residuals and
punctuations are represented in letters 5 and 6 respectively. The next letters represent

traditional morphological features:

gender (7), number (8), person (9), morphology (10) case & mood (11), case &
mood markers (12), definiteness (13), voice (14), emphasize (15), transitivity (16),
humanness (17), variability and conjugation (18). Finally there are four characters
representing morphological information which is useful in Arabic text analysis,
although not all linguists would count these as traditional features: augmented and
unaugmented (19), number of root letters (20), verb internal structure (21), noun finals
(22).

The Majdi Sawalha tagset is not tied to a specific tagging algorithm or theory, and

other tagsets could be mapped onto this standard, to simplify and promote

28

Comparing Arabic Tagsets and Designing a New One

comparisons between, and reuse of Arabic taggers and tagged corpora. Figure 3-4
shows Majdi Sawalha main POS classification.

We have a few notes on this tagset. In spite of taking most of noun and verb
classification, it neglects the variation of particles classification. Similarly as Khoja,
this tagset does not distinguish between working and meaning of particles. For
example “fKIA AX*nA b*nbh”-“4s; LT e (We took each one by/because his sin)
the particle b is for caution and preposition at the same time (it is preposition used for
caution). It means that it should have two tags simultaneously’. There are many

interleavings between types in this tagset.

Sawalha tagset summarizes almost all the Arabic classifications, especially for
verbs and nouns. However, some of the classifications (attributes) are useless
(redundant) tags, for tagging system. For instance, the value at position 20 “number of
root letters”, position 21 “verb root attribute” can be known if the root is known. The
same case with position 13 “Definiteness” it is a feature for closed classes of noun

categories. It seems that this tagset is more theoretical than practical.

3.1.4 Yahya Elhadj

(Elhadj) [38] presented the development of an Arabic part-of-speech tagger that
can be used for analyzing and annotating traditional Arabic texts, especially the
Qura’n text. The developed tagger employed an approach that combined
morphological analysis with Hidden Markov Models (HMMs) based-on the Arabic
sentence structure. For this purpose, Elhadj created his own tagset (2009). See figures
(3-5, 3-6 & 3-7). Figure 3-5 represents the tagset as a DAG (directed acyclic graph),
which is the choice of the author.

This tagset has the following limitations: particles have no attributes. It is
particularly simple with respect to verb and noun classifications. The case of noun
was excluded which is very important in syntax analyses. It does not show any
features for verbs and this is not a good choice, because Arabic verbs often have

implicit pronouns and so on.

" See section 3.4.2 for more details.

29

Comparing Arabic Tagsets and Designing a New One

Main POS

Residuals

Punctuation

Exceptive particle
P i [EPTN

Interrogative particle

?LG—:‘:““I (TN

Particle of futurity
Juial oy

Causative particle
iS5 i s

Negative particle
B

Jurative particle
pud < a

Noun Verb Particles
Gerund Adjective Pats Verb
Jad) Agadall diall e
Gerund start with mim Noun of place Present verb
el Haaadll OSe il g e
Gerund of one time Noun of time imperative
3l Hae) ol ol
Instrumental noun

Gerund of state ANl
gl svae s Hras Proper noun
Gerund of emphasize alall o)
A5 shae Noun of genus
Gerund of industry osindl aud
gebiall Sradl Numeral noun
Pronoun 2aal) sl

) Verbal noun Letter of "Jussive"/
Demonstrative Noun Jadl) andl Apocopative letter
3 LY ol Five noun S
Special relative Aedl) clawY) Accusative letter

pronoun
el J gea sall aud

Common relative
pronoun

&) J gaa sall and

Relative noun

Spuia pusd

Answer particle
Gl s

Preposition

Noun of diminution

‘)y'uaﬁ(u.u\

A

Apocopative answer
particle
plabydca

Interrogative pronoun

Agdin¥) o

Form of exaggeration
il i

Annular

Incitement particle

vt b a

Conditional noun
3 all jaaa

Noun of plural form
e ol

Conjunction
e G

Infinitive particle
Souan (PPN

Allusive noun
1<)

Adverb
oyl

Noun of genus in plural
form

(e i anl

Partial Accusative
letter
= A uaill (s a

Attention particle

4l s

Emphasis particle

AS s

Active participle
Jell o

Noun of preeminence
Jradli ol

Vocative letter

PR N

Increased Active
participle
Jeldl) and sl

Invented noun

Cisaie pnd

Explanation particle
padli B

Simile particle

Noun of sound

o

Bee I

Figure 34 vtgjdi Sawalta mmaim POS thassification, tetters 1,23
and 4 only.

30

Comparing Arabic Tagsets and Designing a New One

Noun
)
Indefinite Definite
143)5:"/ tt;ﬁ:‘)’u‘u
— N — >
Proper Indefinite- Pronoun Demonstrative Relative
”{‘l‘;” def_Art] n "3‘)1.54\" "d}‘-a}‘"
"Bﬂ-d"'
Separate Attached
A—
3rd person 2nd person 1st person
‘e nL_‘L&Au HEXSSAH

plural singular

" .II n ll "QJ&A"

Femlnlne Masculine
H)S_\AH

Figure 3-5: Noun and its sub-categories in Elhadj tagset.

Verb
“M‘”
/V\
Imperative Imperfect Perfect
“‘)A\” “&‘)LA.AA” “‘;;'ALQ”

Figure 3-6: Verb and its temporal-forms in Elhadj tagset.

31

Comparing Arabic Tagsets and Designing a New One

Particle

“g_‘qﬂ\”
- - — -, = - -
Conju [Answer [Vocati [Rebuf |Asthna |@enitiv |[Negat |Prohibt |Interrog |Condi
(13 'ii :,’ “‘.—’\ﬁ” “;\A..\” GL‘).;‘}” GL;1 adve \77 ‘ﬁ” “‘"5-3:-.‘” C“;&:‘” G‘e‘ 'g" ‘7’ L‘L):

Others|{Confir |Notifi |ExpectiWishin [Plural |Dual [Femini |lterpret
66)';\9, CGJ:‘S\:’?, 6(.4:‘:‘_"397 CG&\}:B’ CGn LA 6{.@;77 C(w” “k:._\...\ju” (13 A g"'77 “k—‘-!)"-’

/T~

Feminine Masculine
“i\}}d” “)S.JA”

Figure 3-7: Main groups of particles in Elhadj tagset.

3.1.5 Buckwalter tagset

The Buckwalter tagset (figure 3-8), developed by Tim Buckwalter, is a form-based
tagset. The Buckwalter tagset is considered very rich for many computational
problems and approaches. Several tagsets have been developed that reduce it to a
“manageable” size (Habash) [45].

In this tagset there is no distinction between categories and features for POS. The
particle classification has no attributes. He does not distinguish between attached
pronouns or other clitics and inflection of the word (suffixes). The Yaa Alnasabi is
omitted, and treated as an attached pronoun.

32

Comparing Arabic Tagsets and Designing a New One

_MOOD: <Mood>

imperfective verb subject
and mood suffix

Cv
CVSUFF_DO:<PGN>
CVSUFF_SUBJ:<PGN>

imperative (command) verb
imperative verb object
imperative verb subject

INTERROG_ADV

VERB Nominal
VERB verb NOUN noun
PSEUDO_VERB pseudo-verb NOUN_NUM nominal/cardinal number
PV perfective verb NOUN_QUANT quantifier noun
PV_PASS perfective passive verb NOUN.VN deverbal noun
PVSUFF_DO:<PGN> direct object of perfective NOUN_PROP proper noun
PVSUFF_SUBJ:<PGN> verb ADJ adjective
subject of perfective verb ADJ_COMP comparative adjective
\Y imperfective verb ADJ_NUM adjectival/ordinal number
IV_PASS imperfective passive verb ADJ.VN deverbal adjective
IVSUFF_DO:<PGN> imperfective verb direct ADJ_PROP proper adjective
IV<PGN> object ADV adverb
IVSUFF_SUBJ:<PGN> imperfective verb prefix REL_ADV relative adverb

interrogative adverb

Particles

PREP

preposition

CONJ
SUB_CONJ

conjunction
subordinating conjunction

PRON
PRON_<PGN>
POSS_PRON_<PGN>
DEM_PRON_<GN>
REL_PRON
INTERROG_PRON

pronoun
personal pronoun
Possessive personal pronoun
demonstrative pronoun
relative pronoun
interrogative pronoun

PART
CONNEC_PART
EMPHATIC_PART
FOCUS_PART
FUT_PART
INTERROG_PART
JUS_PART
NEG_PART
RC_PART
RESTRIC_PART
VERB_PART
VOC_PART

particle

connective particle
emphatic particle
focus particle

future particle
interrogative particle
jussive particle
negative particle
response conditional particle
restrictive particle
verb particle
Vocative Particle

NSUFF<Gen><Num><Cas><Stt>

nominal suffix

CASE<Def><Cas> nominal suffix
DET determiner
Other
PUNC punctuation
ABBREV abbreviation
INTERJ interjection
LATIN latin script
FOREIGN foreign word
TYPO typographical error
PARTIAL partial word
DIALECT dialect word

Figure 5-o. buCkwaller tagset components (e source Is (Hapasii)

[45]).

3.1.6 Reduced Buckwalter tagsets: BIES, KULICK and ERTS

3.16.1

BIES tagset

The Bies tagset (Figure 3-9) was developed by Ann Bies and Dan Bikel as a subset

of Buckwalter tagset with around 24 tags variants. It was inspired by the Penn English
Treebank POS tagset (Habash) [45].

It is a very simple set which misses many useful features, in particular many

classes of nouns, verbs and particles. The nouns, verbs and particles have no

attributes.

33

Comparing Arabic Tagsets and Designing a New One

Nominals DT determiner / demonstrative pronoun,
NN RP RP Particle
NNS IN IN preposition or subordinating conjunction
NNP singular proper noun Verbs
NNPS plural/dual proper noun VBP active imperfect verb,
PRP personal pronoun, VBN passive imperfect/perfect verb,
PRP$ possessive personal pronoun, | VBD active perfect verb,
WP relative pronoun VB imperative verb
JJ adjective, Others
RB adverb, UH interjection,
WRB relative adverb, PUNC punctuation,
CD cardinal number, NUMERIC_CO | The letter rused asa

MMA comma,

FW Foreign word NO_FUNC unanalyzed word

Particles
cc coordinating conjunction,

FIgure 5-9 . 11e Bles lagsel

3.1.6.2 The Kulick tagset
The Kulick tagset [65] was developed by Seth Kulick and shown to be beneficial
for Arabic parsing (Habash) [45]. The Kulick tagset contains 43 tags that extend the

Bies tagset. It is a very simple set which misses many useful features and classes.

3.1.6.3 The Extended Reduced TagSet (ERTS)

ERTS is the base tagset used in the Amira system. ERTS has 72 tags. It is a subset
of the full Buckwalter morphological set defined over tokenized text. ERTS is a
superset of the Bies/RTS tagset. In addition to the information contained in the Bies
tags, ERTS encodes additional morphological features such as number, gender, and
definiteness on nominals only (Habash) [45]. Again, it is a very simple set. It misses

many classes of particles. The particles have no attributes.

3.1.7 The CATIB POS tagset
The CATIB tagset (figure 3-10) was developed for the Columbia Arabic Treebank
project (CATIB) (Habash)[47][49]. There are only six POS tags in CATIB. The

34

Comparing Arabic Tagsets and Designing a New One

simplicity of the POS tagset is intended to speed up human annotation and yet
maintain the most important distinctions. It is the simplest tagset, where many classes

and features are missed.

Tag Remark Tag Remark

VRB All verb Types | PROP proper nouns

VRB- passive-voice | PRT Particle

PASS verbs

NOM Nominal PNX punctuation
marks

Figure 3-10: the CATIB POS tagset

3.1.8 The PADT tagset

The PADT tagset (see figure 3-11 & 3-12), used in the ElixirFM analyzer, was
developed for use in the Prague Arabic Dependency Treebank (Habash) [45]. The
PADT tagset is defined for ATB tokenized Arabic. Each tag consists of two parts:
POS and Features. It misses many classes and features. Particles have no attributes.

Tag | Remark Tag | Remark Tag | Remark

VI imperfect verb Y Abbreviation C Conjunction

VP | perfect verb S Pronoun P Preposition

VC | imperative verb SD | demonstrative | Interjection

pronoun
Noun F particle G Graphical symbol

A Adjective FI interrogative particle Q Number

D Adverb FN | negative particle - Isolated definite article

I] Z Proper noun

Figure 3-11: POS for The PADT tagset

Mood Indicative Subjunctive Jussive D (ambiguous)
Voice Active Passive

Person 1 speaker 2 addressee 3 others

Gender Masculine Masculine

Number | Singular Dual Plural

Figure 3-12: the PADT features

35

Comparing Arabic Tagsets and Designing a New One

3.2 Traditional Arabic POS

POS is the most studied field in the Arabic language. The distinctions between
parts of speech were investigated and specified. We will show, in this section, the
classical classifications. The detailed explanation of these classes is far too
complicated to be presented in this dissertation, therefore we will describe only the
most important classes and features. In this section we will show the main

classification for Arabic word and the subclasses of these main POS.

3.2.1 Main Arabic POS
The first classification of a word in traditional and modern Arabic is noun, verb

and particle (Al-Rajhi) [10] (Al-Galaiini) [6] (Al-Dahdah 1989) [4].

3.2.2 Arabic Noun Classes

There are many types of noun. A noun can be a described by more than one type or
status. The summaries of noun classes according to their classification are in figure 3-
13 & 3-14 (Al-Dahdah) [4]:

| 1

Noun Types
v v v v v v
LEL AP Lol aud pladid aud Jsem e R el
Allusive Conditional Interrogative Relative Demonstrative Pronoun
noun noun noun noun noun
v v v ¥ v v
aud IS A Toccagill Juk TR peiall oo Jotall .l
e 30 agatall
MNoun of | MNoun of Noun of Adjective Passive Active
time place Preeminence simi PP participle participle
A v v v v v
casl olenti) luall b aud _'i_,.ai' __:_.-"4_‘.5' o Al o
Five nouns WVerbal noun Numeral Adverb Common Proper
noun noun noun
¥ ¥ ¥
el ATy ad A lsell AT
Gerund Instnument Exaggeration
noun

36

Comparing Arabic Tagsets and Designing a New One

Figure 3-13 : Noun classification according to its types (the source
is (Al-Dahdah) [4])

Noun status
3 2
el 2 m the morpholegy i el m the Conjugation
"M \.-" *—-"-f.r--ﬂ—’:-. i b o el
Inflective Structured Declined MNon- Declined
o g e il R 2ila
Prohibited Waried Derived Inert
3 4
il i in the indication —=£50 & inthe construction
e 1 B pa £ g 135 e merely and extra
Diminution | Singular | Defmite | Masculine | Described
N i i . - -
=+ | Dud |Indefinite| <% |Adjectiv TEm T | eme e S
Rative | Tidetmute Fermimine Jectives Semi | Sound |Curtailed | Extended |Shortened
Plural sound | noun

Figure 3-14: Noun classification according to its status (the source is
(Al-Dahdah) [4])

3.2.3 Arabic Verbs
The verb can be classified according to:

1. If it has vowels or not: it has approximately 30 subtypes (see (Sawalha)
[82]).

2. Ifitis complete or incomplete

3. Voice (passive or active).

4. If it is merely or has extra letter and the number of letters.

5. If it has certainty or not

6. Tense.

7. Transitivity.

8. If it has negation or not.

9. If verbs have special case (interjection verb form —a=ill 4u2) or not.

10. Variability & Conjugation

37

Comparing Arabic Tagsets and Designing a New One

Any verb has features [Gender + Number + Person + Mood]. We can see that there

are interleavings among all these classifications.

3.2.4 Arabic Particles

There are two classifications for the particles according to.
1. Their working in the sentence.
2. Their meaning.

The first classification is done according to the effect of the particle on the
following word (see Section 2.7). The classes are defined according to the effect:
nominative, accusative, genitive, jussive... etc. There are also particles which have no

effect and they are classified as "not working particles".

The second classification has many classes, in (Al-Galaiin) [6] there are 31
interleaved types: negative particle (& <), answer particle (<'s> <s), explanation
particle(—e_~ _»~&5), conditional particle (-4 <s), exhortation particle (<~
uanast) offering particles (u=_al <aal), warning particles (4wl < al), subordinating
conjunction (_xae <aa), future particle (Juéisl < =), emphatic particle (2S5 < a),
interrogative particle (plsfisl —aa), wishing particles (il < a), pleasing particles
(A <), simile particle (awiall <aa), relation particles (<!l < a), purpose
particle (Jid=3l s)2, aversion particle (g2, <s~), |_letter meaning (<WY), feminine
Taa (<l <1), stopping Haa (Sl ¢l), request particles (b <aa), nunation
particles (crsii <sa), vocative particle (s\x <aa), coordinating conjunction (<
—ake), accusative particle («=i <), imperative particle (,<¥'), jussive particles
(po> <3,»), prohibition particle (¢ <5,~), preposition (U> <s,s), particles similar to

verbs (=il 4¢2de i al), particles similar to Laisa (verb) (usb 4gie <),

In (Al-Dahdah) [4] there are 40 interleaved types (some types from (Al-Galaiini
1990) do not exist in (Al-Dahdah 1989)) which add the following particles: swearing
(4), strike (<'_=)), starting (zUswl), palinode (L)), exceptive (s4il) | beginning
(s)33), surprise (slalic), details (dsaii), definition () ,(Gad) ,(Lwad) ,(Graad) (<),
intention (4\¢), adverbial (=), superfluity (33L)) , increasing (L£5), decreasing
(),

(Al-Moradi) [8] The grammarian limited the particle to approximately 50 types (in

meaning).

38

Comparing Arabic Tagsets and Designing a New One

3.3 Designing an Arabic Tagset

There are many reasons for designing a new Arabic tagset. We wanted to construct
an Arabic tagset compatible with CA and MSA. Also, this tagset should not have the
limits of other tagsets. We construct this tagset according to Arabic specification. The
last reason is very practical — we plan to annotate a large Arabic corpus with this
tagset. The annotators will be students of the departments of Arabic language in the
University of Mustansiriyah (Baghdad). This idea has already got acceptance from the
head of that department. Within a few years, we believe that we will have a huge
annotated corpus, because all the students of this department will work on it.
Therefore we needed a tagset familiar to them and easy to master in, and rich in

information.

3.3.1 Designing criteria
(Elworthy) [40] The design of an appropriate tagset is subject to both external and

internal criteria;

1. The external criterion is that the tagset must be capable of making the
linguistic (for example, syntactic or morphological) distinctions required
in the output corpora.

2. The internal criterion is that of making the tagging as effective as

possible.

The first and second criteria must be balanced. As a part of point 2, we should note
that very fine-grained distinctions may cause problems for automatic tagging if some

words can change grammatical tag depending on function and context (Atwell) [14].

The problem of tagset design becomes particularly important for highly inflected
languages. If all of the syntactic variations which are realized in the inflectional
system were represented in the tagset, there would be a huge number of tags, and it
would be practically impossible to implement or train a simple tagger. (Elworthy) [40]
has suggested that what is important is to choose the tagset appropriate for the

application, rather than to optimize it for the tagger.

(Feldman) [41] did test on several languages with tagsets of various sizes and
found out, that there is no clear relationship between tagset size and tagging accuracy.

However, generally smaller tagsets peform better on unknown words.

39

refrence/tlj-afeldman.pdf

Comparing Arabic Tagsets and Designing a New One

In this chapter we will design an Arabic tagset. The construction is based on the
deficiencies of the other tagsets. It has two fields for each POS, one for classification
or working and the second for feature or meaning. We will differentiate between
classes of POS and grammatical features or between particles working and meaning.

For example the plural noun is a noun with plural feature.

Another important factor for adding a tag of a given type is the analysis: is the tag
useful in translation, semantics, and speech recognition, and so on, or not? From this
point of view, we can select a tagset. All these criteria were taken into account when

building the new Arabic POS tagset.

3.3.2 Tagset Interference or interleaving

We introduce another design decision to consider when designing a tagset:
interference or interleaving. This question emerges when we use many syntactical
classes and unifying many classifications into one. The tagset has interleaving if one
word has more than one class (POS) at the same time and all these classes are true. It
is often due to an error in the design of the tagset. According to our analysis of Arabic
tagsets, the increase of POS numbers in a tagset, without augmentation, increases the
possibility of interleaving. Most of the simple and small tagsets (such as CATIB and
PADIT...) don’t have interleaving. Let us take a practical example of a large tagset:
Sawalha tagset (Sawalha) [82]. According to this tagset, for the following example
“agily LIS “fKIA Ax*NA b*nbh” “We took each one by/because his sin” the b (Baa) is
for caution and preposition at the same time (it is preposition used for caution) and
they are both true. It means that there are two tags (true) simultaneously. So this tagset
has interleaving. This has happened because it is a large morphosyntactic tagset. We
must see that interleaving is different than word sense where the word has different

meanings or tagging where the word has many tags (non-interleaved tags).

When a word has more than one POS this does not mean there is interleaving but it
depends on these classes. Let us consider another example for showing interleaving.
Let the tagset consist of three tags only: noun, verb and particle. This tagset, for sure,
does not have interleaving. Now, we want to extend this tagset and, mistakenly, we
add subject as a new tag. Now, this tagset has interleaving because all subjects are
nouns. If we have a word X, we cannot say it is subject or noun (if it is a subject)

alone, but we say that it is subject and noun.

40

Comparing Arabic Tagsets and Designing a New One

For this and similar cases, we have two solutions simultaneously. The first solution
Is that we add some of the interleaved classes as classes and the other ones as
attributes. In the previous example, Noun class is a class and Subject class becomes
an attribute. The second solution is that we divide the tagset into levels. In the
previous example, we add a level for morphological classes and a level for syntactic

classes. Any word will have more than one level.

In the proposed tagset we collect these two solutions according to the requirements

as the reader can see in the next sections.

3.4 A New Arabic Tagset

3.4.1 Main POS

The first classification of a word is noun, verb and particle (Al-Rajhi) [10] (Al-
Galaiini) [6] (Al-Dahdah) [4]. But there are symbols used in the written text as
punctuations, foreign words, numbers, and so on. (Khoja) [57][59] used two other
categories which are residuals and punctuation. This is true for normal Arabic text,
but in Qur’an there are other symbols that do not exist in any other text which are
stopping symbols. These symbols in some cases are taken as sentence ending (by
force or optional). They can be made a part of the punctuation category or a new
category (special) can be created for them. Figure 3-15 shows main POS for Arabic,

the same as in most of other tagsets.

Word
I
\ 7 v v v v
Noun N Verb V Particle P Residual R Punctuation Pnc

Figure 3-15: Main POS.

3.4.2 Arabic noun class in the proposed tagset

If we go back to figures 3-13 & 3-14, we cannot take all these classifications
because they will cause highly ambiguous results due to the interleaving of these
classes. According to the two levels idea of our tagset, the nouns classes can have

class & features only. The final noun classes and subclasses in the proposed tagset are

41

Comparing Arabic Tagsets and Designing a New One

shown in figure 3-16. The features of the noun in the proposed tagset are shown in

Figure 3-17. One can observe the following:

1. Person attribute for nouns was not used here because of the example
“ktAb”-“2lS” (book). It is not a person. Therefore “ktAbhA”-*lgls”
(her book) has two POS.

2. The derived nouns are not taken into account because they are

interleaved with other types as adjectives.

3. The constant adverb class was added, only, to this level.

4. The definedness feature was not taken because we deal with the definite

particle as independent particle and the classes which have definiteness

feature are constant: pronouns, demonstrative, proper nouns etc.

The tags of nouns start with letter N followed by Nouns POS followed by Features

(Number+ Gender + Case + Structured) respectively. For example the tag

NDem_SMAY is a Demonstrative Noun Singular Masculine Accusative structured.

Nouns
v v v v v v
Jad ol sl U 50 | ezl | alall s
Verbal Common Relative Demonstrative Pronoun Proper
NVrb NNou NRel NDem NPrn NPrp
v v v v v v
el
Five nouns Allusive Reduced Numeral Interrogative | Adjective
NFiv NAIv NRed NInt
v % ~a A_/\
Constant Adverb Cardinal Ordinal Genealogical Other
NAdv NNmc NNmo NAdg NAdo

Figure 3-16: Arabic Noun Classes in the proposed tagset.

