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Abstract

The language of contemporary mathematics is set theory. However, the axiomatic set theory
was built to establish the consistency of mathematics, not to be the language of it. Set theory
identifies two very basic ideas into one notion of a “set”: set as a universe and set as a predicate.
Type theory is a language which do not exhibit many of the drawbacks of set theory. In this
thesis we build a type theory in which there is a clear distinction between universes and
predicates. Our theory is a certain Pure Type System extended with inductive types. We give
the definition of the system and prove its basic properties. We establish consistency of the
system by giving the strong normalization proof.

Streszczenie

Językiem współczesnej matematyki jest teoria mnogości. Jednak aksjomatyczna teoria mno-
gości powstała w zupełnie innym celu — aby uzasadnić niesprzeczność matematyki. Teoria
mnogości utożsamia dwa podstawowe pojęcia w jedno pojęcie zbioru: zbiór jako uniwersum
i zbiór jako materializacja predykatu. Teoria typów jest językiem, który jest pozbawiony wielu
wad teorii mnogości. W tej pracy proponujemy teorię typów, w której jest wyraźne rozróżnie-
nie między uniwersum i predykatem. Nasza teoria to pewien Pure Type System rozszerzony
o typy indukcyjne. Podajemy definicję systemu i pokazujemy jego podstawowe własności.
Dowodzimy własność silnej normalizacji, z której wynika niesprzeczność systemu.
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Chapter 1

Introduction

1.1. The problem

The language of contemporary mathematics is set theory. Virtually all maths is developed
within the framework of set theory, and all books and papers are written with the silent
assumption of ZF or ZFC axioms behind the back. We even use this framework for teaching
mathematics at all levels, from university to the kindergarten level.

However, axiomatic set theory was introduced for a different purpose. It was built to es-
tablish the consistency of mathematics, not to be the language of it. All complex constructions
are built from elementary notions like “set” and “being an element” of a set. We are so used to
this idea that we do not see its drawbacks. Yet the drawbacks are easily visible when we try
to teach set theory to students. Instead of explaining properties of mathematical objects like
ordered pairs, set unions or natural numbers we end up explaining details of their encodings.

Moreover, in set theory two very basic ideas are glued into one notion of a “set”:

• Set as a domain or universe;
• Set as a predicate.

We are used to treat this identification as natural and obvious. But perhaps only because we
were taught to do so. These two ideas are in fact different and this confusion is responsible
for Russell’s paradox.

A language which do not exhibit many of the drawbacks of set theory is type theory.
Mathematicians have been classifying objects according to their domain, kind, sort or type
since the antiquity [4, 32, 33]. An empty set of numbers and an empty set of apples are
intuitively not the same. In everyday mathematical practice we very often informally use the
concept of a type. Think of a function mapping elements of set A to elements of set B. Such a
function can only be applied to elements of set (“type”) A. Similarly, a union

⋃
A of a family

A of sets is typically of the same “type” as members of A rather than as A itself.
We want to build a type theory that would capture the naive understanding of a type. We

believe that such theory would give a chance to build a framework for “naive” mathematics
that would not exhibit many of the drawbacks mentioned above. In particular, it could be
free from artificial formalizations and encodings and as such it would be more suitable as
a framework for teaching mathematics to students.

The basic idea is to separate the two roles played by sets, to put apart domains (types)
and predicates (selection criteria for objects of a given type). We want to bring back the
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idea which dates back to Cantor and his naive set theory: we want to identify predicates and
subsets. We abandoned this approach in axiomatic set theory with the discovery of Russell’s
paradox. In type theory this identification is possible. For any type A we have a powerset
type P (A), identified with the function space A→ ∗, where ∗ is the sort of propositions.

1.2. Related systems

Simple type theory: In Church’s simple type theory [9, 32] there are two base types: the type i
of individuals and the type b of truth values. Expressions have types and formulas are simply
expressions of type b. There is no built-in notion of a proof and formulas are not types. In
addition to lambda-abstraction, there is another binding operator that can be used to build
expressions, namely the definite description ιx. ϕ(x), meaning “the only object x that satisfies
ϕ(x)”. While various forms of definite description are often used in the informal language of
mathematics, the construct does not occur in most contemporary logical systems. As argued
by William Farmer in a series of papers [19, 20, 21, 22], simple type theory could be efficiently
used in mathematical practice and teaching. Also the textbook [4] by P.B. Andrews develops
a version of simple type theory as a basis for everyday mathematics. This is very much in
line with our way of thinking. We choose a slightly different approach, mostly to avoid the
inherently two-valued Boolean logic built in Church’s type theory.

Quine’s New Foundations: Quine’s type theory [31, 48] is based on an implicit linear
hierarchy of universes. Full comprehension is possible at each level, but a set always lives
at a higher floor than its elements. The idea of a linear hierarchy is of course convenient
from a foundational point of view, but is not very intuitive. Also implementing “ordinary”
mathematics requires a similar effort as in the usual set theory. The restriction to stratified
constructs does not help either: one encounters difficulties when trying to define functions
between objects belonging to different levels of the hierarchy.

Constable’s computational naive type theory: We have to admit that the title of Halmos’
book has already been rephrased by R. Constable [10]. But Constable’s idea of a “naive type
theory” is quite different than ours. It is inspired by Martin-Löf’s theory and based on the idea
of a setoid type, determined by a domain of objects plus an appropriate notion of equality. (In
other words, quotient becomes a basic notion.) For instance, the field Z3 has the same domain
as the set of integers Z, but a different equality. And Z6 is defined by taking an “intersection”
of Z2 and Z3. This is very convenient and natural way of dealing with quotient constructions.
However (even putting aside the little counterintuitivity of the “contravariant” intersection)
we still believe that a “naive” notion of equality should be more strict: two objects should not
be considered the same in one context but different in another.

Weyl’s predicative mathematics and Luo’s logic-enriched theories: Zhaohui Luo in [37]
considers „logic-enriched type theories” where the logical aspect is separated by design from the
data-type aspect (in particular a separate kind Prf (P ) is used for proofs of any proposition P ).
Within that framework one can introduce both predicative and impredicative notion of a set,
so that the kind Type is closed under the powerset construction. This approach is used by
Adams and Luo [3] to formalize the predicative mathematics of Weyl [56], who long ago made
an explicit distinction between “categories” and sets, understood respectively as universes and
predicates. Weyl’s theory is strictly predicative, and this certainly departs from our “naive”
understanding of sets, but the impredicative version mentioned in [37] is very much consistent
with it.
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Maietti and Sambin’s Minimalist Foundation: Maietti and Sambin in [40] propose to build
a foundation for constructive mathematics which could be a common core among relevant
existing foundations in axiomatic set theory, such as Aczel-Myhill’s CZF theory [2], or in type
theory, such as Martin-Löf type theory [44] and Coquand’s Calculus of Inductive Construc-
tions [12]. First steps toward implementation of the theory were shown in [38]. In [39] they
present a two-level theory to formalize constructive mathematics. One level is an intentional
type theory, called Minimal type theory. The other level is an extensional set theory that is
interpreted in the first one by means of a quotient model. This two-level theory has two main
features: it is minimal among the most relevant foundations for constructive mathematics; it
is constructive thanks to the way the extensional level is linked to the intentional one which
fulfills the “proofs-as-programs” paradigm and acts as a programming language. However,
their theory is predicative and we believe that “naive” type theory has to be impredicative.

Luo and Goguen’s UTT: A system similar to ours was proposed by Luo [35, 36] and
Goguen [29]. The system UTT is the Calculus of Constructions together with Martin-Löf
predicative type theory. The logic of the system is higher order logic. In the system there
is an impredicative universe of propositions. At the datatype level, there are predicative
universes and inductive types. There are no inductive predicates. The inductive types in
UTT are syntactically very similar to inductive types in our system and inductive types in
Werner’s Calculus of Inductive Construction [55]. As a system formulated in Martin-Löf type
theory, UTT is a system with judgemental equality. There is no conversion rule and formally
in the system there is no reduction. The equality in UTT is beta-, eta- and iota-equality, thus
the equality is different from our notion of conversion.

1.3. Pure Type Systems

Pure Type Systems (PTS) is a framework for defining type systems. It was introduced in-
dependently by Berardi [8] and Terlouw [52]. The framework is a generalization of the well-
known Barendregt cube [5]. The main properties of Pure Type Systems are discussed in
Barendregt [5]. We chose a certain Pure Type System (PTS) as a basis for our theory.

A Pure Type System is specified by three sets (S,A,R) where

• S is the set of sorts;

• A ⊆ S × S the set of axioms;

• R ⊆ S × S × S is the set of rules.

The terms of the system are defined by the following grammar

T := s | x | (λx : T.T ) | (TT ) | (Πx : T.T )

where x is a variable and s is a sort. As a convention we omit the outermost parentheses.
Application associates to the left: ((PQ)R) is abbreviated PQR; abstraction and product
associate to the right: (λx : T1(λx : T2.P )) is abbreviated λx : T1λx : T2.P . If x does not
occur in B then Πx : A.B is sometimes denoted by A→ B.

For PTSs we assume the usual β-reduction. The relation →β is described by the rule

(λx : T1.A)B →β A[x := B]



10

and the usual compatibility rules: whenever A→β A
′ then

AB →β A
′B, BA→β BA,

λx : A.B →β λx : A′.B, λx : B.A→β λx : B.A′,
Πx : A.B →β Πx : A′.B, Πx : B.A→β Πx : B.A′.

We write A =β B if there exists a sequence A = A0, A1, . . . , An = B such that for every
i = 0, . . . , n − 1 we have Ai →β Ai+1 or Ai+1 →β Ai. A term M is normalizing if and only
if there is a reduction sequence from M ending in a normal form N . A term M is strongly
normalizing if all reduction sequences beginning in M are finite.

A context is a finite (possibly empty) list of variable declarations x1 : A1, . . . , xn : An. We
use Γ, ∆, Σ as meta-variables for contexts. We call {x1, . . . , xn} the domain of the context
Γ = (x1 : A1, . . . , xn : An) and we denote it by dom(Γ).

A Pure Type System derives judgements (often called sequents) of the form Γ ` A : B.
An assertion Γ ` A : B states that A has type B in context Γ. The typing rules of the PTS
specified by the triple (S,A,R) are as follows:

(Ax) ` s1 : s2 s1 : s2 ∈ A

Γ ` A : s(Var) x 6∈ dom(Γ)
Γ, x : A ` x : A

Γ ` A : B Γ ` C : s(Weak) x 6∈ dom(Γ)
Γ, x : C ` A : B

Γ `M : (Πx : A.B) Γ ` N : A
(App)

Γ `MN : B[x := N ]

Γ, x : A `M : B Γ ` (Πx : A.B) : s
(Abs)

Γ ` (λx : A.M) : (Πx : A.B)

Γ ` A : s1 Γ, x : A ` B : s2(Prod) (s1, s2, s3) ∈ R
Γ ` (Πx : A.B) : s3

Γ ` A : B Γ ` B′ : s B =β B
′

(Conv)
Γ ` A : B′

A type system is weakly normalizing if and only if every term typable in the system is
normalizing. A type system is strongly normalizing if and only if every term typable in the
system is strongly normalizing.

A Pure Type System is logical [14] if and only if it is functional (see [26]) and contains
two distinguished sorts ∗ and � such that ∗ : � is an axiom, (∗, ∗, ∗) is a rule and there are
no sorts of type ∗. A logical Pure Type System is inconsistent if there exists a proof of T in
the context T : ∗. A type system is consistent if it is not inconsistent.

It is known that a strongly normalizing logical Pure Type System is consistent. There is
no beta normal term of the type x, where x is a variable, in the context x : ∗. Thus a strongly
normalizing system is consistent — if there was a term of type x then there would also be
a normal one.
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1.4. Calculus of Constructions and inductive types

The Calculus of Constructions (CC) was introduced by Coquand and Huet in [16]. They
showed the consistency of the system by proving the strong normalization property. The
Calculus of Constructions is the richest system in the Barendregt cube [5]. The system was
also the basis for the preliminary version [15] of the Coq proof assistant [1]. The Calculus of
Constructions is a Pure Type System with the following specification:

S = {∗,�}
A = {∗ : �}
R = {(∗, ∗, ∗), (∗,�,�), (�, ∗, ∗), (�,�,�)}

Even though the syntax of Pure Type System is homogeneous, terms typable in a context Γ
may be divided into categories. We have kinds, that is, terms typable with �; types, that is,
terms typable with ∗; objects, that is, terms typable with a certain type t and type constructors,
that is, terms typable with a certain kind t.

The four product rules correspond to various products.

• The rule (∗, ∗, ∗) introduces the usual function space, i.e. that terms may depend on
terms.

• The rule (�, ∗, ∗) introduces type polymorphism, which allows to create terms depending
on types.

• The rule (∗,�,�) represents dependent types (types that depend on terms).

• The rule (�,�,�) expresses that types may depend on types.

The Calculus of Constructions is a powerful system. It is possible to define natural num-
bers, lists, booleans and other inductive types by using the so-called impredicative encoding.
There is a systematic procedure that, given a set of typed constructors for some inductive
type produces a CC term representing this inductive type [47]. However, this coding has some
important drawbacks, for example induction principles are not provable.

This is why the Calculus of Constructions was extended with inductive types. The sys-
tem was introduced by Coquand and Paulin-Mohring in [17], followed by [46]. The strong
normalization proof was done by Werner in [55].

We extend the syntax of the system with the following constructions:

Ind(X : T ){~T} | Constr(n, T ) | Elim(T, T, ~T , T ){~T}

where n is a natural number. We will explain the meaning of those terms by using an example
of natural numbers. The inductive definition of the type of natural numbers becomes

Nat = Ind(X : ∗){X | X → X}

meaning that Nat is an inductive type with two constructors of type Nat and Nat → Nat .
The types of constructors are subject to the strict positivity condition: for every constructor
of an inductive type I its recursive arguments must be of the form Π~x : ~T .I where I does not
appear in ~T . Without the condition the system is inconsistent and the details of the proof
can be found in Chapter 2 section 2.3.
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A term Constr(n, I) represents the n-th constructor of an inductive type I. The term
Constr(0,Nat) represents the natural number 0 and the term Constr(1,Nat) represents suc-
cessor function. Thus

• Constr(1,Nat)Constr(0,Nat) is the natural number 1,

• Constr(1,Nat)(Constr(1,Nat)Constr(0,Nat)) is the natural number 2.

The terms corresponding to the elimination schemes are more complicated. We have dif-
ferent variants of elimination schemes: non-dependent, dependent, weak, strong. The simplest
elimination scheme is non-dependent weak elimination. Suppose in a fixed context Γ we have
the following typing judgements

P : ∗, f0 : P, f1 : Nat → P → P, m : Nat .

Then the typing rules state that

Elim(Nat , P, ε,m){f0 | f1} : P.

If we abstract over P , f0, f1 and m then for natural numbers we get the elimination term of
the form

NatElimnodep : ΠP : ∗(P → (Nat → P → P )→ Nat → P ).

The elimination term is representing the recursor on natural numbers.
The dependent elimination allows to create objects of type depending on an eliminated

term. Suppose in a fixed context Γ we have the following typing judgements

P : Nat → ∗, f0 : P0, f1 : (Πk : Nat(Pk → P (Sk))), m : Nat .

Then the typing rules state that

Elim(Nat , P, ε,m){f0 | f1} : (Pm).

If we abstract over P , f0, f1 and m then for natural numbers we get the elimination term

NatElimdep : ΠP : Nat → ∗(P0→ (Πk : Nat(Pk → P (Sk)))→ Πn : Nat .Pn).

The elimination term represents the induction scheme on natural numbers.
We can also have an elimination scheme like

NatElimTnodep : ΠP : �t(P → (Nat → P → P )→ Nat → P )

representing the possibility to create types. This variant of elimination scheme is called strong
elimination. Strictly speaking the type above is not a valid type in the Calculus of Construc-
tions but it shows well the principle of the elimination scheme. It is only allowed for the so
called small inductive types, i.e. types that do not take types as arguments. Otherwise it leads
to an inconsistent type system. The paradox in the system with strong elimination over large
inductive types is studied in Chapter 2, section 2.4.

The reduction rules for natural numbers are

Elim(Nat , P, ε, 0){f0 | f1} →ι f0 0
Elim(Nat , P, ε, Sn){f0 | f1} →ι f1 n Elim(Nat , P, ε, n){f0 | f1}.

They are called ι-reduction and become part of the conversion rule of the system.
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1.5. Less Naive Type Theory

The first attempt to formalize the naive type theory was the system called Naive Type The-
ory (NTT). It is a PTS with the following specification:

S = {∗,�}
A = {∗ : �}
R = {(∗, ∗, ∗), (∗,�, ∗), (∗,�,�)}

As in the Calculus of Constructions the rule (∗, ∗, ∗) introduces the usual function space and
the rule (∗,�,�) introduces dependent types. The rule (∗,�, ∗) expresses the slogans “subsets
are objects”: if τ is a type then the powerset τ → ∗ is also a type. However, the system turned
out to be inconsistent. See Chapter 2 section 2.2 for a detailed description of the paradox.

Less Naive Type Theory (LNTT) is a refined version of the previous system. We split
every sort in NTT into a t-version and a p-version. Thus in LNTT we have four sorts: ∗t,
∗p, �t, �p. The t-sorts correspond to object (datatype) part of the system and the p-sorts
correspond to the logical part of the system. This is similar to the sorts Set and Prop in the
Coq proof assistant [1]. The full specification of the system is as follows:

S = {∗t, ∗p,�t,�p}
A = {∗t : �t, ∗p : �}p

R = {(∗t, ∗t, ∗t), (∗p, ∗p, ∗p), (∗t, ∗p, ∗p), (∗t,�p, ∗t), (∗t,�t,�t), (�p, ∗p, ∗p)}.

The rules are now more fine-grained taking into account the distinction between the two parts
of the system.

• The rule (∗t, ∗t, ∗t) introduces the usual function space.

• The rule (∗p, ∗p, ∗p) introduces implication (i.e. logical function space).

• The rule (∗t, ∗p, ∗p) expresses universal quantification.

• The rule (∗t,�t,�t) adds dependent types.

• The rule (�p, ∗p, ∗p) adds formula polymorphism.

Finally, the rule (∗t,�p, ∗t) is the new version of the rule (∗,�, ∗) in NTT. It says that products
of the form τ → ∗p, where τ is a type, are types themselves. Remember that ∗p is the sort
of formulas, thus τ → ∗p is a powerset. The rule expresses the fact that powersets are types
or, reading it at the object level, that subsets are objects. One may easily note that LNTT is
a logical Pure Type System.

The strong normalization property of the system was proved in [34]. This implies that the
system is consistent. The proof technique used is a translation to the Calculus of Construc-
tions. Some parts of the translation are used in this work.

As pointed out by A. Miquel, LNTT can be embedded in his system called Fω.2 [42]. How-
ever, in LNTT we distinguish between sorts ∗t, introducing object terms, and ∗p, introducing
proof terms. Our classification of terms is thus more fine-grained.
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1.6. Overview

In Chapter 2 we discuss paradoxes in type theories. We define Girard’s system U , perhaps
the most know paradoxical type system. We analyze a paradox in Naive Type Theory, our
first attempt to build a framework for naive type theory. The paradox is essentially the same
as Girard’s paradox so we omit the details of the latter. Then we present paradoxes in type
system with inductive types: a paradox in the system with non-positive constructors and
a paradox in a system with strong elimination over large inductive types.

In Chapter 3 we define Less Naive Type Theory with inductive types. We present the
syntax of the system, the reduction and the typing rules. We introduce some terminology we
will use in later parts of this work. Then we prove basic properties of the system.

In Chapter 4 we define a translation from LNTT with inductive types to the Calculus
of Inductive Constructions. The translation only deals with non-proofs of the system. It
preserves the reduction relation and thus proves the strong normalization property for non-
proofs.