42

Comparing Arabic Tagsets and Designing a New One

Gender: Masculine Feminine Common
Number: Singular Plural Dual
Case: Nominative | Accusative Genitive
Structured Yes No

FIgure s-1/: INOUIl 1eawures 1n e proposea agsetr

3.4.3 Arabic Verb Classes and Attribuits in our Tagset
For the previous classification, we can take the verb classes and verbal attributes
(features) as in figure 3-18 & 3-19 respectively. This classification will remove the

interleaving which happened by variation of classification.

Verb

A\ 4
Present Prt

Past Pst Imperative Imv

Figure 3-18: Verb classes in the proposed tagset

Gender: Masculine Feminine Common (&_5idia
Number: Singular Plural Dual

Person: First Second Third

Mood: Nominative | Accusative | Jussive Non
Certainty Yes No

Structured Yes No

Voice Passive Active

Figure 3-19: Verbal attributes in the proposed tagset

3.4.4 Particles Classification in the proposed tagset
The classes of the particle, in our tagset, are defined according to the particle

working. We summarized all of them in Figure 3-20.

The particle meaning is an attribute, in our tagset, of particles. As we can see the
particles have 50 types (in meaning). Some of these classes can be combined into one

class according to similarity of their meanings, therefore we can reduce the number

® The word ending will be changed (letter or diacritics) according to the case of the word(nominative
accusative ...). In the case of structured word, the word ending will be constatnt at all word cases
(nominative, accusative ...)

43

Comparing Arabic Tagsets and Designing a New One

from 50 to 21 as in Figure 3-21. For example the classes: imperative, exhortation,
pleasing, wishing, offering are unified to request class and so on.

Prepositions are a group containing almost all of the previous classes. Each
preposition has multiple meanings which is a subset of the previous classes. For
example the preposition "Baa" has 13 different meanings (Al-Galaiini) [6]. The
interesting thing in preposition is that it has the same working in the sentence which is
the reduction. Particles’ working can be: for-jussive particles, for-reduction (for-
genitive) particles (preposition), for nominative particles, for-accusative particles, for
conjunction, not-working particles, Prevented. We want to show the difference
between "for conjunction™ and "not working" particles. The first particles translate the
case of the word before it to the word following it. The second kind of particles does

not do anything.

Finally, we will use the following important particle classes as in Figure 3-22 and
the meaning of particles is shown in Figure 3-23:

ille e gl L
eal ol il il) Gy [
Jaall (o 48 iS4 (s
For .13
for Reduction®® For for Not working Copier* Prevent’®
Jussive® (preposition) Conjunction™ | Accusative® | Or Preventive Co Bry
Jus P pRed Cnj Acu Non P

Figure 3-20: The classes of particles (working) in the proposed

tagset.

% The present tense verb after these particles is in jussive mood.
19 The noun after these particles is in genetive case.
! The nouns or verbs conjected by these particles must have the same case.
12 The nouns or verbs after these particles are in accusative case.

13 They do not have any effect on the following word.
¥ They have dual effect on the following words. One of the following words is in nominative and the

other one in accusative case

1> Any particle after this particle will be “not working” (i.e., prevented from working).

44

Comparing Arabic Tagsets and Designing a New One

Particles
meaning
v v v v v
Future Interrogative Linking Exceptive [Without meaning
Jui) RPEW L) sl | e led o
v v v v v
Definition Exclamatio Simile Realization | Request
EETT il | G ks
v v v v v
Answer Certainty Increasing & decreasing|Explanation & details| Caution
) -
- A S 5 ol Jeai 5 o "
v v v v v v
Negative Vocative Surprise |Subordinating | Adverbial Conditional
s oL el Aialda § 1 4,k b s

Figure 3-21: Particles meaning in the proposed tagset (features).

3.4.5 Residuals and punctuation
Residuals can be symbols of numbers, mathematical formulas, abbreviations,
acronyms and so on. We must distinguish between the symbol of numbers (1, 2...)

and nouns of number (one, two...). Figure 3-22 shows residuals classes.

Residual
<& ‘V\
Symbol Abbreviations and Not Classified
RSym Acronym RAbc RNcl

Figure 3-22: Residuals classes.
Punctuation category contains all punctuation symbols: ¢, «¢ <« 22 <2 e)

“I, “17, “=". All these have one class which is punctuation (CPnc).

b

45

Comparing Arabic Tagsets and Designing a New One

Residuals and punctuations do not have features or meaning. It means that
residuals and punctuations are not the same as noun, verb, nor particles; therefore,

they only have one level.

3.5 Multilevel tagset

Residuals and punctuations do not have features or meaning, hence they have one
level. For particles, there are two levels only, meaning and working. The same
situation applies to verbs: they have two levels, type and features. The situation for
nouns is different where there is a third level in addition to POS and feature. The first
level of POS consists of the properties that do not be change when the position of the
noun in the sentence is changed. The features of this POS are grammatical features
(level two). The third level is for syntactic classes which are changed by changing the
noun position in the sentence. It is well known, that the number of syntactic classes in
Arabic is much larger than in English. The third level of classes of noun is shown in
figure 3-23. These classes can be treated as additional features. We show the levels of
POS tagset in Figure 3-24.

deld 4 Jsaia 8 palia 8 pa sl
(Subject of a verb) (Object of a verb) (Adverb) (Vocative)
Jdeld il Blhaa J s2da Ja Al Calias
(Passive subject (Cognate) (Circumstantial | (Possessive
representative accusative) construction)
i alaY J sria e i J
(Subject) (Accusative of (Specification), | (Apposition)
purpose)
B axe J gaia (s X
(Predicate of a (Commutative object) (Excepted) NOT USED
subject)

Figure 3-23: syntactic classes of noun®.

18 We intend to design a tagset and build a POS tagger for Arabic. Level three is beyond what tagger
needs and therefore I used the letter “X” to indicate an unused level for future use.

46

Comparing Arabic Tagsets and Designing a New One

First level Second level Third level
(not used in our
practical tagset)
Noun Noun type which will not | Grammatical Noun type which can
change at any position in | features change according to it’s
the sentence position in the sentence
(mostly syntactic types).
verb Verb type which will not | Grammatical | ---—---
change at any position in | features
the sentence
Particle Particles working Particles meaning | -------
Residuals Residual symbol |} - |-

punctuation

Punctuation symbol

Flgure s-Z4. uUie Levels ol

U1 PropusEU Lagset

3.6 Practical representation of the proposed tagset
Practically, the tagset is representing classes and features in one block of symbols.

Representation of tags in the proposed tagset is as follows:

1. Noun has the form: N+POS_ Number+Gender+Case+Structured

2. Verb has the form:

V+POS _ Person+Number+Gender+Case+Structured+Certinity+Voice

3. Particles has the form: P+Working_Meaning

4. Residual has three tags: ROth, RSys or RAcb

5. Punctuation has one tag: CPnc

Appendix A shows a practical example of 186 tokens tagged with this tagset.

Theoretically, the proposed tagset has 3552 tags (excluding the third level). Indeed,

some of the tag combinations are impossible. By taking third level into account, the

number of tags will increase to 14892.

3.7 Discussion

As we see, some researchers constructed tagsets based on English and missed some

of the important features of Arabic. Other researchers created tagsets depending on

the Arabic language and took some features from other languages, but those tagsets

47

Comparing Arabic Tagsets and Designing a New One

didn't take all the important Arabic language features into account. There has been a
tagset proposed that includes all Arabic language features, with many useless

(redundant) tags.

Building a tagset, as large as possible to include all language features, and as small
as possible in order to permit relatively efficient tagging, is a hard problem. We
introduced a new multilevel Arabic tagset compatible with CA (Classical Arabic) and
MSA (Modern Standard Arabic). It has almost all Arabic features and classes.
Selecting classes, features and merging them is done carefully. The proposed tagset
does not have interleaving. The third level of this tagset is beyond the range of this

dissertation; therefore we will refer to its first two levels, only.

48

Jcomenteion e Totesmioon

4.1 Introduction

Tokenization is the task of separating out words (morphemes) from running
text (Jurafsky & Martin) [54]. One of the mophemes typically corresponds to the
word stem, and there ar ealso inflectional morphemes (Habash) [45]. We can use
blanks (white space) to help in this task, but there are hard cases. This definition is
valid for English, but for Arabic the situation is different. While discussing
tokenization, it is important to remember that there is no single optimal
tokenization. What is optimal for IR may not be optimal for SMT. Also, what is
optimal for a specific SMT implementation may not be the same for another
(Habash) [45].

Tokenization is a necessary and non-trivial step in natural language processing
(Bird et, al.) [22] (Attia) [13]. It is closely related to the morphological analysis
but usually it has been seen as an independent process (Chanod & Tapanainen)
[28].

(Habash) [45] shows a number of different levels of tokenization schemes. It
starts from simple tokenization which is limited to splitting off punctuation and
numbers from words. Then orthographic normalization unifies various forms of
letters. Then decliticization schemes split off clitics. The last can be done

according to stem & affixial morphemes or lemmas & clitics.

Segmentation and Tokenization

In our work, there is a little distinction between segmentation and tokenization.
Segmentation is related to splitting running text into sentences (sentence
segmentation), into words (word segmentation) and the word to its segments, no
matter how this word was constructed. On the other hand, tokenization is related
to getting tokens from running text. But in most cases these two tasks overlap. In
other words, segmentation is related to splitting all affixes and clitics'’ and
tokenization is splitting clitics only with retriving the changed or the deleted
letters resulting from the inflections. We take the segmentation process as splitting
running text into sentences (sentence segmentation), into words (word
segmentation) (Jurafsky & Martin) [54], and tokenization as splitting the words

into morphemes.

In this chapter we propose a hybrid unsupervised method for Arabic
tokenization, considered as a stand-alone problem. After getting words from
sentences by segmentation, we use our own analyzer to produce all possible
tokenizations for each word. Then, manually written rules and statistical methods
are applied to solve the ambiguities. The output is one tokenization for each word.
The statistical method was trained using 29k words, manually tokenized (data
available from http://www.mimuw.edu.pl\~aliwy) from Al-Watan 2004 corpus
(available from http://sites.google.com/site/mouradabbas9/corpora). The final

accuracy was 98.83%.

4.2 Tokenization System

The whole pre-processing for Arabic tagging system consists of tokenization
and analyzing. Figure 4-1 shows the whole pre-processing for tagging system.
After completing all these stages, the final results are lemma and clitics with their
features. We should note that lemma is an ambiguous term in Arabic and there is
no consensus among the researchers about its definition. In this dissertation we
depend on the definition in (Habash) [45]. In this chapter, we will focus on

tokenization only.

7 see section 4.7.1 for clitics definition.

50

Segmentation and Tokenization

Rong [Twordana | G

text
sentencg boundaries
Segmentation

Text
Normalization

Tokenization

Consecutive

morphemes

(Inflected Segmentation :
word into morphemes Normalized
&Clitics) text

Figure 4-1: The Tokenization as pre-processing task for tagging
process. The output is inflected word + clitics for each word.

4.3 Related Work

In some works (e.g. MADA+TOKEN (Habash) [51], BAMA (Buckwalter)
[25][26], AMIRA (Diab) [32], Xerox Arabic Morphological Analyzer and
generator (Beesley’s) [17][18], Sakhr’s Arabic Morphological Analyzer (Sakhr
Software) [81], Khoja's stemmer (Khoja) [58] this step of natural language

processing is performed (partially or completely) as a preprocessing step.

(Benajiba) [20] presents two segmentation schemes that are morphological
segmentation and Arabic TreeBank segmentation. He shows their impact on an
important natural language processing task, which is mention detection.
Experiments on Arabic TreeBank corpus show 98.1% accuracy on morphological

segmentation.

(Lee) [66] depends on the word representation as prefix*-stem-suffix*. The
algorithm uses a trigram language model to determine the most probable
morpheme sequence for a given input. The language model is initially estimated
from a small manually segmented corpus of about 110,000 words. The resulting
Arabic word segmentation system achieves around 97% exact match accuracy on

a test corpus containing 28,449 word tokens.

The systems of Benajiba [20] and Lee [66] deal with stem rather than lemma.
According to Habash [45] stem is not a legal Arabic word form, unlike lemma.

51

Segmentation and Tokenization

In AMIRA (Diab) [32] and MADA+TOKEN (Habash) [51] are packages and
the tokenization is not a separate task. They use Support Vector Machine (SVM),
but Habash [51] uses morphological analyzer with SVM. They have accuracy of
tokenization 99.12% and 99.21% respectively.

4.4 Word and Sentence Segmentation

4.4.1 Sentence segmentation

It is the first step in text processing, a crucial one. Segmentation a text into
sentences is generally based on punctuation (Jurafsky & Martin) [54]. In Arabic,
estimating boundaries of a sentence is a relatively simple task, about as difficult as
in English. The average number of words per sentence is larger than the average
in English, but it does not affect the segmentation process. The sentence
boundaries and phrase boundaries can be estimated according to Arabic

punctuation marks which are <%, ..., :, ., ¢,"" - [] ,=

4.4.2 Word segmentation

Word segmentation is the process of getting words from text. The space is a
good separator for this task but it will not work in special cases, such as
compound words. Some compound words are written with a space in the middle
even though they are single words. Such cases must be solved at this stage. For
example the word “IslAm [bAd”-“s4l 23 (Islamabad) is a name of a city in
Pakistan. It means that we must have knowledge base with such words. After
solving this problem, this stage is relatively easy. There is another difficulty,
when a few words are attached together without spaces, which can happen when
the first one ends with one of the letters “w”-“y”>, “d”-“a”, “r”-« 7, “z7-“)", “*-
“¥, Tt is formally a mistake, but may happen when dealing with informal texts.

Our system assumes to work with correct texts hence we do not offer any solution

of this particular problem.

4.5 Normalization

Orthographic normalization is a basic task which reduces noise in the data
(Habash) [45]. This is true regardless of the task: preparing parallel text for
machine translation, documents for information retrieval or text for language

modeling. Normalization can be Tatweel removal (removing Tatweel symbol),

52

Segmentation and Tokenization

diacritic removal and letter normalization (variant forms to one form conversion).

Figure 4-2 shows letter normalization example.

A 4

sY sy

0
)1

|

A 4
>

s-5W-} P &

A 4

5P o h

Figure 4-2: An example of Arabic letter normalization
This normalization will help us in searching or matching process but after this
stage, the normalization process will increase the ambiguity in tokenization. For
example, if we normalize “P”-“3” (Taa-Marbuta) to “h”-“*" (Ha), the latter will be
tokenized as a pronoun. For this reason, in our work we consider normalization as

a temporary stage for matching and searching the dictionaries.

4.6 Arabic Tokenization

Arabic words are often ambiguous in their morphological analysis. This is due
to Arabic’s rich system of affixation and clitics and the omission of
disambiguating short vowels and other orthographic diacritics in standard
orthography (“undiacritized orthography”). On average, a word form in the ATB
has about 2 morphological analyses (Habash & Rambow) [46].

Arabic word is of the form [Proclitics] + [inflected word] + [Enclitics]. Then,
tokenization here is similar to word segmentation in Chinese, where Arabic word

corresponds to a sentence in Chinese®®.

4.7 Arabic word form

In written, it is possible that a single word has two or more part of speech
(POS) categories. It leads to problems in stemming and segmentation. Let’s
consider the word “wbsyArthm”-“a¢5 lus s (and by their car). Is it a word? How
is it constructed? According to the classical*® definition of a word, it is a word but,
as we can see, it has four POSs.

'8 Chinese does not delimit words by white-space. Word segmentation is therefore fundamental for
other language processing tasks in this languages (Peng et, al.)[76].
19 The word is a sequence letters enclosed by two spaces

53

Segmentation and Tokenization

In this chapter we will distinguish constructing of a word from a number of
POSs and the inflected word (construction perfect, imperfect, imperative, mood,

person and so on). l.e., we will distinguish clitics and affixes.

Arabic clitics attach to the inflected base word (see the next Section 4.7.1) in a
strict order that can be represented as follows, using general class names (Habash)
[45]:

[QST+ [CNJ+ [PRT+ [DET+ BASE +PRO]]]I?

where QST is question, CNJ is conjunction, PRT is particle, DET is
determinant, BASE is base of the word, and PRO is pronouns, respectively.

In a more general way, we can represent the word as:
BASE + affixes + clitics

=lemma+ morphological features+clitics

=stem + affixes + clitics

=inflected word +clitics

The previous example “wbsyArthm”-“a¢ibeas” will be “w+b#syArp#hm”
according to the last form where: w, b and hm are clitics and syArp is the inflected

word.

Some works do not differentiate between affixes and clitics, assuming the
Arabic word generally to be of the form (prefixes + stem + suffixes). In our work,
we will focus on the form (inflected word + clitics), where inflected word consists
of lemma and morphological features. This will help us encoding word features
and POS without doing an unwanted segmentation.

4.7.1 Word Clitics

Clitic is a unit whose status lies in between that of an affix and a word. The
phonological behavior of clitics is like affixes; they tend to be short and
unaccented; their syntactic behavior however is more like words, often acting as
pronouns, articles, conjunctions or verbs (Jurafsky & Martin) [54]. Clitics can be

proclitics which precede the word (like a prefix) or enclitics which follow the

2 Any transliteration written in English should be read from left to right, while the corresponding
Arabic original phrase should be read from right to left.

54

Segmentation and Tokenization

word (like a suffix). Proclitics can be preceding the verb, noun, pronoun and
particles. Figures 4-3 & 4-4 list almost all known combinations of verbs and
nouns proclitics, respectively. There are three levels of verb proclitics, always
attached in the same order. The use of them is optional. For noun the structure is

similar, but there are four levels.

IC.

7'y
I e G.
?

[°10, w, f][1, s](inflected Verb)

Figure 4-3: Verb proclitics.

A

A
A

[G
(8

o J

[1w, 1Lk, I, b][Al][Noun]

Figure 4-4 Noun proclitics.

Figure 4-5 shows cliticization of attached pronouns®* with particles. Selecting
which is the base (inflected word) depends on the priority shown in Figure 4-5 by
number. The numbers (1, 2 and 3) which are used in figure 4-5 are the priority of
taking the base of the word. If one word from box 1 exists in the word, then it is
the base and the remaining ones are clitics; else, if a word from list box is present,
then it is the base and the other ones are clitics; else the word from box 3 is the
base and there are no proclitics. Note that at least one word from those lists must
be present. For example “»¢4” “AfInhm” “then, are that they” is cliticized as
follows: “A”-“"’ (are/is) and “f’-““” (then) are proclitcs, “In”-“g)” (that) is the
base and “hm”-“»” (they) is an enclitic. The book (Habash [45], pages 48-50) is a

good reference for other special cases in cliticization.

The particles can appear combined for constructing words, but the easy way for

dealing with them is by taking these combinations as stop words.

2 In Arabic there are two types of pronouns: attached to a word (us, me..) and separated (I,we...).

55

Segmentation and Tokenization

Enclitics follow verb or noun. The enclitic “nA”-“l” (we-our) is ambiguous
and has two possible roles (either a clitic or an inflection suffix). For example the
word “gtInA”-“Ll#” can mean “we killed” or “he killed us”. “nA”-“L” is an affix

in the first context and an enclitic in the second context.

All enclitics are pronouns and therefore pronouns themselves don’t have
enclitics. Figure 4-6 shows all common enclitics for nouns and verbs with their

order. They are optional.

This set of clitics and their order of precedence (summarized here and
described also in other papers and books) are the base of our algorithm. Adding a
few rules for deleting unwanted combinations of clitics we can get a good

segmentation program, as we will see in the implementation section later in this

chapter.
1
3 08, 0,0 G s, 2
JIER NA,\-\D,JD,‘N_AD,Q\S1J’J1 < d < u" |
MR ’
1
An, mn, fy, En, b,
xIA, HAS$A, Al ,
2| | EIY, El, EdA, 1AKn, | [3
w
) > < » IEIl, KAn, mE, Iyt,
£ ™ Pronoun
IWIA,...

Figure 4-5: Proclitics for pronoun and pronoun as an enclitic
according to the priority number of taking the base.

56

Segmentation and Tokenization

b’m1$’u1®’é1usi(‘5’us1u < (“f. < (&é)

(verb)[ny][nA,kn,kmA k,hn,hA,hm,hmA,h]

o’m’eh’u’m’«ﬂ’us’es’bsyuyg

&)

A

(Noun) [nA,kn,kmA,k,hn,hA;hm,hmA,h]
Figure 4-6: Enclitics for Noun and Verb

4.8 Tokenization and segmentation techniques
and schemes

Habash [48] shows that tokenization techniques can be as simple as regular
expressions and/or as complex as morphological analysis (form-based and
functional). The main classification of tokenization algorithms is into supervised
and unsupervised ones. Manual analysis of text and writing custom software,
unsupervised Language Model Based (Lee et al.) [66] are examples of
unsupervised methods. Annotating the sample corpus with boundary information
and using machine learning (ML) is an example of a supervised method. The
other classification is into language dependent (methods used for one language or
group of languages, there are many methods of this type) and language

independent methods.

Arabic has a middle level of segmentation complexity; it is between English
(and similar languages) and Chinese (and similar languages). In Arabic words are
typically separated by spaces (as in English), but it is possible that an Arabic word
is a whole sentence, like in Chinese. Therefore we should use a hybrid method for
dealing with segmentation or split the segmentation task into two steps. The
helpful thing is that the forms of Arabic words are known, which simplifies the
segmentation of words when compared to Chinese, where one has to apply

segmentation to sentences.

Schema defines what the target tokenization is (Habash) [45]. The same paper
lists some examples of schemes used in tokenization of Arabic. In this dissertation
we use scheme D3+ LEM. D3 (decliticization of degree 3) is a scheme that splits

off clitics: the class of conjunction clitics (w+ and f+), the infrequent interrogative

57

Segmentation and Tokenization

clitic, the class of particles (I+, k+, b+ and s+), the definite article Al+ and all

pronominal enclitics. LEM reduces every word to its lemma.

4.9 Challenges of Arabic tokenization
There are many challenges to Arabic tokenization. The complexity of the
morphology together with the under-specification of the orthography creates a
high degree of ambiguity (Habash et, al.) [51]. Some of these ambiguities can be
summarized by:
e Orthography problems resulting from writing the letter in ambiguous case as
in “Y”-“s” and “y”-“s” or unification of some forms of a letter as in “A”-“”,
“O7-“P, “I”-“” and so on.
e Encliticization of a word ending with “P”-*%”:

“ymEthm”-“agizea” (collect them) = a8 + Cizaa

“JmEthm”-“agizes” (their Friday) = a2 + dzea

e Encliticization of a word ending with “Y”-*“s”:
“mStWY”'“Lﬁ - 99 (leVel) + “k”'“‘ﬂ” (your)

> “mstwAk”-“dl siws” (your level)

e “nA”-“U” and “y”-“s” are ambiguous and can be either enclitics or suffixes.
(see section 6.1).

e Normalization adds ambiguity, for example normalizing “P”-*s” to “h”-”
will create false enclitics: the word “Amp”-“«” (nation) after normalization
will become “Amh”-“«”, then if we apply the tokenization to the last word,
it will become “Am+h”-“s+ " (him mother) but the right tokenization is “4I”

“nation”.

e Ambiguity results from decliticization of “1”-“J”, “A”-“"” and “Al”-“J” (the).

All these and other ambiguities are solved during tokenization stage in our

system.

Another class of problems resulting from morphology is solved in this stage.

For example the word “HmlwnA”-“Usl” (they raise us) after tokenization will

58

Segmentation and Tokenization

be “HmIwA+nA”-“U+ sl where the tokenizer adds the removed letter resulting

from morphological rules.

There are other encoding problems where the same letter is written in different
shape with different code. It is solved in this stage, as well. For example
“zmlA}y”-“ Sy’ (my colleagues) after tokenization will be ‘“zmlA’+y”-

“wte3y” and so on.