Chapter 5 is the strong normalization proof for the full system. We use Girard’s candi-
dates [28] but in a typed setting, first introduced in [13]. The proof combines ideas from [23]
as well as [54].



Chapter 2

Paradoxes in type theories

When creating a new type system one has to be careful, it is very easy to define a system
which is inconsistent. Sometimes one may encounter a contradiction. This is the case for the
type system with the sort ∗ and the axiom ∗ : ∗. The axiom expresses the slogan “Type is
a type” and is indeed very similar to the naive set theory concept of the set of all sets. But
often the inconsistency is not visible at first glance.

In this chapter we present a few well known paradoxical systems. We begin with the
Pure Type Systems: Girard’s System U and Naive Type Theory. NTT was our first attempt
to implement the slogan “subsets are objects” and it turned out to be wrong. We present
the proof that NTT is inconsistent. Then we proceed to systems with inductive types. We
show paradoxes in the system with non-positive constructors and in the system with strong
elimination on large inductive constructors.

2.1. Girard’s Paradox

Girard’s System U is perhaps the most known paradoxical type system. It was introduced
and proved to be inconsistent by Girard in 1972 in [28]. The paradox also showed that the
first version of Martin-Löf type theory [41] was inconsistent [45]. System U is a Pure Type
System with the sorts ∗, �, 4, the axioms ∗ : � and � : 4 and the rules

(∗, ∗, ∗), (�, ∗, ∗), (�,�,�), (4, ∗, ∗), (4,�,�).

This example shows that the circularity provided by the axiom ∗ : ∗ is not necessary to
get a contradictory system. Girard’s paradox was analysed and discussed, for instance in
Coquand [11], Hurkens [30] and Barendregt [5].

In the next section we present an inconsistency proof for Naive Type Theory. This proof
is essentially the same as the proof of Girard’s paradox.

2.2. Naive Type Theory

Naive Type Theory was our first attempt to formalize the system with powersets as types. It
is a Pure Type System with the sorts ∗ and �, the axiom ∗ : � and the rules (∗, ∗, ∗), (∗,�,�)
and (∗,�, ∗). However, as observed by H. Geuvers [25], this system is inconsistent. The proof
is essentially the same as for Girard’s paradox. The proof we present below is based on the
formalization of the Burali-Forti paradox in [30]. Precisely, this is the formalization in [49].

15
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We shall think of the sort ∗ as the sort of propositions. Then the type

P(τ) = τ → ∗

is the set of all predicates on type τ , i.e. its powerset.
We will use the notation ∀x : T1.T2 to denote Πx : T2.T2 if the product is a proposition.

Logical connectives ⊥, ∧, ¬, ↔, ∃ will also be used. We define them in a similar way as in
the system F. The only problem is that in Naive Type Theory there is no type polymorphism.
However, it may be simulated using the powerset rule. Assume we have an arbitrary type T
and its inhabitant a : T . Instead of the variable p : ∗ we will use the variable p : T → ∗. Thus
we have the following definitions:

⊥ ≡ ∀p : T → ∗.pa,
¬α ≡ α→ ⊥,

α ∧ β ≡ ∀p : T → ∗.(α→ β → pa)→ pa,

α↔ β ≡ (α→ β) ∧ (β → α),
∃x : τ.ϕ(x) ≡ ∀p : T → ∗.(∀x : τ.ϕ(x)→ pa)→ pa.

We introduce the following abbreviations:

〈M,N〉 ≡ λp : T → ∗.λu : α→ β → pa.uMN,

πi(M) ≡M(λx : T.αi)(λx1 : α1x2 : α2.xi),
[b, q]∃x:τ.ϕ(x) ≡ λp : T → ∗λu : (∀x : τ.(ϕ(x)→ pa)).ubq,

let [b, q] = y in N τ ≡ yT (λb : τλu : ϕ(b).N).

One may observe that the types of the terms are as expected:

Γ,M : α,N : β ` 〈M,N〉 : α ∧ β,
Γ,M : α1 ∧ α2 ` πi(M) : αi,

Γ, b : τ, q : ϕ(b) ` [b, q]∃x:τ.ϕ(x) : ∃x : τ.ϕ(x),

and that the following rule is admissible

Γ ` y : (∃x : τ.ϕ(x)) Γ, b : τ, q : ϕ(b) ` N : T
Γ ` let [b, q] = y in N : T

Moreover
πi(〈M1,M2〉)→∗β Mi.

and
let [a, q] = [b, p]∃x:τ.ϕ(x) in N →∗β N [x := a][x := b].

We define Leibniz equality in type κ in the usual way:

α =κ β ≡ ∀γ : κ→ ∗.γα→ γβ.

For brevity, we will write λxτ .B and Πxτ .B instead of λx : τ.B and Πx : τ.B.



17

First we show that the context

Γ = {k : ∗, el : P(k)→ k, set : k → P(k),

V : ∀XP(k)∀αk(set(elX)α↔ ∃βk(Xβ ∧ α =k el(setβ)))}

is inconsistent. We derive a contradiction similar to Russell’s paradox: define the abbreviations

α′ for el(setα) and α ' β for ∀Rk→k→∗(EqvR→ ∀γkRγγ′ → Rαβ)

where Eqv is the property of being an equivalence relation:

Eqv = λR : k → k → ∗.∀αkβkγk(Rαα ∧ (Rαβ → Rβα)) ∧ (Rαβ → Rβγ → Rαγ).

Then the relation ' is the least equivalence relation on k such that x ' el(set(x)). Define
a relation αεβ as ∃γk(α ' γ ∧ setβγ) and α 6ε β as ¬(αεβ). Let ∆ = el(λx.x 6ε x). We will
prove that for each y in k we have yε∆ if and only if y 6ε y.

We show that ' is an equivalence relation.

Lemma 1. In the context Γ we can prove Eqv(λαkβk.α ' β).

Proof. We have to find terms A1, A2 and A3 such that

Γ, α : k, β : k, γ : k ` A1 : α ' α,
Γ, α : k, β : k, γ : k ` A2 : α ' β → β ' α,
Γ, α : k, β : k, γ : k ` A3 : α ' β → β ' γ → α ' γ.

Take

A1 = λRk→k→∗λpEqvRλz∀γ
k.Rγγ′ .π1(π1(pααα)),

A2 = λxα'βλRk→k→∗λpEqvRλz∀γ
k.Rγγ′ .π1(π2(pαβα))(xRpz),

A3 = λxα'βλyβ'γ .λRk→k→∗λpEqvRλz∀γ
k.Rγγ′ .π2(pαβγ)(xRpz)(yRpz).

Then M = λαkβkγk.〈〈A1, A2〉, A3〉 is the proof we want.

We will show that ' is a congruence with respect to relation ε. We will need two auxiliary
lemmas.

Lemma 2. In the context Γ, α : k, β : k we can prove that setαβ → setα′β′.

Proof. Observe that

Γ, α : k, β : k ` V (setα)β′ : setα′β′ ↔ ∃γk(setαγ ∧ β′ =k γ′).

Recall that ↔ is a conjunction of two implications. If I is a proof of β′ =k β′ then

Γ, α : k, β : k, u : setαβ ` π2(V (setα)β′)[β, 〈u, I〉]∃γ(setαγ∧β′=kγ′) : setα′β′.

From this we easily get the desired proof.

Lemma 3. In the context Γ, α : k, β : k we can prove that βεα↔ βεα′.
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Proof. Observe that Lemma 2 implies that there is N1 such that

Γ, α : k, β : k, γ : k ` N1 : (β ' γ ∧ setαγ)→ (β ' γ′ ∧ setα′γ′)

and thus there exists N2 such that

Γ, α : k, β : k ` N2 : ∃γk(β ' γ ∧ setαγ)→ ∃γk(β ' γ ∧ setα′γ).

We now prove the other implication. Assume that ∃γk(β ' γ ∧ setα′γ). Observe that
setα′γ ≡ set(el(setα))γ is equivalent to ∃δk(setαδ ∧ γ =k δ′). We have δ such that setαδ.
Moreover γ =k δ′ and β ' γ. This implies β ' δ′. But ' is an equivalence relation and δ ' δ′
thus β ' δ. Hence indeed ∃δk(β ' δ ∧ setαδ).

Now we prove that ' is a congruence with respect to the relation ε.

Lemma 4. In the context Γ, α : k, β : k we can prove that

1. α ' β → ∀δk(αεδ → βεδ);

2. α ' β → ∀γk(γεα→ γεβ).

Proof. 1. Recall that αεδ is an existential type. It is easy to observe that

Γ, α : k, β : k, x : α ' β, δ : k, y : αεδ ` B : βεδ

where

B = let [γ, z : (α ' γ ∧ setδγ)] = y in [γ, 〈A3(A2x)(π1(z)), π2(z)〉]βεδ,

and A2 and A3 are defined in the proof of Lemma 1. Then λxα'βλδk.B is the desired
proof.

2. Take R = λαkβk.∀γk(γεα ↔ γεβ). From Lemma 3 we know that Γ, α : k ` Rαα′. It
suffices to show Eqv(R) and apply the definition of '. This is easy.

Lemma 5. Let ∆ = el(λαk.α 6ε α). Then in the context Γ, β : k we have βε∆↔ β 6ε β.

Proof. In one direction, note that β 6ε β implies ∃γk(γ 6ε γ ∧ β′ =k γ′) which is equivalent to
set∆β′. Since β ' β′ we conclude βε∆. In the other direction: we want to prove that the
assumptions β ' γ and set∆γ contradict βεβ. But set∆γ implies ∃δk(γ ' δ′ ∧ δ 6ε δ) so it
suffices to infer ⊥ from the set {β ' γ, βεβ, γ ' δ′, δ 6ε δ}. This is a consequence of Lemma 4
because β ' γ ' δ′ implies β ' δ.

If we take β = ∆ then we get that in the context Γ the equivalence ∆ε∆↔ ∆ 6ε ∆ holds which
leads to a contradiction.

We now implement the context Γ in NTT. Take

k = ∀κ : T → ∗.(∀ι : T → ∗((ιa→ κa)→ P(ιa)→ κa))→ κa.

and the functions el and set:

el = λXP(k).λκT→∗λy∀ι:T→∗((ιa→κa)→P(ιa)→κa)).y(λx : T.k)(λβk.βκy)X,

set = λβk.β(λx : T.P(k))ψ,
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where
ψ = λιT→∗λf ιa→P(κ)λX : P(ιa).λακ.∃βιa.(Xβ ∧ α =κ el(fβ)).

Then

set(elX)α =β (λβk.β(λx : T.(P(k))ψ))(elX)α =β elX(λx : T.P(k))ψα

=β ψ(λx : T.k)(λβk.β(λx : T.P(k))ψ)Xα = ψ(λx : T.k)setXα

=β ∃βιa(Xβ ∧ α =k el(setβ)).

Then we have
set(elX)α =β ∃βιa(Xβ ∧ α =k el(setβ))

which is even more then the equivalence we wanted.

2.3. A paradox with non-positive constructors

The positivity condition says that for every constructor of an inductive type I its recursive
arguments must be of the form Π~x : ~T .I where I does not appear in ~T . We will show that
lifting this restriction can lead to inconsistency. This result may be found e.g. in [55].

Consider the Calculus of Inductive Constructions without the positivity restriction. Con-
sider a type Empty = Ind(X : ∗){(X → X) → X}. Let lam denote Constr(0,Empty). We
define a term A : Empty→ Empty:

A = λx : Empty.Elim(Empty,Empty, x)
{λf : Empty→ Empty.λq : Empty→ Empty.f(lam f)}.

Consider the object a = lam A. Then

Aa→∗βι (λfλq.f(lam f))AR→∗β A(lam A) = Aa

where R is the recursive call

R = λx : Empty.Elim(Empty,Empty, Ax)
{λf : Empty→ Empty.λq : Empty→ Empty.f(lam f)}.

Hence the system is not strongly normalizing. It is also easy to derive an arbitrary predicate P
using the type Empty:

x : Empty, P : ∗ ` Elim(Empty, P, x){λf : Empty→ Empty.λq : Empty→ P.q(fx)} : P.

If we take x = lam (λy : Empty.y) then we get the term of type P .

2.4. A paradox with strong elimination on large constructors

We say that an inductive constructor is small if its type is of the form T = Π~x : ~τ .X and
every τi is a type. An inductive constructor is large if it is not small. An elimination of
an inductive object is strong if it defines a type or a type constructor. Consider an extension
of the Calculus of Inductive Construction in which we do not restrict strong elimination to
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small constructors. It is know that this system is inconsistent [11]. The proof we present here
is a refined version of the proof by H. Geuvers [24], which again is a formalization of the proof
by A. Hurkens [30].

We will first show that the following context is inconsistent:

B : ∗,
b2p : B → ∗,
p2b : ∗ → B,

H : ∀A : ∗(A↔ b2p(p2b(A))).

As before, we will use the notation ∀xτ .ϕ for ∀x : τ.ϕ and λxτ .ϕ for λx : τ.ϕ. Take the
following proposition

U = ΠA : ∗(((A→ B)→ A)→ (A→ B)).

We will define two terms el : P(U)→ U and set : U → P(U) so that

∀XU→∗∀αU (set(elX)α↔ ∃β(Xβ ∧ α = (el(setβ)))).

The definition of el follows

el = λXP(U)λA : ∗.λc((A→B)→A)λaA.p2b(∀PA→∗((∀xU (Xx→ P (c(xAc))))→ Pa)).

We also define an auxiliary term el′ : (U → B)→ U :

el′ = λXU→BλA : ∗.λc((A→B)→A)λaA.p2b(∀PA→∗((∀xU (b2p(Xx)→ P (c(xAc))))→ Pa))

and the term set is as follows:

set = λxU .λbU .b2p(xUel′b).

Note that el′(xUel′) = el(set x):

el′(xUel′)

= λA : ∗.λc((A→B)→A)λaA.p2b(∀PA→∗((∀uU (b2p(xUel′u)→ P (c(uAc))))→ Pa))

and

el(set x)

= λA : ∗.λc((A→B)→A)λaA.p2b(∀PA→∗((∀uU ((set x)u→ P (c(uAc))))→ Pa))

= λA : ∗.λc((A→B)→A)λaA.p2b(∀PA→∗((∀uU ((b2p(xUel′u)→ P (c(uAc))))→ Pa)).

Let α be a term of type U . We will prove that set(elX)α↔ ∃β(Xβ ∧α = el(setβ)). Observe
that

set(elX)α = b2p(elXUel′α)

= b2p(p2b(∀PU→∗((∀xU (Xx→ P (el(set x))))→ Pα))).

We have to prove two implications. First we prove set(elX)α → ∃β(Xβ ∧ α = el(setβ)).
Assume set(elX)α. We want to prove ∃β(Xβ ∧ α = el(setβ)). The assumption is equal to
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b2p(p2b(∀PU→∗((∀xU (Xx → P (el(set x)))) → Pα))). We use the assumption H to extract
the proposition

∀PU→∗((∀xU (Xx→ P (el(set x))))→ Pα).

We choose P so that the target of the proposition is the formula we want to get. Take

P = λuU .∃β(Xβ ∧ u = el(setβ)).

We now have to prove that for P as above we have

∀xU (Xx→ P (el(set x))).

This is easy: take x of type U and assume Xx. We want to prove that ∃β(Xβ ∧ el(set x) =
el(setβ)). Take β = x and apply the assumption and the equality el(set x) = el(setβ). The
proof term we get is:

λzset(elX)α.(π2(H(∀PU→∗((∀xU (Xx→ P (el′(xUel′))))→ Pα)))z)

(λuU .∃β(Xβ ∧ u = el(setβ)))(λxU .λHXx.[x, 〈H, I〉])

Then we prove ∃β(Xβ ∧ α = el(setβ)) → set(elX)α. Assume ∃β(Xβ ∧ α = el(setβ)). We
want to prove set(elX)α, i.e. b2p(p2b(∀PU→∗((∀xU (Xx → P (el(set x)))) → Pα))). We
will prove the internal proposition ∀PU→∗((∀xU (Xx → P (el(set x)))) → Pα) and use the
assumption H. Take P : U → ∗ and assume ∀xU (Xx→ P (el(set x)))). We want to prove Pα.
Take β′ such that (Xβ′ ∧α = el(setβ′)) and apply our assumption to β′. We know that Xβ′,
thus by the assumption P (el(set β′)). But el(set β′) = α. Hence conclusion. The proof term
we get with this reasoning is:

λzϕ2 .(π1(H(∀PU→∗((∀xU (Xx→ P (el(set x))))→ Pα))))

(λPU→∗λH∀x
U (Xx→P (el(set x))).let [b,H2] = z in π2(H2)(Hbπ1(H2)).

We can now implement the inconsistent context. Take

B = Ind(X : ∗){ΠA : ∗.((A→ A)→ X)}.

Define p2b : ∗ → B as
p2b = λD : ∗.Constr(0, B)D(λx : D.x)

and b2p : B → ∗ as
b2p = λx : B.π1(x)

where π1 is defined using the strong elimination:

π1 = λx : B.Elim(B, λx : B.∗, x){λa : ∗λp : a→ a.a}.

Then for every D : ∗ we have

b2p(p2bD) = π1(Constr(0, B)D(λx : D.x)) = (λa : ∗λp : a→ a.a)D(λx : D.x)→βι D.

We have constructed the contradictory context.





Chapter 3

Less Naive Type Theory with
inductive types

3.1. Notation

We introduce the notation which will be used in the rest of this work. First, λλx : T.A(x)
denotes a function with the domain T which takes an argument x and returns the value A(x).

We will often deal with sequences, in particular with sequences of terms. We use the
notation 〈a1, . . . , an〉 to denote a sequence of length n. As usual, we write ~T to highlight
that ~T is a sequence of terms and the empty sequence is denoted by ε. We write Ti to denote
the i-th element of the sequence ~T . If g = ~N is a sequence of terms then a term of the
form M ~N will sometimes be denoted by M · g. Furthermore, we use the symbol | to separate
elements in the sequence, for example (T0 | T1 | T2) is a sequence of terms of length 3. If
T0 is an element and ~T is a sequence then we write T0 :: ~T to denote the sequence which
has T0 as its first element and the elements of ~T in the following places. If ~f is a vector of
functions then ~f(x) will denote the sequence 〈f0(x), f1(x), . . . , fn(x)〉. If f is a function and
~x = 〈x0, x1, . . . , xn〉 is a sequence then f(~x) will denote f(x0, x1, . . . , xn).

3.2. The terms

We have four sorts ∗t, ∗p, �t and �p. The terms of the system are defined by the following
grammar, where x stands for a variable and s stands for a sort.

T := s | x | (TT ) | (λx : T.T ) | (Πx : T.T ) | Ind(x : T ){~T} | Constr(n, T )

| Elim(T, T, ~T , T ){~T}.

We use the same conventions for parentheses as for Pure Type System (compare page 9).
When compared to PTSs the syntax is extended with the following constructions:

• Ind(x : T ){~T},

• Constr(n, T ),

• Elim(T, T, ~T , T ){~T}.

23
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In Ind(x : T1){ ~T2} the expression T1 is a type of the bound variable x and ~T2 is a sequence of
types of the inductive constructors. We use the Coq inspired syntax, elements in a sequence
are separated with |. Let us see some examples. We will refer to them through the rest of this
work.

Example 6.

1. Ind(X : ∗t){X | X → X} is a type of natural numbers. We denote it by Nat .

2. Ind(X : ∗t){X | τ → X → X} is a type of lists over the type τ . We denote it by List(τ).

3. Ind(X : ∗t){X | (Nat → X) → X} is a type of trees in which every internal node is of
degree ω. We denote it by Tree.

4. If S denotes the successor function then Ind(X : Nat → ∗p){X0 | Πn : Nat(Xn →
X(S(Sn)))} is the predicate “even”. We denote it by Even.

5. If S denotes the successor function, leaf denotes the empty tree and node denotes the tree
node constructor then

FullTree = Ind(X : Nat → Tree→ ∗p){X 0 leaf |
Πf : Nat → Tree.Πn : Nat .Πp : (Πm : Nat .Xn(fm)).X(S n)(node f)}

is a binary inductive predicate which holds, for a number n and a tree t, when every
path from root to leaf in t has the same length n.

A term Constr(n, I) is a constructor of an inductive object. Here I is an inductive type
and n is a natural number indicating which inductive constructor is meant.

Example 7.

1. Constr(0,Nat) denotes the natural number 0;

2. Constr(1,Nat)Constr(0,Nat) denotes the natural number 1;

3. Constr(0, List(Nat)) denotes the empty list of natural numbers;

4. Constr(1, List(Nat)) Constr(0,Nat) Constr(0, List(Nat)) denotes a list of natural num-
bers of length 1.

A term Elim(I,Q, ~u, c){~t} is an eliminator of an inductive type or predicate I. If I is an induc-
tive predicate then c is a term being eliminated, ~u is a sequence of parameters, Q~u is a type
of the result, and ~t is a vector of definitions corresponding to the inductive constructors of I
(i.e. cases possible for c). If I is an inductive type then c is a term being eliminated, Q is such
that Qc is a type of the result, the vector of parameters ~u is always empty, and ~t is a vector
of definitions corresponding to the inductive constructors of I.

Notation 8. For an inductive type I we will use the notation Elim(I,Q, c){~t}.

Example 9.

1. Elim(Nat , λx:Nat .Nat , n){0 | λm : Nat .λp : Nat .m} is the predecessor of n.
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2. If ∪ is the union operator and ⊥ is the constant “false” then the following term defines
the union of the sets in the list l

Elim(List(τ → ∗p), λx : List(τ → ∗p).(τ → ∗p), l)
{λx : τ.⊥ | λh : τ → ∗p.λt : List(τ → ∗p)λp : τ → ∗p.h ∪ p}.

Recall that we use the Coq inspired syntax and we separate the elimination branches with |.

Example 10. Consider the inductive predicate Even. Suppose n is of type Nat and we
want to prove that Even(n)→ Even(S(S(S(S(n))))). Of course, we can use the constructor
Constr(1, Even). For the sake of example we will show a proof with the use of the eliminator.
Assume p is of type Even(n). We will use abbreviations

E4 = Constr(1, Even) (S(S(0))︸ ︷︷ ︸
2

(Constr(1, Even) 0 Constr(0, Even))︸ ︷︷ ︸
proof of Even(2)

and
S4(k) = S(S(S(S(k)))), for k of type Nat .

We thus get the following proof term:

λp : Even(n).Elim(Even, λm : Nat .Even(S4(m)), n, p){E4 |
λm : Natλr : Even(m)λq : Even(S4(m)).Constr(1, Even)(S4(m))q}.

3.3. Additional definitions

For a term M we define the set of free variables of M (notation FV (M)) by induction with
respect to the structure of M :

• FV (x) = {x},

• FV (Πx : A.B) = FV (A) ∪ (FV (B)− {x}),

• FV (λx : A.B) = FV (A) ∪ (FV (B)− {x}),

• FV (AB) = FV (A) ∪ FV (B),

• FV (Ind(X : A){~C}) = FV (A) ∪ (FV (~C)− {X}),

• FV (Constr(n, I)) = FV (I),

• FV (Elim(I,Q, ~u,M){~f}) = FV (I) ∪ FV (Q) ∪ FV (~u) ∪ FV (M) ∪ FV (~f).

The set FV (~t) of free variables of a sequence ~t of terms is defined as follows

• FV (ε) = ∅,

• FV (t0 :: ~t) = FV (t0) ∪ FV (~t).
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If M , N are terms and x is a variable then we define the term M [x := N ] (sometimes
written M [N/x]) in the usual way. If M is a term, ~x = x0, . . . , xn is a sequence of variables
and ~N = N0, . . . , Nn is a sequence of terms then we define

M [~x := ~N ] = M [x0 := N0][x1 := N1] . . . [xn := Nn].

Let X be a variable. A term t is strictly positive in X if t ≡ Π~x : ~t.X~t′, there are no free
occurrences of X in ~t or ~t′ and X does not occur among the variables of ~x.

We say that a term C(X) is a type of constructor in X if

• C(X) = X~t, or

• C(X) = Πx : t.D(X), where D(X) is a type of constructor in X, the variable X does
not have free occurrences in t and X 6= x, or

• C(X) = P → D(X), where D(X) is a type of constructor in X, and P is strictly positive
in X.

Note that a type of constructor does not have to be a type. We say that a type of construc-
tor C(X) is simple if

• C(X) = X, or

• C(X) = Πx : t.D(X) and D(X) is a simple type of constructor in X,

• C(X) = P → D(X) and D(X) is a simple type of constructor in X.

If C(X) is a simple type of constructor then we define the type4{C(X), Q, c} by induction
with respect to the structure of C(X):

• 4{X,Q, c} = Qc,

• 4{Πx : t.D(X), Q, c} = Πx : t.4{D(X), Q, (cx)},

• 4{(Π~x : ~t.X)→ D(X), Q, c} = Πp : (Π~x : ~t.X).
(
Π~x : ~t.Q(p~x)

)
→4{D(X), Q, (cp)}.

The type 4{C(X), Q, c} is used in rule (Elim∗t) (see page 30). It helps to define a type of
an elimination branch in a term Elim(I,Q,m){~f}, where I = Ind(X : ∗t){~C(X)}. Every elim-
ination branch fi corresponds to a certain type of constructor Ci(X). This type of constructor
is a basis for the type of fi. The variable c is auxiliary, it represents a partially constructed
inductive object. We use the notation: 4{C(t), Q, c} for 4{C(X), Q, c}[X := t]. We could
as well define the term 4{C(X), Q, c} for every type of constructor C(X). However, we will
only use this notion for simple types of constructor.

Example 11. Consider the type of natural numbers Nat . Recall the predecessor function we
have seen in Example 9:

Elim(Nat , λx : Nat .Nat , n){0 | λm : Nat .λp : Nat .m}.

Here Q = λx : Nat .Nat . The type of the first constructor is Nat and the type of the first
branch is

Nat = 4{X,Q, 0}[X := Nat , Q := λx : Nat .Nat ].
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The type of the second constructor is Nat → Nat and the type of the second branch is

Nat → Nat → Nat = 4{X → X,Q, S}[X := Nat , Q := (λx : Nat .Nat)].

The first argument is the recursive argument and the second argument is the result of the
recursive call of the function on the first argument.

Example 12. If we consider the type of lists List(τ → ∗p) and the example of the union
function from Example 9 then the type of the first branch is τ → ∗p and the type of the
second branch is

(τ → ∗p)︸ ︷︷ ︸
head

→ List(τ → ∗p)︸ ︷︷ ︸
tail

→ (τ → ∗p)︸ ︷︷ ︸
recursive call

→ (τ → ∗p).

The branch takes the head and tail of the list, and the result of the recursive call of the
function and it returns the result of the function.

Let C(X) be a type of constructor and Q a term. We define a type of the nondependent
elimination branch for the inductive constructor of type C(X), denoted 4{C(X), Q}, by
induction with respect to the structure of C(X):

• 4{X~t′, Q} = Q~t′,

• 4{Πx : t.D(X), Q} = Πx : t.4{D(X), Q},

• 4{
(

Π~x : ~t.X~t′
)
→ D(X), Q} = (Π~x : ~t.X~t′)→ (Π~x : ~t.Q~t′)→4{D(X), Q}.

We use the notation 4{C(t), Q} for 4{C(X), Q}[X := t].

Example 13. Recall the proof of Even(n)→ Even(S4(n)) we have seen in Example 10:

λp : Even(n).Elim(Even, λm : Nat .Even(S4(m)), n, p){E4 |
λm : Natλr : Even(m)λq : Even(S4(m)).Constr(1, Even)(S4(m))q}.

Observe that the term p is of type Even(n) and Q = λm : Nat .Even(S4(m)). The vector of
parameters has only one element: the term n.

• The first constructor Constr(0, Even) has type Even(0) and the corresponding first
branch has the type

4{X0, Q} = 4{X0, (λm : Nat .Even(S4(m))} = (λm : Nat .Even(S4(m))0

= Even(S4(0)) = Q0.

• The second branch corresponds to the constructor Constr(1, Even) which has the type
Πm : Nat(Even(m)→ Even(S(S(m))). The type of the branch is

4{Πm : Nat(X(m)→ X(S(S(m)))), Q}[X := Even,Q := λm : Nat .Even(S4(m))]

= Πm : Nat
(
Even(m)→ Even(S4(m))→ Even(S6(m))

)
.

It takes three arguments: the first (non-recursive) argument of the constructor, the
second (recursive) argument of type Even(m) and the result of the recursive call which
has the type Even(S4(m)) = Qm. It returns a term of type Even(S6(m)) = Q(S2(m)).
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3.4. The reduction rules

Let C(X) be a type of constructor in X, let f , I, Q, c be terms and ~N , ~f sequences of terms.
Suppose C(X) = Π~x : ~T .X~t′ and the vectors ~T and ~N have the same length. We define a term
4[C(X), f, ~N, I,Q, ~f ]. The intended use is to define a reduction rule as follows

Elim(I,Q, ~u,Constr(n, I ′) ~N){~f} →ι 4[Cn(I), fn, ~N, I,Q, ~f ].

An expression Elim(I,Q, ~u,Constr(n, I ′) ~N){~f} reduces to the application of the term fn to the
sequence consisting of arguments ~N and appropriate calls to the operator Elim(I,Q,~t,Ni){~f}
for the recursive arguments Ni. The definition is by induction with respect to the structure
of C(X).

• 4[X~t′, f, ε, I,Q, ~f ] = f ,

• 4[Πx : t.D(X), f, (N0 :: ~N), I, Q, ~f ] = 4[D(X), fN0, ~N, I,Q, ~f ],

• 4[(Π~x : ~t.X~t′)→ D(X), f, (N0 :: ~N), I, Q, ~f ] =
4[D(X), fN0(λ~x : ~t.Elim(I,Q, ~t′, N0~x){~f}), ~N, I,Q, ~f ].

The reduction relation is the context closure of the following base cases:

• (λx : T.t1)t2 →β t1[x := t2].

• Elim(I,Q, ~u,Constr(n, I ′) ~N){~f} →ι 4[Cn(I), fn, ~N, I,Q, ~f ].

In the last rule, I and I ′ may be different. However, the typing rules ensure that for well
typed terms it holds that I =βι I

′.
We use common notational conventions. The one-step reduction will be denoted by →βι.

The transitive closure of the relation will be denoted by→+
βι and the transitive-reflexive closure

will be denoted by →∗βι.

Example 14. We compute the predecessor of S(0):

Elim(Nat, λx : Nat.Nat, S(0)){0 | λm : Nat .λp : Nat .m}
→ι (λm : Nat .λp : Nat .m) 0 Elim(Nat, λx : Nat.Nat, 0){0 | λm : Nat .λp : Nat .m}
→ι (λm : Nat .λp : Nat .m) 0 0
→ι (λp : Nat .0) 0
→β 0.

Example 15. Using the notation from Example 10 we compute the proof of Even(S4(0)):

Elim(Even, λm : Nat .Even(S4(m)), 0,Constr(0, Even)){E4 |
λm : Natλr : Even(m)λq : Even(S4(m)).Constr(1, Even)(S4(m))q} →ι E4.

Observe that 4[C(X), f, ~N, I,Q, ~f ] is always of the form f~e where ~e is a vector. For
convenience, we use the notation ~e[C(X), ~N, I,Q, ~f ] for this vector. The elements of the
sequence are either elements of the sequence ~N (we use the notation (~e[C(X), ~N, I,Q, ~f ])m to
denote Nm) or recursive calls for those elements (we use the notation (~e[C(X), ~N, I,Q, ~f ])Rm to
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denote the recursive call associated with Nm). The variable X does not occur in the sequence
~e[C(X), ~N, I,Q, ~f ], the type C(X) is used only as induction parameter.

For C(X) a type of constructor in X, a sequence of terms ~N , and terms I, Q, ~f we define

~e[C(X), ~N, I,Q, ~f ] = ~e[C(X), ~N, I,Q, ~f, 0]

where ~e[C(X), ~N, I,Q, ~f, k] is defined by induction with respect to the structure of C(X):

• ~e[X~t′, ε, I,Q, ~f, k] = ε

• ~e[Πx : τ.D(X), N0 :: ~N, I,Q, ~f, k] = N0 :: ~e[D(X), ~N, I,Q, ~f, k + 1] if X 6∈ FV (τ). In
this case,

(~e[Πx : τ.D(X), N0 :: ~N, I,Q, ~f ])k = N0.

• ~e[Πx : τ.D(X), N0 :: ~N, I,Q, ~f, k] = N0 :: (λ~y : ~σ.Elim(I,Q, ~t′, N0~y){~f}) ::
~e[D(X), ~N, I,Q, ~f, k + 1] if τ = Π~y : ~σ.X~t′. In this case,

(~e[Πx : τ.D(X), N0 :: ~N, I,Q, ~f ])k = N0,

(~e[Πx : τ.D(X), N0 :: ~N, I,Q, ~f ])Rk = λ~y : ~σ.Elim(I,Q, ~t′, N0~y){~f}.

3.5. The typing rules

A context is a sequence of pairs of the form x : T where x is a variable and T is a term. Contexts
will be denoted using Greek letters Γ, ∆, Σ with appropriate subscripts and superscripts, where
necessary. Moreover, Γ1,Γ2 denotes the concatenation of two contexts. In the following we
consider contexts where every variable occurs at most once. Then Γ(x) denotes the term
associated with the variable x in Γ, that is if Γ = Γ1, x : A,Γ2 then Γ(x) = A. The set of
variables in the context is called the domain of the context (notation dom(Γ)). We define
a relation ⊆ for contexts: we write Γ ⊆ Γ′ if Γ is a subsequence of Γ′. Note that a subsequence
is not necessarily a prefix.

In addition to PTS rules we have new rules for inductive types.

Γ, X : ∗t ` Ci(X) : ∗t
(Ind∗t)

Γ ` Ind(X : ∗t){~C(X)} : ∗t

If A = Π~x : ~T .∗p and s ∈ {�p, ∗t} then we have the rule

Γ ` A : s Γ, X : A ` Ci(X) : ∗p
(Ind∗p)

Γ ` Ind(X : A){~C(X)} : A

In the rules (Ind∗t) and (Ind∗p) we additionally assume that every Ci(X) is a type of
constructor in X.
In the rule (Intro∗t) the term I denotes Ind(X : ∗t){~C(X)}.

Γ ` I : ∗t(Intro∗t) Γ ` Constr(n, I) : Cn(I)

In the rule (Intro∗p) the term I denotes Ind(X : A){~C(X)} where A = Π~x : ~τ .∗p.
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Γ ` I : A(Intro∗p) Γ ` Constr(n, I) : Cn(I)

In the rule (Elim∗t) the term I denotes Ind(X : ∗t){~C(X)}.

Γ ` t : I Γ ` Q : I → s Γ ` fn : 4{Cn(I), Q,Constr(n, I)}
(Elim∗t)

Γ ` Elim(I,Q, t){~f} : Qt

We give the typing rule for elimination. In this rule the term I denotes Ind(X : A){~C(X)}
and A = Π~x : ~T .∗p.

Γ ` I~u : ∗p Γ ` t : I~u Γ ` Q : A Γ ` fn : 4{Cn(I), Q}
(Elim∗p)

Γ ` Elim(I,Q, ~u, t){~f} : Q~u

We have introduced the new reduction rule. Thus the Conversion rule has to be changed
accordingly:

Γ ` A : B Γ ` B′ : s B =βι B
′

(Conv)
Γ ` A : B′

All rules of the system, including the PTS rules, are shown in Figure 3.5 on page 31.
We say that a sequent Γ′ ` A′ : B′ is structurally smaller than sequent Γ ` A : B if it

occurs in a derivation tree of Γ ` A : B.

3.6. The classification of terms

Let Γ be a context and M be a term. We say that

• M is typable in the context Γ if there exists T such that Γ `M : T .

• M is a kind in the context Γ if Γ `M : �t.

• M is a type in the context Γ if Γ `M : ∗t.

• M is a formula in the context Γ if Γ `M : ∗p.

• M is a type constructor in the context Γ if there exists a term T such that Γ ` M : T
and Γ ` T : �t.

• M is an object in the context Γ if there exists a term T such that Γ ` M : T and
Γ ` T : ∗t.

• M is a proof in the context Γ if there exists a term T such that Γ `M : T and Γ ` T : ∗p.

• M is a powerset if M =βι Π~x : ~τ .∗p.

• M is a subset in the context Γ if there exists a powerset T such that Γ `M : T .
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(Ax) ` s1 : s2 s1 : s2 ∈ A

Γ ` A : s(Var) x 6∈ dom(Γ)
Γ, x : A ` x : A

Γ ` A : B Γ ` C : s(Weak) x 6∈ dom(Γ)
Γ, x : C ` A : B

Γ `M : (Πx : A.B) Γ ` N : A
(App)

Γ `MN : B[x := N ]

Γ, x : A `M : B Γ ` (Πx : A.B) : s
(Abs)

Γ ` (λx : A.M) : (Πx : A.B)

Γ ` A : s1 Γ, x : A ` B : s2(Prod) (s1, s2, s3) ∈ R
Γ ` (Πx : A.B) : s3

Γ, X : ∗t ` Ci(X) : ∗t
(Ind∗t)

Γ ` Ind(X : ∗t){~C(X)} : ∗t

Γ ` A : s Γ, X : A ` Ci(X) : ∗p
(Ind∗p)

Γ ` Ind(X : A){~C(X)} : A

Γ ` I : ∗t(Intro∗t) Γ ` Constr(n, I) : Cn(I)

Γ ` I : A(Intro∗p) Γ ` Constr(n, I) : Cn(I)

Γ ` t : I Γ ` Q : I → s Γ ` fn : 4{Cn(I), Q,Constr(n, I)}
(Elim∗t)

Γ ` Elim(I,Q, t){~f} : Qt

Γ ` I~u : ∗p Γ ` t : I~u Γ ` Q : (Π~x : ~T .∗p) Γ ` fn : 4{Cn(I), Q}
(Elim∗p)

Γ ` Elim(I,Q, ~u, t){~f} : Q~u

Γ ` A : B Γ ` B′ : s B =βι B
′

(Conv)
Γ ` A : B′

Figure 3.1: Rules of the system
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Figure 3.2: Structure of the system

We say that M is a kind, a type, a type constructor, etc. if the context Γ is known. We use
the notation KindΓ, TypeΓ, FormulaΓ, TConstrΓ, ObjΓ, ProofΓ, PowersetΓ, SubsetΓ to
denote respectively kinds, types, formulas, etc. in Γ. We denote the set of all terms typable
in Γ by TermΓ.

Figure 3.2 shows the structure of the system and illustrates the basic terminology intro-
duced above.

As we see, there are two hierarchies in the system, the type hierarchy (kinds, types, type
constructors and objects) and the logical hierarchy (formulas and proofs). However, those
standard notions are not precise enough to describe the system, we need a more fine-grained
terminology. First we want to distinguish inductive types and predicates:

• M is an inductive type in the context Γ if M = Ind(X : ∗t){~C}.

• M is an inductive predicate in the context Γ if M is is of the form M = Ind(X : A){~C}~t
and A = Π~x : ~τ .∗p.

Then we divide the terms in the type hierarchy (i.e. those below ∗t in Figure 3.2) into large
and small. We introduce large inductive types by induction as follows:

• M is a large inductive type in the context Γ if it has a constructor with type C(X) =
Π~x : ~τ .X such that there is an element τi in the sequence ~τ which is a powerset or a type
of the form τi = Π~x : ~σ.I where I is a large inductive type.

We say that

• M is a type with large inductive target in the context Γ if there exists a large inductive
type I such that M =βι Π~x : ~τ .I. In particular, a large inductive type is a type with
a large inductive target.