Some of the ambiguities in POS tagging are solved already during
tokenization. For example the words “bktbnA”-“lisy” (by our books) after
tokenization will be “b+ktb+nA”-“U+iS+2” because it has preposition “b”-“w”
(by). The other tokenization is “b+ktbnA”-“LiS+<” (by+we write) which is
rejected by the tokenizer, because an inflected verb cannot appear after a

preposition.

4.10 Our approach

We use a hybrid method for tokenization which is a combination of
unsupervised method which depends on rules for getting segments, and statistical
method for solving ambiguities. Our algorithm works as follows:

Task 1: As a preparation to the segmentation process, we first compute all
verb, noun and pronoun proclitics and enclitics storing these combinations in lists.
Then, the text is segmented into sentences and the sentences into words according
to space and Arabic punctuations. Segmenting the words into clitics & bases is
done by analyzer which produces all possible segments for each word. After this

stage every word may have several segmentations.

Task 2: Now we remove noise introduced in the first task. We do so by
deleting segmentations which produced one letter words with proclitics and
enclitics (which is impossible in Arabic)? and duplicate segmentations (which
may result from segmenting the same word treated once as a verb and once as a
noun). We also remove segmentations whose inflected word is not in the
dictionary (constructed separately from many resources). However, if all produced

segmentations of a word should be removed, they are all passed to Task 3 for

22 See section 5.8 more details for constructing the dictionary.

59

Segmentation and Tokenization

special treatment. Words whose segmentations are not all removed are passed to
Task 4.

Task 3: Because the used dictionary does not cover all words in the language,
there are many unknown words whose segmentations are passed from Task2 and
must be processed here as out of vocabulary (OOV). We first choose the
segmentations which give the largest number of letters in the proclitics and
enclitics, and among these we choose ones that have the least number of proclitics
and enclitics. If this does not yield a unique segmentation, the choice is not made

and the possible segmentations are transferred to Task 4.

Task 4: Because the system may produce many segmentations for one word, in
order to get one segmentation for each word, we select the segmentation with the
least number of segments. If this still does not produce a unique segmentation, we
use a method similar to that of Task 3. From the candidate segmentations we
select the segmentations which give the longest possible sequences proclitics and
enclitics, and among these we choose ones that have the least number of proclitics
and enclitics. If this does not yield a unique segmentation, we choose the first one

encountered.

Task 5: We eliminate, using statistical estimation, ambiguity of results of Task
1. This task is done in parallel with Tasks2, 3 and 4. This task is described below
in Section 4.11.

Task 6: Smoothing or correction rules are used to reduce errors from the

previous tasks.

For example, we add the following rule for distinguishing between a word

ending with “t”-“<” (normal Taa) or “p”-*s” (Taa Marbuta):

IF ((the base word has Taa AND has enclitics) AND (has a proclitic of type
preposition OR the previous base is a preposition)) THEN Change Taa to Taa
Marbuta.

There are many other similar rules used in this task derived from Arabic
grammars (AL-Bidhani) [3] (Al-Rajhi) [10] (Al-Hamlawy) [7] (Al-Galaiini) [6].

60

Segmentation and Tokenization

4.11 Applying statistical improvement

Our philosophy of using statistical support is the same as the one we use later
in POS tagging system. Assume we have a sentence: wi W, ... w, with n words.
Let the set of possible tokenizations of word w; in this sentence be {si... sj},
where j is the number of segmentation®® of this word. Now we can apply any

statistical method, like HMM used for tagging, for tokenization.

We have two facts: in our approach, first we used dictionary and rules for
tokenization and solving ambiguities. Bigrams are used, and we do not consider n-

grams for n>2. The bigrams equation which we used practically is:

si=argmax p(w |s)p(s; |54

P(w; | si) is probability of i™ word given the segmentation. P(s; | si1) is the

probability of the segmentation given the previous segmentation.

4.12 Results
After applying all the previously described simple methods, we got the

following results, in which we used bigrams on 45 files?* with 29k words.

Without statistical support and without Task 4 the recall is 0.9877462,
precision is 0.8617793 and F-measure is 0.920473. Without statistical support
(one choice for each word using Task 4) the accuracy is 0. 9802977. With
statistical support (one choice for each word) ten-fold cross-validate accuracy is
0.9883473.

In our tests, tokenizations “HAsrt#hA”-“#u#o " and “#Asrp#hA”-
“Hadfs o’ CHNrAHhA”-“##)) and “#nrY#hA”-“#lats > are assumed to be
errors even though they are only orthographically wrong. In general, any change
to the ending letter of the word resulting from morphology, if it is not compatible

with the original letter, is assumed to be an error. Practical tokenized Arabic text

B8y, sjare segmentations, not segments. |.e., each one of these segmentations consist of one or
more segments.

% The data was chosen randomly from Al-Watan 2004 corpus (available from
http://sites.google.com/site/mouradabbas9/corpora). The sentences have been tokenized manually
by ourself.

2 Practically the tokenized text has format: proclitics#inflectedWord#enclitics. If there are more
proclitics/enclitics, they are separated by +.

61

http://sites.google.com/site/mouradabbas9/corpora

Segmentation and Tokenization

and its transliteration are shown in Figures 4-7 and 4-8, respectively?®. Comparing
with other works, the best known tokenization results have accuracy 99.12% and
99.2 % (Diab [32] and Habash [51], respectively) on the data of ATB. They did
not solve the following problems: sometimes they take “AL”-“J” as a part of a
word, not as a clitic, which leads to a decreased level of ambiguity between
“A+L7-“d+” and “AL”-“J" clitics (i.e., it increases accuracy). Next, in most of
cases, they did not manipulate the letter changing due to morphology. l.e., the
errors in the two examples in this section are considered to be correct in their
approaches. Their algorithms are data dependent because they use statistical
method. Our method without statistical improvement is only marginally worse,

being data independent.

4.13 Discussion

We can see that we collect more than one method for solving ambiguity in
tokenization. We introduce simple and effective methods for making decisions in
tokenization, achieving high accuracy Arabic tokenization system. Our approach
solves most ambiguities in tokenization. The tokenization is a separate task. It can
be an efficient tool for annotating large corpora. If an extremely high accuracy is
needed, wrong cases can be corrected manually. We do so measuring the accuracy

of the next steps in our tagging system.

% The 45 tokenized files are freely available from the website: http://www.mimuw.edu.pl/~aliwy.

62

http://www.mimuw.edu.pl/~aliwy

Segmentation and Tokenization

Hlanstt Hoaoutt HNWH #HEeH]) #HooH HOSSH #t Hofdt #U3H s #Ht #Ho ot
Lttt s Wt o #alluatt 5 # uSH #ALISH #olatt #UM #ett Halle#d) #pst H# Lo #
HO e #]) #HOW #oatt He sa s 5 HAEH]) #an st # Aot #omaitt]) Hoinndt #alt
Hoa ot H W HAM # ot #Ht HORMIH 5 #l) #OsH #OSH]) #Har$t])
HOWC #eft #) #a3) #J) # S #e S #Ll W I s #ett #Halle) # ot
HAsSH) #oadtt Haltt #hett He S #HIH HONW # et #UNAH Hoet s Halle#d)
Hagalett Hloa 3 Hoa W) HOLad S #riatt bt #t #OeHIHG # S
Hulaip Hlinet #5H WhHanliaft s WHOI) saitt #oasl Hallt Hoats #oaiulf]
Hoott ottoditt #osaftos Halleftdhaa #HOMH #.# #ea S5 #HBlattdl #O 555 5
Htt HOLHD HosS W) #alelf Hom# #owit WHdief #6)e#d) #DAH
Lttt Flladaft) #e st #6 S o #is salttd) H WD) #laailf #ocH aa#c)) paiff
Haic#t #) s aith 5 fhett HosSWs HAH s #om st Hielt HUMH HG) Siulft]) HalsSiff
Hoaaiitt HISEIY 5 #ola saft M 5 #e | SO 5 Hane #) #Hdmuit Haulalt g ralist
HOSLett #HOm o HH #O S HOSH #W s #ft # D) #5138 5 #lac#td)
HUtJ #iae sttd) WHEIEAH 5 #o H) Hlif HOLESIH # W #a s# #35# #oull
HOsH #YSH HOAH #J] #AISAeH 5 #acLiatd) Hum W) Hoot #lai# #LSH
ettt 5 et #Sabttd) H#e | attd) #alidth #oatt Hlniath s #02 J30) #ASLH) Holsi I
#slt Hooe#d s HOLMH HW HOLHA) #H WHoeH #RS L]l #alsy

4 St Hhandtt Helatt HLHS # Lalift)) #is siuttdl # 5 #0) pSuH]) #0\SH

FIQUTe 4-77 34dITIPIe OT ArabIC TOKENTZEU TEXT

#mrp# #.# wiqbl# #sntyn# ## #kibt# #En# AIZErAg# #AI*y# #swit# #yEml#
HEIY# #tgyyr#t AIZEAIM# ## #hl# #h*h#t #Kkimp# #kbyrp# w#mbAlg# #fy#hA
wHrb#mA #lm# #ysEf# Al#Ebyr# #EIY# #wjh# Al#dqp# w+Al#WDwWH# #mn#
#An# AIHErAg# Al#qdym# Al#kAmn# #tHt# Al#rmAl# w+Al#ly$n# ## #hw#
#*Ak# #AI*y# #swi# #ygyr# AIHEAIM# ## w#I*A# #ArtOynA# Al#tkrp# #fy#
Al#WAQE# AIHTEIy# ## THON# AIZEAIM# wH#mn# #xIAIE H#ESrp# #||Af# #tl#
#VAry# ## #im# #yjrit Al#tnqyb# #fy#hA b+AIHErAg# ## #swf# #ymnH#
#AKAdymyAt# Al#ArD# #frSp# #EImyp# I#AStEAdp# w#mn# #vm# #igyyr#
#HSwrAt#hA w#mfAhym#hA #fy# #mxtlf# #qDAYA# w#SWwn# Al#HyAp#
wHAI#tAryx# #..# #A*n# T+AIHEAIM# sttygyr# #nfs#th #mn# #xIAl# AIHErAgH
#mvI#mA #tgyr# #Hyn# #AEAd# Al#mArksywn# Al#nZr# #fy# #SwrAt#hm
#En# #nmT# Al#ANtAj# Al#Asywy# wHfkrp# #nSw’# Al#TbgAt# #HAI#mMA
#AktSfH# Al#AStSrAg# #mdnA# #mvil# #swmr#t wibAbI# wi|$wr# #,# witHrwA#
#End# #tFASYI#hA #AnZmp# #tsjyl# Al#Ebyd# w+AI#AjrA’# w+AI#mwZfyn#
WHASKAIZ #tnZym# AHEmMI# w#AdArp# Al#dwlp# ## wHlw# #kAn#
Al#AstSrAgH #iy# #zmn# ArtqA’# Al#mlkyp# Al#frdyp# w#mnEA# #mn#
#qyAm# AIASTAE# Al#Tbay# ## wHrb#mA #kAnt# Al#mArksyp# #gyr#hA
#y# AlnZrt #AIY# Al#$rg#t w+Al#grb# #lw# #kAn# Al#Ast$rAgh #fy#
Al#mstwY# ARTSVIV# kKiEmA# # A’# #bEd# #mArks# #.#

Figure 4-8: Transliteration of Arabic tokenized text

63

Al o o o

5.1 Introduction

The Arabic language is based on inflection and derivation, and words have
many different forms that result from these procedures. Therefore extracting
lemma is a hard problem for Arabic language. As a consequence, many
researchers chose to deal with the stem, which is easier to extract, rather than with
lemma. For example, in broken (abnormal) plural of nouns the word changes
completely. In lemmatization the original form must be found, in stemming it is

not necessary and is therefore easier.

In this chapter we build an Arabic analyzer which has two goals: the first is
extracting POS and features of the word. The second is extracting the lemma of
the word. These two goals are implemented in parallel. We built a dictionary as a

tool for achieving these two goals.

The proposed analyzer is not intended for independent use because it was
designed and implemented as a preprocessing stage for Arabic tagging system
and, using the context of the word, it will reject some analyses, saving tagger’s

work.

Analyzing and lemma extraction

5.2 Lemma, stem and root

When we deal with the analyzer, we must differentiate among three terms:
Lemma, Stem and Root. They have different meaning. The lemma is the
canonical form, dictionary form, or citation form of a set of words. The stem is
the part of the word that never changes even when morphologically inflected?’.
The root is the original letters?® of the word. Moreover, the term “root” is
ambiguous in Arabic language: some researchers consider it to be the original

letters, while others to be the imperative verb in 3" masculine.

When we deal with the root, then the derivational and inflectional morphology
is taken into account. When we deal with lemma, then only inflectional
morphology will be taken into account. When we deal with stem, then part of
inflectional morphology with part of derivational morphology will be taken into
account. For example: changing the whole word will not be taken into account as
broken plural. Figure 5-1 shows the difference between them with adding

“number” feature to the word “kitAb”-“<2t<” (book).

kitAb s KitAbAn LS, | kutub &€
(book) KitAbYn ¢S | (books)
(two books)

kth @ & kth -« <& kth o o d
kitAb s kitAb < kutub S
kitAb <us kitAb —us kitAb <us

Figure 5-1: Lemma, stem and root of the word “book” with
adding number feature®.

We can summarize the difference between stem, root and lemma in the

following points:

1. Stemming reduces word-forms to (pseudo) stems, whereas
lemmatization reduces the word-forms to linguistically valid lemmas.
Getting the root is done by reducing word-forms to original letters
(root).

%" In Arabic the changes of vowels will be taken into account in stemming.
%8 See Section 2.4 for more details about original letters.
2 The plural is broken for this noun.

65

Analyzing and lemma extraction

2. Extracting stem and root is relatively simple and can be done by
deleting affixes. Extracting Lemma is more sophisticated and must refer

to dictionary in some cases.
3. The root and stem are not valid words but lemma is.

4. More than one lemma can have the same stem; more than one stem can

have the same root.

In our work, for verbal classes the lemma is 3™ masculine imperative verb.
Lemma for the noun classes is the singular masculine, and if it does not exist, the
singular feminine. For particles, strictly speaking, there is no lemma, so for
unification we define it to be the particle itself.

5.3 Morphological analysis with lemma extraction
for Arabic

Morphology is the branch of linguistics that deals with the internal structure of
words (Al-Sughaiyer & Al-Kharashi) [12]. Then morphological analysis is the
task to discover the possible structures of a given word and represent them in a
desired format. Morphological analysis for Arabic was intensively studied by the
researchers; some of those works are listed in section “Related work”. From the
computational point of view we talk about possible algorithms and automated

techniques of performing morphological analysis.

Morphological analysis for Arabic can be done in two stages according to the

word structure:

1. Dealing with clitics: splitting the words to its morphemes which can be

done by tokenization.

2. Dealing with affixes and internal structure (inflected word): One or
both of the following:

a. Extracting the origin of the word (root, stem ...).
b. Extracting the attributes of the word (POS, gender, number...).

Morphological analyzer, depending on the form of the extracted origin of the

word, can be:

66

Analyzing and lemma extraction

1. Root-based
2. Stem-based
3. Lemma-based

According to the approaches used, Morphological analyzer algorithms can be
classified as follows (Al-Sughaiyer & Al-Kharashi) [12]:

1. Table lookup approaches (simple method): all valid natural Arabic words
along with their morphological decompositions are stored in a huge table. A
given word is analyzed simply by accessing the table and retrieving

information associated with that entry.

2. Linguistic approaches (sophisticated rule-based): utilize linguistic rules
that have been derived through deep analysis of Arabic morphological

systems.

3. Combinatorial approaches (brute force): all combinations of letters of a
given word are tested and compared against a list of roots.

4. Pattern-based approaches (less sophisticated rule-based): utilizes the

apparent symmetry of generated natural Arabic words.

Table lookup approaches are typically not sufficient alone, because it is
practically impossible to collect all forms of all words of Arabic. But it can be the
best approach for the irregular forms. The second type of approach requires deep
knowledge of linguistics, especially of the word construction rules, and any
omission reduces the quality of the results. The third class of approaches does not
need so deep linguistic knowledge, but it can give unwanted analyses. The fourth
one is similar to the second approach, but it needs less knowledge. On the other
hand, it requires collecting all possible patterns including the very rare ones,

which can in turn produce wrong analyses in some cases.

There are many other classifications of morphological analysis algorithms for
Arabic (see (Al-Sughaiyer & Al-Kharashi) [12]), but we chose the above one as
the most useful for us.

It is clear that there is no single ideal approach to Arabic morphological
analysis, but it is also clear that the application which will use the analyzed text is

an important factor to consider when choosing the approach to adopt.

67

Analyzing and lemma extraction

In our work the analysis is used to extract the word attributes, such as POS,

gender, number, etc.

Lemmatization is the process of relating a given textual item to the actual
lexical or grammatical morpheme (Dichy) [35]. It is the process of mapping from
a word form to a lemma (Jurafsky & Martin) [54]. From the definition of
morphological analysis, lemmatization can be a part of it. In our work it is limited
to extracting the lemma from the word. Without using lexicon, lemmatization
cannot be done with sufficiently high accuracy for many reasons which will be
listed in the next section. We do not attempt word sense disambiguation (WSD) in

our system hence, we accept more than one lemma for a word.

5.4 Challenges for lemmatization and analyzing

Due to the morphological complexity of the Arabic language, morphological
analysis with lemma extraction is a very challenging task. Arabic language is
regular in most cases of inflection and derivation, which leads to a relatively easy
generation process. However, for irregular forms, it is more complicated. This
difficulty grows rapidly also when a nonvowelized text is used®. Then the
analysis process has to consider all possible vowelizations and produce all
possible correct analyses for them. This huge number of analyses for each
nonvowelized word leads to much increased probability of producing some wrong

analyses among them.
The main challenges are:

1. A nonvowelized word can correspond to many vowelized words and
therefore to many possible lemmas: for example the lemmas for the
word “ktb”-“<i€” can be “kataba”-“Z&” (write), “ktAb”-“LS”
(book) and “kat~aba”-+i” (dedicated to write).

2. A normalized word can correspond to many unnormalized words
and therefore to many possible lemmas: for example the lemmas for
the WOI’d 6‘An79_éf.o\97 can be “On”"‘di”, C‘In’,_éf.oj’7 and Gf.|n”_(.6o]7, in

unvowelized case.

% Traditionally Qur’an is vowelized, and so are children’s books. The rest of present day texts are
nonvowelized.

68

Analyzing and lemma extraction

3.

4.

Deleting or changing some letters, even in regular forms. For
example the lemma for the word “yqwl”-“Js&” (he say) is “qAl”-
“J&” (said).

Words whose grammatical lemma ends or begins with a sequence of
letters identical to an affix. The mistake may occur when the
attributes are extracted from the affixes. For example the letters

29 ¢¢

“wn”-“0s” could be falsely interpreted as a suffix and deleted from
the word “mrhwn”-“0s »” (pawned). Similarly, the letters “An”-
“O” in the proper noun “EdnAn”-“0bae” could be interpreted as a
suffix. Similarly, the letter “t”-“<” in the common noun “tEAwn”-

“Us=5 (cooperation) could be interpreted as a prefix.

Complete change of the word in regular and irregular cases: broken
plural is often an example of this phenomenon. The best solution in

this case is to use a dictionary.

Transliterations of foreign words. Many foreign words, for instance
foreign proper nouns, have more than one form of Arabic

transliteration, which affects the analyzing process.

In our complete system clitics are dealt with during tokenization stage, and

hence are not listed here.

5.5 Analyzing as preprocessing

Arabic analyzing is the second preprocessing step, after tokenization step, of

the whole tagging system which we propose. Therefore we suppose that the input

word to analyzing is an inflected word or clitics as in Figure 5-2. The output of

this stage will be lemma, POS and features in case of nouns and verbs, meaning

and working in case of particles®!,

31 See chapter 3 for more details on our tagset.

69

Analyzing and lemma extraction

Tokenization O/P

Lemmas Consecutive

& Lemmatization and morphemes
Features analyzing (Inflected word

& & Clitics)

POS
Dictionary éuilding Dictionary Arabic
Language

resources

Tagset

Designing a new Arabic Tagset

Figure 5-2: analyzing and extracting lemma as tagging
preprocessing

Most of researchers depend basically on patterns for extracting root or stem but
the pattern, in most cases, is not an efficient way for extracting lemma from the
word. There is no any standardization for producing lemma from the word form in

most cases.

We use our own lemmatizer and analyzer and rather than existing

morphological analyzers for the following reasons:

1. We proposed a new Arabic tagset and existing morphological
analyzers will not extract all the POSs and the features consistent

with this tagset.
2. We deal with lemma instead of the root and stem.
3. We want to implement a complete tagging system.

4. Most analyzers mix segmentation and analyzing in one stage but we

separate them into different tasks.

5.6 The proposed analyzing Approach

The item to be analyzed is a word without clitics (inflected word alone) or
clitics alone, but all of them are known to the analyzer, because we assume that
we are processing text and therefore the context of the present word is known to

the analyzer.

Known words processing: no processing is needed because the lemma and

features are in the dictionary.

70

Analyzing and lemma extraction

Unknown words processing: we have more things to do. Unknown words are
more likely to be nouns, because we use a large and fairly complete database of
inflected verbs in the dictionary. As we mentioned previously there are many
classes of nouns which are closed sets (like, e.g., relative nouns). The open classes
of nouns are: proper, common, adjectives including genealogical and reduced

nouns®2.

We will explain the construction of the dictionary in the next section. Now, we

will focus on processing of unknown words.

5.6.1 Unknown words processing
Our approach to processing of unknown words is to do the most likely
analyzing, without exhausting all possibilities. The main steps for unknown words

processing are:
1. Extracting POS possibilities.
2. Extracting lemma and features.

The rules in the next sections are in general of four types: (i) strict positive
rules, where if the condition is satisfied, then there is only one possibility for POS
and features. (ii) Non-strict positive rules (“seems to be”), where if the condition
is satisfied, then the POS and features are added to the list of possible ones, but
other possibilities are not ruled out. (iii) Strict negative rules, where if the
condition is satisfied, then some combinations of POS and features are ruled out,
even if they were or will be added to the list of possible ones by non-strict positive
rules. (iv) Non-strict negative rules (“seems not to be”), where if the condition is

satisfied, then this combination of POS and features is an unlikely one.

It is a very interesting problem to find a good decision in a case of a word for
which these rules produce a number of, perhaps contradictory, non-strict positive
and non-strict negative indications. However, it seems that the method of
resolving this problem has indeed little impact on the final accuracy of the
analyzer, and therefore a very simple method is used, which treats non-strict
negative rules as strict ones, in the absence of any strict positive indication. This

%2 Our tagset has 15 subclasses of noun.

71

Analyzing and lemma extraction

reduces the number of possible analyzes, which is beneficial. We did not

encounter any case of a conflict of a strict positive and a strict negative rule.

56.1.1 Extracting the POS possibilities

First we need to know the main POS to the word (noun, verb or particle);
however, particle can be eliminated because the particles form a closed set. So
really we have only two possibilities: noun and verb. Then we will extract the

POSs according to our tagset.

1. Extracting the main POS: We must decide: verb or noun in this step. It can

be done by applying the following classes of rules:

a. Clitics rules. For example the definition particle “Al”-“J” “Al” (the)

appears with noun only.

b. Affixes and word structure rules. For example, the letter “p”-3”

appears in nouns only.
c. Context rules. For example: verb cannot follow another verb.

d. If none of the above rules is applicable, we assume by default that the

word is a noun.

5. 2. Extracting the POSs according to our tagset: it can be done separately

for verbs and noun subclasses:

a. ldentification of past, present, and imperative forms of verbs is achieved
by:

99 ¢¢

I. Clitics: for example if the word has prociltic “s”-*“" (will) it must be

a present tense verb.

ii. Affixes: for example if the word has one of the prefixes “y, A, n, t”-

“s,), o, &7, it seems to be a present tense verb.

iii. Preceding word: for example, the word after “In”-“o¥” (not) must be
a verb in present tense. Similarly, an imperative verb after “qd”-“%”

(may be) is not possible.

72

Analyzing and lemma extraction

b. Induction of noun subclasses: proper, common, reduced and adjective

(including genealogical)®® nouns is achieved as follows:

i. By the pattern: for example reduced nouns can be identified by their

pattern because there are exactly three patterns for reduced nouns.

ii. By the word structure: for example the genealogical can be induced

9% ¢ 29

¢

by the word ending, because it always ends with “y

iii. By the affixes: for example if a word ends with “p”-*s”, it seems not
to be a proper noun.

iv. By the context: for example, if the previous word is a verb then the

current one seems to be a common or proper noun.

At this stage we do not resolve the ambiguities; instead we find the most
important analyzing for the word. We may overlook some possibilities, but they

are very infrequent.

5.6.1.2 Extracting lemma and features

After differentiation between classes of words now we do the second phase of
extracting lemma and features. Verbs and noun subclasses will be processed
separately, but by the same methodology:

6. 1. Extracting the features from the affixes.

7. 2. Extracting the lemma by:

a. Deleting the affixes.
b. Retrieving the deleted and (or) the changed letter which resulted from
the inflection.

For verbs classes, the above steps will be:

9% €. 9

1. From affixes: for example the verb ending with “yn”-“02” seems to be (i)
plural masculine or (ii) singular feminine or (iii) dual masculine or (iv)
dual feminine. If a verb begins with “t”-“<” it seems to be (i) masculine
2" person or (ii) feminine 2" person. If we combine these two rules on
the verb “tqwlyn”-“cls8” (you (feminine) say), we simply induce its

features to be singular feminine 2" person.

%% We take only these classes of nouns because other noun subclasses are closed.

73

Analyzing and lemma extraction

a. Deleting the affixes. “tqwlyn”-“0d & will give “qwly”-“J &

b.“d & “gwly” will become “J&-“qAl” (he say). Let us note that this
affects only the vowels “y, A, w”s, !, 5.

An example for nouns:

€6 99 (e

1. By affixes: for example a word ending with “p”-“¢” seems to be singular

feminine.

2.

a. Deleting affixes (with exceptions). For example the word “ftAp”--sl&”
(girl) will become “ftA”-“l&”, The word “jrvwmy”-“ i > (bacterial)
is a genealogical noun® and, by exception, the affix “y”-“s” will not
be deleted.

b. Extracting the lemma by retrieving the deleted or changed letters (if
necessary). “ftA”-“l” will become “ftY”-“%&” “boy”.

We must remember that in most cases the word exists in the dictionary, which
is quite large, especially for verbs, and the above heuristic analysis is done only

for words which are not in the database.

5.7 Building Dictionary

Now we describe the construction of dictionaries, which are used in
preprocessing. These dictionaries play a similar role to the dictionaries used in
Buckwalter analyzer, with lemma added to POS and Features.

For verbs: This dictionary consists of slightly more than 6000 verbs inflected in
all possible forms according to the templates used by Al-Dahdah [37] with adding
certainty and jussive case. Then all these inflections are sorted and encoded in a
way such that we can find them efficiently. The input to dictionary is an inflected
verb in any tense or case and the output are its lemma and features. We used this
large dictionary for one reason which is to get rid the problem of the changing
which may happen in the inflected verb. The second reason is that verbs seem to
be an almost closed set, and using about 6000 inflected verbs gives us more
information than a corpus having 10 Mega words. The reason is that each verb has
approximately 164 inflections. It means that we have approximately 984000
inflections, many of which will be missing in a corpus of size 10 Mega words.

% The ambiguity between “ktAfy”-“ " as (my book) or (genealogical noun) was solved by
tokenization preprocessing.

74

Analyzing and lemma extraction

At present the software does binary search in a full dictionary of about 984000
inflections and is reasonably fast.

However, it is possible to encode the dictionary in a smaller and slightly more
effective data structure, which has separate dictionaries of prefixes, suffixes and
pairs (stem*, lemma), similarly as in Buckwalter analyzer. Stem* is created
exactly as a stem, but is some cases can be an illegal word, and therefore not a
stem in the strict sense. Our task is to induce the possible stems* from the
inflected form of the verb. For example when the verb “qAl”-“J¥” (he say) is
inflected, we get as possible stems*: “J& “qAl”, “J & “qwl”, “Jd& “qyl” and “J&”
“ql”, all of which point to the same lemma, which is the output. Indeed, only the
first one of the above words is legal and is therefore a true lemma. In other words,
the stored stems* of inflected verbs are the forms which appear at least once in an

inflection of a verb.

In case of particles we have a list of all particles, each one with its working and
meaning, and therefore the analyzing process is again a simple search problem,

like in the in case of verbs.

In the case of nouns, adjectives and so on, we collected them from the Internet.
We added inflections and derivations as feminine (if applicable), numbers,
genealogically (Yaa Alnasabi) and reduced nouns. The object, subject nouns,
broken plural and so on are not derived by this method; instead they are collected
from texts which reduces the cost of the code (time of writing code) and applying
this generation on them if applicable. There are many classes of nouns which are
closed sets, for example question nouns, numeral nouns and so on. The resulting

dictionary is updatable.

5.8 Results

The proposed analyzer was built as a preprocessing stage of an Arabic tagging
system. It is therefore not a general purpose analyzer. It produces all possible
analyses for a given inflected word or clitics. These analyses are POS, features
and lemma. Because it is used for subsequent tagging, the evaluation of it should
measure how well it satisfies its function, i.e., generates true combinations of tag
(POS & features) and lemma. Therefore we will not evaluate it according to

recall, precision and F-measure.

75

Analyzing and lemma extraction

The first important thing is to have the true tag and lemma produced.

The test dataset was a small corpus of 16 k words, manually annotated by a
single analysis for each word, correct for this particular use of that word. In the
test, for 99.67% of words, this correct analysis was among those produced by the

analyzer.

The second important thing is that the analyzer almost never produces

grammatically incorrect analyses.

In a manual verification of the output of the analyzer, only 0.1% of all analyses
were grammatically incorrect. Appendix C shows practical analysis for a simple

sentence.

5.9 Related work

Extracting lemma was much less studied than stem in the analysis stage. Many
researchers dealt with lemma in Arabic language, but they did not explain details
of the procedure of extracting lemma from the word. Some other researchers did
not distinguish between lemma and stem and they dealt with them as if they were
the same. The other researchers dealt with the root, especially in morphological
analyses. It should be noted that root induction is relatively simpler than stem and

lemma.

(El-Shishtawy & EI-Ghannam) [39] do lemmatization in three phases:
analyzing, POS tagging and then lemma generation. The first phase
implementation is done with the open source Khoja stemmer (Khoja) [56], i.e., no
private analyzer. The second phase is POS tagging which depends basically on
patterns. The third phase is lemma generation which is related to our approach.
They depend on patterns and rules for generating the lemma from verb without
any explanation or examples of these rules. The noun is manipulated in similar
manner. Our approach at the first glance may appear to be similar to this work, but
there are many differences: first, they take the output of POS tagging to lemma
generation and in our work the output of lemmatization and analyzing stage will
be fed to POS tagging. l.e., our lemma generation is done by the analyzer alone
and does not depend on tagging. Second, in our work we use our own analyzer,
while the authors of (El-Shishtawy & EI-Ghannam) [39] use a third-party

analyzer. Third, in our system at least one lemma is produced for each analysis,

76

Analyzing and lemma extraction

while in the other system the lemma is produced only for the previously selected
POS. Fourth, we use a dictionary of fully inflected forms of the known words and
templates for unknown verbs. In case of nouns we use rules and a dictionary of
irregular cases. El-Shishtawy & EI-Ghannam [39] do not explain their approach in
detail, except that they mention a dictionary of irregular forms. Fifth, their
approach is limited to IR, and our approach is quite general.

Concerning morphological analyzers, there are many works in this field.

MAGEAD (Habash et al.) [50] provides an analysis for a root+pattern
representation, it has separate phonological and orthographic representations, and
it allows for combining morphemes from different dialects.

Darwish analyzer [31] was only concerned with generating the possible roots

of a given Arabic word. It is based on automatically derived rules and statistics.

(Gridach and Chenfour) [44] Their approach is based on Arabic morphological
automaton technology. They take a special representation of Arabic morphology
(root and scheme) to construct a few morphological automata which were used

directly in developing a system for Arabic morphological analysis and generation.

Elixir-FM (Smrz) [88] is a functional morphology system which models
templatic morphology and orthographic rules.

BAMA (Buckwalter) [26] is based on a lexicon, which has morphotactic and

orthographic rules encoded inside it.

5.10 Discussion and feature work

We have built, implemented and evaluated an Arabic analyzer which extracts
lemma. The analyzer produces POS, features and lemma of the inflected word or
clitics. The produced POS and features are described according to our new, very
rich tagset. Many problems, which can be solved by a tagging system, were
solved by the analyzer using the context. The context is taken in account only for
unknown words. According to the previous results, it is suitable to use it in
tagging. Lemma extraction offers many benefits when compared to extracting

stem or root. For example, it can be used in word sense disambiguation.

77

Analyzing and lemma extraction

Our suggestion is that expanding (i) the number of the inflected verbs used in
the analyzer and (ii) expanding the database of abnormal inflections of the noun

subclasses, can lead to still more accurate analyses.

It would be very beneficial to test the analyzer on a larger corpus. However, it
IS very time-consuming to produce, since it must be done by hand using a new,

rich tagset.

78

6.1 Introduction

POS tagging is one of the most important natural language problems studied by

researchers. The significance of POS for language processing is the large amount
of information they give about a word and its neighbors (Jurafsky & Martin) [54].
POS tagging is the process of assigning a part-of-speech or other syntactic class
marker to each word in the corpus (Jurafsky & Martin) [54]. It is, in other words,
the process of assigning a tag from limited set of tags (tagset) to a word. The
number of tags in a tagset depends on the language and the intended application.
If we talk about tagging then we always mean some tagset, perhaps implicitly. See

Chapter 2 for more details about tagset.

There are many methods applied to POS tagging. Most of the modern methods

use some form of machine learning.

This chapter will focus on methods used for tagging regardless of the language.

Then we will list the most important approaches applied to Arabic language.

There are many classifications of POS tagging methods, like the distinction
between supervised and unsupervised methods, or into rule-based, stochastic and

hybrid. We do not use these classifications in our presentation below.

Survey of General and Arabic Tagging systems

6.2 Tagging by manually created rules

It is the oldest morphosyntactic disambiguation method, claimed to be the best,
but very costly. It requires manual work of experts. Modern and earliest rule-
based approaches to POS tagging are based on two stages architecture (Jurafsky &
Martin) [54]. They are dictionary and rule sets. The dictionary is used to assign
each word a list of possible POS tags. The rule-sets (mostly manually written) are
used for solving the tagging problem, i.e., choosing the right POS for each word.

In some cases, these rules can even correctly tag unknown words.

A rule-based tagger tries to apply some linguistic knowledge to exclude
sequences of tags that are syntactically incorrect. They can be of the form of
contextual rules such as: if an unknown term is preceded by a determiner and
followed by a noun, then label it as an adjective (Jackson & Moulinier) [53]. The
main drawback of those early systems are the laborious work of manually coding
the rules and the requirement of linguistic background (Nitin & Fred) [73].
Probably the first rule-based tagging system was given by Klein and Simpson
[61], which was based on a large set of handcrafted rules and a small lexicon to
handle the exceptions (Nitin & Fred) [73].

Constraint grammar approach is another example of this method and EngCG s
a tagger based on this approach. It applies a large set of constraints (as many as
3,744 constraints) to the input sentence to rule out incorrect POS tags (Karlsson et
al.) [55].

6.3 n-grams Model
n-grams are crucial in many NLP tasks, tagging is one of these tasks. n-gram is

a contiguous sequence of n items from a given text.

Initially n-grams were used for predicting the next word in a text, and the chain

rule of probability of words (in a sentence of length n) was used for that purpose:

P(WY) = P(wy)P(W, | w,)P(w, [w2)...P(w, | wi) = [[P(w, | wi™)

Here P(w;, |w’) is the probability of 3" word given the sequence of 1% word

and 2" word, etc.

80

Survey of General and Arabic Tagging systems

The n-gram approximation of the above is:
P(Wln) = H P(Wk | WII<(:1N+1
k=1
The probabilities are taken from counted frequencies in the training corpus:

_ C(W "5 W)
P(Wn | W:71N+1 = C(\r;vanrl :
n—N+1

n-grams model is sometimes referred to as the Language Model. The previous
formula is good for predicting words but how is it used for tagging. If we want to

apply it to tagging, we may do the following (in the general case):

i-1

{i\ =argmax p(wilt; Pty
t,

There are special cases of n-grams which are unigram, bigram and trigram,
where n is 1, 2 and 3, respectively. Unigram is very simple, does not take any
context information into account (no tag sequence information). Unigram simply
selects the most probable tag for each specific word. Bigram uses more (but still
little) information by taking the previous tag into account. Trigram adds even

more by taking two previous tags into account.

The following formulas represent unigram, bigram and trigram tagging

respectively:

Unigram simplification fi =argmax p(w; |t;)
t.

]

Bigram simplification fi =argmax p(w, [t,)p(, |t,,)
£

Trigram simplification ﬂ =argmax p(w; |[t,)p(; |t .t)
¥
n-grams simplification is very important in HMM tagger. Some problems arise
by using n-grams and many stochastic tagging methods, when some n-grams have
frequency zero in the training corpus. They can be solved by using Laplace or
Good-Turing smoothing (Jurafsky & Martin) [54]. When we use n-grams and we

have no example of a particular n-gram we can use shorter sequences. We can do

81

Survey of General and Arabic Tagging systems

also weighted interpolation of trigram, bigram and unigram count (Jurafsky &
Martin) [54].

6.4 Transformation-Based tagging (Brill) [24]

It is an approach based on machine learning, and is sometimes called Brill
tagging. Instead of trying to acquire the linguistic rules manually, Brill describes a
system that learns a set of correction rules by a methodology called
transformation-based learning (TBL) (Nitin & Fred) [73]. It behaves like a
method with manually written rules, because rules are used to specify tags, and at
the same time like a stochastic tagging, because machine learning is used, based
on a manually tagged corpus.

The algorithm has two main phases (Nitin & Fred) [73]:
1. Initial phase.
2. Learning phase.

Initial phase is accomplished by labeling every word with its most likely tag,
for example, by assuming that each word is a noun (which is the most common

tag) or taking the output of another tagger.

Learning phase is accomplished by two stages repeated in a loop until there is
no improvement any more. The first is the examination of every possible
transformation and selecting one which gives the maximal improvement of the
tagging. The second is re-tagging corpus applying the rules from the first stage.
The rules are limited to predefined templates. See Figure 6-1 for an example of
these templates where a, b, z, and w are POS tags.

Change tag a to b when the preceding (following) word is tagged z.

Change tag a to b when the word two before (after) is tagged z.

Change tag a to b when one of the two preceding (following) words is tagged Z.

Change tag a to b when one of the three preceding (following) words is tagged z.

Change tag a to b when the preceding word is tagged z and the following word is tagged w.

Change tag a to b when the current word is (is not) capitalized.
Change tag a to b when the previous word is (is not) capitalized.

Change tag a to b when the preceding (following) word is tagged z and the word two before (after) is tagged w.

Figure 6-1: Examples of Brill Templates.

82

Survey of General and Arabic Tagging systems

These templates are used for inducing rules in the same form with different
data. An example of a rule learned by Brill’s tagger is “Change tag NN to VB

when the previous word is tagged TO”.

The space of transformation sequences we have to search is huge. A naive
implementation of transformation-based learning will therefore be quite
inefficient (Manning & Schiitze) [68].

6.5 HMM tagger
Hidden Markov Model (HMM) is the most frequently used technique for POS
tagging. It is used for tagging one complete sentence at a time, by selecting the

most likely sequence of tags for its words.

HMMs allow us to estimate probabilities of unobserved events where observed
events are the words and the hidden events are part-of-speech tags. It uses the

formula:

t =argmax p(t; |w)

t

We cannot compute it directly, therefore by using Bayes’ rule with

simplification the previous formula will be:

t) =argmax p(w; [t)p(t])

¥

HMM tagger simplifies this formula by two assumptions. The first assumption
is that the probability of a word depends on its part-of-speech tag and is

independent of other words around it, and of the other tags around it:
NNy - o
P 1) ~ TTP(w; 1)
1=

The second assumption is that the probability of a tag appearing depends only

on the previous tag, the bigram assumption (Jurafsky & Martin) [54]:
") ~ []p(t: |t
p(1) ~ il;[lp(i | i—l)

Together they yield the third equation:

83

Survey of General and Arabic Tagging systems

n
th= argmax Pt W) = argtlwax 11 PO 1) P(1t_y)

q

6.6 Decision trees [83]

DT tagger was presented in (Schmid) [83], as an improvement to HMM
method, avoiding problems of estimating transition probabilities from sparse data.
In this tagger transition probabilities are estimated using decision tree. The
decision tree automatically determines the appropriate size of the context which is
used to estimate the transition probabilities. The most important criterion for the
success of the learning algorithms based on DTs is the construction of a set of
questions to be used in the decision procedure (Nitin & Fred) [73]. DT tagger is a

Markov model using DT for estimating transition probabilities (p(t, |t, ,t, ;).

6.7 Maximum Entropy

It was proposed by (Ratnaparkhi) [77][78]. Maximum entropy (ME) models
provide us more flexibility in dealing with the context and are used as an
alternative to HMMs in the domain of POS tagging (Nitin & Fred) [73]. The
flexibility comes from the ability to include any template that we consider useful:
it may be simple (target tag tj depends on t;-;) or complex (t; depends on t;—; and/or
ti» and/or wi.q) (Nitin & Fred) [73]:

t' =argmax p(t | w')
tf
~argmax | [p(t | hy)
t i=1
We can express the conditional probability in terms of a log-linear
(exponential) model (Nitin & Fred) [73]:

1 k fo(t,h)
ptlhy=="~ []e,""
Z(h) H :

Z(h) :Zﬁaj“““
t o j=l

Z(h) is to ensure true probability distribution and f; is a feature with binary

value (see Figure 6-2 and Figure 6-3 for a whole template of features and an

84

Survey of General and Arabic Tagging systems

example, respectively) and a; is the weight of f; with positive value. t is a tag from
atagset T and h is a history from the possible contexts (histories) H.

LCundit,iDn i Features : I
w; 15 not rare | w; = X &t; =T
w; 1S rare X 1s prefix of wy, | X| < 4 &t; =T

X is suffix of w;, | X| <4 &t; =T
w; contains number &t =T
w; contains uppercase character & ¢; =T
w; contains hyphen Lt; =T
vV w; tic1 =X &t; =T
tf_gt,'_l = XY & t.;' = T
wi_1 = X Lt; =T
Wi = X & t,‘ = T
Wipl = X &t; =T
Wips = X Lt, =T

Figure 6-2: template in (Ratnaparkhi) [77].

1 if w,=likeandt, =VB
0 otherwise

fj<hi,ti>:{

1 if suffix(w)="ing"and t, =VBG
0 otherwise

f,-(hi,ti):{

1 if wy=aboutandt,_,=DET andt,_; =NNS and t, = IN
fj(hi’ti) =

0 otherwise

Figure 6-3: Practical features in ME approach. In a maximum
entropy model, the feature can be simple: this word has this tag,
consider morphology or consider tag sequences.

The probability distribution P we seek is the one that maximizes the entropy of

the distribution under some constraints:

argmax ,—| > P(h)P(t| h)log(t| h)
heH
teT

subject to
E(f;)) =E(f)

85

Survey of General and Arabic Tagging systems

S PIIPE 1) (h5) = 3P T, (.8

E(f;)and E(fj)denote, respectively, the model’s expectation and the

observed expectation of feature f; .5(hi) and E(hi,ti) are the relative frequencies,

respectively, of context h; and the context-tag pair (h;, ;) in the training data. The
intuition behind maximizing the entropy is that it gives us the most uncertain
distribution. In other words, we do not include any information in the distribution
that is not justified by the empirical evidence available to us. The parameters of
the distribution P can be obtained using the generalized iterative scaling algorithm
(Nitin & Fred) [73].

6.8 Neural networks

Neural network is information processing paradigm inspired by biological
nervous systems, such as our brain. Structurally, it is a large number of highly
interconnected processing elements (neurons) working together. Like people, they
learn from experience (by example). Neural networks are configured for a
specific application, such as pattern recognition or data classification, through a

learning process.

In multilayer perceptron networks (MLP-networks), the processing units are
arranged vertically in several layers. Connections exist only between units in
adjacent layers. There are three classes of layers which are input layer, hidden
layer (activations are not visible externally) and output layer. The goal is to find

the best network to predict, based on the input nodes, the correct output nodes.

(Schmid) [84] introduced neural networks for POS tagging. The Net-Tagger
consists of an MLP-network and a lexicon. In the output layer of the MLP
network each unit corresponds to one of the tags in the tagset. The network learns
during training to activate that output unit that represents the correct tag and to
deactivate all other output units. Hence, in the trained network, the output unit
with the highest activation indicates, which tag should be attached to the word that

is currently being processed.

86

Survey of General and Arabic Tagging systems

The input of the network comprises all the information that the system has
about the POS’s of the current word, the p preceding words and the f following
words. More specifically, for each POS tag tj and each of the p + 1 + f words in
the context, there is an input unit whose activation inj; represents the probability
that w; has part of speech t;. So, if there are n possible tags, there are n *x (p + 1 + f)

input nodes.

For the input word being tagged and its following words, the lexical POS
probability p(t;jw;) is all we know about the POS. This probability does not take
any contextual influences into account. For the preceding words, there is more

information available, because they have already been tagged.
An artificial neural network gave 96.22% accuracy for English (Schmid) [84].

Although Neural Network (NN) taggers do not seem to outperform the HMM
taggers in general, they have some attractive properties. First, ambiguous tagging
can be handled easily without additional computation. When the output nodes of a
network correspond to the tags in the tagset, normally, given an input word and its
context during the tagging phase, the output node with the highest activation is
selected as the tag of the word. However, if there are several output nodes with
close enough activation values, all of them can be given as candidate tags (Nitin &
Fred) [73].

Neural network taggers converge to top performances with small amounts of
training data and they are suitable for languages for which large corpora are not
available (Nitin & Fred) [73].

6.9 Memory based learning [30]

Memory-based learning is a form of supervised learning based on similarity-
based reasoning. The part of speech tag of a word in a particular context is
extrapolated from the most similar cases held in memory (Daelemans et, al.) [30].

In Al, the concept has appeared in several disciplines (from computer vision to
robotics), using terminology such as similarity-based, example-based, memory-
based, exemplar-based, case-based, analogical, lazy, nearest-neighbor, and

instance-based (Daelemans et, al.) [30].

87

Survey of General and Arabic Tagging systems

In a memory-based approach, a set of cases is kept in memory. Each case
consists of a word with preceding and following context, and the corresponding
category for that word in that context. A new sentence is tagged by selecting for
each word in the sentence and its context the most similar case(s) in memory, and
extrapolating the category of the word from these 'nearest neighbors'. A memory-
based approach has features of both learning rule-based taggers (each case as a
specific rule) and of stochastic taggers (form of k-nearest neighbors modeling).
The approach in its basic form is computationally expensive, however; each new
word in context that has to be tagged, has to be compared to each pattern kept in
memory (Daelemans et, al.) [30].

Memory-based learning is a form of supervised, inductive learning from
examples. Examples are represented as vectors of feature values with an

associated category label (Daelemans et, al.) [30].

6.10 Boosting [1]

Boosting is a machine learning algorithm that was introduced to POS tagging
by (Abney et al.) [1].

The idea of boosting is to combine many simple “rules of thumb” called “weak
hypotheses”, such as “the current word is a noun if the previous word is the”. The
main idea of boosting is to combine many such rules in a principled manner to

produce a single highly accurate classification rule (Abney et, al.) [1].

The boosting algorithm is an iterative one of R rounds, where a new rule of
thumb is derived from the training data at each round, using a weak learner
(Jackson & Moulinier) [53].

Boosting is similar to transformation-based learning (Brill), both build
classifiers by combining simple rules, and both are noted for their resistance to

overfitting, but they differ in theoretical foundation (Abney et al.) [1].

88

Survey of General and Arabic Tagging systems

6.11 Relaxation labeling (Padro) [75]

Relaxation is a well-known technique used to solve consistent labeling

problems.