• M is a large inductive object in the context Γ if there exists a large inductive type T
such that Γ `M : T .

• M is a generator of a large inductive object in the context Γ if there exists a large
inductive type I such that Γ `M : (Π~x : ~τ .I).

• M is a large type in Γ if M is a powerset or a type with large inductive target in Γ.
A type M which is not large is a small type.



33

• M is a large object in Γ if M is a subset or a generator of large inductive object. An
object M which is not large is a small objects. The set of all small objects is denoted by
SmallObjΓ.

• M is a large term in Γ if M is a sort, a kind, a type, a formula, a type constructor,
a subset or a large object in Γ. A variable x ∈ dom(Γ) is large if it is a large term in Γ.

Figure 3.3 illustrates the above notions. Types are divided into large and small. Large types
are powersets or types with large inductive targets. As a consequence, objects are also divided
into large and small objects. We also have large terms: those are all terms but small objects
and proofs.

�t

B

κ

∗t

T → ∗p, I

M

τ, i

m

�p

∗p

ϕ

D

large terms

large types

small types

large objects

small objects

T → ∗p – powerset

I – large inductive type

i – small inductive type

Figure 3.3: Large and small terms

Classification into large and small terms is based on the target of the type: for types, the
target of the type itself, for objects, the target of its type. We also need a classification based
on the argument that a term accepts. Thus we have the following definitions

• M is an acceptor of large argument of type τ in Γ if M is a type constructor or a subset,
Γ `M : (Πx : τ.B) and τ is a large type.

• M is an acceptor of small argument of type τ in Γ if M is a type constructor or a subset,
Γ `M : (Πx : τ.B) and τ is a small type.

3.7. Basic properties of the system

In this section we prove basic properties of the system.

Lemma 16 (Substitution Lemma). If Γ1, x : A,Γ2 ` B : C and Γ1 ` D : A then

Γ1,Γ2[x := D] ` B[x := D] : C[x := D].

Proof. Induction with respect to the structure of the derivation Γ1, x : A,Γ2 ` B : C.

Lemma 17 (Generation Lemma). Let Γ `M : T .

• If M = x then x ∈ dom(Γ), T =βι Γ(x) and Γ ` T : s where s is a sort.
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• If M = ∗t then T =βι �t.

• If M = ∗p then T =βι �p.

• If M = Πx : T1.T2 then there exists (s1, s2, s3) ∈ R such that

Γ ` T1 : s1, Γ, x : T1 ` T2 : s2, T =βι s3.

• If M = λx : T1.M2 then there exists (s1, s2, s3) ∈ R and term T2 such that

Γ ` T1 : s1, Γ, x : T1 `M2 : T2, Γ, x : T1 ` T2 : s2, Γ ` T : s3,

and T =βι Πx : T1.T2.

• If M = M1M2 then there exist T1, T2 such that

Γ `M1 : (Πx : T1.T2), Γ `M2 : T1, T =βι T2[x := M2];

• If M = Ind(X : A){~C} then A =βι T , every Ci is a type of constructor in X, and either
there exist ~t such that

A =βι ∗t, Γ ` A : �t, and for every i we have Γ, X : A ` Ci : ∗t

or there exist ~t and s ∈ {∗t,�p} such that

A =βι Π~x : ~t.∗p, Γ ` A : s, and for every i we have Γ, X : A ` Ci : ∗p.

• If M = Constr(n, I) then I =βι Ind(X : A){~C} and Cn(I) =βι T.

• If M = Elim(I,Q, ~u,m){~f} then either there exist ~C, s such that

I =βι Ind(X : ∗t){~C}, ~u = ε, Γ ` Q : I → s, Γ ` m : I, T =βι Qm

and for all i we have Γ ` fi : 4{Ci(I), Q,Constr(i, I)},

or there exist ~C, s1, A, A1 such that

I =βι Ind(X : A){~C}, Γ ` Q : A1, A =βι A1, Γ ` m : I~u, T =βι Q~u,

and for all i we have Γ ` fi : 4{Ci(I), Q}.

Proof. Induction with respect to the structure of the derivation of Γ `M : T .

Lemma 18 (Uniqueness of types). If Γ `M : T1 and Γ `M : T2 then T1 =βι T2.

Proof. Induction with respect to the structure of the term M , using Lemma 17.

We will now prove the Church-Rosser property for the system. We could almost use the
theorem stating that for higher order term rewriting systems which are left-linear and non-
overlapping have the Church-Rosser property [51]. However, the right hand side of the iota
reduction rule is not a pattern in the sense of Definition 11.2.18 in [51]. It has to be computed
by a simple recursive algorithm. We cannot use the theorem so we have to prove the property
on our own. We use a Takahashi variant of Tait’s parallel reduction method [50]. Our proof
is inspired by [27].

First we introduce the notion of parallel computation. The relation ⇒ is defined as follows:
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• For every term M we have M ⇒ M ′.

• If M ⇒ M ′ and N ⇒ N ′, then (λx : A.M)N ⇒ M ′[x := N ′].

• If I ⇒ I ′, Q ⇒ Q′, ~u ⇒ ~u′, ~N ⇒ ~N ′ and ~f ⇒ ~f ′ then

Elim(I,Q, ~u,Constr(n, J) ~N){~f}⇒ 4[Cn(I ′), f ′n, ~N ′, I
′, Q′, ~f ′].

• If M ⇒ M ′ and N ⇒ N ′ then MN ⇒ M ′N ′.

• If M ⇒ M ′ and N ⇒ N ′ then Πx : M.N ⇒ Πx : M ′.N ′.

• If M ⇒ M ′ and N ⇒ N ′ then λx : M.N ⇒ λx : M ′.N ′.

• If I ⇒ I ′ then Constr(n, I) ⇒ Constr(n, I ′);

• If A ⇒ A′ and ~C ⇒ ~C ′ then Ind(X : A){~C}⇒ Ind(X : A′){ ~C ′}.

• If I ⇒ I ′, Q ⇒ Q′, ~u ⇒ ~u′, ~M ⇒ ~M ′ and ~f ⇒ ~f ′ then

Elim(I,Q, ~u){
−→
M}~f ⇒ Elim(I ′, Q′, ~u′){

−→
M ′}~f ′

The transitive closure of the relation ⇒ is the same as the transitive closure of the rela-
tion →βι. This is a consequence of the following lemma.

Lemma 19. 1. If M →βι N then M ⇒ N .

2. If M ⇒ N then M →∗βι N .

Proof. 1. We only show the proof in the case when M is a beta redex and N is a beta
reduct. Suppose M = (λx : A.B)C and N = B[x := C]. Then we have B ⇒ B and
C ⇒ C because the relation ⇒ is reflexive. Thus (λx : A.B)C ⇒ B[x := C]. The proof
in the remaining cases is similar: we often use the fact that the relation ⇒ is reflexive.

2. The proof is by induction with respect to the definition of the relation ⇒.

For every term M we define a term M∗. The idea is that the term M∗ is a term where all
redexes present in M have been contracted. We can define such term because the redexes
in M are not overlapping. The definition of M∗ follows.

• x∗ = x;

• (λx : A.B)∗ = λx : A∗.B∗;

• (Πx : A.B)∗ = Πx : A∗.B∗;

• (AB)∗ = N∗[x := B∗], if A = λx : M.N ;

• (AB)∗ = A∗B∗, if A 6= λx : M.N ;

• (Constr(n, I))∗ = Constr(n, I∗);

• (Ind(X : A){~C})∗ = Ind(X : A∗){ ~C∗};
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• (Elim(I,Q, ~u,M){~f})∗ = 4[Cn(I∗), f∗n, ~N∗, I
∗, Q∗, ~f∗] if M = Constr(n, I ′) ~N ;

• (Elim(I,Q, ~u,M){~f})∗ = (Elim(I∗, Q∗, ~u∗,M∗){ ~f∗}) if M 6= Constr(n, I ′) ~N .

Lemma 20. If M ⇒ M ′ and N ⇒ N ′ then M [x := N ] ⇒ M ′[x := N ′];

Proof. Induction with respect to the structure of the term M .

Lemma 21. If C(X) is a type of constructor in X and I ⇒ I∗, Q ⇒ Q∗, ~M ⇒ ~M∗, ~u ⇒ ~u∗,
~A ⇒ ~A∗ and ~f ⇒ ~f∗ then

4[C(X),M, ~A, I,Q, ~f ] ⇒ 4[(C(X))∗,M∗, ~A∗, I∗, Q∗, ~f∗].

Proof. We proceed by induction with respect to the structure of Cn(I).

• C(X) = X~t. Then (C(X))∗ = X~t∗. Then

4[C(X),M, ~A, I,Q, ~f ] = M ⇒ M∗ = 4[(C(X))∗,M∗, ~A∗, I∗, Q∗, ~f∗].

• C(X) = Πx : T.D(X) where X 6∈ FV (T ). Then (C(X))∗ = Πx : T ∗.(D(X))∗ and
X 6∈ FV (T ∗). Note that then ~A = A0 :: ~A′ and

4[C(X),M, ~A, I,Q, ~f ] = 4[D(X),MA0, ~A′, I, Q, ~f ].

By assumption we have M ⇒ M∗ and A0 ⇒ A∗0 and thus MA0 ⇒ M∗A∗o. By the
induction hypothesis we have

4[D(X),MA0, ~A′, I, Q, ~f ] ⇒ 4[(D(X))∗,M∗A∗0, ~A′∗, I
∗, Q∗, ~f∗].

But
4[(D(X))∗,M∗A∗0, ~A′∗, I

∗, Q∗, ~f∗] = 4[(C(X))∗,M∗, ~A∗, I∗, Q∗, ~f∗].

• C(X) = Πx : T.D(X) where T = Π~y : ~τ .X~t. Then C(X)∗ = Πx : T ∗.D(X)∗ and
T ∗ = Π~y : ~τ∗.X~t∗. Then ~A = A0 :: ~A′ and

4[C(X),M, ~A, I,Q, ~f ] = 4[D(X),MA0(λ~y : ~τ .Elim(I,Q,~t, A0~y){~f}), ~A′, I, Q, ~f ].

By assumption we have M ⇒ M∗ and A0 ⇒ A∗0 and ~τ ⇒ ~τ∗. Thus

(λ~y : ~τ .Elim(I,Q,~t, A0~y){~f}) ⇒ (λ~y : ~τ∗.Elim(I∗, Q∗, ~t∗, A∗0~y){ ~f∗}.

and

MA0(λ~y : ~τ .Elim(I,Q,~t, A0~y){~f}) ⇒ M∗A∗0(λ~y : ~τ∗.Elim(I∗, Q∗, ~t∗, A∗0~y){ ~f∗}.

By the induction hypothesis we have

4[D(X),MA0(λ~y : ~τ .Elim(I,Q,~t, A0~y){~f}), ~A′, I, Q, ~f ]

⇒ 4[D(X)∗,M∗A∗0(λ~y : ~τ .Elim(I∗, Q∗, ~t∗, A∗0~y){ ~f∗}), ~A′∗, I∗, Q∗, ~f∗]

But

4[D(X)∗,M∗A∗0(λ~y : ~τ .Elim(I∗, Q∗, ~t∗, A∗0~y){ ~f∗}), ~A′∗, I∗, Q∗, ~f∗]

= 4[C(X)∗,M∗, ~A∗, I∗, Q∗, ~f∗].
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Lemma 22. For every term M we have M ⇒ M∗.

Proof. Induction with respect to the structure of M .

We now prove the main lemma of this section.

Lemma 23. If M ⇒ N then N ⇒ M∗.

Proof. We proceed by induction with respect to the definition of the relation ⇒.

• If M ⇒ M then M ⇒ M∗ by Lemma 22.

• Suppose M = (λx : A.B)C and N = B′[x := C ′] where B ⇒ B′ and C ⇒ C ′. By
the induction hypothesis we have B′ ⇒ B∗ and C ⇒ C∗. By Lemma 20 we have
N = B′[x := C ′] ⇒ B∗[x := C∗] = M∗.

• SupposeM = Elim(I,Q, ~u,Constr(n, J) ~A){~f} andN = 4[Cn(I ′), f ′n, ~A′, I
′, Q′, ~f ′] where

I ⇒ I ′, Q ⇒ Q′, ~u ⇒ ~u′, ~A ⇒ ~A′ and ~f ⇒ ~f ′.

By the induction hypothesis we have

I ′ ⇒ I∗, Q′ ⇒ Q∗, ~u′ ⇒ ~u∗, ~A′ ⇒ ~A∗ and ~f ′ ⇒ ~f∗.

By Lemma 21 we have

N = 4[Cn(I ′), f ′n, ~A′, I
′, Q′, ~f ′] ⇒ 4[Cn(I∗), f∗n, ~A∗, I

∗, Q∗, ~f∗] = M∗.

• Suppose M = AB and N = A′B′ and A ⇒ A′ and B ⇒ B′. By the induction
hypothesis A′ ⇒ A∗ and B′ ⇒ B∗. Then N = A′B′ ⇒ A∗B∗. If A 6= (λx : D.E)
then M∗ = A∗B∗ and we are done. If A = (λx : D.E) then A∗ = (λx : D∗.E∗) and
M∗ = E∗[x := B∗]. We have A′ ⇒ (λx : D∗.E∗) and B′ ⇒ B∗ and thus by Lemma 20
we have N ⇒ E∗[x := B∗] = M∗.

• Suppose M = Elim(I,Q, ~u,A){~f} and N = Elim(I ′, Q′, ~u′, A′){~f ′} where

I ⇒ I ′, Q ⇒ Q′, ~u ⇒ ~u′, A ⇒ A′ and ~f ⇒ ~f ′.

By the induction hypothesis we have

I ′ ⇒ I∗, Q′ ⇒ Q∗, ~u′ ⇒ ~u∗, A′ ⇒ A∗ and ~f ′ ⇒ ~f∗.

By Lemma 21 we have N ⇒ Elim(I∗, Q∗, ~u∗, A∗){ ~f∗}. If A 6= Constr(n, J) ~B then
M∗ = Elim(I∗, Q∗, ~u∗, A∗){ ~f∗} and we are done. If A = Constr(n, J) ~B then M∗ =
4[Cn(I∗), f∗n, ~B∗, I

∗, Q∗, ~f∗]. The conclusion follows from Lemma 21.

• SupposeM = Πx : A.B and N = Πx : A′.B′ and A ⇒ A′ and B ⇒ B′. By the induction
hypothesis we have A′ ⇒ A∗ and B′ ⇒ B∗. Then N = Πx : A′.B′ ⇒ Πx : A∗.B∗ = M .

• The remaining cases are similar.
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Lemma 24. If M →βι N1 and M →βι N2 then there exists a term P such that N1 →∗βι P
and N2 →∗βι P .

Proof. Assume that M →βι N1 and M →βι N2. By Lemma 19 we have M ⇒ N1 and
M ⇒ N2. By Lemma 23, N1 ⇒ M∗ and N2 ⇒ M∗. Using again Lemma 19 we get N1 →∗βι M∗
and N2 →∗βι M∗.

Theorem 25 (Church-Rosser Property). If M =βι N then there exists a term P such that
M →∗βι P and N →∗βι P .

Proof. Induction with respect to the definition of =βι.

Lemma 26. If (Πx : A.B) =βι (Πx : A′.B′) then A =βι A
′ and B =βι B

′.

Proof. By Theorem 25 there exists a term P such that

(Πx : A.B)→βι P and (Πx : A′.B′)→βι P.

Neither the beta reduction nor the iota reduction may destroy the product. Thus we have
P = Πx : A′′.B′′, and A →βι A

′′, and A′ →βι A
′′, B →βι B

′′, and B′ →βι B
′′. Then indeed

A =βι A
′ and B =βι B

′.

Theorem 27 (Subject Reduction). If Γ `M : T and M →βι N then Γ ` N : T .

Proof. Induction with respect to the structure of the derivation of Γ ` M : T , using Theo-
rem 25 and Lemma 26.



Chapter 4

A translation for non-proofs

In this chapter we prove that the non-proof terms are strongly normalizing. This result will
be needed in the next section for the full proof of strong normalization. We prove it using
a translation to the Calculus of Inductive Constructions.

4.1. Calculus of Inductive Constructions

By Calculus of Inductive Construction (CIC) [55] we mean here an extension of the Calculus
of Constructions (CC) [16] with inductive types. The Calculus of Constructions is the most
powerful system in Barendregt cube. Recall that CC is a Pure Type System where

S = {∗,�},
A = {∗ : �},
R = {(∗, ∗, ∗), (∗,�,�), (�, ∗, ∗), (�,�,�)}.

We extend the syntax with the following constructions.

T := Ind(x : T ){~T} | Constr(n, T ) | Elim(T, T, ~T , T ){~T}.

The meaning of constructions is similar as in LNTT with inductive types. A term Ind(x : A){~C}
is an inductive type, the expression A is a type of the bound variable x and ~C is a sequence
of types of the inductive constructors. A term Constr(n, I) is a constructor of an inductive
object, I is an inductive type and n is a natural number indicating which inductive constructor
is meant. Finally, Elim(I,Q, ~u,m){~f} is an eliminator of an inductive type I. The expres-
sion I is an inductive type, m is the term being eliminated, ~u is the vector of inductive type
parameters, Q is such that Q~um is the type of the result, and ~f is the vector of definitions
corresponding to the inductive constructors of I (i.e. cases possible for m).

We also add typing rules. For technical reasons, we extend CC with a sort 4, an axiom
rule

(Ax2) ` � : 4,

product rules

Γ ` A : ∗ Γ, x : A ` B : 4
(Prod1)

Γ ` (Πx : A.B) : 4
Γ ` A : � Γ, x : A ` B : 4

(Prod2)
Γ ` (Πx : A.B) : 4

39
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and the corresponding (Abs) rules. However, do not add (Var) or (Weak) rules for terms of
the sort 4. Thus there are no kind variables (i.e. such that Γ ` x : �) in CIC.

If A = Π~x : ~T .∗ and every Ci(X) is a type of constructor in X then we have the rule

Γ ` A : � Γ, X : A ` Ci(X) : ∗
(Ind)

Γ ` Ind(X : A){~C(X)} : A

In the rule (Intro) the term I denotes Ind(X : A){~C(X)}.

Γ ` I : T(Intro)
Γ ` Constr(n, I) : Cn(I)

In the rule (Elim) we will use the notation Γ ` ~u : (~x : ~T ). Here ~u, ~T and ~x are respectively
two sequences of terms and one sequence of variables of the same length. The typing rules for
judgements of this form are as follows:

(Nil) Γ ` ε : (ε : ε)

Γ ` ~u : (~x : ~T ) Γ, ~x : ~T [~x := ~u] ` u : T [~x := ~u]
(Cons)

Γ ` u :: ~u : (x :: ~x : T :: ~T )

We give the typing rules for elimination. In this rule the term I denotes Ind(X : A){~C(X)},
A = Π~x : ~T .∗ and the operator 4{C(X), Q, c} is defined as on page 26.

Γ ` ~u : (~x : ~T ) Γ ` t : I~u Γ ` Q : Π~x : ~T .I~x→ ∗
Γ ` fn : 4{Cn(I), Q,Constr(n, I)}

(Elim-W)
Γ ` Elim(I,Q, ~u, t){~f} : Q~ut

As already mentioned, in CIC we have strong elimination rule. The type of constructor
C(X) = Π~x : ~τ .X ~x′ is small in Γ if every τi is a type, i.e. Γ ` τi : ∗. An inductive type
I = Ind(X : A){~C(X)} is small if every type of constructor Ci(X) is small. Strong elimination
is only allowed for small inductive types. If the type I is small then we have strong elimination
rule.

Γ ` ~u : (~x : ~T ) Γ ` t : I~u Γ ` Q : Π~x : ~T .I~x→ �

Γ ` fn : 4{Cn(I), Q,Constr(n, I)}
(Elim-S)

Γ ` Elim(I,Q, ~u, t){~f} : Q~ut

4.2. The definition of the translation

For a context Γ and a term M typable in Γ which is not a proof we define a term TΓ(M)
typable in the Calculus of Inductive Constructions. In the translation we use the following
variables

• Bool : ∗,

• Impl : Bool→ Bool→ Bool,
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• Forall : Πx : ∗.(x→ Bool)→ Bool,

• Forall2 : (Bool→ Bool)→ Bool.

• ind : Πx : ∗.((x→ Bool)→ x),

Moreover, for every natural number n we consider a variable

indn : Bool→ . . .→ Bool︸ ︷︷ ︸
n times

→ Bool.

Note that the types of the variables are correct types in the Calculus of Inductive Constructions
in the context Bool : ∗. The impredicativity of the sort ∗ is essential to type the variables Forall
and ind.

We define the translation TΓ(M) by induction with respect to the structure ofM as follows:

• TΓ(�p) = ∗,

• TΓ(∗p) = Bool,

• TΓ(�t) = �,

• TΓ(∗t) = ∗,

• TΓ(Πx : ϕ.ψ) = Impl TΓ(ϕ) TΓ,x:ϕ(ψ), if ϕ, ψ are formulas,

• TΓ(Πx : τ.ϕ) = Forall TΓ(τ) (λx : TΓ(τ).TΓ,x:τ (ϕ)), if τ is a type and ϕ is a formula,

• TΓ(Πx : ∗p.ϕ) = Forall2 (λx : Bool.TΓ,x:∗p(ϕ)), if ϕ is a formula,

• TΓ(Πx : A.B) = Πx : TΓ(A).TΓ,x:A(B) in all other cases,

• TΓ(λx : A.B) = λx : TΓ(A).TΓ,x:A(B),

• TΓ(AB) = TΓ(A)TΓ(B),

• TΓ(x) = x,

• TΓ(Ind(X : ∗t){~C}) = Ind(X : ∗){~TΓ,X:∗t(C}),

• TΓ(Ind(X : A){~C}) = ind TΓ(A) (λX : TΓ(A).indn · ~TΓ,X:A(C)), if ~C has length n and
A = Π~x : ~τ .∗p; (recall the notation introduced on page 23: if g = ~N is a sequence of
terms then a term of the form M ~N can be denoted by M · g),

• TΓ(Constr(n, I)) = Constr(n, TΓ(I)),

• TΓ(Elim(I,Q,M){~f}) = Elim(TΓ(I), TΓ(Q), ε, TΓ(M)){TΓ(~f)}.

For a context Γ we define Tn(Γ):

• Tn(ε) = {Bool : ∗, Impl : Bool→ Bool→ Bool,
Forall : Πx : ∗.(x→ Bool)→ Bool,
Forall2 : (Bool→ Bool)→ Bool,
ind : Πx : ∗.((x→ Bool)→ x),
ind0 : Bool, ind1 : Bool→ Bool, . . . , indn :

−−→
Bool→ Bool, }
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• Tn(Γ, x : A) = Tn(Γ), x : TnΓ (A), if A is not a formula,

• Tn(Γ, x : A) = Tn(Γ), if A is a formula.

We will prove that the translation is correct that is if Γ ` M : A in LNTT with inductive
types then there exists n such that Tn(Γ) ` TΓ(M) : TΓ(A) in the Calculus of Inductive
Constructions. We will first state some auxiliary lemmas.

Lemma 28. Suppose Γ is a context and M , N are non-proofs such that

Γ, x : τ2 `M : τ1, Γ ` N : τ2.

Then
TΓ(M [x := N ]) = TΓ,x:τ2(M)[x := TΓ(N)].

Proof. Note that Γ `M [x := N ] : τ1[x := N ] by Lemma 16. The proof is by routine induction
with respect to the structure of M .

Lemma 29. Suppose Γ is a context and M , N are two non-proofs in Γ. If M →βι N then
TΓ(M)→+

βι TΓ(N).

Proof. We proceed by induction with respect to the definition of M →βι N .
Suppose M is a beta redex and N is its reduct, namely

M = (λx : A.B)C and N = B[x := C].

Then
TΓ(M) = TΓ((λx : A.B)C) = (λx : TΓ(A).TΓ,x:A(B)) TΓ(C)

and by Lemma 28
TΓ(N) = TΓ,x:A(B)[x := TΓ(C)].

Thus TΓ(M)→βι TΓ(N).
If M is a iota redex and N is its reduct then M = Elim(I,Q,Constr(n, I ′)~m){~f} and

N = 4[Cn(I), fn, ~m, I,Q, ~f ]. Note that if M is not a proof then I is an inductive type (and
not predicate). Thus the vector of parameters is empty. Then

TΓ(M) = Elim(TΓ(I), TΓ(Q), ε,Constr(n, TΓ(I))TΓ(~m)){TΓ(~f)}

so TΓ(M) is still a redex. Moreover,

TΓ(N) = TΓ(4[Cn(I), fn, ~m, I,Q, ~f ]).

We will prove that

TΓ(4[C, f, ~m, I,Q, ~f ]) = 4[TΓ(C, TΓ(f), TΓ(~m), TΓ(I), TΓ(Q), TΓ(~f)].

The proof is by induction with respect to the structure of C.

• If C = I then TΓ(C) = TΓ(I). We have

4[C, f, ~m, I,Q, ~f ] = f,

and

TΓ(4[C, f, ~m, I,Q, ~f ]) = TΓ(f) = 4[TΓ(C), TΓ(f), TΓ(~m), TΓ(I), TΓ(Q), TΓ(~f)].
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• If C = Πx : t.D then D is not a formula and thus TΓ(C) = Πx : TΓ(t).TΓ(D) and

4[C, f,m0 :: ~m, I,Q, ~f ] = 4[C, fm0, ~m, I,Q, ~f ].

Thus

T (4[C, f,m0 :: ~m, I,Q, ~f ] = TΓ(4[C, fm0, ~m, I,Q, ~f ])

= 4[TΓ(C), TΓ(f)TΓ(m0), TΓ(~m), TΓ(I), TΓ(Q), TΓ(~f)].

• If C = (Π~x : ~t.I)→ D then D is not a formula and thus

TΓ(C) = (Π~x : TΓ(~t).TΓ(I))→ TΓ(D).

Moreover

4[C, f,m0 :: ~m, I,Q, ~f ] = 4[D, (fm0(λ~x : ~t.Elim(I,Q,m0~x){~f})), ~m, I,Q, ~f ].

and

T (∆[C, f,m0 :: ~m, I,Q, ~f ]) = TΓ(4[D, (fm0(λ~x : ~t.Elim(I,Q,m0~x){~f})), I, Q, ~f ])

= 4[TΓ(D), (TΓ(f)TΓ(m0)(λ~x : TΓ(~t).TΓ(Elim(I,Q,m0~x){~f}))), TΓ(I), TΓ(Q), TΓ(~f)]

= 4[TΓ(C), TΓ(f), TΓ(I), TΓ(Q), TΓ(~f)].

If M →βι N by context closure then the proof is immediate. As an example we consider the
case when M = (Πx : A.B) and N = (Πx : A.B′), where A is a type and B is a formula. By
Lemma 27, the term A′ is a type and B′ is a formula. Then

TΓ(M) = Forall TΓ(A) (λx : TΓ(A).TΓ,x:A(B))

and
TΓ(N) = Forall TΓ(A′) (λx : TΓ(A′).TΓ,x:A′(B′)).

By the induction hypothesis TΓ(M)→+
βι TΓ(N).

Lemma 30. Suppose Γ ` M : A. Suppose all inductive types and predicates occurring in the
derivation of Γ `M : A have at most n constructors. Then Tn(Γ) ` TΓ(M) : TΓ(A).

Proof. We proceed by induction with respect to the derivation of Γ `M : A. We consider the
last rule used in the derivation.

• (Ax) We have either
` ∗t : �t or ` ∗p : �p

In both cases the conclusion is trivial. We get

T 0(ε) ` ∗ : � and T 0(ε) ` Bool : ∗

respectively.

• (Var) We have
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Γ ` A : s
Γ, x : A ` x : A

If s = ∗t, or s = �t, or s = �p the conclusion is trivial. If s = ∗p then x is a proof and
the translation for x is undefined.

• (Weak) We have

Γ ` B : C Γ ` A : s
Γ, x : A ` B : C

If s is one of ∗t, �t, �p the conclusion follows easily from induction hypothesis. If
s is ∗p, we have Tn(Γ, x : A) = Tn(Γ) the conclusion is equivalent to the induction
hypothesis Tn(Γ) ` TΓ(B) : TΓ(C).

• (Conv) We have

Γ `M : B Γ ` C : s B =βι C

Γ `M : C

The conclusion is a consequence of Lemma 29.

• (Prod) We have

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A.B) : s3

We deal here with the rules: (∗t, ∗t, ∗t), (∗p, ∗p, ∗p), (∗t, ∗p, ∗p), (∗t,�p, ∗t), (∗t,�t,�t),
(�p, ∗p, ∗p). We consider separate cases:

– The product was created using the rule (∗p, ∗p, ∗p). By the induction hypothesis
we get

Tn(Γ) ` TΓ(A) : Bool and Tn(Γ) ` TΓ(B) : Bool.

We know that
Tn(Πx : A.B) = Impl TΓ(A) TΓ,x:A(B).

Since Impl : Bool→ Bool→ Bool, we get

Tn(Γ) ` Impl TΓ(A) TΓ,x:A(B) : Bool

as it ought to be.

– The product was created using the rule (∗t, ∗p, ∗p). By the induction hypothesis
we get

Tn(Γ) ` TΓ(A) : ∗ and Tn(Γ), x : TΓ(A) ` TΓ,x:A(B) : Bool.

We know that

TΓ(Πx : A.B) = Forall TΓ(A) (λx : TΓ(A).TΓ,x:A(B)).

The constant Forall has the type Πx : ∗.(x→ Bool)→ Bool so the whole expression
has type Bool.
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– The product was created using the rule (�p, ∗p, ∗p). By induction hypothesis we
have

Tn(Γ) ` TΓ(A) : ∗ and Tn(Γ), x : TΓ(A) ` TΓ,x:A(B) : Bool.

Moreover, we know by the Generation Lemma and Theorem 25 that in that case
A = ∗p and TΓ(A) = Bool. We know that

TΓ(Πx : A.B) = Forall2 (λx : Bool.TΓ,x:A(B))

and Forall2 : (Bool → Bool)→ Bool. Thus the application indeed is of type Bool
as it ought to be.

– The product was created using one of the rules (∗t, ∗t, ∗t), (∗t,�p, ∗t), (∗t,�t,�t).
By induction hypothesis we have

Tn(Γ) ` TΓ(A) : TΓ(s1) and TΓ(s1) = TΓ(∗t) = ∗.

Moreover
Tn(Γ), x : TΓ(A) ` TΓ,x:A(B) : TΓ,x:A(s2).

Here, TΓ,x:A(s2) = ∗ or TΓ,x:A(s2) = �. In any case, TΓ,x:A(s2) is a sort. We may
apply the rule (∗, ∗, ∗) or (∗,�,�) and get the desired conclusion.

• (App) Routine application of the inductive hypothesis.

• (Abs) Routine application of the inductive hypothesis.

• (Ind∗t). We have

Γ, X : ∗t ` Ci : ∗t
(Ind∗t)

Γ ` Ind(X : ∗t){~C}

Note that TΓ(∗t) is ∗ and by the induction hypothesis

Tn(Γ) ` TΓ(∗t) : �

and for all i
Tn(Γ), X : TΓ(∗t) ` TΓ,X:∗t(Ci) : ∗.

Moreover, every TΓ,X:∗t(Ci) is a type of constructor in X. We may thus apply the
rule (Ind) and get the conclusion.

• (Ind∗p). We have

Γ ` A : s Γ, X : A ` Ci : ∗p
(Ind∗p)

Γ ` Ind(X : A){~C} : A

and s ∈ {�p, ∗t}. Here,

TΓ(Ind(X : A){~C}) = ind TΓ(A) (λX : TΓ(A).indn · TΓ(~C)).
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The constant ind has type (Πx : ∗.(x → Bool) → x). The constant indn has type
Bool→ . . .→ Bool︸ ︷︷ ︸

n times
→ Bool. By the induction hypothesis for the premises of the rule

we have

Tn(Γ) ` TΓ(A) : ∗ and Tn(Γ), X : TΓ(A) ` TΓ(Ci(X)) : Bool.

It follows that the application ind TΓ(A) (λX : TΓ(A).indnTΓ(~C(X))) is correct and the
type of it indeed is TΓ(A).

• (Intro∗t) We only deal with inductive types. In the other case, the term constructed is
a proof. We have I = Ind(X : ∗t){~C}.

Γ ` I : ∗t(Intro)
Γ ` Constr(i, I) : Ci(I)

By the induction hypothesis we have

Tn(Γ) ` TΓ(Ind(X : ∗t){~C}) : ∗.

Moreover, TΓ(Ind(X : ∗t){~C)}) = Ind(X : ∗){ ~TΓ(C}) so indeed we may apply the rule
(Intro). Now,

TΓ(Constr(i, I)) = Constr(i, TΓ(I))

and
TΓ(Ci(I)) = TΓ(Ci)(TΓ(I))

and we get the conclusion.

• (Elim∗t) We only deal with the following case

Γ ` t : I Γ ` Q : I → ∗t Γ ` fi : 4{Ci(I), Q,Constr(i, I)}
Γ ` Elim(I,Q, t){~f} : (Qt)

By induction hypothesis we have

Tn(Γ) ` TΓ(t) : TΓ(I),
Tn(Γ) ` TΓ(Q) : TΓ(I)→ ∗,
TnΓ (Γ) ` TΓ(fi) : TΓ(4{Ci(I), Q,Constr(i, I)}).

By induction with respect to the structure of Ci(I) it is easy to prove that

TΓ(4{Ci(I), Q,Constr(i, I)}) = 4{TΓ(Ci(I)), TΓ(Q),Constr(i, TΓ(I))}.

From this we get the conclusion.

Lemma 31. If Γ `M : A and M is not a proof then M is strongly normalizing.

Proof. If M is not a proof then by Lemma 30 we have TΓ(Γ) ` TΓ(M) : TΓ(A). If there is an
infinite reduction beginning in M :

M →βι M1 →βι M2 →βι . . .

then there is an infinite reduction in CIC

TΓ(M)→+
βι TΓ(M1)→+

βι TΓ(M2)→+
βι . . .

The latter is not possible as TΓ(M) is strongly normalizing.



Chapter 5

Strong normalization

The proof uses a variant of Girard’s candidates of reducibility. There are two main differences
in comparison with Girard’s proof. First, we use saturated sets instead of candidates. Sec-
ond, we use a typed version of saturated sets, a technique first introduced by J. Gallier and
T. Coquand in [13]. In the commonly used untyped version, one deals with sets of terms. In
the typed version, we deal with sets of pairs of the form (Γ `M) such that Γ is a context, M
is a term and for some T the assertion Γ `M : T is valid.
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Figure 5.1: Operators in the proof

There are two basic notions in the proof. One is the set V∆(M) of possible interpretations
of a term M . The other is the interpretation of (Γ ` M). The interpretation operator
[Γ ` M ]ξ,ρ,∆ takes five arguments: a context Γ, a term M which is being interpreted, a set
valuation ξ and term substitution ρ (precise definitions are given later), and a context ∆. As
usual, we give interpretations for type-like terms, i.e. types, formulas, kinds and sorts and for
terms which may be eliminated so that one obtains type-like terms, namely type constructors,
subsets and (via the elimination operator) large inductive objects. Recall that we refer to
those terms as large terms. The main lemmas state in particular that for all (appropriate) Γ,
∆, M , T , ξ and ρ

if Γ `M : T then [Γ `M ]ξ,ρ,∆ ∈ V∆(ρ(M)),
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and
if Γ `M : T then (∆ ` ρ(M)) ∈ [Γ ` T ]ξ,ρ,∆.

The relations between the operators are shown in Figure 5.1.

5.1. Saturated sets

A simple sequent is any pair (∆ ` M) where ∆ is a context, M is a term and there exists
a term σ such that ∆ ` M : σ. We say that such a pair is a simple sequent of type σ. For
simplicity we will sometimes use the name term to denote a simple sequent.
Let T∆

σ be the set of simple sequents of type σ in the context ∆:

T∆
σ = {(∆′ `M) | ∆ ⊆ ∆′ ∧∆′ `M : σ}.

Let SN∆
σ be the subset of T∆

σ consisting of strongly normalizing terms:

SN∆
σ = {(∆′ `M) | ∆ ⊆ ∆′ ∧∆′ `M : σ ∧M ∈ SN}.

We write (∆′ `M) ∈ SN ifM is strongly normalizing and there exists σ such that ∆′ `M : σ.
The family of base terms is defined by induction:

• every variable x is a base term;

• if M is a base term and N ∈ SN then MN is a base term;

• if M is a base term and I,Q, ~u, ~f ∈ SN then Elim(I,Q, ~u,M){~f} is a base term.

Let ∆ be a context and σ be a type or a kind, or a formula in the context ∆. The family of
base sequents B∆

σ ⊆ T∆
σ is the family of simple sequents (∆′ ` M) ∈ T∆

σ where M is a base
term.

We define the key reduction →k by induction:

• (λx : A.B)C →k B[x := C];

• Elim(I,Q, ~u,Constr(n, I ′) ~N){~f} →k 4[Cn(I), fn, ~N, I,Q, ~f ];

• if M →k M
′ then MN →k M

′N ;

• if M →k M
′ then Elim(I,Q, ~u,M){~f} →k Elim(I,Q, ~u,M ′){~f}.

The beta-reduction equivalent of the key reduction is sometimes referred to as weak head
reduction. A reduction which is not key reduction will be called an internal reduction. We
will denote it by →i.
A set of simple sequents U ⊆ T∆

σ is saturated (denoted by U ∈ SAT∆
σ ) if it satisfies the

following conditions:

(SAT1) U ⊆ SN∆
σ ;

(SAT2) B∆
σ ⊆ U ;

(SAT3) if (∆′ `M) ∈ U and ∆′ ⊆ ∆′′ then (∆′′ `M) ∈ U ;

(SAT4) if (∆′ `M1) ∈ U , M →k M1 and (∆′ `M) ∈ SN∆
σ then (∆′ `M) ∈ U .
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Note that in the condition (SAT4) the reduction →k can be equivalently replaced by →∗k.

Lemma 32. The set SN∆
σ is saturated.

Proof. Immediate.

Lemma 33. If S ⊆ SAT∆
σ is a non-empty family then⋂

S ∈ SAT∆
σ and

⋃
S ∈ SAT∆

σ .

Proof. Immediate from the definition of a saturated set.

Lemma 34. The set
⋂
SAT∆

σ is saturated.

Proof. It is a consequence of Lemma 33.

Lemma 35.⋂
SAT∆

σ = {(∆′ `M) ∈ SN∆
σ | there is M ′ such that (∆′ `M ′) ∈ B∆

σ and M →∗k M ′}.

Proof. Let R denote the right hand side of the equation above. It is easy to observe that R is
a saturated set. Thus ⋂

SAT∆
σ ⊆ R.

We will now prove
R ⊆

⋂
SAT∆

σ .

Let U be an arbitrary set in SAT∆
σ . We will prove R ⊆ U . Let (∆′ ` M) ∈ R. By the

definition of R there exists (∆′ `M ′) ∈ B∆
σ such that

∆′ ⊇ ∆, (∆′ `M) ∈ SN∆
σ , M →∗k M ′.

We proceed by induction with respect to the length of the reduction sequence M →∗k M ′:

• The reduction sequence has zero steps. In this case (∆′ ` M) ∈ B∆
σ . Thus by the

definition of a saturated set (∆′ `M) ∈ U .