A consistent labeling problem, given a set of variables, is to assign to each
variable a label compatible with the labels of the other ones, according to a set of

compatibility constraints.

The main idea of using relaxation labeling in POS tagging is to represent POS
tagging as a constraint satisfaction problem. Then it can be addressed with the

usual techniques of that field, such as relaxation labeling.

It seems reasonable to consider POS tagging as a combinatorial problem, in
which we have a set of variables (words in a sentence), a set of possible labels for
each one (POS tags), and a set of constraints.

One can consider weighted labeling, in which a weight is assigned to each
possible label of each variable, and the task is to maximize the “global
consistency” by relaxation. The constraints can be gathered automatically from

the training corpus, too.

6.12 Cyclic Dependency Network [90]

The conditional probability of tag dependency is assumed unidirectional
(depending on previous tags) in n-gram based methods, including HMM tagging.
In CDN this conditional probability of tag dependency is bidirectional (depending
on previous and following tags). (Toutanova et, al.) [90] proposes to make an
explicit use of both preceding and following tag contexts via a dependency
network representation, using priors in conditional loglinear models. The resulting

tagger gives 97.24% accuracy on the Penn Treebank WSJ.

6.13 Finite-State Transducers [79]

Finite-state transducers have important applications in many areas of natural

language processing.

89

Survey of General and Arabic Tagging systems

A finite-state transducer is a finite-state automaton whose transitions are
labeled by pairs of symbols. The first symbol is the input and the second is the
output. Applying a finite-state transducer to an input consists of following a path
according to the input symbols, and the result is the sequence of output symbols

encountered on that path.

(Roche & Schabes) [79] used FST for speeding up processing the Brill tagger.

It is constructed in four steps.

The first step consists of turning each contextual rule found in Brill's tagger
into a finite-state transducer. Each contextual rule is defined locally; that is, the
transformation it describes must be applied at each position of the input sequence.

The second step consists of turning the transducers produced by the preceding
step into transducers that operate globally on the input in one pass. This

transformation is performed for each transducer associated with each rule.
The third step combines all transducers into a single transducer.

The fourth and final step consists of transforming the finite-state transducer

obtained in the previous step into an equivalent deterministic transducer.

(Silfverberg & Lindén) [86] used parallel weighted finite-state transducers to
implement a part-of-speech tagger. Their system consists of a weighted lexicon
and a guesser combined with a bigram model turned into two weighted

transducers. They reported 98.29% of accuracy on English Europarl corpus.

6.14 Genetic Algorithm [2]
Genetic algorithms are a group of very general algorithms to find approximate

solutions to optimization and search problems.

(Nitin & Fred) [73] Although genetic algorithms have accuracies worse than
those offered by HMM and rule-based approaches, they can be seen as an efficient
alternative in POS tagging. They reach performances near their top performances

with small populations and a few iterations.

(Alba et, al.) [2] report a genetic algorithm able to solve the tagging problem

with accuracy no worse than a specific method which was designed for this

90

Survey of General and Arabic Tagging systems

problem. In addition, GAs can perform the search of the best sequence of tags for
any context-based model, even if it does not fulfill the Markov assumption.

6.15 SVM

Support Vector Machines (SVMs) are supervised machine learning algorithms
for binary classification (Nakagawa et, al.) [72]. They can handle a large number
of (overlapping) features with good generalization performance (Diab et, al.) [33].
SVMs can easily handle high-dimensional spaces, with a large number of features
(Nitin & Fred) [73] (Mayfield et, al.) [70].

SVMs are known to be resistant to overtraining, because only the training
vectors that are closest to the hyperplane (called support vectors) determine itse
parameters (Nitin & Fred) [73] (Mayfield et, al.) [70].

(Mayfield et, al.) [70] report tagging accuracy 92.95 %. The data set was the
Penn Treebank Wall Street Journal collection, which contains about 1.5 million
tokens annotated with a part of speech for each token.

6.16 Fuzzy set theory [60]

The taggers formed using the fuzzy set theory are similar to HMM taggers,
except that probabilities used in the latter are replaced by fuzzy membership
functions in the former (Nitin & Fred) [73]. Neural networks are used for
estimating the transition probabilities and some transformations of lexical
probabilities for the observation possibilities (Kim & Kim) [60]. One advantage of

these taggers is their high performance with small data sizes (Nitin & Fred) [73].

(Kim & Kim) [60] showed, using fuzzy set theory of second order, the
accuracy around 95.81 % on 800,000 words from the Brown corpus which is

included in the Penn Treebank Corpus; the tagset size was 49 tags.

6.17 Best match

(Stomp) [87] “matches the text to be tagged to long continuous strings from the
training data (as long as possible) and assigns each match the same tags as the
matching part of the training data”. Back-off, as smoothing, is used with this

method. The accuracy achieved by this method is 94.5 %. The Stockholm-Umea

91

Survey of General and Arabic Tagging systems

Corpus (SUC) a manually corrected tagged corpus of Swedish, was used for
training and testing. This method is described in more detail in Chapter 7 below.

6.18 Combining different taggers
Most of the methods and papers quoted above used only one method for
tagging. However, there are methods to combine them in a way such that the

accuracy will be improved. Combined taggers can be classified into:

Voting (Henrich et, al) [52]: a few taggers are run independently and the final
result is selected by voting among these taggers.

Stacking (Wu et, al.) [91]: the output of one tagger is fed to another one in a

serial sequence.
co-training (Clark) [29]: two taggers are trained on the output of the other one.
Fusion: taggers are combined internally.
Hybrid: combination of two or more of the previous methods.

For more details see Chapter 7, where they are explained in more detail. We

describe a new method, called master-slaves, to combine taggers.

6.19 POS tagging approaches used for Arabic

SVM: (Diab) (Diab et, al.) [33][32] applied SVM to Arabic POS tagging and
tokenization. The SVM-POS tagger achieved accuracy of 95.49%. The Arabic
TreeBank consisting of 4519 sentences was used in training and testing. She used
the LDC's POS tagset, which consists of 24 tags*>.

SVM + morphological analyzer: (Habash and Rambow) [46] applied SVM
with support of a morphological analyzer for producing all possible analyses. The
data used came from the Penn Arabic Treebank (Maamouri et al.). Their POS
evaluation shows accuracy of 97.6% on ATB1 and accuracy of 95.7% on ATB2,

both based on gold standard tokenization.

Statistical and rule-based: In (Khoja) [57], a system is developed, using a
combination of both statistical and rule-based techniques. It uses a simple tagset.

A corpus of 50,000 words in Modern Standard Arabic (an extract from the Saudi

% See chapter 3 for more details

92

Survey of General and Arabic Tagging systems

Al-Jazirah newspaper, dated 03/03/1999) was tagged using this tagset®. She
achieved accuracy of around 90 %.

HMM: (AL-Shamsi & Guessoum) [11] The proposed HMM POS tagger has
been tested and has achieved performance of 97%. It used a very simple POS
tagset of 55 tags. The training was done on a special small corpus consisting of
9.15 MB corpus of native Arabic articles. The authors used a stemmer for
segmenting and separating affixes from the stem to produce prefix, stem, and

suffix parts.

Brill (Transformation) tagging: first, Freeman [42] presented an Arabic
tagger based on the Brill tagger. He was using this environment as a tool to semi-
automatically tag text. With every new text he added rules to the tagger's rule files

by hand, as well as new items to the tagger's lexicon file.

Brill (Transformation) + morphological analyzer: (AlGahtani et al.) [5]
used transformation-based learning as implemented in the Brill tagger (Brill,
1994) for POS tagging of Arabic, with segment-based tags. They used the
Buckwalter morphological analyzer (Buckwalter) [25]. (AlGahtani et al.)
evaluated their approach on the whole ATB as well as on ATB1. For ATB1, they
achieved POS tagging accuracy of 96.9%. Using the whole ATB the accuracy was
96.1%, even though large parts of the treebank are duplicated between parts, so
that it is likely that parts of their test set were actually present in the training set
(AlGahtani et al.) [5].

Rules-based and memory-based: (Tlili-Guiassa) [89] used a hybrid of rule-
based and a memory-based learning methods. His method is based firstly on rules
automatically learned from the training corpus (that consider the post-position,
ending of a word and patterns) and then the anomalies were corrected by adopting
a memory-based learning method (MBL). Secondly, by checking the exceptional
cases of rules, more information was made available to the learner for treating
those exceptional cases. The accuracy was 85 %. The tagset was derived from that
of Khoja.

Classifier + regular expressions: (Seth Kulick) [64] described an approach to

simultaneous tokenization and part-of-speech tagging that is based on separating

% See chapter 3 for more details

93

Survey of General and Arabic Tagging systems

the closed- and open-class items, and focusing on the likelihood of the possible
stems of the open class words. He used regular expressions with a reduced tagset.
The data set was ATB3-v3.2 and the accuracy of tagging was 95.147%.

Memory-based learning: (Van den Bosch et al.) [23] used memory-based
learning for both morphological analysis and POS tagging of Arabic. They
reported an overall accuracy of 91.5%.

Statistical [71]: (Mohamed & Kiibler) [71] used two approaches. Their first
approach used complex tags that described full words and did not require any
word segmentation. The second approach was segmentation-based, using a
segmenter based on machine learning. They showed that word-based POS tagging
can yield better results than segment-based tagging (93.93% vs. 93.41%).
Combining both methods resulted in a word accuracy of 94.37%. POS tagset of
the Penn Arabic Treebank was used and two sections of the ATB (P1V3 and
P3V1), since those two sets do not contain duplicate sentences. This data set

contained approximately 500 000 words.

HMM tagger without morphological analyzer or lexicon: In (Kopri) [62]
the accuracy was 95.51% with a very small Arabic tagset of 17 tags. The data set
was Penn Arabic Treebank ATB (parts 1, 2 and 3) which consisted of 629,866

words.

HMM tagger with morphological analyzer: In (El Hadj et, al.) [36] the data
set was 21882 words with a very small, custom tagset of 13 tags. The accuracy
was 96%.

HMM tagger with morphological analyzer with lexicon: In (Mansour) [69]
the morphological analyzer was Buckwalter's analyzer. This approach was applied
to Hebrew and Arabic. The data set was ATB (parts 1, 2 and 3). The accuracy was
96.12%.

6.20 Arabic POS tagging as a part of toolkits and
applications

There are many toolkits for specific tasks in Arabic language processing. The
best known ones which do POS tagging are MADA+TOKEN and AMIRA.

94

Survey of General and Arabic Tagging systems

MADA (Morphological Analysis and Disambiguation for Arabic) (Habash)
[45] is a utility that, given raw Arabic text, adds as much lexical and
morphological information as possible by disambiguating, in one operation, part-
of-speech tags, lexemes, diacritizations and full morphological analyses (Habash)
[45]. TOKEN is a general tokenizer for Arabic.

AMIRA [32] is a successor suite of the ASVMTools (Diab et al., 2007). The
AMIRA toolkit includes a clitic tokenizer (TOK), part of speech tagger (POS) and
base phrase chunker (BPC) — a shallow syntactic parser. The accuracy of Amira
using ERTS tagset was reported to be 96.13% and the accuracy using RTS tagset
to be 96.15%.

Chapter 7

Combining Tepparsm
Master-slaves iochamges

7.1 Introduction

There are many methods used for POS tagging. Most of modern methods are
corpus-based and are based on machine learning. HMM is the most studied and
probably the most frequently used tagging method. We propose a new method to
combine taggers, which we call master-slave technique. In our approach, HMM

tagger is used as the master tagger and Brill and MaxMatch (MM) taggers as

95

Combining Taggers in Master-slaves technique

slaves. The main property of our method is that the master tagger will process
each sentence with different probabilities (different knowledge), as we will see in

next sections.

7.2 Related work
There are many approaches and works in POS tagging therefore we will

mention only those used in our approach and some of the combined approaches.

Stomp [87] in his MaxMatch tagger “matches the text to be tagged to long
continuous strings from the training data (as long as possible) and assigns each
match the same tags as the matching part of the training data”. The same idea but
in a different context is used as a part of our research. In the paper (Glass &
Bangay) [43] first the performance of each used tagger is verified experimentally.
The taggers are then grouped to form a voting system, but in no cases the
combined results improve on the individual accuracies. In (Yonghui et, al.) [92]
the authors, after studying four corpus-based approaches to part of speech (POS)
tagging: tranform-based error driven, the decision tree, hidden Markov model and
maximum entropy, present a novel data fusion strategy in POS tagging — called
correlation voting. They proved that the correlative voting is better than other
fusion methods, with an average decrease of 27.85% of the initial tagging error
rate. In the paper (Henrich et, al.) [52] combiTagger combines automatically the
outputs of several taggers. The system, which is open source, provides algorithms
for simple and weighted voting. It improved the accuracy by 1.26 — 1.58 % over
the best method of its individual component taggers. The authors of (Loftsson)
[67] used many combinations of several taggers in a simple voting approach. The
combination of TBL, TNT and Ice taggers wins 0.81% over the best individual
method which was Ice tagger (with accuracy 91.80%).

The book (Nitin & Fred) [73] presents many other combinations of taggers by
using voting or stacking methods. It can be useful for further reading about

combined taggers.

7.3 Techniques for combining taggers
Most of modern taggers, for annotation, are constructed by combining two or

more approaches in a way such that the accuracy will be increased. Tagger

97

Combining Taggers in Master-slaves technique

combination methods can be divided into voting, stacking, co-training, fusion and
hybrid.

In Voting, several taggers run independently and the final result is selected by
voting among these tagger outputs. Voting can be simple or weighted. In a simple
voting all taggers have the same weight. Weighted voting is done by adding more
weight to the tagger which has higher accuracy (Henrich et, al.) [52]. The biggest
problem in voting is when the used taggers are similar in methodology, i.e., they

make similar errors in similar situations.

Stacking: The basic concept behind stacking is to train two or more taggers
sequentially, with each successive tagger incorporating the results of the previous
ones in some fashion (Wu et, al.) [91]. The biggest problem in stacking is that the

errors made by the taggers tend to accumulate.

Co-training (Clark) [29] is a method in which two taggers are iteratively
retrained on each other’s output. The taggers should be sufficiently different (e.g.,
based on different models) for co-training to be effective (Nitin & Fred) [73].

Fusion tagger is a tagger which combines several tagging approaches
internally. The final tagger will somehow collect the features of its components. It
is really not a method to combine arbitrary taggers, because there is no uniform
way to do it and each such fusion is essentially unique. The tagger in Section 7-7

is an example of this type.

Hybrid: where several of the previous combinations are used collectively. For
example voting and stacking can be used when we use a rule-based tagger for
eliminating unwanted analyses and the output is fed to other many taggers for

voting.

In this chapter we present a new master-slave technique using HMM tagger as
a master, and Brill and MM taggers as slaves.

7.4 Maximum match (MM) Tagger

Maximum match (best match in (Sjobergh) [87]) tagger finds the longest n-
gram (i.e., with maximal possible n) in the text to be tagged, which is also present
in the training data, and tags the n-gram in the text copying the tags from its
counterpart in the training data. This pair of identical n-grams is called a match. If

98

Combining Taggers in Master-slaves technique

there are several equally long matching n-grams, the most common matching tag
(in these matches) is chosen. If it is still a tie, the one first encountered is chosen.
There is also a back-off method for short matches and special treatment of

unknown words.

In our work we deal with maximum match in two different contexts. In the first
we take it as independent tagger, implemented using a very simple version of best
match (Stomp tagger). The back-off method, in this case, was not used and the
unknown words get the “None” tag. It is explained in Section 7.7 how MM can be

combined with the HMM tagger.

In the second context for any word w in the input sentence, we record the
length of the longest match, which contains w. This length is called the maximum
match for w. For example, if we have sentences “wg, Ws, W1, W, and “wo, W3, Wy,
Wg” in the corpus and the input sentence is “wi, Wz, W3, W4, then the maximum

match is 2, 3, 3 and 3 for the words ws, Wy, w3 and wa, respectively.

7.5 HMM tagger
HMM is the most frequently used technique for POS tagging. It used for
tagging one complete sentence at a time by selecting the most likely sequence of

tags for specific sequence of words. See Chapter 6 for more details.

7.6 First experiment of combining of MM & HMM
taggers

Before going further, let us consider what happens if the input sentence
completely matches a sentence from the training corpus: what is the probability of
tagging the input sentence same as the one from the training corpus? The answer,
theoretically, should be one, but practically there is no guarantee for this. The
same problem arises when a long phrase in the input sentence is also found in the
training corpus (we call it again a match). In order to increase the chance of
tagging this phrase in the same way as in the training corpus, we modify the
HMM tagger. We do this by using MM tagger explained in Section 7.5. The
easiest way is by multiplying the HMM probabilities by a factor reflecting the
number of matched tokens to the number of all tokens in the input sentence,

99

Combining Taggers in Master-slaves technique

thereby privileging the tags which agree with the tags used for words of the match
found in the training corpus.

Suppose the length of the input sentence is n. First we want to assign to each
tag t in our tagset a value mm(t), resulting from processing the input sentence. It

is done as follows:

mm(t) is the length of the longest match between the input sentence and a
sentence in the training corpus, such that tag t is assigned to at least one word in

the corpus part of the matching, minus n.
It is clear that for a tag t which never appears in a matching, mm(t)= —n.

Then we process the input sentence using HMM tagger whose probabilities are

modified in the following way:
PO 1) P 1) = P(w 1) Pt [1,)e™

What happens exactly in the previous formula is that we relatively decrease the

chance of selecting the tags which do not appear in long matches.

The result of applying this change to the HMM tagger is the following
equation, which defines the augmented HMM tagger.

t =argmax p(t | W) ~argmax | | p(w; [t) p(t; [t,_,) €™
ty 1)

1 i=1

A tagger using this simple idea has been implemented and tested practically,
just to see if it works. The accuracy increased from 95.28%, achieved by the
unmodified HMM to 95.55%, in a test using the Brown corpus of English and 10-
fold cross-validation. This result has encouraged us to generalize this method, in
particular to more than two taggers.

We should note that Viterbi algorithm has not been affected, because our
modification is reflected by the word likelihood probabilities. And Viterbi
algorithm selects the maximum input to each state (tag) depending on the
transition probabilities and the word likelihood probabilities. I.e., selecting the

maximum input to state still works as before.

100

Combining Taggers in Master-slaves technique

7.7 Modification for general use

We have used MM as a source of additional information supplied to HMM, for
modifying its probabilities. Indeed our formula incorporates into HMM tagger
more than a single sequence of tags, because it changes the factors by which the
probabilities are multiplied, depending on the length of the local maximal
matching fragments. While generalizing our method to taggers other than MM, we
assume that the tagger produces a single sequence of tags and nothing more.
Indeed, it would be extremely difficult to incorporate with HMM anything beyond

it, since the internal information produced by each tagger is different.

Therefore we modify our method of combining taggers relying on the
sequences of tags produced by the taggers, only. The benefit of it is that we can
use any tagger now in combination with HMM tagger.

Let’s work on the same example of MM and HMM. The role of MM was to
modify the HMM probabilities, i.e., each sentence was processed using HMM
with different probabilities. We want to use the same idea using another tagger in
place of MM, say Brill tagger. Using Brill tagger, we can modify the emission
probabilities of HMM tagger, multiplying them by a constant factor f smaller than
1, except the tags produced by the Brill tagger on the same sentence. In general
the output of a tagger is fed to HMM tagger which then re-estimates its internal
probabilities (knowledge) according to previous tagger’s output. The first tagger
can be seen as a slave (property) and the second, which we call a master. Before
explaining the details, let us note that the power of the slave depends on f, which
can and should be selected experimentally. Our goal here is not selecting the best
f. Definitely, it should be investigated in the future work, in particular
investigating if f should remain a constant, or perhaps depend on the tagged
sentence, the tagset used, the kind of tagger used as a slave, and many other

factors. At present, we report the first experiments, using a fixed f.

Any number of slave taggers can be used with one master. Assume that we
have m+1 taggers (T; ... Tm+1). Tms+1 1S HMM tagger and will be used as a master,
the other will be used as slave taggers. The master tagger is trained for estimating
its probabilities. Then the input sentence is tagged by each of the slave taggers
T1... Tm. The outputs of all slave taggers are fed to master in parallel for each

sentence. Then the master changes its probabilities according to the outputs of the

101

Combining Taggers in Master-slaves technique

slaves for this sentence. Then master does the tagging for this sentence according
to the new probabilities. The important thing, in this method, is that using
different probabilities for estimating each sentence. Figure 7-1 shows a block

diagram for the proposed master and slaves tagger.

Input
(may be one sentence)

/\

T, ...Slavetaggers... | Tm

— \/ \‘/ o/p

raining *\J
A

Master

7Y

Figure 7-1: Combining taggers into a master-slaves tagger.

v

7.8 Difference between the new and other methods
There are many differences between our approach and the existing approaches

in general. First, each sentence is tagged by the master tagger according to a

different knowledge, affected by the results of the slaves taggers. We can say that

we have a new tagger for each sentence.

There is no limitation for the number of slave taggers, as opposed to voting

which needs an odd number of them to avoid ties.

It differs from stacking by using more than one tagger (as slaves) which feed

their outputs in parallel to the master tagger.

7.9 Experiments

We have taken three taggers: HMM, MM (Stomp) and Brill tagger. Each one
has been tested alone, using 10-fold cross-validation. Then we have done two tests
where HMM has been the master tagger. In the first test the Brill tagger has been
the only slave, and in the second we have added MM as the second slave. The
factor has been constant 0.29 for all tests. It was selected in a few other tests, not

reported here, as the most effective one. Our goal here was neither selecting the

102

Combining Taggers in Master-slaves technique

best value of the factor, nor selecting the best way to use the factor. Therefore we
fixed the value and the approach of using this value which was as follows: when
the sentence is already tagged by the slaves then the probabilities of all tags a
specific word w;, are multiplied by that factor except that the tag(s) which is/are
output from the slaves for this word. The data set was Brown corpus which is
freely available as a part of the NLTK package under Python environment [22].
Also Brill tagger is a built-in tagger in Python. We built very simple
implementations of MM and HMM taggers. The unknown words are processed, in
Brill and MM taggers, by giving them “None” tag, and in HMM by giving all tags
in the tagset equal probabilities. It is not a good method in general, but we wanted
to test how using of HMM, MM and Brill taggers as master and slaves changes
the performance, if compared with traditional HMM tagger, under the same
simple specifications. Figure 7-2 shows the results of these tests. We can see that
we gain 0.26 % by using Brill tagger as the only slave and 0.42 % by using both
Brill and MM as slaves. When annotating a corpus of 2 million words, it means
correcting the tagging of about 8400 words. The other data set for Arabic consists

of 45 files (29k words) annotated by hand with our new tagset®’.

Master or Slave tagger Total Correctly | Accuracy | Accuracy

Original words tagged on the
tagger words Arabic
corpus

Brill | - 1161192 | 1096687 94.44 % 86.43%

Maxmatch | --------- 1161192 | 1061635 | 91.5% 83.26%

HMM | - 1161192 | 1106482 | 95.28 % 88.81%

HMM Brill 1161192 | 1109411 | 95.54 % 89.40%

HMM Brill+maxmatch | 1161192 | 1111281 | 95.70 % 90.05%

Figure 7-2: Results of Master-slaves tagging.

7.10 Discussion and Further work

In the previous section we have proposed a new method for combining taggers,
the master and slaves method. We implemented this method by using three
taggers which are HMM, MM and Brill tagger. We focused in our implementation
on proving practically that this method works, not on selecting the best value of

%7 See chapter 3 for more details on tagsets.

103

Combining Taggers in Master-slaves technique

the factors or selecting a different factor for each slave tagger. We would like to
mention that the factors can be (i) constant for all slaves (very simple) (ii)
different for each slave tagger (iii) weighted factors depending on the accuracy of
each slave tagger (iv) variable factors where for each slave tagger the factor will
be changed according to some conditions. Any other type of factor can be used
with the same methodology where the internal probabilities of the master tagger
will be changed. The gain of accuracy was quite considerable, given the simplicity
of the approach and very limited tuning of the method. We hope that by using
weighted or variable factors the gain of accuracy can be increased. The interesting
thing in the results is that the accuracy of MM was 91.5%, much less than the first
slave Brill and the master HMM, and still by adding it as the second slave we
improved the accuracy. Actually we expected the accuracy to drop because of the
huge difference in the accuracy between HMM and MM. But what happened is
the reverse: the master tagger still has the control for selecting the best tag among
the tags suggested by the slaves. It was the main reason for selecting the name of
the method master and slaves. A successful application of this method to a highly
a inflected language, such as Arabic, proves its generality. The low accuracies of
all taggers for Arabic are mainly due to (i) using very small data set (ii) using very

rich tagset.