• The reduction sequence has n + 1 steps. Then M →k M1 →n
k M ′. By induction

hypothesis (∆′ `M1) ∈ U . By the definition of a saturated set, is must be the case that
(∆′ `M) ∈ U .

Hence indeed R ⊆ U .
We have proved that

⋂
SAT∆

σ ⊆ R and R ⊆
⋂
SAT∆

σ . Thus⋂
SAT∆

σ = R.

Lemma 36. The set SAT∆
σ is a complete lattice with respect to inclusion.

Proof. It is a consequence of Lemma 33.

Lemma 37. Let M be a key redex and M →k N . If M →i M
′ then M ′ is a key redex and if

M →i M
′ →k L then there exists a sequence of reductions M →k N →∗ L.
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Proof. We proceed by induction with respect to the definition of M →k N . There are four
cases.

Case 1: We have M = (λx : A.B)C and N = B[x := C]. If M →i M
′ then

M ′ = (λx : A′.B′)C ′ and A→ A′ or B → B′ or C → C ′.

Of course M ′ is a key redex. It is easy to observe that if M →i M
′ →k B

′[x := C ′] then there
exists a sequence of reductions M →k N →∗ B′[x := C ′].

Case 2: We have M = Elim(I,Q, ~u,Constr(n, J) ~A){~f} and N = 4[Cn(I), fn, ~A, I,Q, ~f ]. If
M →i M

′ then
M ′ = Elim(I ′, Q′, ~u′,Constr(n, J ′) ~A′){~f ′}

and
I → I ′, or Q→ Q′, or ui → u′i, or J → J ′, or Ai → A′i, or fi → f ′i .

Of course M ′ is a key redex. It is easy to observe that if

M →i M
′ →k 4[Cn(I ′), f ′n, ~A′, I

′, Q′, ~f ′]

then there exists a sequence of reductions M →k N →∗ 4[Cn(I ′), f ′n, ~A′, I
′, Q′, ~f ′].

Case 3: We have M = AB and N = A′B′ and A →k A
′. Then the conclusion follow easily

from induction hypothesis. Note that A cannot be an abstraction as it is a key redex.

Case 4: We haveM = Elim(I,Q, ~u,A){~f} and N = Elim(I,Q, ~u,A′){~f}′ and A→k A
′. The

conclusion follows from induction hypothesis. Note that A cannot be a constructor as it is
a key redex.

Corollary 38. Let M be a key redex. Suppose M →k N and every sequence of internal reduc-
tions beginning in M is finite. If N is strongly normalizing then M is strongly normalizing.

Proof. Consequence of Lemma 37.

5.2. Families of saturated sets

We begin by defining a measure m. If T is a sort, a kind, a type or a type constructor we
define the measure m(T ) by induction as follows

• m(�t) = 1,

• m(�p) = 1,

• m(∗t) = 1,

• m(∗p) = 1,

• m(p) = 1, if p is a variable,

• m(Πx : A.B) = max(m(A),m(B)) + 1,

• m(κM) = m(κ),
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• m(λx : A.κ) = m(κ),

• m(Ind(X : ∗t){~C}) = maxi(m(Ci(X))) + 1.

Lemma 39. Let A be a sort, a kind, a type or a type constructor. If M is an object then
m(A) = m(A[x := M ]).

Proof. Easy induction with respect to the structure of A.

Lemma 40. Let A, B be two sorts, kinds, types or type constructors such that A =βι B.
Then m(A) = m(B).

Proof. If A is a sort then by Theorem 25 and Generation Lemma the term B is also a sort
and m(A) = 1 = m(B). If A is a kind then by Lemma 27 the term B is also a kind. By
Theorem 25 we have A = Π~x : ~T1.s and B = Π~x : ~T2.s. We proceed by induction with
respect to the length of ~T1. Let n be the length of the vector ~T1. By Theorem 25 the vector
~T2 is also of length n. If n = 0 then A and B are sorts and m(A) = 1 = m(B). If n > 0
then A = Πx : T 1

1 .A1 and B = Πx : T 1
2 .B1 and by Theorem 25 we have T 1

1 =βι T
1
2 . By the

induction hypothesis

m(T 1
1 ) = m(T 1

2 ),
m(A1) = m(B1)

and thus m(A) = m(B).
If A is a type or a type constructor then B is also a type or a type constructor. By

Theorem 25 there exists a term C such that A →∗βι C and B →∗βι C. Using Lemma 39 we
note that if M →βι M

′ then m(M) = m(M ′). Thus

m(A) = m(B) = m(C).

Let Γ be a context. If Γ ` A : T we define the domain of interpretation VΓ(A). Simultane-
ously, for C ∈ VΓ(A) and Γ′ ⊇ Γ, we define the restriction of C to the context Γ′ denoted C|Γ′
such that C|Γ′ ∈ VΓ′(A). The restriction C|Γ′ is the part of interpretation relevant to the
context Γ′. If A is a small term then we define

VΓ(A) = {∅} and ∅|Γ′ = ∅.

If A is a large term then we define VΓ(A) by induction with respect to m(T ). In the definition
we will use the abbreviation

T
Γ
τ = {(Γ′ `M,C) | Γ ⊆ Γ′,Γ′ `M : τ, C ∈ VΓ′(M)}.

The definition of VΓ(A) follows:

• If A is a type, a formula, a kind or a sort then VΓ(A) = SATΓ
A . In this case if C ∈ VΓ(A)

then C|Γ′ = {(Γ′′ `M) ∈ C | Γ′ ⊆ Γ′′}.

• If A is an acceptor of an argument of type τ then VΓ(A) is the set consisting of functions f
with the domain TΓ

τ such that f(Γ′ `M,C) ∈ VΓ′(AM) and

– f(Γ′ `M1, C) = f(Γ′ `M2, C), if M1 =βι M2,
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– f(Γ̂ `M,C)|Γ′ = f(Γ′ `M,C|Γ′), if Γ ⊆ Γ̂ ⊆ Γ′, Γ̂ `M : τ and C ∈ VΓ̂(M).

In this case, if f ∈ VΓ(A) then f |Γ′ is a function with the domain T
Γ′

τ such that
for Γ′′ ⊇ Γ′

f |Γ′(Γ′′ `M,C) = f(Γ′′ `M,C).

Suppose Γ ` M : Ind(X : ∗t){~C} and Ind(X : ∗t){~C} is a large inductive type with n con-
structors.

• If M =βι Constr(k, J) ~N where ~N = (N1, . . . , Nr) then VΓ(M) = {k} ×Πr
i=1VΓ(Ni).

In this case, for C = 〈k, U1, . . . , Uj〉 ∈ VΓ(M) we define C|Γ′ = 〈k, U1|Γ′ , . . . , Uj |Γ′〉.

• Otherwise VΓ(M) = {0}. In this case, if C ∈ VΓ(M) then C|Γ′ = {0}.

Note that the definition of VΓ(A) is correct. If Γ ` A : TA is an acceptor of an argument
of type τ , a term M is an argument of type τ in the context Γ′ ⊇ Γ and Γ′ ` AM : TAM
then we have m(TAM ) < m(TA). Hence VΓ′(AM) is defined before VΓ(A). Similarly, if I is
an inductive type then m(I) is greater than m(Ci) for every type of constructor Ci of I.
By the Church-Rosser property for non-proofs (Theorem 25) if M =βι Constr(n, I) ~N and
M =βι Constr(k, J)~P then n = k and I =βι J , and the sequences ~N , ~P have the same length
and for every i we have Ni =βι Pi. The correctness of the definition for inductive objects
follows from the following lemma.

Lemma 41. If Γ ` A : T and Γ ` B : T1 and A =βι B then

VΓ(A) = VΓ(B).

Proof. Induction with respect to m(T ).

• If A is a sort, a kind, a type or a formula, and A =βι B then

VΓ(A) = SATΓ
A = SATΓ

B = VΓ(B).

• Otherwise the conclusion follows from the induction hypothesis.

For every term A in Γ we define a relation ≤ in VΓ(A). Let f, f ′ ∈ VΓ(A). If VΓ(A) = {∅}
then f ≤ f ′. If VΓ(A) is a family of saturated sets then f ≤ f ′ if and only if f ⊆ f ′. If VΓ(A)
is a family of functions then every function in VΓ(A) has the same domain. We say that f ≤ f ′
if for every a ∈ dom(f) we have f(a) ≤ f ′(a). If VΓ(A) is a family of n-tuples then we say
that f ≤ f ′ if f0 = f ′0 and for every i = 1, . . . , n− 1 we have fi ≤ f ′i .

Lemma 42. Suppose Γ ` A : T . Then the set VΓ(A) is a lattice with respect to ≤.

Proof. We proceed by induction with respect to m(T ).

• If A is a small term then the conclusion is obvious.

• If A is a type, or a formula, a kind then the conclusion follows from Lemma 36.
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• Suppose A is an acceptor of an argument of type τ . Let D ⊆ VΓ(A). We will find the
supremum of the set D. Define a function f with the domain TΓ

τ in the following way:

f(∆ ` a,C) = sup{g(∆ ` a,C) | g ∈ D}
where supX denotes the supremum of a set X. Note that the supremum exists by the
induction hypothesis and thus the function is well defined. It is easy to observe that
f ∈ VΓ(A) and that f = supD.

• If A is an inductive object and D ⊆ VΓ(A) then every C ∈ D is of the form C =
〈k,C1, . . . , Cj〉. Then it is easy to prove that supD = 〈k, supD1, . . . , supDj〉 where
Di = {Ci | 〈k,C1, . . . , Cj〉 ∈ D}.

Lemma 43. If τ is a kind, a type, a formula or a sort and C ∈ VΓ(τ), and Γ′ ⊇ Γ then
C|Γ′ ∈ VΓ′(τ).

Proof. If τ is a type, a formula, a kind, or a sort then VΓ(τ) = SAT∆
τ . Recall that then

C|Γ′ = {(Γ′′ ` M) | Γ′′ ⊇ Γ′ and (Γ′′ ` M) ∈ C}. We prove that C|Γ′ is a saturated set. We
check the four conditions in the definition of a saturated set.

(SAT1) BΓ′
A ⊆ C|Γ′ . It is obvious.

(SAT2) C|Γ′ ⊆ SNΓ′
A . It is obvious.

(SAT3) Let (Γ′′ ` M) ∈ C|Γ′ and Γ′′ ⊆ Γ′′′. Then (Γ′′ ` M) ∈ C. Because C is a saturated
set it also holds that (Γ′′′ `M) ∈ C. But Γ′′′ ⊇ Γ′ and thus (Γ′′′ `M) ∈ C|Γ′ .

(SAT4) Let (Γ′′ ` M ′) ∈ C|Γ′ and Γ′′ ` M ∈ SNΓ′
A and M →k M

′. Then (Γ′′ ` M) ∈ C.
As C is a saturated set it also holds that (Γ′′ `M ′) ∈ C. Thus (Γ′′ `M) ∈ C|Γ′ .

Lemma 44. Let Γ ` A : T and Γ′ ⊇ Γ. If C ∈ VΓ(A) then

C|Γ′(A) ∈ VΓ′(A).

Proof. The proof is by induction with respect to m(T ).

• If A is a type, or a formula, a kind then the conclusion follows from Lemma 43.

• If A is an acceptor of an argument of type τ and f ∈ VΓ(A) then f |Γ′ is the restriction
of f to the domain

{(Γ′′ `M,C) | Γ′′ ⊇ Γ′,Γ′′ `M : τ, C ∈ VΓ′′(M)}.
We have to check the three conditions:

– f |Γ′(Γ′′ `M,C) ∈ VΓ′′(AM), which is obvious;
– if M1 =βι M2 then f |Γ′(Γ′′ ` M1, C) = f(Γ′′ ` M1, C) = f(Γ′′ ` M2, C) =
f |Γ′(Γ′′ `M2, C);

– if Γ ⊆ Γ̂ ⊆ Γ′, Γ̂ ` M : τ then f |Γ′(Γ̂ ` M,C)|Γ′′ = f(Γ̂ ` M,C)|Γ′′ = f(Γ′′ `
M,C|Γ′′) = f |Γ′(Γ′′ `M,C|Γ′′).

• If A is an inductive object and C ∈ VΓ(A) then C = 〈k,C1, . . . , Cj〉. Then C|Γ′ =
〈k,C1|Γ′ , . . . , Cj |Γ′ and the conclusion follows from the induction hypothesis.

Lemma 45. Let Γ ` A : T and Γ′′ ⊇ Γ′ ⊇ Γ, and C ∈ VΓ(A). Then

C|Γ′ |Γ′′ = C|Γ′′ .
Proof. Induction with respect to m(T ).
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Special elements

If A is a term we define the canonical element CanΓ(A) ∈ VΓ(A):

• CanΓ(A) = ∅ if, A is a small term;

• CanΓ(∗t) = SNΓ
∗t ;

• CanΓ(∗p) = SNΓ
∗p ;

• CanΓ(τ) = SNΓ
τ , if τ is a type, or a formula, or a kind;

• CanΓ(A) = λλ(Γ′ `M,C) ∈ TΓ
τ .CanΓ′(AM) if A is an acceptor of an argument of type τ ;

• CanΓ(A) = 〈n,CanΓ( ~N)〉 if A is a large inductive object and A =βι Constr(n, J) ~N ,

• CanΓ(A) = 0 if A is a large inductive object and A is not βι-equal to a term of the form
Constr(n, J) ~N .

Lemma 46. If A and A′ are terms in the context Γ and Γ ` A : T , and Γ ` A′ : T , and
A =βι A

′ then CanΓ(A) = CanΓ(A′).

Proof. Easy induction with respect to m(T ).

Lemma 47. If A is a term in the context Γ and Γ ` A : T then

• CanΓ(A) ∈ VΓ(A),

• if Γ ⊆ Γ′ then CanΓ(A)|Γ′ = CanΓ′(A).

Proof. Easy induction with respect to m(T ).

If A is a term we define the minimal element MinΓ(A) ∈ VΓ(A):

• MinΓ(A) = ∅, if A is a small term;

• MinΓ(∗t) = SNΓ
∗t ;

• MinΓ(∗p) = SNΓ
∗p ;

• MinΓ(τ) =
⋂
SATΓ

τ , if τ is a type, or a formula, or a kind;

• MinΓ(A) = λλ(Γ′ ` M,C) : TΓ
τ .MinΓ′(AM) if A is an acceptor of an argument of

type τ ;

• MinΓ(A) = 〈n, (MinΓ( ~N))〉 if A is a large inductive object and A =βι Constr(n, J) ~N ;

• MinΓ(A) = 0 if A is a large inductive object and A is not βι-equal to a term of the
form Constr(n, J) ~N .

Lemma 48. If A and A′ are terms in the context Γ and Γ ` A : T , and Γ ` A′ : T , and
A =βι A

′ then MinΓ(A) = MinΓ(A′).

Proof. Easy induction with respect to m(T ).

Lemma 49. If A is a term in the context Γ and Γ ` A : T then

• MinΓ(A) ∈ VΓ(A),

• if Γ ⊆ Γ′ then MinΓ(A)|Γ′ = MinΓ′(A).

Proof. Easy induction with respect to m(T ).
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5.2.1. Valuations and appropriate sequences

Let Γ be a context. A constructor substitution of Γ is a function ξ such that for each vari-
able x ∈ dom(Γ) there exist a context Γ′ and terms M , T such that Γ′ ` M : T and
ξ(x) ∈ VΓ′(M). An object substitution is a function ρ such that if (x : T ) ∈ Γ then Γ′ ` ρ(x) : T ′

for a certain context Γ′ and a certain term T ′.
By ρ(A) we denote the term obtained from A by replacing each free variable x in dom(ρ)

with ρ(x).
A constructor valuation is a pair 〈ξ, ρ〉 where ξ is a constructor substitution and ρ is an

object substitution. We say that 〈ξ, ρ〉 satisfies Γ at ∆ if for every pair (x : T ) ∈ Γ we have
∆ ` ρ(x) : ρ(T ) and ξ(x) ∈ V∆(ρ(x)). A constructor valuation for ∆ is a constructor valuation
〈ξ, ρ〉 such that ξ(p) = Can∆(ρ(p)) for every type constructor variable p.

If ξ is a constructor substitution then by ξ|∆′ we denote the substitution such that
ξ|∆′(x) = ξ(x)|∆′ for every x ∈ dom(ξ). If ρ is an object substitution then by ρ;x:=A we
denote an object substitution such that

(ρ;x:=A)(y) =

{
ρ(y), if y 6= x,

A, if y = x.

We use a similar notation for constructor substitutions.

Lemma 50. If Γ ` M : T and 〈ξ, ρ〉 is a constructor valuation satisfying Γ at ∆ then
∆ ` ρ(M) : ρ(T ).

Proof. The proof is by induction with respect to the structure of the derivation Γ ` M : T .
We proceed by cases depending on the the last rule in the derivation.

(Ax) The conclusion is obvious.

(Var) The conclusion is obvious by the assumption.

(Weak) If Γ = (Γ′, x : A) then 〈ξ, ρ〉 satisfies Γ′ at ∆ and the conclusion follows from the
induction hypothesis.

(Conv) The conclusion is obvious.

(Abs) We have

Γ, x : A `M : B Γ ` Πx : A.B : s
Γ ` (λx : A.B) : (Πx : A.B)

By the induction hypothesis

∆ ` (Πx : ρ(A).ρ(B)) : ρ(s).

Moreover 〈(ξ;x:=Can∆(ρ(A))), (ρ;x:=x)〉 is a constructor valuation which satisfies (Γ, x : A)
at (∆, x : ρ(A)) and thus

∆, x : ρ(A) ` ρ(M) : ρ(B).

Hence we get the conclusion.
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(App) We have

Γ `M : Πx : A.B Γ ` N : A
Γ `MN : B[x := N ]

By the induction hypothesis

∆ ` ρ(M) : (Πx:ρ(A).ρ(B)) and ∆ ` ρ(N) : ρ(A).

Then ∆ ` ρ(M)ρ(N) : ρ(B)[x := ρ(N)]. But ρ(B)[x := ρ(N)] = ρ(B[x := N ]) and thus we
get the conclusion.

(Prod) We have

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx:A.B) : s3

By the induction hypothesis ∆ ` ρ(A) : s1. Let

ρ1 = ρ;x:=x and ξ1 = ξ;x:=Can∆(ρ(A)).

Note that 〈ξ1, ρ1〉 is a constructor valuation which satisfies (Γ, x : A) at (∆, x : ρ(A)). Thus
∆, x : ρ(A) ` ρ(B) : s2 and we get the conclusion.

In the remaining cases the conclusion follows immediately from the induction hypothesis.

Let Γ and ∆ be contexts and 〈ξ, ρ〉 be a constructor valuation which satisfies Γ at ∆. Let ~τ
be a sequence of types, kinds, formulas or ∗p in Γ and ~x be a sequence of variables of the same
length. We define an auxiliary notion of an appropriate sequence of arguments for (~x : ~τ)
at 〈ξ, ρ〉 in ∆ by induction with respect to the length p of the sequence ~τ . Simultaneously, we
define a sequence (〈ξi, ρi〉)p−1

i=0 of constructor valuations which we will call a sequence associated
with the appropriate sequence of arguments. In the definition we take ξ−1 = ξ, ρ−1 = ρ and
∆−1 = ∆. An appropriate sequence of arguments is a sequence (Ai)

p−1
i=0 of triples of the form

(∆i, Ni, Ci) such that each ∆i is a context, each Ni is a term and each Ci is a set. Note that
we have Ci = ∅, if Ni is small.

• The empty sequence is an appropriate sequence of arguments for the empty sequence ε
at 〈ξ, ρ〉 in ∆.

• The sequence (Ai)
p−1
i=0 is an appropriate sequence of arguments for (xi : τi)

p−1
i=0 at 〈ξ, ρ〉

in ∆ if and only if (Ai)
p−2
i=0 is an appropriate sequence of arguments for (xi : τi)

p−2
i=0

at 〈ξ, ρ〉 in ∆ and Ap−1 = (∆p−1, Np−1, Cp−1) where

∆p−1 ⊇ ∆p−2, ∆p−1 ` Np−1 : ρp−2(τp−1) and Cp−1 ∈ V∆p−1(Np−1).

In this case

ξp−1 = ξp−2;xp−1 := Cp−1, and ρp−1 = ρp−2;xp−1 := Np−1.
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5.3. The interpretation of terms

For two contexts Γ, ∆ and a constructor valuation 〈ξ, ρ〉 which satisfies Γ at ∆, and a large
term A we define the interpretation of A, denoted [Γ ` A]ξ,ρ,∆, by induction. Keep in mind
that we want to have the property

[Γ ` A]ξ,ρ,∆ ∈ V∆(ρ(A)).

The definition follows:

• [Γ ` �t]ξ,ρ,∆ = SN∆
�t ,

• [Γ ` �p]ξ,ρ,∆ = SN∆
�p ,

• [Γ ` ∗t]ξ,ρ,∆ = SN∆
∗t ,

• [Γ ` ∗p]ξ,ρ,∆ = SN∆
∗p ,

• [Γ ` α]ξ,ρ,∆ = ξ(α), if α is a large variable,

• [Γ ` PQ]ξ,ρ,∆ = [Γ ` P ]ξ,ρ,∆(∆ ` ρ(Q), [Γ ` Q]ξ,ρ,∆) if P and Q are large objects or
type constructors,

• [Γ ` PQ]ξ,ρ,∆ = [Γ ` P ]ξ,ρ,∆(∆ ` ρ(Q), ∅) if P is a large object or a type constructor
and Q is a small object,

• [Γ ` λx : τ.A]ξ,ρ,∆ = λλ(∆′ `M,C) : T∆
ρ(τ).[Γ, x : τ ` A](ξ|∆′ ;x:=C),(ρ;x:=M),∆′

• [Γ ` Πx : τ.B]ξ,ρ,∆ = {(∆′ `M) | ∆ ⊆ ∆′ and ∆′ `M : ρ(Πx : τ.B) and
for every ∆′′ ⊇ ∆′, for every a such that (∆′′ ` a) ∈ [Γ ` τ ]ξ|∆′′ ,ρ,∆′′ ,
for every C ∈ V∆′′(a) we have (∆′′ `Ma) ∈ [Γ, x : τ ` B](ξ|∆′′ ;x:=C),(ρ;x:=a),∆′′)}

• [Γ ` Constr(n, I)]ξ,ρ,∆ = λλ ~X.〈n,U1, . . . , Uk〉 where it is assumed that Cn(I) = Π~x:~T .I
and ~X = (∆i, ai, Ui)

p
i=1 is an appropriate sequence of arguments for (~x : ~T ) at 〈ξ, ρ〉

in ∆

5.3.1. Interpretation of inductive types

The definition of interpretation of inductive types is more complicated than the interpretations
given so far. It is a set of simple sequents which reduce “well”, i.e. if the term reduces by the
key reduction to a term of the form Constr(n,X) ~N then its arguments ~N already belong to
the interpretations of their types. Suppose that the n-th constructor of I is of type Cn(I).
Then Cn(I) = Π~x : ~τ .I and every τj is a type. We would like to have the property:

(∆′ `M) ∈ [Γ ` I]ξ,ρ,∆ ⇔ (if M →∗k Constr(n, I) ~N then (∆′ ` Nj) ∈ [Γ ` τj ]ξj ,ρj ,∆′).

However, if we used that property directly then our definition of interpretation would not be
well-founded. Thus we introduce an auxiliary set Interp(Γ′ ` T )ξ,ρ,∆,X,S , where Γ′ and ∆ are
contexts, X is a variable, S is a saturated set, T is a type in Γ′ and 〈ξ, ρ〉 is a constructor
valuation such that 〈(ξ;X:=S), (ρ;X:=ρ(I))〉 satisfies Γ′ at ∆. The set S is an intended inter-
pretation for the inductive type I and X is a variable representing the type I. The operator
Interp computes the interpretation of (Γ′ ` T ) in an appropriate context and constructor
valuation without referring to the interpretation of I and thus avoiding the vicious circle. It
is defined by induction with respect to the structure of T :
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• if X 6∈ FV (T ) then Interp(Γ′ ` T )ξ,ρ,∆,X,S = [Γ′ ` T ](ξ;X:=S),(ρ;X:=ρ(I)),∆,

• if T = X then Interp(Γ′ ` T )ξ,ρ,∆,X,S = S

• if T = Πx : A.B and X 6∈ A then

Interp(Γ′ ` T )ξ,ρ,∆,X,S = {(∆′ `M) | ∆ ⊆ ∆′ ∧∆′ `M : ρ(Πx : A.B)∧
for every ∆′′ ⊇ ∆′, for every a such that (∆′′ ` a) ∈ [Γ′ ` A]ξ|∆′′ ,ρ,∆′′ ,

for every C ∈ V∆′′(a)
we have(∆′′ `Ma) ∈ Interp(Γ′, x : A ` B)(ξ|∆′′ ;x:=C),(ρ;x:=a;∆′′),X,S|∆′′ )},

The definition of Interp is partial but it suffices to define the interpretation for the inductive
type. Indeed, if T = Π~x : ~τ .X is a type of constructor then X occurs strictly positively in
every τi.

We can now define the interpretation of an inductive type. Let I = Ind(X : ∗t){~C}. Recall
that then V∆(ρ(I)) = SAT∆

ρ(I). We define the interpretation of I in the following way.

[Γ ` I]ξ,ρ,∆ = lfp(FΓ,I,ξ,ρ,∆)

where lfp is the least fixpoint operator and FΓ,I,ξ,ρ,∆ : V∆(ρ(I))→ V∆(ρ(I)) is such that

FΓ,I,ξ,ρ,∆(S) =
(⋂

SAT∆
ρ(I)

)
∪ {(∆′ ` u) ∈ SN∆

ρ(I) |

if ∆′′ ⊇ ∆′ and ∆′′ ` u→∗k Constr(n,X) ~N, and Cn(X) = Π~x : ~T .X

then for every j we have (∆′′ ` Nj) ∈ Interp(Γj ` Tj)ξj ,ρj ,∆′′,X,S|∆′′}

where

Γj = Γ, X : ∗t, (xi : Ti)
j−1
i=1

ξj = ξ|∆′′ ; (xi := Can∆′′(Ni))
j−1
i=1

ρj = ρ; (xi := Ni)
j−1
i=1 .

We have to prove the correctness of the above definition. We will first state some auxiliary
and rather technical lemmas which will later be used to establish correctness of the definition
of interpretation. As we may expect, the correctness proof will be done by induction with
respect to the structure of an interpreted term. The hypotheses in the following lemmas
imitate the induction hypothesis. In the following we say that the interpretation of a term M
in the context Γ depends only on the values of a constructor valuation for the free variables
of M if and only if for every context ∆, for every pair of constructor valuations 〈ξ, ρ〉, 〈ξ′, ρ′〉
which satisfy Γ at ∆ such that for every x ∈ FV (M) we have ρ(x) = ρ′(x) and ξ(x) = ξ′(x)
it holds that

[Γ `M ]ξ,ρ,∆ = [Γ `M ]ξ′,ρ′,∆.

Lemma 51. Let Γ′ ` I : ∗t and let I be an inductive type. Suppose that

1. for each Γ̂ ` Â : T̂ structurally smaller than Γ′ ` I : ∗t, where Â is large, and every
constructor valuation 〈ξ̂, ρ̂〉 satisfying Γ̂ at ∆̂ we have [Γ̂ ` Â]ξ̂,ρ̂,∆̂ ∈ V∆̂(ρ̂(A));

2. C(X) = Π~x : ~τ .X is a type of constructor of I;
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3. τi is a large type;

4. Γ ` τi : ∗t is structurally smaller than the sequent Γ′ ` I : ∗t;

5. ∆ is a context, S ∈ V∆(ρ(I)) and 〈(ξ;X := S), (ρ;X : ρ(I)〉 is a constructor valuation
which satisfies Γ at ∆.

Then Interp(Γ ` τi)ξ,ρ,∆,X,S is well defined.

Proof. Induction with respect to the structure of the derivation of Γ ` τi : ∗t.

Lemma 52. Let Γ ` I : ∗t and let I be an inductive type. Suppose that

1. for each Γ̂ ` Â : T̂ structurally smaller than Γ′ ` I : ∗t, where Â is large, and a con-
structor valuation 〈ξ̂, ρ̂〉 satisfying Γ̂ at ∆̂ we have [Γ̂ ` Â]ξ̂,ρ̂,∆̂ ∈ V∆̂(ρ̂(A));

2. C(X) = Π~x : ~τ .X is a type of constructor of I;

3. τj is a large type, Γj = Γ, X : ∗t, (xi : τi)
j−1
i=1 ;

4. Γj ` τ j : ∗t is structurally smaller than Γ ` I : ∗t;

5. ∆ is a context and 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆ and S ∈ V∆(ρ(I));

6. ∆′ ⊇ ∆, ~N is a vector of terms, for every k ≤ j the pair 〈ξk, ρk〉 is as follows:

ξk = ξ|∆′ ; (xi := Can∆′(Ni))k−1
i=1

ρk = ρ; (xi := Ni)k−1
i=1

and for each k < j we have Γ ` Nk : ρk(τk).

Then Interp(Γj ` τj)ξj ,ρj ,∆′,X,S|∆′ is well defined.

Proof. By Lemma 51 it is enough to prove that 〈(ξj ;X := S|∆′), (ρj ;X := ρ(I))〉 is a con-
structor valuation which satisfies Γj at ∆′.

Let x be a variable in dom(Γj).

• If x ∈ Dom(Γ) then by assumption ξj(x) = ξ|∆′(x) ∈ V∆′(ρ(x)) and

∆ ` ρ(x) : ρ(Γ(x)).

• If x = X, then ∆ ` ρ(I) : ∗t by Lemma 50 and

(ρj ;X := ρ(I))(X) = ρ(I) and S|∆′ ∈ V∆′(ρ(I)).

• If x = xi then

(ρj ;X := I)(xi) = Ni and ∆ ` Ni : (ρj ;X := ρ(I))(τi), and

ξj(xi) = Can∆′(Ni) ∈ V∆′(Ni).

Thus the pair 〈(ξj ;X := S|∆′), (ρj ;X := ρ(I))〉 is a constructor valuation which satisfies Γj

at ∆′.
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Lemma 53. Suppose Γ ` I : ∗t where I is an inductive type, ∆ is a context, 〈ξ, ρ〉 is
a constructor valuation which satisfies Γ at ∆ and S ∈ SAT∆

ρ(I). Then

FΓ,I,ξ,ρ,∆(S) ∈ SAT∆
ρ(I).

Proof. The conclusion follows from the definition of FΓ,I,ξ,ρ,∆(S).

Note that if α is a limit ordinal then Fα(
⋂
SAT∆

ρ(I)) =
⋃
α′<α F

α′(
⋂
SAT∆

ρ(I)) is also
a saturated set because by Lemma 33 the set of saturated sets is closed on arbitrary unions.

Lemma 54. Suppose Γ, ∆ are contexts, I = Ind(X : ∗t){~C} is an inductive type, 〈ξ, ρ〉 is
a constructor valuation which satisfies Γ at ∆, the interpretation S is in V∆(ρ(I)),
Cn(X) = Π~x:~τ .X is a type of the n-th constructor of I, and τj is a large type, and 〈ξj , ρj〉 is
a constructor valuation such that 〈(ξj ;X := S), (ρj ;X := ρ(I))〉 satisfies (Γ, X : ∗t, (xi : τi)

j−1
i=0 )

at ∆. Then
Interp(Γ, X : ∗t, (xi : τi)

j−1
i=0 ` τj)ξj ,ρj ,∆,X,S

is defined and

Interp(Γ, X : ∗t, (xi : τi)
j−1
i=0 ` τj)ξj ,ρj ,∆,X,S = [Γ, X : ∗t, (xi : τi)

j−1
i=0 ` τj ](ξj ;X:=S),(ρj ;X:=ρ(I)),∆.

Proof. Easy induction with respect to the structure of τj .

The following Lemma says that the values ξ(x) for a formula or object variable x (i.e. subset
or large inductive object variable) are irrelevant to the value of [Γ ` τ ]ξ,ρ,∆ for a type or
a type constructor τ . This justifies the choice of values for arguments in the definition of the
interpretation of an inductive type: any choice is equally good.

Lemma 55. Let Γ, ∆ be two contexts and 〈ξ, ρ〉, 〈ξ′, ρ〉 be two constructor valuations which
satisfy Γ at ∆ and differ only in formula or object variables (i.e. ξ(x) = ξ′(x) for all non-
formula and non-object variables). Moreover, suppose for every type constructor variable p
such that Γ ` p : (Π~x : ~τ .∗t) and for any two sequences of arguments

~A1 = (∆i,mi, c
1
i )
r
i=0, ~A2 = (∆i,mi, c

2
i )
r
i=0

appropriate for (~x : ~τ) at 〈ξ, ρ〉 in ∆, we have ξ(p)( ~A1) = ξ′(p)( ~A2). If Γ ` κ : (Π~x : ~τ .∗t) is
a type constructor then for any two sequences of arguments

~B1 = (∆i,Mi, C
1
i )si=0,

~B2 = (∆i,Mi, C
2
i )si=0,

appropriate for (~x : ~τ) at 〈ξ, ρ〉 in ∆, we have

[Γ ` κ]ξ,ρ,∆( ~B1) = [Γ ` κ]ξ′,ρ,∆( ~B2).

Note that if κ is a type then the lemma states that [Γ ` κ]ξ,ρ,∆ = [Γ ` κ]ξ′,ρ,∆.

Proof. Induction with respect to the structure of the term κ.
If κ = p then

[Γ ` κ]ξ,ρ,∆ = ξ(p) = ξ′(p) = [Γ ` κ]ξ′,ρ,∆.
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By the assumption for every two appropriate sequences of arguments
~B1 = (∆i,Mi, C

1
i )si=0,

~B2 = (∆i,Mi, C
2
i )si=0

for (~x : ~τ) at 〈ξ, ρ〉 we have

[Γ ` κ]ξ,ρ,∆( ~B1) = [Γ ` κ]ξ′,ρ,∆( ~B2).

If κ = Πx : τ ′.σ then the conclusion follows from the induction hypothesis.
If κ = Ind(X : ∗t){~C}. then

[Γ ` κ]ξ,ρ,∆ = lfp(FΓ,I,ξ,ρ,∆)

and
[Γ ` κ]ξ′,ρ,∆ = lfp(FΓ,I,ξ′,ρ,∆).

The conclusion follows from the induction hypothesis and Lemma 54.
If κ = λx : σ.κ′ then

[Γ ` κ]ξ,ρ,∆ =

λλ(∆′ ` a,C) : T∆
ρ(σ).[Γ, x : σ ` κ′](ξ|∆′ ;x:=C),(ρ;x:=a),∆′ =

λλ(∆′ ` a,C) : T∆
ρ(σ).[Γ, x : σ ` κ′](ξ′|∆′ ;x:=C),(ρ;x:=a),∆′ =

[Γ ` κ]ξ′,ρ,∆.

By the induction hypothesis and the fact that x is an object variable for every two sequences
of arguments

~B1 = (∆i,Mi, C
1
i )si=0,

~B2 = (∆i,Mi, C
2
i )si=0

appropriate for (~x : ~τ) at 〈ξ, ρ〉 in ∆ we have

[Γ ` κ]ξ,ρ,∆( ~B1) =

[Γ, x : τ ` κ′](ξ|∆1
;x:=C1

1 ),(ρ;x:=M1),∆1
((B1

i )si=1) =

[Γ, x : τ ` κ′](ξ′|∆1
;x:=C2

1 ),(ρ;x:=M1),∆1
((B1

i )si=1) =

[Γ, x : τ ` κ′](ξ′|∆1
;x:=C2

1 ),(ρ;x:=M1),∆1
((B2

i )si=1) =

[Γ ` κ]ξ′,ρ,∆( ~B2).

If κ = κ′N then we have

[Γ ` κ]ξ,ρ,∆ =
[Γ ` κ′]ξ,ρ,∆(∆ ` ρ(N), [Γ ` N ]ξ,ρ,∆) =
[Γ ` κ′]ξ′,ρ,∆(∆ ` ρ(N), [Γ ` N ]ξ′,ρ,∆) =

[Γ ` κ]ξ,ρ,∆.

Then by the induction hypothesis

[Γ ` κ]ξ,ρ,∆( ~B1) =

[Γ ` κ′]ξ,ρ,∆(∆ ` ρ(N), [Γ ` N ]ξ,ρ,∆)( ~B1) =

[Γ ` κ′]ξ′,ρ,∆(∆ ` ρ(N), [Γ ` N ]ξ′,ρ,∆)( ~B2) =

[Γ ` κ]ξ,ρ,∆( ~B2).
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Lemma 56. Suppose that for every Γ′ ` τ ′ : T structurally smaller than Γ ` τ : ∗t and every
constructor valuation 〈ξ′, ρ′〉 which satisfies Γ′ at ∆′ the value of [Γ′ ` τ ′]ξ′,ρ′,∆′ depends only
on the values of ξ′ and ρ′ for variables in FV (τ ′). If S ⊆ S′ then

Interp(Γ ` τ)ξ,ρ,∆,X,S ⊆ Interp(Γ ` τ)ξ,ρ,∆,X,S′ .

Proof. Easy consequence of the definition of the operator Interp.

Lemma 57. Suppose Γ ` I : ∗t and I is an inductive type. Assume that for each Γ′ ` τ ′ : T
structurally smaller than Γ ` I : ∗t and each constructor valuation 〈ξ′, ρ′〉 which satisfies
Γ′ at ∆′ the value of [Γ′ ` τ ′]ξ′,ρ′,∆′ depends only on the values of ξ′ and ρ′ for variables
in FV (τ ′). If S ⊆ S′ then FΓ,I,ξ,ρ,∆(S) ⊆ FΓ,I,ξ,ρ,∆(S′).

Proof. Immediate from Lemma 56.

Lemma 58. Let I be an inductive type. Let Γ, ∆ be two contexts. Suppose for each sequent
Γ′ ` N ′ : T in the derivation of Γ ` I : ∗t, for each context ∆′, and each constructor valuation
〈ξ′, ρ′〉 which satisfies Γ′ at ∆′ it holds that if ∆′ ⊆ ∆′′ then

([Γ′ ` N ′]ξ′,ρ′,∆′)|∆′′ = [Γ′ ` N ′]ξ′|∆′′ ,ρ′,∆′′ .

If 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆ and ∆ ⊆ ∆′ and S ∈ V∆(ρ(I)) then

FΓ,I,ξ,ρ,∆(S)|∆′ = FΓ,I,ξ|∆′ ,ρ,∆′(S|∆′).

Proof. Immediate from Lemma 45: if ∆′ ⊆ ∆′′′ then ξ|∆′ |∆′′′ = ξ|∆′′′ and S|∆′ |∆′′′ = S|∆′′′ .

Lemma 59. Let I be an inductive type. Let Γ, ∆ be two contexts. Suppose that for each
sequent Γ′ ` N ′ : T in the derivation of Γ ` I : ∗t, for each context ∆′, and for each
constructor valuation 〈ξ′, ρ′〉 which satisfies Γ′ at ∆′ if ∆′ ⊆ ∆′′ then

([Γ′ ` N ′]ξ′,ρ′,∆′)|∆′′ = [Γ′ ` N ′]ξ′|∆′′ ,ρ′,∆′′ .

If 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆ and ∆ ⊆ ∆′ then

[Γ ` I]ξ,ρ,∆|∆′ = [Γ ` I]ξ|∆′ ,ρ,∆′ .