104

Chapter 8

8.1 Introduction

In this chapter we will describe an implementation of Arabic POS combined
tagger. The first tagging technique we use is by using manually written rules. The
tagger consists of a few hundred of hand-written rules. Most of these rules were
taken from Arabic traditional grammar books (AL-Bidhani) [3] (Al-Rajhi) [10]
(Al-Hamlawy) [7] (Al-Galaiini) [6]. The task of the rule-based tagger is to
eliminate unwanted tags from the context. It simplifies the work of the next
tagger. The second tagger is a master-slaves tagger which was constructed in the
previous chapter. The master is HMM tagger and the slaves are Brill tagger and
maxmatch tagger (MM). The rules-based tagger is added to the master-slaves
tagger as a third, special slave. It can alternatively be seen as a separate tagger

combined with master-slaves using stacking.

The main reason for adding a rules-based Arabic tagger is that we do not yet
have a large corpus annotated by our rich tagset. The second reason is that we
would like to annotate a new, larger Arabic corpus with our rich tagset. We do not

Combining Rules-based and Master-Slaves Taggers

focus on the speed of processing because our work is intended to be a tool for
producing large annotated Arabic corpus. l.e., our tagger will be used offline®®,

8.2 Related work

There are many papers that combine rules-based and statistical taggers. Almost
all these works use the stacking technique. All the works mentioned in the
previous Chapter can be mentioned here, e.g., (Yonghui et, al.) [92] (Henrich et,
al.) [52] (Loftsson) [67]. Book (Nitin & Fred) [73] presents other combinations of
taggers by using voting or stacking methods.

For Arabic, if we consider a morphological analyzer as a light tagger, (Khoja)
[57] is an example of a stacking combination. All possible tags for each word with
its stem are fed from the analyzer to a statistical tagger trained on a corpus, to get
the best tag for that word. She achieved 90% accuracy on a data set of 50 k words,

using a simple tagset®°.

Our work here is different from the above mentioned works: (i) we have an
analyzer (ii) we have manually written rules for eliminating unwanted tags (iii)
the output of a rules-based tagger is fed to the master-slaves tagger with two slave

taggers. None of the mentioned papers had all those elements at the same time.

The earliest POS tagging systems were rule-based systems, in which a set of
rules was manually constructed and then applied to tag a given text (Nitin & Fred)
[73]. Theoretically such taggers should have high accuracy, but constructing such
a tagger is a very difficult task. Therefore most of the researchers did not construct
rule-based taggers containing rules for all possible features of the language,
because it was practically impossible. Then the researchers tried to collect the
rules from the experts. The main drawback of those early systems was the
laborious work of manually coding the rules and the requirement of strong

linguistic background.

There are also corpus-based rule taggers. The rules, in a corpus-based rule
tagger, are extracted automatically from the corpus — the Brill tagger is the best

example of this type.

%8 See Chapter 1 for definition of offline and online tagger.
%9 See Chapter 3 for more details on this tagset.

106

Combining Rules-based and Master-Slaves Taggers

8.3 Comparing between manually created rule-
based taggers and other taggers

In order to compare taggers meaningfully one must take into account the
training data sets they use (if any), the test data sets and tagsets they use.
However, one can name a few distinctions between Manually written rule-based

taggers and statistical taggers, used in our work.

1. Manually written rule-based taggers do not use (and depend on) a corpus,

and therefore are more general.

2. Manually written rule-based taggers are more stable in performance, when

the test data changes.

3. Manually written rule-based taggers require human expertise in linguistics,

which is not necessary to construct statistical taggers.

4. Manually written rule-based taggers require much more human work and

are therefore slower to construct.

5. Manually written rule-based taggers have less problems with unknown

words than statistical ones, especially those without analyzer.

6. There are only a few rules (no matter if manually written or generated

automatically) without any exceptions.

7. Rule-based taggers have cyclic dependency problems. For example take
the rule: there are no two consecutive verbs. If there are two words, each
one can have verb and noun POSs tags, then we cannot get the decision
from that rule, if there are no other rules to break the cyclic dependency:
the tag for the first word depends on the tag for the second, and vice versa.

8.4 Implementation of an Arabic manually written
rule-based tagger

There are many difficulties when we implement manually written rule-based
tagger. The first is that in most cases, the tagger cannot select only one tag for
each word. This restricts the possibility to combine this kind of tagger with other
taggers. Another problem that is that the rules written by experts may have

complicated forms and programming them in one form is difficult.

107

Combining Rules-based and Master-Slaves Taggers

For simplification of the previous problems, we use a unified, restricted form
of rules we implement. Complicated rules are first split into (perhaps several)
simple rules, and only then implemented. All rules are used for eliminating
unwanted tags for specific words in the context, so our goal will not be selecting

the best tag. The unified form of our rules is:
“if conditions then eliminate (list of tags)”
This form can be implemented in a simple way.

Here are some randomly selected samples from the rules used in the
implementation and extracted from (AL-Bidhani) [3] (Al-Rajhi) [10] (Al-
Hamlawy) [7] (Al-Galaiini) [6]:

o “if the word is preceded by a reduction particle then eliminate (tags with

POS<>noun and tags with case<>genitive) ".

“if the word preceded by Def particle then eliminate (tags with

POS<>noun)”

e “if the word is at the beginning of a sentence and (POS=noun or
(POS=verb & mood=present)) then eliminate (tags with case or mood<>
nominative)

e “if the word follows a verb without ‘A1’ ‘J)’ then eliminate (tags with
POS=adjective)

e “if the word is preceded by ‘w«" or ‘s’ particles then eliminate (tags
with POS & Mood <> verb & present)

o “if ‘& is a proclitic then eliminate (tags with POS & working
<>particle & reduction)

o “if all the analyses of the preceding word have verb class then
eliminate(tags with POS= verb)

o “if all the analyses of the following word have verb class then eliminate
(tags with POS= verb)

e “if the preceding word tag has genitive case and the current word has ‘J!’

as a proclitic then eliminate (tags with case<> genitive)

Many such rules are used for building our rule-based tagger. Building this
tagger, collecting rules, building dictionary and the analyzer were the most time

consuming tasks in this dissertation.

108

Combining Rules-based and Master-Slaves Taggers

8.5 Combining manually written rule-based taggers
As we know, the first step in tagging is to assign all the possible tags to each
word. Most of these tags may be eliminated almost immediately, it is a task for

the rule-based tagger, which assists this way statistical taggers.

There are many methods for combining more than one tagger into one tagging
system*®. The most frequently used and easiest is voting. But it cannot be used
according to our specification for rule-based tagger, which may leave several
possible tags for a single word. Therefore, by using stacking technique, we can
combine a rule-based tagger with a tagger constructed by master-slaves technique.
Figure 8-1 shows this combination. An important note here is that stacking can be

seen as a special case of master-slaves technique.

Using slaves, in master-slaves technique for a simple (fixed) factor, we modify
the emission probabilities of a HMM tagger, multiplying them by a constant
factor smaller than 1, except the tags produced by slaves. The operation we use
now, eliminating tags, can be described as using the rule-based tagger as a slave

with factor 0.

There is another reason to use rule-based tagger with master-slaves. In a rule-
based tagger, the rules are used to eliminate unwanted tags, which in turn
simplifies the task of the master tagger, since the eliminated tags need not be
taken into account. This benefit arises when such a tag is selected by another slave

tagger.

Figure 8-1 can be understood in two ways: that it presents a rule-based tagger
attached as a slave with factor zero, or as a tagger combined using stacking
technique. We prefer the first meaning because it is a part of our general technique
of master-slaves. Of course, with factor zero the rule-based tagger can eliminate
any tag completely, which causes the master tagger not to take it into account.

Therefore it is a special, very powerful slave.

%0 See Chapter 7 for more details about taggers combination.

109

Combining Rules-based and Master-Slaves Taggers

Input
(may be one sentence)

/\

T: ...Slaves Tggers... | Tn

Q/P Q,P/

Rule-based Training */\ o
Tagger =\‘J

Master

Tagger

v

Master-slaves tagger

Factors

Figure 8-1: The overview of the tagging system.

8.6 Results and discussion

We applied the tagger described above to a data set of 45 files (29k words in
total), annotated manually with our tagset. The result of using HMM, Brill and
MM taggers combined as master-slaves was accuracy of 90.05 %. The accuracy

after adding the rule-based tagger increased to 92.86 %.

We can see that the accuracy increased by using the rule-based tagger. The
large increase of accuracy is most likely due to the fact that we use a small corpus,
which leads to low accuracy of statistical methods. Using the rule-based tagger,
which is independent of the type and size of corpus, increases the accuracy. We
expect that when the size of corpus will increase, the gain of accuracy due to rule-

based tagger will diminish.

110

Results, Related Work and Future Work

Chapter 9

Results, Relsticd Wk
and Fotove Wk

The main goal of our dissertation was to construct a comprehensive tagging

system, which can be used for annotating Arabic corpora.

In our dissertation, we did analytical study, implementation and evaluation of
Arabic tagging system, starting from raw text to tag disambiguation. The system
was implemented under a new very rich tagset, which was designed and
developed by us. We split the tagging process to stand alone stages which

simplified building the whole system.

Our corpus consists of 45 files with 29k word in total, annotated by our tagset.
It was used as a training corpus for the statistical methods used in our tagger. The
accuracy of the tagging was calculated assuming 100% correctness of

tokenization, which required 1.2% of manual corrections.

9.1 Implementation

Our implementation, for all system stages, was done in the C# environment.
There is one exception: the software testing the master-slaves technique on the
Brown corpus was written in Python, because the Python taggers are freely
available. Otherwise we used C# even though it does not contain any special
library for NLP, for many reasons: the basic goal was to build the whole

application for Arabic, using input and output without any transliteration. It is an

Results, Related Work and Future Work

easy language comparing to other languages; it combines the power of C++ and
simplicity of VB. An application with a rich and comfortable user interface,
important for the annotator, can be created quite easily. The problem of Unicode
when dealing with Arabic language does not exist. C# is also a relatively fast
language. The last reason which caused us to select a language rarely used for
NLP is that we built all the parts of the system: tokenizer, analyzer and tagger

ourselves, and no parts of them were taken from existing resources.

It seems to us that manual correction of the tokenization output before tagging
is desired. This work does not take much time, comparable to the time of just
reading the text. This operation increases the accuracy of tagging, while manual

correction of tagging results is definitely more time-consuming.

The most labour-intensive parts of our dissertation were its practical parts:
building the dictionaries, the analyzer and collecting the rules for tagging. But the
result seems worth the effort.

9.2 Results and discussion

Tagset: Designing a new Arabic tagset, suitable for Classical Arabic (CA) and
Modern Standard Arabic (MSA), is a hard problem. In addition to the classical
constructions in tag systems, we introduced interleaving of tags. Interleaving is a
relation between tags which, in certain situations, can be attached to the same
occurrence of a word, but each of them can also appear alone. Our tagset makes

this relation explicit.

Tokenization: It is an initial task for almost all Arabic language processing
applications. This task was achieved, in our system, by rule-based and statistical
methods. We separated the tokenization process in order to simplify the tagging
process. The accuracy of this stage was 98.8%. It is comparable to other similar
works. Because it is an independent task, it can be modified without affecting the
whole system. In order to increase the accuracy of the subsequent stages, the
output of tokenization can be corrected manually which should take relatively

little time.

Analysis and lemma extraction: as was mentioned in Chapter 5, the goals of
this task are extracting all the analyses of the word and extracting the lemma.

These analyses provide POS and features according to our tagset. Our analyzer

112

Results, Related Work and Future Work

cannot be used independently, because it is specialized for the needs of our
complete system. Because we use it for tagging, we evaluated its accuracy
measuring how often the true analysis is among all analyses produced. For doing
this evaluation we used a small corpus of 16 k words, manually annotated by a
single analysis for each word, correct for this particular use of that word. In the
test, for 99.67% of words, the correct analysis was among those produced by the
analyzer. On the other hand, in a manual verification of the output of the analyzer,

only 0.1% of all analyses were grammatically incorrect.

Tagging: We used two techniques of combining taggers, which are stacking
and master-slaves techniques. The taggers used by these techniques are manually
created rule-based tagger, HMM, Brill and MM taggers. HMM, Brill and MM
taggers are combined with master-slaves technique, with HMM as the master and
the other as slaves. Rules-based tagger is combined using stacking or,
equivalently, as a special slave, with the master-slave tagger.

Master-slaves technique: Independently of the construction of the whole
system, we have devised a new method for combining taggers, which is master-
slaves technique. The HMM master tagger chooses the best tag according to its
knowledge, which is modified by the results obtained by the slave taggers. This
increases the accuracy when compared with normal HMM tagger, even above the
level of the best accuracy achieved by the component taggers alone. The
accuracies of using this technique are shown in Figure 9-1. The reader should
remember that our tagest with several thousand tags is used, and the training
corpus was relatively small, therefore the accuracy cannot be as high as in the

cases of taggers using small tagsets and large corpuses.

We used a rules-based tagger for increasing the accuracy and eliminating
unwanted tags. Relatively few rules were used in our tagger, and not all features
of Arabic language were taken into account. Constructing the rules for this tagger
was one of the most time consuming tasks. Implementation of these rules was not
an easy task, if compared to the implementation of the statistical methods. The
accuracy was increased to 92.86 % by adding the rule-based tagger to the master-

slaves one.

113

Results, Related Work and Future Work

Master or Slave Brown corpus Accuracy of
original Private Arabic
Total Matched | Accuracy corpus
words words
Brill | - 1161192 | 1096687 | 94.44 % 86.43 %
Maxmatch | --------- 1161192 1061635 | 91.5% 83.26 %
HMM | - 1161192 1106482 | 95.28 % 88.81 %
HMM Brill 1161192 | 1109411 | 95.54 % 89.40 %
HMM Brill+maxmatch | 1161192 | 1111281 | 95.70 %
90.05 %

Figure 9-1: Accuracy of using HMM, Brill and MM in master-
slaves combination.

9.3 Future work

The rules which used in tagging are of one form: “If this tag not applicable to
the present word for some reason, then delete iz”. This form makes updating them
easier. Surely, we did not use all rules known in Arabic, because not all of them
can be represented in this form, and we did not have time and specialized
knowledge to create the optimal set of rules. One direction of improving the

system is to extend it by adding more rules written by experts.

The second obvious way to improve the performance of the system is to use
much larger corpus for training. This large corpus can be updated in each cycle of
running the system, as in Figure 9-2, where the output of the tagger, corrected by

a human annotator, is added to the corpus.

We also have plans of using other methods of tagging Arabic, such as
maximum entropy based tagger. In our opinion it is suitable for a highly inflected
language, such as Arabic, and quite different in methodology, which gives a
possibility of different results. It can be then used as a yet another slave in the
master-slaves hybrid tagger. Using more slaves will affect the time of processing,
but according to our plan of building an offline tagger, speed of processing is not

a crucial factor.

114

Results, Related Work and Future Work

< Annotator 7\
\ 4
Large
annotated > Tagger o/p >
corpus

Figure 9-2: Corpus feedback.

We also think about building a tagger to use the third, syntactical level in our
tagset. It will require knowledge of the Arabic syntax. The output of our system
can be used as its input. The good news for this tagger is that in Arabic there are

strong relations between the case of the class, and the syntactic class itself.

Finally, we will use our system as an application for annotating of Arabic texts
taken from Iragi media. We believe, in next two years, it will see the light for free

availability.

115

Appendix Al

APPENDIX Al

Arabic letters family Unicode

060 061 062 063 064 065 066 067 068 069 O06A 06B 06C 06D O06E O06F
3 : 308 | S s -
- —]
0 \:5 5 \-‘5
0600 0610 0620 0830 0640 0BE0 0570 0680 0630 0BAD 0680 06C0 06D0 0BED 0BF0
- FZ
s . . Y
1l 1 & \{
1|t o | \ l' z D |8 ~ gé \
0801 0611 0821 0631 0641 0651 0861 0671 0681 0691 0BA1 06B1 06C1 0801 OBE1 D06F1
Fm———— - - f
i 1 . " 1 v .
0602 0612 0622 0632 0642 0652 0B&2 0672 0882 0692 0BAZ 0BE2 06C2 0802 OBE2 06F2
| s
2 - - ;
3 ‘ J Al l -) k"? T ~ v
0603 0613 0623 0833 0643 0853 0B&3 0673 0683 sk} 0BA3 0683 063 0BF3
ﬂ-/
|| e la]elS -
4 5| ¢ T | 9| - ¥
0614 0624 0534 0644 0654 0BE4 0674 0684 0694 0BA4 0684 06C4 06D4 0BE4 0BF4
\ F |4 o |
0 J :
5 IS ¢ C B 2 9| o)
0615 0625 0835 0645 0855 0BBS 0675 0685 ili=5] (BAS 0685 0BCS DRES 0BFS
e . .\ [% i v 9
. 4 e
6 S|ve| o SIE|a|=|d]|3
0606 0816 0628 0636 0646 0BES 05T 0888 0BS6 0BAB 0686 08CE 06D& OBEE 0BFE
b Vo s | 3 3 v
& - J
7 » 2 (-.-. 2 < 2
0607 0817 0627 0837 0647 0857 0B&T 0677 0887 08a7 OBAT 0687 06CT 06D7 0BET 0BF7
. - b & \ *
L A 5 J A
8| < 2 S| 2|2
0608 0818 0628 0838 0648 0858 0B&S 0678 0888 068 0BAS 0688 06CE OBEE 06F8
. . . . 5 . -
ol /- 5 < Vel 5 O | 3 A
0608 0818 0828 0839 0848 0858 0B&g 0&7Y &8s 0828 OBAS fulcl:]] 0&CY 08DY OBES 0&Fg
. - . 0 M . - [d s
al - - &S el s | e=o]|3 Sg
QB0A 0624 0B3A DB4A 0554 0854 D6TA D58A &34 (844 06BA 0BCA 08DA DSEA 0&FA
- hir? i N
51 ¢ e w |3 5 3 o2
B \ J T T U‘-'-.' J 2 .
QB0B 0518 0628 0B3B 0B4B 0858 0658 0678 058B 0698 (08AE 06BB 06CEB 05DB 06EB 06FB
s A IO O IR I '
c| ¢ C | = - g Q| Y .
080C 0620 0B3C 064C 0BEC 067C 058C 089C 08AC 06BC 05CC 06DC 06EC 06FC
i . ="
A * " J i 1 &
Dl -~ E €3 — 2 | V2 o |8 :\S,:i’: il
0800 062D 083D 0650 068D 0670 0580 089D 08AD 06BD 05CD 0600 0&6FD
.) & ¢ ~
& - ﬂ v
E| ~ 3 S A B RS A - AP Y > e
0BOE 081E 062E 0B3E 0B4E 08SE 0E5E 0B7E 083E 0B9E OBAE 06BE 0BCE 08DE D8EE 0SFE
< & | 3 Y
S " & 3 - -~ ~
E % ! > | & Q| & 30 & 9 S0 2
ﬁﬁGF 061F 0B2F 083F 084F 0B5F (B6F 08TF OBEF (6SF (BAF 06BF DBCF (OBOF OREF OBFF

116

Appendix A2

Appendix A2.
Arabic verb patterns

Table 1: Trilateral (merely and extra) verb pattern.

Verb Verb form Pattern Arabic Script
Type Transliteration
I faEala — yafoEulu Jady _ (Jad
I faEala — yafoEilu Jaky — Jad
I faEala — yafoEalu J’-‘ﬂ — Jad
Merely |7 faEila — yafoEalu U — e
I faEula — yafoEulu Q- dd
I faEila — yafoEilu &-ﬁe _ &4
Merely I faE~ala — yufaE~ilu k) — Jad
+|§;<tefa 1l faAEala — yufaAEilu el — Jetb
letter | IV OafoEala — yufoEilu M — s
VvV tafaE~ala — yatafaE~alu QAL — B
Merely Vi tafaAEala — yatafaAEalu JelE - JelE
+tEV>\;(t)fa VII AnofaEala — yanofaEilu ek — Jad
letters | VIII AfotaEala — yafotaEilu d*-"ﬂ:' _ d*-"\ﬁ\
IX AfoEal~a — yafoEal~u M _ &-‘-\
X AsotafoEala — yasotafoEilu e — Jakiu
Xl AfoEaAl~a — yafoEaAl~u d\a-ie _ d\aﬁ‘
llﬂé)r(fterlg XII AfoEawoEala — yafoEawoEalu | 'y ks — el
three | XII AfoEaw~ala — yafoEaw~alu Jpk - 3
letters XV AfoEanolala - yafoEanolalu M _ JM\
XV AfoEanolaY - yafoEanolaY

117

Appendix A2

Table 2: quadrilateral (merely and extra) verb pattern and the appendix to it from

trilateral
Verb Verb | Pattern- Transliteration Arabic script appendix to it
Type | form from trilateral
Arabic script
Merely | | faEolala — yufaEolilu ﬂum _ ,ﬂ,;
fawoEala — yufawoEilu T
Jesdi— Jegt
fayoEala — yufayoEilu }5 oxs /],;.
faEowala — yufaEowilu I
i — Jge
faEoyala — yufaEoyulu }s;,f.; Y
faEolala — yufaEolilu }“,z; el
faEolaY — yufaEolaY 133 138
Extra I tafaEolal — yatafaEolal S/!“':"’ 5/5 @
one ‘
letter to tafaEolala — yatafaEolalu Mekar _ yiowe
merely -
tafawoEala — yatafawoEalu 3:_, _ d“' JS.\
tafayoEala — yatafayoEalu Nooha /’/r:.
tafaEowala — yatafaEowalu NosTan Ty
tafaEolaY — yatafaEolaY G fete
Extra Il AfoEanolal — yafoEanolalu | s %- 1%
WO Jizdy — JLiza)
letter to AfoEanolal — yafoEanolalu Iy 1% %
merely Jias

AfoEanolaY — yafoEanolaY

\
*°
\
*0

\
° e
\
o
£) %
—_

AftEolY — yaftaEolY

§ A}
7
\

%
I
k
J
3

AfoEalal~a — yfoEalil~u

118

Appendix B

Appendix B:

Practical Text tagged by the proposed

tagset

WEtagged practical text by the proposed tagset. The text was taken from
Assabah journal (formal journal in Irag). Date of publishing 19-03-2012. The
title is “Ur

Chaldeans”

A Lty Lead dllae 5 3 S AalS oda o callall yund o Jany g (53) Gl all o i ¢y J 5 8 e
Cogas Al D g cill) 5 Jla i cons (S gl Gl pall) (e 7 s sll 5 8 dn g o jpnil) Conny
Lo aitl) oy ol (g B 5 YT 5 pdie DA Gag alladl (8 ¢ Jladll @81 511 85 jSall Ll 51 1305 callad) iy
alife 8 leamlia g Ll jgeal Huat &3 ey BalaiuY dle dia B (V) ClanlS) miay Cogu (32l
il Sl ale) a paad Laie (31l O3S (e Al s allallé 01 o Ul g Blaadl (55 5 Lo
Qs asm e Uae Gl piiuy) aii€l Lalla cliudal) ¢ i 8 S5 5] z YY) Lo (g0 agl)) saad 3
}S}cujﬂ\};)b\jdmd\#dﬁ\}#ﬂ\};\ﬁ‘ﬁ\j%ﬂ\wa&ﬂwwm\5‘);3_56‘)}&1)
O Ld LS Ll Ao gl Leilia g gaall elli L) Il Jua i 8 Gulail g S e () (8 G100 (S
i€ Loy y 5 ¢ giadall) guall ol (pa Laia 5 dpa il ALl ol ()50 Yia Cpdlll 300 Aia 5 AeLiial) goayY)

OSle 2x gl LS uadil) (5 gl (& (31 il OIS sl a5 LAl () kil (8 s e s)

Arabic
word Clitics and word base Tag Explanation
Transliterati
Token | on Translation
5 e s [mrp Once , Time NNou_SFNN Noun Common Singular Feminine Nominative Not Structured
‘ e , CPnc Punctuation
s|w And PNon_Non Particle Not_have_working have_No_meaning

Jis Ji | gl before NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured

s O | sntyn Two years NNou_ DFGN Noun Common Dual Feminine Genative Not Structured
‘ ‘ CPnc Punctuation
Verb Past Third Singular Masculine NonMood Structured Not

i < | kibt I wrote VPst 3SMOYNA | Certainty Active

e o= | En About PRed Adv Particle For_Reduction have_meaning_of Adverbial

J | Al The PNon_Def Particle Not_have working have_meaning_of_Definition

Gl e | ErAq Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured

s sV | Alry Which NRel SMGY Noun Relative Singular Masculine Genative Structured

s Casu | oswf Will PNon_Fut Particle Not_have_working have meaning_of Future

Verb Present Third Singular Masculine Nominative Not Structured
Jany Jess | yEmI Works VPrt 3SSMNNNA Not Certainty Active
e e | ElY At PRed Adv Particle For_Reduction have_meaning_of Adverbial

119

Appendix B

B s | tgyyr Changing NNou SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
Al Ae [EAIm world NNou SMGN Noun Common Singular Masculine Genative Not Structured
‘ o, , CPnc Punctuation
Ja da | hl Is, Are PNon_Int Particle Not_have working have_meaning_of Interrogative
o328 2% | h*h This NDem SMGY Noun Demostrative Singular Masculine Genative Structured
IS i | Kimp Word NNou_SFNN Noun Common Singular Feminine Nominative Not Structured
TS 5 28 | Kbyrp Large NAdo SFNN Noun Adjective(Other) Singular Feminine Nominative Not Structured
s|w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
Noun Adjective(Other) Singular Masculine Nominative Not
s Hus | mbAlg exaggerate NAdo SMNN Structured
S | fy In PRed_Adv PRed_Adv
Lo W | hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured
s|w And PNon_Non Particle Not_have_working have_No_meaning
< |rb May PNOH_Crd Particle Not_have working have_meaning_of increasing_decreasing
L) L | mA be PPrv_Non Particle For_Preventing have_No_meaning
A & | Im Not PJus_Neg Particle For_jusive have_meaning_of Negative
Verb Present Third Singular Masculine JussiveNot Structured Not
iy ey | ySEF Ministering | VPrt. 3SSMJNNA Certainty Active
J | Al The PNOH_Def Particle Not_have_working have_meaning_of_Definition
opadl _aad | tEbyr expression NNou SMAN Noun Common Singular Masculine Accusative Not Structured
e e | ElY At PRed_Adv Particle For_Reduction have_meaning_of Adverbial
) 45 | wih Face NNou_ SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
451) i | dop accuracy NNou_ SFGN Noun Common Singular Feminine Genative Not Structured
s|w And PCnj_Lnk Particle For_Conjection have _meaning_of Linking
J | Al the PNon_Def Particle Not_have working have_meaning_of Definition
z sl zsas | wDwH clarity NNou_ SMGN Noun Common Singular Masculine Genative Not Structured
e e | mn of PRed_Non Particle For_Reduction have_No_meaning
o o | On That PCop_Cer Particle For_copying have_meaning_of Certainty
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
3l = | ErAg Iraq NPrp_ SMAN Noun Proper Singular Masculine Accusative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
L ~3 | gqdym Old NAdo SMAN Noun Adjective(Other) Singular Masculine Accusative Not Structured
d | Al The PNon_Def Particle Not_have working have_meaning_of Definition
ol o< [kAmn latent NAdo SMAN Noun Adjective(Other) Singular Masculine Accusative Not Structured
i s | tHt Under NNou SMAN Noun Common Singular Masculine Accusative Not Structured
d The PNon_Def Particle Not_have working have_meaning_of Definition
Jle Je,y | Al rmAl sands NNou PMGN Noun Common Plural Masculine Genative Not Structured
s|lw And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
J | Al The PNon_Def Particle Not_have_working have_meaning_of_Definition
ol oad | ly$n launch NNou SMGN Noun Common Singular Masculine Genative Not Structured
‘ e , CPnc Punctuation
» » | hw He NPrn_SMNY Noun Pronoum Singular Masculine Nominative Structured
ik Ay | *Ak That NDem_ SMNY Noun Demostrative Singular Masculine Nominative Structured
s sV | Alry Which NRel SMNY Noun Relative Singular Masculine Nominative Structured
g g [swf Will PNon_Fut Particle Not_have_working have_meaning_of Future
Verb Present Third Singular Masculine Nominative Not Structured
e o | ygyr Change VPrt 3SSMNNNA Not Certainty Active
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
allal) Ae | EAIm world NNou_SMAN Noun Common Singular Masculine Accusative Not Structured

120

Appendix B

‘ e , CPnc Punctuation
s|w And PCnj_Lnk Particle For_Conjection have_meaning_of_Linking
135 13 | 1*A if PNon_Adv Particle Not_have _working have_meaning_of Adverbial
Verb Past First Plural Common NonMood Structured Not Certainty
L)) [ArtOynA We decided | VPst IPCOYNA Active
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
5_sSdl) 5,8 | fkrp idea NNou_SMAN Noun Common Singular Masculine Accusative Not Structured
o & | fy In PRed Adv Particle For_Reduction have_meaning of Adverbial
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
&l &5 | wAQE reality NNou SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Genealogical) Singular Masculine Genative Not
Sledll Si | fEly actual NAdg_SMGN Structured
‘ e) CPnc Punctuation
< | f then PNon_Lnk Particle Not_have_working have_meaning_of _Linking
o J | on that PCop_Cer Particle For_copying have_meaning_of Certainty
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Alldl Ae [EAIm world NNou SMAN Noun Common Singular Masculine Accusative Not Structured
s | w And PCI’lj_Lnk Particle For_Conjection have_meaning_of_Linking
) o | mn from PRed Non Particle For_Reduction have_No_meaning
e s | xIAl Through NAdv_SMGN Noun Adverb Singular Masculine Genative Not Structured
5 e s ke | E$rp Ten NNod_SFGN Noun Number(Ordinal) Singular Feminine Genative Not Structured
<Yl <Y | IAF Thousands NNod PMGN Noun Number(Ordinal) Plural Masculine Genative Not Structured
& Ji | tl Hill NNou_SMGN Noun Common Singular Masculine Genative Not Structured
Archaeologis Noun Adjective(Genealogical) Singular Masculine Genative Not
s)4 | [vAry t NAdg_SMGN Structured
‘ <, , CPnc Punctuation
o A | Im Not PJus_Neg Particle For_jusive have_meaning_of Negative
Verb Present Third Singular Masculine JussiveNot Structured Not
B o~ | yir happen VPrt 3SMINNA Certainty Active
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
i) <is | tngyb exploration NNou_SMNN Noun Common Singular Masculine Nominative Not Structured
S| fy In PRed Adv PRed_Adv
led b | hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured
<|b in PRed Adv Particle For_Reduction have_meaning_of Adverbial
J | Al the PNon_Def Particle Not_have working have_meaning_of_Definition
Gloall dle | ErAq Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured
‘ e , CPnc Punctuation
g e [swf Will PNon_Fut Particle Not_have_working have_meaning_of Future
Verb Present Third Singular Masculine Nominative Not Structured
e = | ymnH Gives VPrt 3SSMNNNA Not Certainty Active
AkAdymy
Gl | eS| At Academies NNou_PFNN Noun Common Plural Feminine Nominative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
o=y o=l | AD land NNou_SFGN Noun Common Singular Feminine Genative Not Structured
i i | frSp opportunity | NAdo SFAN Noun Adjective(Other) Singular Feminine Accusative Not Structured
Noun Adjective(Genealogical) Singular Feminine Accusative Not
e iwle | Elmyp Scientific NAdg SFAN Structured
J1 To PRed Cau Particle For_Reduction have_meaning_of Caution
Balain saliu) | AstEAdp restore NNou_SFGN Noun Common Singular Feminine Genative Not Structured
s|w And PCnj_Non Particle For_Conjection have No_meaning
s o | mn from PRed_Non Particle For_Reduction have No_meaning
& & [vm Then PCnj_Non Particle For_Conjection have_No_meaning
B owsd | tgyyr Change NNou_SMAN Noun Common Singular Masculine Accusative Not Structured
Ll ysaai |l ysead [tSWIAL her NNou PFGN Noun Common Plural Feminine Genative Not Structured

121

Appendix B

L | hA Perceptions | NPrn SFGY Noun Pronoum Singular Feminine Genative Structured
s|w and PCnj_Non Particle For_Conjection have No_meaning
alia | mfAhym concepts NNou_PFGN Noun Common Plural Feminine Genative Not Structured
Leamlics b | hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured
& & | fy In PRed Non Particle For_Reduction have_ No_meaning
calide lise [mxtlf Different NNou SMGN Noun Common Singular Masculine Genative Not Structured
Ui Llai | gDAYA Issues NNou_PFGN Noun Common Plural Feminine Genative Not Structured
w and Pan_Lnk Particle For_Conjection have_meaning_of Linking
Ossdis | ossh s | $Wwn Affairs NNou PFGN Noun Common Plural Feminine Genative Not Structured
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
sLall i | HyAp life NNou_SFGN Noun Common Singular Feminine Genative Not Structured
s|w And PCnj_Non Particle For_Conjection have No_meaning
J | Al the PNOH_Def Particle Not_have_working have_meaning_of_Definition
Gl &5 | tAryx date NNou_ SMGN Noun Common Singular Masculine Genative Not Structured
CPnc Punctuation
L o [A*n So PNon_Ans Particle Not_have_working have_meaning_of Answer
S| f then PNon_Non Particle Not_have_working have_No_meaning
J [Al the PNOH_Def Particle Not_have_working have_meaning_of_Definition
pllallé Je | EAIm world NNou SMNN Noun Common Singular Masculine Nominative Not Structured
> | s will PNon_Fut Particle Not_have_working have_meaning_of_Future
Verb Present Third Singular Masculine Nominative Not Structured
Br s | ygyr change VPrt 3SSMNNNA Not Certainty Active
od | nfs self NNou SMAN Noun Common Singular Masculine Accusative Not Structured
A s | h him NPrn_SMGY Noun Pronoum Singular Masculine Genative Structured
e & | mn from PRed_Non Particle For_Reduction have No_meaning
Bl s | xIAl Through NAdv_SMGN Noun Adverb Singular Masculine Genative Not Structured
J [Al The PNon_Def Particle Not_have_working have_meaning_of Definition
3yl e | ErAg Iraq NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured
Jie | mvl Like NNou_ SMNN Noun Common Singular Masculine Nominative Not Structured
Latia mA what NRel SMGY Noun Relative Singular Masculine Genative Structured
Verb Past Third Singular Masculine NonMood Structured Not
S 5 | tgyr Changed VPst_ 3SMOYNA | Certainty Active
o & | Hyn When NNou_ SMAN Noun Common Singular Masculine Accusative Not Structured
Verb Past Third Singular Masculine NonMood Structured Not
se Je) | AEA Re- VPst_ 3SMOYNA | Certainty Active
J [Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Genealogical) Plural Masculine Nominative Not
OsS Wl | Sl | mArksywn | Marxists NAdg PMNN Structured
J [Al The PNon_Def Particle Not_have_working have_meaning_of Definition
kil b | nzr view NNou SMAN Noun Common Singular Masculine Accusative Not Structured
& S| fy In PRed Non Particle For_Reduction have_No_meaning
g tSwrAt Perceptions NNou PMGN Noun Common Plural Masculine Genative Not Structured
A) yuc & | hm them NPrn_PMGY Noun Pronoum Plural Masculine Genative Structured
e o= | En About PRed Non Particle For_Reduction have_No_meaning
Lo Lai | nmT Pattern NNou_SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
Zly) @ | AntAj production NNou_SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Genealogical) Singular Masculine Genative Not
& smaY) s | Asywy Asian NAdg_SMGN Structured
s | w And Pan_Lnk Particle For_Conjection have_meaning_of Linking
5 S8 5% | fkrp idea NNou_SFGN Noun Common Singular Feminine Genative Not Structured
& e i | n$w’ Emergence NNou SMGN Noun Common Singular Masculine Genative Not Structured

122

Appendix B

J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
ikl ik | ThgAt layers NNou PFGN Noun Common Plural Feminine Genative Not Structured
Ja | HAI event NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured
Lalla L | mA that NRel SMGY Noun Relative Singular Masculine Genative Structured
Verb Past Third Singular Masculine NonMood Structured Not
i) il | Akt$f Discover VPst_ 3SMOYNA | Certainty Active
J | Al the PNon_Def Particle Not_have working have_meaning_of Definition
Noun Adjective(Other) Singular Masculine Nominative Not
Sy | @l | Ast$rAg Orientalism NAdg SMNN Structured
e L [mdnA Cities NNou PMAN Noun Common Plural Masculine Accusative Not Structured
Jie Jia | mvl Such as NNou SMAN Noun Common Singular Masculine Accusative Not Structured
e s | swmr Sumer NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured
s|w and PCnj_Lnk Particle For_Conjection have_meaning_of Linking
Jibs Ju | bAbI Babylon NPrp_ SMGN Noun Proper Singular Masculine Genative Not Structured
s | w And PCI’lj_Lnk Particle For_Conjection have_meaning_of Linking
Jsdls o580 | $wr Assyria NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured
‘ <,) CPnc Punctuation
s|w And PCnj_Non Particle For_Conjection have_No_meaning
made Verb Past Third Plural Masculine NonMood Structured Not Certainty
L5 ads 15523 | tHwA inquiries VPst 3PMOYNA | Active
S xe | End At NAdv_SMAN Noun Adverb Singular Masculine Accusative Not Structured
Jaalss | tFASYI Details NNou_SMGN Noun Common Singular Masculine Genative Not Structured
Lelualis b | hA here NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured
adai) il | AnZmp Systems NNou PMAN Noun Common Plural Masculine Accusative Not Structured
i Jasss | tsjyl Registration | NNou_SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
Al aee | Ebyd slaves NNou PMGN Noun Common Plural Masculine Genative Not Structured
s | w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
J | Al the PNon_Def Particle Not_have_working have_meaning_of Definition
el Yl doal | AJIA action NNou_SMAN Noun Common Singular Masculine Accusative Not Structured
s | w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
J | Al the PNon_Def Particle Not_have working have_meaning_of Definition
Gibsdly | gl | mwZfyn staff NNou PMAN Noun Common Plural Masculine Accusative Not Structured
s|w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
Jsal Jeal | ASKAI forms NNou PMAN Noun Common Plural Masculine Accusative Not Structured
palaii abaii [tnZym Organization | NNou SMGN Noun Common Singular Masculine Genative Not Structured
J [Al The PNon_Def Particle Not_have working have_meaning_of_Definition
Jasll dee | Eml work NNou_SMGN Noun Common Singular Masculine Genative Not Structured
s w And PCﬂj_Lnk Particle For_Conjection have_meaning_of Linking
)l sl | AdArp management | NNou_SFGN Noun Common Singular Feminine Genative Not Structured
J [Al The PNon_Def Particle Not_have working have_meaning_of Definition
A, s | dwlp state NNou_SFGN Noun Common Singular Feminine Genative Not Structured
‘ o, , CPnc Punctuation
5| w And PNon_Non Particle Not_have working have_No_meaning
S S| Iw if PNon_Con Particle Not_have_working have_meaning_of Conditional
Verb Past Third Singular Masculine NonMood Structured Not
oS o< | kAn Was VPst 3SMOYNA | Certainty Active
J | Al the PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Other) Singular Masculine Nominative Not
Sy | @l | Ast$rAg Orientalism | NAdo SMNN Structured
o S| fy In PRed Adv Particle For_Reduction have_meaning_of Adverbial
o) <) | zmn Time NNou_SMGN Noun Common Singular Masculine Genative Not Structured
oSk oS,k | mArks Marx NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured

123

Appendix B

s|w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
il sl | Anjls Angeles NPrp_ SMGN Noun Proper Singular Masculine Genative Not Structured
B 3 | gd May PNon_RIz Particle Not_have_working have_meaning_of Realization
Verb Past Third Singular Masculine NonMood Structured Not
dass Juasi | twSl Reach VPst 3SSMOYNA Certainty Active
& S| Al To PRed_Non Particle For_Reduction have_No_meaning
sliss| i) | AktSAF Discovery NNou_SMGN Noun Common Singular Masculine Genative Not Structured
&lls Qi | tlk That NDem SFGY Noun Demostrative Singular Feminine Genative Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
) o | mdn cities NNou_PFGN Noun Common Plural Feminine Genative Not Structured
5| w and Pan_Lnk Particle For_Conjection have_meaning_of Linking
&ié | dgAlgq minutes NNou_ PFGN Noun Common Plural Feminine Genative Not Structured
Lgiilda b | hA her NPrn_SFGY Noun Pronoum Singular Feminine Genative Structured
J | Al The PNon_Def Particle Not_have working have_meaning_of_Definition
Noun Adjective(Genealogical) Singular Feminine Genative Not
Lol Las | ywmyp day NAdg SFGN Structured
J| 1 For PNon_Non Particle Not_have working have_No_meaning
L L | mA what PNon_Neg Particle Not_have_working have_meaning_of Negative
Verb Past Third Dual Masculine NonMood Structured Not Certainty
S LS | kthA they wrote VPst 3BDMOYNA | Active
L ws | $yIA Something NNou SMAN Noun Common Singular Masculine Accusative Not Structured
e o= | En About PRed_Non Particle For_Reduction have_No_meaning
J | Al The PNOH_Def Particle Not_have working have_meaning_of Definition
=LY =) | ArD land NNou_SFGN Noun Common Singular Feminine Genative Not Structured
J [Al The PNon_Def Particle Not_have_working have_meaning_of Definition
delil) iclis | M$AEp Commons NAdo SFGN Noun Adjective(Other) Singular Feminine Genative Not Structured
s | w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
Uiia i< | m$klp problem NNou_SFGN Noun Common Singular Feminine Genative Not Structured
J [Al The PNon_Def Particle Not_have_working have_meaning_of Definition
s Jy | bzl puncture NNou_ SMGN Noun Common Singular Masculine Genative Not Structured
ol oAl | AllFyn Who NRel DMGY Noun Relative Dual Masculine Genative Structured
Verb Past Third Dual Masculine NonMood Structured Not Certainty
Y Ya | HAIA prevented VPst 3BDMOYNA | Active
O o5 | dwn Below NNou SMAN Noun Common Singular Masculine Accusative Not Structured
ol)) | ArtqA’ Upgrade NNou_ SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Genealogical) Singular Feminine Genative Not
ALl ik | mlkyp Royal NAdg_SFGN Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Genealogical) Singular Feminine Genative Not
30 i | frdyp individual NAdg_SFGN Structured
s|w And PCnj_Lnk Particle For_Conjection have_meaning_of Linking
Verb Past Third Dual Masculine NonMood Structured Not Certainty
Lria g i | mNEA prevented VPst 3BDMOYNA | Active
e o | mn from PRed Cau Particle For_Reduction have_meaning_of Caution
pld Aé | gyAm standin up NNou_SMGN Noun Common Singular Masculine Genative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
¢l pall ¢l = | STAE conflict NNou SMAN Noun Common Singular Masculine Accusative Not Structured
J | Al The PNon_Def Particle Not_have_working have_meaning_of Definition
Noun Adjective(Genealogical) Singular Masculine Genative Not
skl b | Thay class NAdg SMGN Structured
‘ |, , CPnc Punctuation
s|lw And PNon_Non Particle Not_have_working have_No_meaning
<[rb may PNon_Crd Particle Not_have_working have_meaning_of increasing_decreasing
Ly L | mA be PPrv_Non Particle For_Preventing have_No_meaning

124

Appendix B

Verb Past Third Singular Feminine NonMood Structured Not
ERTS il | kAnt Was VPst 3SFOYNA Certainty Active
J | Al The PNon_Def Particle Not_have working have_meaning_of Definition
Noun Adjective(Genealogical) Singular Feminine Nominative Not
AaSOW [aes e | mArksyp Marxist NAdg SFNN Structured
Verb Past Third Singular Masculine NonMood Structured Not
s | gyr changed VPst_ 3SMOYNA | Certainty Active
W e W | hA it NPrn_SFAY Noun Pronoum Singular Feminine Accusative Structured
o & | fy in PRed Non Particle For_Reduction have_No_meaning
J | Al the PNon_Def Particle Not_have_working have_meaning_of Definition
kil S | nzr view NNou_SMGN Noun Common Singular Masculine Genative Not Structured
S S| AlY to PRed_Non Particle For_Reduction have No_meaning
J | Al the PNon_Def Particle Not_have_working have_meaning_of Definition
Gl a4 | $rg East NNou_SMGN Noun Common Singular Masculine Genative Not Structured
s|w and PCnj_Lnk Particle For_Conjection have_meaning_of Linking
J | Al the PNon_Def Particle Not_have_working have_meaning_of Definition
Al < | grb west NNou_SMGN Noun Common Singular Masculine Genative Not Structured
S S| Iw If PNon_Con Particle Not_have working have_meaning_of Conditional
Verb Past Third Singular Masculine NonMood Structured Not
oS o< | kAn was VPst 3SMOYNA | Certainty Active
J | Al the PNon_Def Particle Not_have working have_meaning_of Definition
Noun Adjective(Other) Singular Masculine Nominative Not
SoEY) | @i | Ast$rAg Orientalism | NAdo SMNN Structured
o S| fy in PRed Non Particle For_Reduction have_No_meaning
J | Al the PNon_Def Particle Not_have working have_meaning_of Definition
5 siaaall Ssime | mstwY level NNou_SMGN Noun Common Singular Masculine Genative Not Structured
J | Al the PNon_Def Particle Not_have working have_meaning_of Definition
(el St | tFSyly detailed NAdo SMGN Noun Adjective(Other) Singular Masculine Genative Not Structured
4|k as PRed_Sim Particle For_Reduction have_meaning_of Simile
s mA what NRel SMGY Noun Relative Singular Masculine Genative Structured
Verb Past Third Singular Masculine NonMood Structured Not
cla N came VPst_ 3SMOYNA | Certainty Active
s 2 | bEd after NNou_SMAN Noun Common Singular Masculine Accusative Not Structured
oSk | oSy | mArks Marx NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured
CPnc Punctuation

125

Appendix C

Appendix C:

Output of our analyzer for simple
sentence

word
Arabic Transli- Trans- Tokens Lemma Analyzing / Tag
teration lation
=N VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active #
el Vimv_2SMOYNA Verb Imperative Second Singular Masculine NonMoodStructured Not Certainty
e Active #
el VPrt_1SMNNNA Verb Present First Singular Masculine Nominative Not Structured Not Certainty
&= Active #
) VPrt_1SMINNA Verb Present First Singular Masculine JussiveNot Structured Not Certainty Active
T #
il AjtmE Met il) VPrt_1SMANNA Ver_b Present First Singular Masculine Accusative Not Structured Not Certainty
- Active #
aia) VPst_3SMOYNP Verb Past Third Singular Masculine NonMoodStructured Not Certainty Passive #
) VPrt_1SMNNNP Verb Present First Singular Masculine Nominative Not Structured Not Certainty
&= Passive #
) VPrt_1SMJINNP Verb Present First Singular Masculine JussiveNot Structured Not Certainty Passive
T #
) VPrt_1SMANNP Verb Present First Singular Masculine Accusative Not Structured Not Certainty
&= Passive #
) NAdo_PMNN Noun Adjective(Other) Plural Masculine Nominative Not Structured #
clae zEmA’ Leader cla) NAdo_PMAN Noun Adjective(Other) Plural Masculine Accusative Not Structured #
s) NAdo_PMGN Noun Adjective(Other) Plural Masculine Genative Not Structured #
il J PNon_Def Particle Not_have_working have_meaning_of_Definition #
Jsall Aldwl States alss NNou_PFNN Noun Common Plural Feminine Nominative Not Structured #
ds a3 NNou_PFAN Noun Common Plural Feminine Accusative Not Structured #
s NNou_PFGN Noun Common Plural Feminine Genative Not Structured #
Jl J PNon_Def Particle Not_have_working have_meaning_of_Definition #
ERg] AlErby The s NAdg_SFNN Noun Adjective(Genealogical) Singular Feminine Nominative Not Structured #
p Arabic e S NAdg_SFAN Noun Adjective(Genealogical) Singular Feminine Accusative Not Structured #
=g NAdg_SFGN Noun Adjective(Genealogical) Singular Feminine Genative Not Structured #
& PRed_Non Particle For_Reduction have_No_meaning #
& PRed_Cau Particle For_Reduction have_meaning_of _Caution #
& fy In & & PRed_Adv Particle For_Reduction have_meaning_of_Adverbial #
=] NFiv_SMGN Noun Five_Noun Singular Masculine Genative Not Structured #
VImv_2SFOYNA Verb Imperative Second Singular Feminine NonMoodStructured Not Certainty
o Active #
iy NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured #
Baghd ks NPrp_SMAN Noun Proper S?ngular Masculi_ne Accusgtive Not Structured #
ik bgdAd ad Slaky mu NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured #
Jlaxy NNou_SMNN Noun Common Singular Masculine Nominative Not Structured #
3atg NNou_SMAN Noun Common Singular Masculine Accusative Not Structured #
3ai NNou_SMGN Noun Common Singular Masculine Genative Not Structured #
5 5 PCnj_Lnk Particle For_Conjection have_meaning_of_Linking #
P PRed_Cer Particle For_Reduction have_meaning_of_Certainty #
3 PRed_Non Particle For_Reduction have_No_meaning #
el WAJmE And sl VPst_3PMOYNA Verb Past Thi_rd Plural Masculine NonMoodStructured Not Certainty Acti_ve #
WA gather [PN) ol Vimv_2PMOYNA Ver_b Imperative Second Plural Masculine NonMoodStructured Not Certainty
j Active #
sl VPst_3PMOYNP Verb Past Third Plural Masculine NonMoodStructured Not Certainty Passive #
Vimv_2PMOYNA Verb Imperative Second Plural Masculine NonMoodStructured Not Certainty
& Active #
Sl PRed_Lnk Particle For_Reduction have_meaning_of_Linking #
Sl PRed_Non Particle For_Reduction have_No_meaning #
e ElY Tolon e Sl PRed_Adv Part@cle For_Reduct?on have_mean!ng_of_Adverb_iaI #
Sle PRed_Cnd Particle For_Reduction have_meaning_of _Conditional #
Sle PRed_Cau Particle For_Reduction have_meaning_of Caution #
S VPst_3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active #
ol PCop_Cer Particle For_copying have_meaning_of_Certainty #
& PCop_Cer Particle For_copying have_meaning_of_Certainty #
ol PNon_Non Particle Not_have_working have_No_meaning #
ol An That o o PNon_Non Particle Not_have_working have_No_meaning #
& PNon_Neg Particle Not_have_working have_meaning_of_Negative #
& PNon_Non Particle Not_have_working have_No_meaning #
& PNon_Non Particle Not_have_working have_No_meaning #

126

Appendix C

ol PAcu_Sub Particle For_Accusative have_meaning_of_Subordinating #
ol VPst_ 3SMOYNA Verb Past Third Singular Masculine NonMoodStructured Not Certainty Active #
ol VPst_ 3SMOYNP Verb Past Third Singular Masculine NonMoodStructured Not Certainty Passive #
o5 VPrt_1SMINNA ;/erb Present First Singular Masculine JussiveNot Structured Not Certainty Active
EW VPrt_3PMJNNA Verb Present Third Plural Masculine JussiveNot Structured Not Certainty Active #
They e VPrt_3PMANNA Ver_b Present Third Plural Masculine Accusative Not Structured Not Certainty
[JEcT ysAnd suppor gl _ Active #
WA t Bl VPrt_3PMINNP Verb Present Third Plural Masculine JussiveNot Structured Not Certainty Passive #
@ VPrt_3PMANNP Verb_ Present Third Plural Masculine Accusative Not Structured Not Certainty
Passive #
J J PNon_Def Particle Not_have_working have_meaning_of_Definition #
& NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured #
& NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured #
The & NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured #
&N AlrbyE spring & NPrp SMNN Noun Proper Singular Masculine Nominative Not Structured #
& & NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured #
& NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured #
& NNou_SMNN Noun Common Singular Masculine Nominative Not Structured #
& NNou_SMAN Noun Common Singular Masculine Accusative Not Structured #
5] NNou_SMGN Noun Common Singular Masculine Genative Not Structured #
il J PNon_Def Particle Not_have_working have_meaning_of_Definition #
e NPrp_SMNN Noun Proper Singular Masculine Nominative Not Structured #
e NPrp_SMAN Noun Proper Singular Masculine Accusative Not Structured #
e NPrp_SMGN Noun Proper Singular Masculine Genative Not Structured #
S NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured #
S NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured #
S NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured #
S NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured #
e AlErby The_ S NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured #
Arabic & SR NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured #
SE NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured #
S NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured #
S NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured #
S NAdg_SMNN Noun Adjective(Genealogical) Singular Masculine Nominative Not Structured #
S NAdg_SMAN Noun Adjective(Genealogical) Singular Masculine Accusative Not Structured #
S NAdg_SMGN Noun Adjective(Genealogical) Singular Masculine Genative Not Structured #
e VImv_2SFOYNA Verb Imperative Second Singular Feminine NonMoodStructured Not Certainty
- Active #

127

128

References

References

[1]. Abney S., Schapire R. and Singer Y. (1999). Boosting Applied to Tagging and PP
Attachment. Proceedings of the Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora, USA.

[2]. Alba E., Lugue G., Araujo L. (2006). Natural language tagging with genetic
algorithms. Information Processing Letters journal, Volume 100 (No 5).

[3]. AL-Bidhani S. (2000). Nuzhat Altarf for explanation of verb construction in the
science of morphology. (by) Al-Ain, UAE, (Arabic Book).

[4]. Al-Dahdah A. (1989). Lexicon of Arabic language Grammar in tables and
tablets. 4™ edition. Maktabat-Lebnan-Nashiroon, Beirut, Lebanon, (Arabic Book).

[5]. AlGahtani S., Black W., and McNaught J. (2009). Arabic part-of-speech-tagging
using transformation-based learning. Proceeedings of the 2" International
Conference on Arabic Language Resources and Tools, Cairo, Egypt.

[6]. Al-Galaiini M. (1990). Jamia Al-drooss Al-Arabia 1% edition, (by) Dar Al-Karkh,
(Arabic book).

[7]. Al-Hamlawy A.(1957). Shaza Al-Orf in the art of morphology. (by) Dar Al-
Kiaan, Riadh, KSA, (Arabic book).

[8]. Al-Moradi I. (1992). Al-Juna Al-Dani in particles of meaning. 1% edition, (by)
Dar al-kotob al-ilmiyah, Beirut, Lebanon, (Arabic Book).

[9]. AlQrainy S. and Ayeshi A. (2006). Developing a tagset for automated POS
tagging in Arabic. WSEAS Transactions on Computers Vol 5.

[10]. Al-Rajhi A. (1979). The application of morphology. (by) Dar Al-Nahdha Al-
Arabia Beirut, (Arabic book).

[11]. AL-Shamsi F. and Guessoum A. (2006). A Hidden Markov Model-Based POS
Tagger for Arabic. 8% Journees Internationales d'Analyse statistique des Donnees
Textuelles.

[12]. Al-Sughaiyer 1. and Al-Kharashi 1. (2004). Arabic morphological analysis
techniques: A comprehensive survey. Journal of the American Society for
Information Science and Technology Vol. 55 (No. 3).

[13]. Attia M. (2007). Arabic tokenization system. Proceedings of the Workshop on
Computational Approaches to Semitic Languages (Semitic '07): Common Issues
and Resources. Stroudsburg, PA, USA.

[14]. Atwell E. (2008). Development of tag sets for part-of-speech tagging. Ludeling
A, Kyto M (ed.) Corpus Linguistics: An International Handbook, Vol 1, Mouton
de Gruyter.

[15]. Atwell E., Al.Sulaiti L., Al.Osaimi S. and Abu.Shawar B. (2004). A Review of
Arabic Corpus Analysis Tools. Proceedings of JEP.TALN'04 Arabic Language
Processing, Fes, Morocco.

[16]. Badr 1., Zbib R. and Glass J. (2008). Segmentation for English-to-Arabic
Statistical Machine Translation. Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics on Human Language Technologies.
Columbus, Ohio, USA.

129

References

[17]. Beesley K. (1996). Arabic finite-state morphological analysis and generation. In
Proceedings of the 16" International Conference on Computational Linguistics
(COLING-96), Copenhagen, Denmark.

[18]. Beesley K. (2001). Finite-State Morphological Analysis and Generation of
Arabic at Xerox Research: Proceedings of the Arabic Language Processing: Status
and Prospect: 39" Annual Meeting of the Association for Computational
Linguistics. Toulouse, France.

[19]. Benajiba Y. and Zitouni I. (2010). Arabic Mention Detection: toward better unit
of analysis. Proceeding of Human Language Technologies: The 11" Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Stroudsburg, PA, USA.

[20]. Benajiba Y., Zitouni I. (2010): Arabic Word Segmentation for Better Unit of
Analysis. Proceedings of the 7 International Conference on Language Resources
and Evaluation (LREC'10). European Language Resources Association (ELRA),
Malta.

[21]. Bin-Mugbil M. (2006). Phonetic and Phonological Aspects of Arabic Emphatics
and Gutturals. PhD dissertation, University of Wisconsin-Madison, USA.

[22]. Bird S., Klein E. and Loper E. (2009). Natural Language Processing with Python.
(by) Published by O’Reilly Media, USA.

[23]. Bosch A., Marsi E., and Soudi A. (2007). Memory-based morphological analysis
and part-of-speech tagging of Arabic. Arabic Computational Morphology:
knowledge-based and empirical methods, Kluwer / Springer Publications.

[24]. Brill E. (1995). Transformation-based error-driven learning and natural
language processing: A case study in part-of-speech tagging. Computational
Lingustics, Vol 21(No. 4).

[25]. Buckwalter T. (2002). Buckwalter Arabic Morphological Analyzer Version 1.0.
Linguistic Data Consortium, University of Pennsylvania.

[26]. Buckwalter T. (2004). Isues in Arabic Orthography and morphology Analysis.
Proceedings of the Workshop on Computational Approaches to Arabic Script-
based Languages, USA.

[27]. Cavalli-Sforza V., Soudi A. and Mitamura T. (2000). Arabic Morphology
Generation Using a Concatenative Strategy. Proceedings of the 1st North
American chapter of the Association for Computational Linguistics conference
(NAACL 2000). Seattle, Washington, USA.

[28]. Chanod J. and Tapanainen P. (1996): A Non-deterministic Tokeniser for Finite-
State Parsing. Proceeding of 12" European Conference on Artificial Intelligence,
Budabest, Hungary.

[29]. Clark A. (2003). Combining distributional and morphological information for
part of speech induction. Proceeding of 10" of Annual meeting of EACL,
Budapest, Hungary.

[30]. Daelemans W., Zavrel J., Berck P. and Gillis S. (1996). MBT: A memory-based
part of speech tagger generator. Proceedings of the Fourth Workshop on Very
Large Corpora/ ACL SIGDAT, Cobenhagen, Denmark.

[31]. Darwish K. (2002): Building a Shallow Arabic Morphological Analyzer in One
Day. Proceedings of the ACL-02 workshop on Computational approaches to
Semitic languages. PA, USA.

130

References

[32]. Diab M. (2009). Second Generation AMIRA Tools for Arabic Processing: Fast
and Robust Tokenization, POS tagging, and Base Phrase Chunking.
Proceedings of the Second International Conference on Arabic Language
Resources and Tools, Cairo, Egypt.

[33]. Diab M., Hacioglu K. and Jurafsky D. (2004). Automatic Tagging of Arabic Text:
From Raw Text to Base Phrase Chunks. Proceedings of Human Language
Technology Conference (HLT-NAACL), Boston, Massachusetts, USA.

[34]. Diab M., Hacioglu K. and Jurafsky D. (2007). Automated Methods for Processing
Arabic Text: From Tokenization to Base Phrase Chunking. Arabic
Computational Morphology: Knowledge-based and Empirical Methods. Kluwer /
Springer Publications.

[35]. Dichy J. (2001). On lemmatization in Arabic, A formal definition of the Arabic
entries of multilingual lexical databases. Proceding in Arabic NLP Workshop at
ACL/EACL, Toulouse, France.

[36]. EI Hadj Y., Al-Sughayeir 1. and Al-Ansari A. (2009). Arabic Part-Of-Speech
Tagging using the Sentence Structure. Proceedings of the Second International
Conference on Arabic Language Resources and Tools, Cairo, Egypt.

[37]. EI-Dahdah A. (1994): An Intermediate Dictionary of Verb Conjugation. 1%
edition, Libaririe Du Liban Publisher, Beirut, Lebnan. (Aabic book).

[38]. Elhadj Y. (2009). Statistical Part-of-Speech Tagger for Traditional Arabic Texts.
Journal of Computer Science Vol5 (No.11).

[39]. El-Shishtawy T. and EI-Ghannam F. (2012). An Accurate Arabic Root-Based
Lemmatizer for Information Retrieval Purposes. International Journal of
Computer Science Issues(lJCSI), Vol. 9, (No. 1).

[40]. Elworthy D. (1995). Tagset Design and Inflected Languages. In: Proceedings of
the ACL SIGDAT Workshop, Dublin.

[41]. Feldman A. (2008) .Tagset Design, Inflected Languages, and N-gram Tagging.
The Linguistics Journal Vol. 3 (No. 1).

[42]. Freeman A. (2001): Brill’s POS tagger and a morphology parser for Arabic.
Proceding of ACL/EACL-Workshop on Arabic Language Processing: Status and
Prospects, Toulouse, France.

[43]. Glass K. and Bangay S. (2005). Evaluating parts-of-speech taggers for use in a
text-to-scene conversion system. Proceeding of SAICSIT, White River, South
Africa.

[44]. Gridach M. and Chenfour N. (2011). Developing a New System for Arabic
Morphological Analysis and Generation. Proceedings of the 2™ Workshop on
South and Southeast Asian Natural Language Processing (WSSANLP)-IJCNLP,
Chiang Mai, Thailand.

[45]. Habash N. (2010). Introduction to Arabic Natural Language Processing.
Synthesis Lecture on Human Langauge Technologies. A Publication in the Morgan
& Claypool Publishers series, UAS.

[46]. Habash N. and Rambow O. (2005). Arabic Tokenization, Part-of-Speech Tagging
and Morphological Disambiguation in One Fell Swoop. Proceedings of the 43™
Annual Meeting of the ACL, Michigan, USA.

[47]. Habash N. and Roth R. (2009). CATIB: The Columbia Arabic Treebank.
Proceedings of the ACL-IJCNLP, Suntec, Singapore.

131

References

[48]. Habash N. and Sadat F. (2006). Arabic Preprocessing Schemes for Statistical
Machine Translation. published in the Proceedings of Human Language
Technology Conference/North American Chapter of the Association for
Computational Linguistics (HLT/NAACL), New York, USA.

[49]. Habash N., Faraj R., and Roth R. (2009). Syntactic Annotation in the Columbia
Arabic Treebank. In Proceedings of MEDAR International Conference on Arabic
Language Resources and Tools, Cairo, Egypt.

[50]. Habash N., Rambow O. and Kiraz G. (2005). Morphological Analysis and
Generation for Arabic Dialects. Proceedings of the ACL Workshop on
Computational Approaches to Semitic Languages, Michigan, USA.

[51]. Habash N., Rambow O. and Roth R. (2009). MADA+TOKAN: A Toolkit for
Arabic Tokenization, Diacritization, Morphological, Disambiguation, POS
Tagging, Stemming and Lemmatization. Proceedings of the 2nd International
Conference on Arabic Language Resources and Tools (MEDAR), Cairo, Egypt.

[52]. Henrich V., Reuter T. and Loftsson H. (2009): CombiTagger: A System for
Developing Combined Taggers. Proceedings of the Twenty-Second International
FLAIRS Conference, Sanibel Island, Florida, USA.

[53]. Jackson P. and Moulinier I. (2002). Natural Language Processing for Online
Applications Text Retrieval Extraction and Categorization. John Benjamins
Publishing Company, Amsterdam, Philadelphia.

[54]. Jurafsky D. and Martin J. (2008). Speech and Language Processing: An
introduction to natural language processing, computational linguistics, and
speech recognition. (by) Prentice Hall, USA.

[55]. Karlsson F., Voutilainen A., Heikkila J. and Anttila A. (1995). Constraint
Grammar: A Language-Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, berlin, Germany.

[56]. Khoja S. (1999): Stemming Arabic Text. Computing Department, Lancaster
University, Lancaster, U.K.

[57]. Khoja S. (2001). APT: Arabic Part-of-Speech Tagger. In Proceedings Student
Workshop at the Second Meeting of (NAACL2001), Pittsburgh, Pennsylvania.
[58]. Khoja S. and Garside R. (1999). Stemming Arabic Text. Lancaster, UK,
Computing Department, Lancaster University.

http://www.comp.lancs.ac.uk/computing/users/khoja/stemmer.ps.

[59]. Khoja S., Garside R., and Knowles G. (2001). A tagset for themorphosyntactic
tagging of Arabic. In Proceedings of Corpus Linguistics, Lancaster, UK.

[60]. Kim J., Kim G. (1996): Fuzzy Network Model for Part-of-Speech Tagging under
Small Training Data. Natural Language Engineering, Vol. 2 (No 2).

[61]. Klein S. and Simpson R. (1963). A computational approach to grammatical
coding of English words. Journal of ACM Vol. 10(No. 3).

[62]. Koprl S. (2011): An efficient part-of-speech Tagger for Arabic. Proceedings of
the 12" international conference on Computational linguistics and intelligent text
processing (CICLing'11), Tokyo, Japan.

[63]. Kuba A., Felféldi L. and Kocsor A. (2005). POS tag-ger combinations on
Hungarian text. Proceedings of the 2nd International Joint Conference on Natural
LanguageProcessing (IJCNLP-05), Heidelberg, Germany.

132

References

[64]. Kulick S. (2010). Simultaneous Tokenization and Part-of-Speech Tagging for
Arabic without a Morphological Analyzer. Proceedings of the Association for
Computational Linguistics (ACL) Conference Short Papers, Uppsala, Sweden.

[65]. Kulick S., Gabbard R., and Marcus M. (2006). Parsing the Arabic Treebank:
Analysis and Improvements. Proceedings of theTreebanks and LinguisticTheories
Conference, Prague, Czech Republic.

[66]. Lee Y., Papineni K. and Roukos S. (Emam O. and Hassan H.) (2003). Language
Model Based Arabic Word Segmentation. Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics. Sapporo, Japan.

[67]. Loftsson H. (2006): Tagging Icelandic text: An experiment with integrations and
combinations of taggers. Language Resources and Evaluation Vol. 40 (No. 2).
[68]. Manning C. and Schitze H. (1999). Foundations of Statistical Natural Language

Processing. (by) MIT Press. Cambridge, London, UK.

[69]. Mansour S., Sima'an K. and Winter Y. (2007). Smoothing a Lexicon-based POS
Tagger for Arabic and Hebrew. Proceedings of the 2007 Workshop on
Computational Approaches to Semitic Languages (Semitic '07): Common Issues
and Resources, Prague, Czech Republic.

[70]. Mayfield J., McNamee P., Piatko C. and Pearce C. (2003): Lattice-based Tagging
using Support Vector Machines. Proceedings of the twelfth international
conference on Information and knowledge management (CIKM '03), Louisiana,
USA.

[71]. Mohamed E. and Kubler S. (2010). Arabic Part of Speech Tagging. Proceedings
of the Seventh International Conference on Language Resources and Evaluation
(LREC'10), Valletta, Malta.

[72]. Nakagawa T., Kudoh T. and Matsumoto Y. (2001). Unknown Word Guessing and
Part-of-Speech Tagging Using Support Vector Machines. Proceedings of the 6"
Natural Language Processing Pacific Rim Symposium, Tokyo, Japan.

[73]. Nitin I. and Fred J. (2010). Handbook of Natural Language Processing, Second
Edition. Chapman & Hall/CRC Machine Learning & Pattern Recognition, USA.

[74]. Nugues P. (2006). An Introduction to Language Processing with Perl and
Prolog. (by) Springer-Verlag, Berlin Heidelberg, Germany.

[75]. Padré L. (1996): POS tagging using relaxation labeling. Proceedings of the 16
conference on Computational linguistics (COLING), Copenhagen, Denmark.

[76]. Peng F., Feng F. and McCallum A. (2004). Chinese segmentation and new word
detection using conditional random fields. In Proceedings of the 20th
international conference on Computational Linguistics (COLING '04), University

of Geneva, Switzerland.

[77]. Ratnaparkhi A. (1996). A Maximum Entropy Model for Part-Of-Speech Tagging.
Proceedings of the Empirical Methods in Natural Language Processing Conference
(EMNLP), University of Pennsylvania, USA.

[78]. Ratnaparkhi A. (1998). Maximum entropy models for natural language
ambiguity resolution. PhD dissertation, University of Pennsylvania, Philadelphia.

[79]. Roche E. and Schabes Y. (1995). Deterministic part-of-speech tagging with
finite-state transducers. In: Computational Linguistics Journal
http://dl.acm.org/citation.cfm?id=211200, Vol. 21 (No. 2).

133

http://dl.acm.org/citation.cfm?id=211200

References

[80]. Ryding K. (2005). A Reference Grammar of Modern Standard Arabic. (by)
Unversity Press, Cambridge, UK.

[81]. Sakhr Software, Arabic Morphological Analyzer http://www.sakhr.com.

[82]. Sawalha M. (2011). Open-source Resources and Standards for Arabic Word
Structure Analysis: Fine Grained Morphological Analysis of Arabic Text Corpora
TAGGING. PhD dissertation, School of Computing, University of Leeds, UK.

[83]. Schmid H. (1994). A Probabilistic Part-of-Speech Tagging Using Decision Trees.
Proceedings of International Conference on New Methods in Language
Processing, Manchester, UK.

[84]. Schmid H. (1994). Part-of-Speech Tagging with Neural Networks. Proceedings
of the 15th International Conference on Computational Linguistics (COLING-94),
Kyoto, Japan.

[85]. Shaalan K. (2010). Rule-based Approach in Arabic Natural Language
Processing. International Journal on Information and Communication
Technologies, Vol. 3(No. 3).

[86]. Silfverberg M. and Lindén K. (2010). Part-of-Speech Tagging Using Parallel
Weighted Finite-State Transducers. Proceeding of 7™ International Conference on
Natural Language Processing (IceTAL), Reykjavik, Iceland.

[87]. Sjobergh J. (2003). Stomp, a POS-tagger with a Different View. Proceeding of
Recent Advances in Natural Language Processing (RANLP-2003). Borovets,
Bulgaria.

[88]. Smrz O. (2007). Functional Arabic Morphology, Formal System and
Implementation. Ph.D. thesis, institute of formal and applied Linguistics, Faculty
of mathematics and physics, Charles University in Prague.

[89]. Tlili-Guiassa Y. (2006): Hybrid Method for Tagging Arabic Text. Journal of
Computer Science Vol 2 (No 3).

[90]. Toutanova K., Klein D., Manning C. and Singer Y. (2003). Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network. Proceeding of Human
Language Technology Conference (HLT-NAACL 2003), Edmonton, Canada.

[91]. Wu D., Ngai G. and Carpuat M. (2003). A Stacked, Voted, Stacked Model for
Named Entity Recognition. precceding of 7" Conference on Natural Language
Learning (CoNLL-2003), Edmonton, Canada.

[92]. Yonghui G., Baomin W., Changyuan L., and Bingxi W. (2006). Correlation voting
fusion strategy for part of speech tagging. Proceeding of 8" International
Conference on Signal Processing (ICSP), IEEE conference, Guilin, China.

134

http://www.sakhr.com/

References

63