Proof. If ∆ ⊇ ∆′ then [Γ ` I]ξ,ρ,∆|∆′ = lfp(FΓ,I,ξ,ρ,∆)|∆′ . But

lfp(FΓ,I,ξ,ρ,∆) =
⋃
α′<α

Fα
′

Γ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I))

for a certain α. To get the conclusion it is enough to prove that for every S ∈ V∆(ρ(I)) we
have

FΓ,I,ξ,ρ,∆(S)|∆′ = FΓ,I,ξ|∆′ ,ρ,∆′(S|∆′).

This follows from Lemma 58.

Lemma 60. Let I be an inductive type. Let Γ,∆ be two contexts. Suppose for each sequent
Γ′ ` N ′ : T in the derivation of Γ ` I : ∗t, for each context ∆′, and for each constructor
valuation 〈ξ′, ρ′〉 which satisfies Γ′ at ∆′ we have

• [Γ′ ` N ′]ξ′,ρ′,∆′ ∈ V∆′(ρ′(T )),
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• if ∆′ ⊆ ∆′′ then
([Γ′ ` N ′]ξ′,ρ′,∆′)|∆′′ = [Γ′ ` N ′]ξ′|∆′′ ,ρ′,∆′′

and the value of [Γ′ ` N ′]ξ′,ρ′,∆′ depends only on the values of ξ′ and ρ′ for variables in FV (N ′).
If 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆ then

• [Γ ` I]ξ,ρ,∆ ∈ V∆(ρ(I)),

• if ∆ ⊆ ∆′ then [Γ ` I]ξ,ρ,∆|∆′ = [Γ ` I]ξ|∆′ ,ρ,∆′ .

Proof. By Lemma 53 and Lemma 57 the operator FΓ,I,ξ,ρ,∆ is a well defined monotone operator
on the complete lattice (see Lemma 36) SAT∆

ρ(I) = V∆(ρ(I)). Hence lfp(FΓ,I,ξ,ρ,∆) exists and
is a saturated set. Thus

[Γ ` I]ξ,ρ,∆ ∈ SAT∆
ρ(I) = V∆(ρ(I)).

If (∆′ ` M) ∈ lfp(FΓ,I,ξ,ρ,∆) then there exists the least number α such that (∆′ ` M) ∈
FαΓ,I,ξ,ρ,∆(

⋂
SAT∆

ρ(I)). Note that α is never a limit ordinal. If α > 0 then by

predΓ,I,ξ,ρ,∆(∆′ `M)

we denote the set Fα′Γ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)) where α′ is the predecessor of α.
We define the set DΓ,I,ξ,ρ,∆ of all approximations of lfp(FΓ,I,ξ,ρ,∆). Let β be the ordinal

number such that F βΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)) = lfp(FΓ,I,ξ,ρ,∆). Then

DΓ,I,ξ,ρ,∆ = {FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)) | α ≤ β}.

5.3.2. Interpretation of elimination terms

In this section we define the interpretation for elimination terms. We have to give this interpre-
tation because we may create large terms using elimination operation. In most type theories
with inductive types one only has to give this interpretation for small inductive types, because
creating large terms from large inductive objects is not allowed. In LNTT with inductive types
we can create large objects by eliminating large inductive objects. It seems that the definition
of interpretation would be simpler if our inductive types were in predicative universe.

In the definition we use an auxiliary notion of smooth union of a set. We begin the section
with the definition and we prove basic properties of this notion.

The smooth union

Let ∆ be a context and A be a large term. We say that the set F is consistent for A at ∆
if for each f ∈ F there exists ∆′ ⊇ ∆ such that f ∈ V∆′(A) and there exists g ∈ F such that
g ∈ V∆(A).

For a set F consistent for A at ∆ we define the smooth union
⊔
F . The smooth union of

a family of sets is the usual union of sets. If A is an acceptor of an argument of type τ then⊔
F is a function with the domain T∆

τ such that

(
⊔
F)(∆ ` a,C) =

⊔
{f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(f)}.
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The smooth union of a set of tuples of the form 〈n,U1, . . . , Uk〉 is the tuple 〈n,U1, . . . ,Uk〉
where Ui =

⊔
{Ui | 〈n,U1, . . . , Uk〉 ∈ F}, for every i.

We will prove some technical lemmas about the smooth unions. The lemmas will later be used
to show the correctness of the definition of interpretation.

Lemma 61. Let ∆ be a context and A be a large term. Let F be a set consistent for A at ∆.
Then ⊔

F ∈ V∆(A).

Proof. We proceed by induction with respect to the definition of V∆(A).

• If A is a sort, a type, a kind or a formula then for every context ∆ it is the case that
V∆(A) = SAT∆

A . We have to prove that⊔
F ∈ SAT∆

A .

The proof is a routine check of the four conditions.

• If A is an acceptor of an argument of type τ then
⊔
F is the function with the domain T∆

τ .
By the definition⊔

F(∆′ ` a,C) =
⊔
{f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′, (∆′ ` a,C|∆̂) ∈ dom(f)}.

Note that if f ∈F , ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(f) then f(∆̂ ` a,C|∆̂) ∈ V∆̂(Aa).
Moreover by the assumption there exists f ∈ F such that f ∈ V∆(A). Thus
f(∆ ` a,C) ∈ V∆(Aa). By the induction hypothesis⊔

{f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(f)} ∈ V∆(Aa).

If a =βι b then
f(∆′ ` a,C|∆̂) = f(∆′ ` b, C|∆̂).

Thus
(
⊔
F)(∆′ ` a,C|∆′) = (

⊔
F)(∆′ ` b, C|∆′).

Now

(
⊔
F)(∆′ ` a,C|∆′)|∆′′

= (
⊔
{f(∆̂ ` a,C|∆′ |∆̂) | f ∈ F , ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆′ |∆̂) ∈ dom(f)})|∆′′

= (
⊔
{f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(f)})|∆′′

=
⊔

({f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′′, (∆̂ ` a,C|∆̂) ∈ dom(f)}

∪ {f(∆̂ ` a,C|∆̂)|∆′′ | f ∈ F ,∆′′ ⊇ ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(f)})

=
⊔

({f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′′, (∆̂ ` a,C|∆̂) ∈ dom(f)}

∪ {f(∆′′ ` a,C∆̂|∆′′) | f ∈ F ,∆
′′ ⊇ ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(f)})

=
⊔

({f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′′, (∆̂ ` a,C|∆̂) ∈ dom(f)}

∪ {f(∆′′ ` a,C|∆′′) | f ∈ F ,∆′′ ⊇ ∆̂ ⊇ ∆′, (∆′′ ` a,C|∆′′) ∈ dom(f)})

=
⊔
{f(∆̂ ` a,C|∆̂) | f ∈ F , ∆̂ ⊇ ∆′′, (∆̂ ` a,C|∆̂) ∈ dom(f)}

= (
⊔
F)(∆′′ ` a,C|∆′′).
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• A is a large inductive object and A =βι Constr(n, J) ~N . Then every f ∈ F has the form
f = 〈n,U1, . . . , Uk〉 and⊔

F = 〈n,
⊔
{π1(f) | f ∈ F}, . . . ,

⊔
{πk(f) | f ∈ F}〉.

By the induction hypothesis ⊔
{πi(f) | f ∈ F} ∈ V∆(Ni)

and thus ⊔
F ∈ V∆(A).

Note that

(
⊔
F)|∆′′ =

⊔
({f ∈ F | f ∈ V∆′′(A)} ∪{f |∆′′ | f ∈ F , f ∈ V∆′(A),∆′′ ⊇ ∆′ ⊇ ∆}

)
.

Lemma 62. Let f ∈ V∆(A) and let F = {f |∆′ | ∆′ ⊇ ∆}. Then⊔
F = f.

Proof. We proceed by induction with respect to the definition of
⊔
F .

• If V∆(A) = SAT∆
A then for every ∆′ ⊇ ∆ it holds that f |∆′ ⊆ f . Then⊔

F =
⋃
F = f.

• If A is an acceptor of an argument of type τ then

(
⊔
F)(∆′ ` a,C)

=
⊔
{g(∆̂ ` a,C|∆̂) | g ∈ F , ∆̂ ⊇ ∆′, (∆̂ ` a,C|∆̂) ∈ dom(g)}

=
⊔
{f |∆′′(∆̂ ` a,C|∆̂) | ∆̂ ⊇ ∆′′ ⊇ ∆′}

=
⊔
{f(∆̂ ` a,C|∆̂) | ∆̂ ⊇ ∆′}

=
⊔
{f(∆′ ` a,C|∆′)|∆̂ | ∆̂ ⊇ ∆′}

= f(∆′ ` a,C|∆′).

• If A is a large inductive object and A =βι Constr(n, J) ~N then for every i⊔
{πi(f |∆′) | ∆′ ⊇ ∆} =

⊔
{πi(f)|∆′ | ∆′ ⊇ ∆} = πi(f).

Thus ⊔
F = f.

Recall the definition of the relation ≤ introduced on page 52.

Lemma 63. Let ∆ and ∆′ be contexts such that ∆ ⊆ ∆′. Let A be a large term in ∆. Suppose
F , F ′ are two sets consistent for A at ∆ such that F ′ ⊆ F . Suppose that for every f ∈ F −F ′
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• if f ∈ V∆̂(A) and ∆′ ⊆ ∆̂ then there exists g ∈ F ′ such that f ≤ g|∆̂;

• if f ∈ V∆̂(A) and ∆̂ ⊆ ∆′ then there exists g ∈ F ′ such that f |∆′ ≤ g.

Then
(
⊔
F)|∆′ = (

⊔
F ′)|∆′ .

Proof. We proceed by induction with respect to the definition of the smooth sum
⊔
F . If A

is a sort, a type, a formula or a kind then
⊔
F is the usual union of sets and the conclusion

is obvious.
Suppose A is an acceptor of an argument of type τ and ∆ ⊆ ∆′. The domains of (

⊔
F)|∆′

and (
⊔
F ′)|∆′ are the same. Let (∆′ ` a,C) be an arbitrary argument in their domain. Then

(
⊔
F)(∆′ ` a,C) =

⊔
F1 where

F1 = {f(∆̂ ` a,C|∆̂) | f ∈ F , (∆̂ ` a,C|∆̂) ∈ dom(f), ∆̂ ⊇ ∆′}

and

(
⊔
F ′)(∆′ ` a,C) =

⊔
F2 where

F2 = {g(∆̂ ` a,C|∆̂) | g ∈ F ′, (∆̂ ` a,C|∆̂) ∈ dom(g), ∆̂ ⊇ ∆′}.

Note that F2 ⊆ F1. If f(∆̂ ` a,C|∆̂) ∈ F1−F2 then f ∈ F−F ′. There exists g ∈ F ′ such that
(∆̂ ` a,C|∆̂) ∈ dom(g) and f(∆̂ ` a,C|∆̂) ≤ g(∆̂ ` a,C|∆̂) . By the induction hypothesis

(
⊔
F1)|∆′ = (

⊔
F2)|∆′

and thus
(
⊔
F)(∆′ ` a,C, ) = (

⊔
F ′)(∆′ ` a,C).

Discussion

We now return to the definition of interpretation for inductive types. The basic property we
want to achieve is preserving iota reduction:

[Γ ` Elim(I,Q,Constr(n, I ′) ~N){~f}]ξ,ρ,∆ = [Γ ` fn~e [C(X), ~N, I,Q, ~f ] ]ξ,ρ,∆.

One should have this property in mind when reading the contents of this section. We can-
not use it directly as the definition of interpretation for elimination terms for two reasons.
First, the definition would be incomplete, we have to define [Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ for
arbitrary object m of type I and not only for m = Constr(n, I ′) ~N . Second, the defini-
tion would not be well founded. The term fn~e [C(X), ~N, I,Q, ~f ] is not necessarily smaller
than the term Elim(I,Q,m){~f}. Moreover, if the constructor Cn(I) has a recursive argu-
ment, say Nl, then in the right hand-side of the definition we would again refer to the value
[Γ ` Elim(I,Q,Nl){~f}]ξ,ρ,∆, which at this point is not yet defined.

The exact definition of interpretation depends on whether the eliminated term is a large
or a small inductive object. For small inductive objects we use an operator G′:

[Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ = G′
Γ,Q, ~f,I,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(m), ∅).
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For large inductive objects we use an operator G:

[Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ = G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(m), [Γ ` m]ξ,ρ,∆).

Both operators take two arguments: an approximation S ∈ DΓ,I,ξ,ρ,∆ of the value [Γ ` I]ξ,ρ,∆
and a pair (∆′ ` a, U) ∈ T∆

ρ(I). The sequent is a result of applying the object substitution ρ
to the eliminated term. In case of the operator G′

Γ,I,Q,~f,ξ,ρ,∆
the value U is always equal

to ∅ because the interpreted term is small. In case of the operator G
Γ,I,Q,~f,ξ,ρ,∆

the value U
is an interpretation of the eliminated term under [− ` −]ξ,ρ,∆ operator. Apart from that
difference, the operators G and G′ work similarly. For simplicity, in the following we only
give proofs for the slightly more complicated operator G. The properties and proofs for the
operator G′ are similar.

We want to define the interpretation [Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆. The important case is
when ρ(m) =βι Constr(n, I ′) ~N . As already said, we want the interpretation to be equal to

[Γ ` fn~e [C(X), ~N, I,Q, ~f ] ]ξ,ρ,∆.

Observe that this interpretation is of the form

[Γ ` fn]ξ,ρ,∆ · ~g (5.1)

where ~g is a certain sequence of arguments. In the actual definition of the interpretation
[Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ we use the notation

g
Γ,I,Q,~f,ξ,ρ,∆

[M,U,C(X), ~N ] or g′
Γ,I,Q,~f,ξ,ρ,∆

[M,C(X), ~N ]

to denote the sequence ~g. We explain the exact meaning of the parameters later. We need
two different notions because the sequences are slightly different if we interpret large or small
inductive type. The intended use of the sequence is to define the operator G′ for arguments
m such that m =βι Constr(n, I) ~N as

G′
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = [Γ ` fn] · g′
Γ,I,Q,ξ,ρ, ~f,∆′

[Constr(n, I) ~N,Cn(X), ~N ].

The operator G will be defined as

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = [Γ ` fn] · g
Γ,I,Q,ξ,ρ, ~f,∆′ [Constr(n, I) ~N,U,Cn(X), ~N ].

Let us first see some examples of what a sequence ~g in (5.1) looks like. The simplest case
is an inductive type with only small, non-recursive arguments. Suppose the types T and S
are small and OR is the disjoint union of T and S:

OR = Ind(X : ∗t){T → X | S → X}.

Consider an inductive objectm = Constr(0, OR)N and its elimination Elim(OR,Q,m){f0 | f1}.
Then we want

[Γ ` Elim(OR,Q,m){f0 | f1}]ξ,ρ,∆ = [Γ ` f0N ]ξ,ρ,∆ = [Γ ` f0]ξ,ρ,∆ (∆ ` ρ(N), ∅)︸ ︷︷ ︸
~g

,
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where the sequence of arguments ~g is as in (5.1). A more complicated example is the type of
natural numbers:

Nat = Ind(X : ∗t){X | X → X}.

We focus our attention on the second constructor because it has a recursive argument. Con-
sider an inductive object m = Constr(1,Nat)N and its elimination Elim(Nat , Q,m){f0 | f1}.
The interpretation of branch f1 is a function which takes an interpretation of the argument and
then the interpretation of the recursive call on this argument, R = Elim(Nat , Q,N){f0 | f1}.
We want

[Γ ` Elim(Nat , Q,m){f0 | f1}]ξ,ρ,∆ = [Γ ` f1NR]ξ,ρ,∆
= [Γ ` f1]ξ,ρ,∆ (∆ ` ρ(N), ∅)(∆ ` ρ(R), [Γ ` R]ξ,ρ,∆)︸ ︷︷ ︸

~g

,

where
[Γ ` R]ξ,ρ,∆ = [Γ ` Elim(Nat , Q,N){f0 | f1}]ξ,(ρ;x:=a),∆′ .

Finally, let us see the most complicated case, with argument which is both recursive and
functional:

Tree = Ind(X : ∗t){X | (Nat → X)→ X}.

Let us consider an elimination term Elim(Tree,Q,m){f0 | f1} with an inductive object
m = Constr(1, T ree)N . Then the recursive call is R = (λx : Nat .Elim(Tree,Q,Nx){f0 | f1})
and

[Γ ` Elim(Tree,Q,m){f0 | f1}]ξ,ρ,∆ = [Γ ` f1NR]ξ,ρ,∆
= [Γ ` f1]ξ,ρ,∆ (∆ ` ρ(N), ∅)(∆ ` ρ(R), [Γ ` R]ξ,ρ,∆)︸ ︷︷ ︸

~g

and the interpretation of R is a function which applies the interpretation operator for an elim-
ination term as follows:

[Γ ` R]ξ,ρ,∆ = λλ(∆′ ` a,C) : T∆
Nat .[Γ ` Elim(Tree,Q,Nx){f0 | f1})](ξ;x:=C),(ρ;x:=a),∆′ .

We see that if Cn(I) has no recursive arguments then ~g is simply the sequence of evaluations
of ~N : under object substitution ρ only (if N is small) and under both object substitution ρ
and the operator [− ` −]−,−,− (if N is large). In fact, in this situation we could have defined
the interpretation as [Γ ` fn~e [C(X), ~N, I,Q, ~f ] ]ξ,ρ,∆. If Cn(I) has a recursive argument Ni

then in ~g we have an evaluation for the recursive call of the elimination operation on Ni.
We will apply the operator G (G′) to compute it. If the argument Ni is both recursive and
functional (i.e. Γ ` Ni : (Π~x : ~t.I)) then its interpretation is also a function.

As already mentioned, in the definition of [Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ we use the notation

g
Γ,I,Q,~f,ξ,ρ,∆

[M,U,C(X), ~N ] or g′
Γ,I,Q,~f,ξ,ρ,∆

[M,C(X), ~N ]

to denote the sequence ~g. In the notation M is a term and ~N is a sequence of terms. We
should think that M = ρ(m) = Constr(n,X) ~N . Then C(X) is a type of the n-th constructor
of I. Finally, U is the interpretation of m.
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Consider the examples given above. For the type OR we have

ρ(m) = Constr(0, OR)ρ(N),
~g = g′

Γ,OR,Q,~f,ξ,ρ,∆
[ρ(m), T → OR︸ ︷︷ ︸

C0(OR)

, ρ(N)] = (∆ ` ρ(N), ∅).

For the type Nat of natural numbers we have

ρ(m) = Constr(1,Nat)ρ(N),

~g = g′
Γ,Nat ,Q, ~f,ξ,ρ,∆

[ρ(m),Nat → Nat︸ ︷︷ ︸
C1(Nat)

, ρ(N)] = (∆ ` ρ(N), ∅), (∆ ` Elim(I,Q, ρ(N)){~f}, R)

where R is an interpretation for the recursive call Elim(I,Q, ρ(N)){~f}. We take

R = G′
Γ,Nat ,Q, ~f,ξ,ρ,∆

(predΓ,I,ξ,ρ,∆(∆ ` ρ(m)))(∆ ` ρ(N))

Observe that the operator G′ is used to obtain the interpretation instead of the operator
[− ` −]ξ,ρ,∆. Why we choose predΓ,I,ξ,ρ,∆(∆ ` ρ(m)) as its first argument will be explained
later.

For the type Tree of trees we have

ρ(m) = Constr(1, T ree)ρ(N),
~g = g′

Γ,T ree,Q,~f,ξ,ρ,∆
[ρ(m), (Nat → Tree)→ Tree︸ ︷︷ ︸

C1(Tree)

, ρ(N)]

= (∆ ` ρ(N), ∅), (∆ ` λx : Nat .Elim(I,Q, ρ(N)x){~f}, R)

where R is an interpretation of the recursive call (λx : Nat .Elim(I,Q, ρ(N)x){~f}). We take

R = λλ(∆′ ` a′, C) : T∆
Nat .G

′
(Γ,x:Nat),T ree,Q,~f,ξ,(ρ;x:=a′),∆

(pred(Γ,x:Nat),I,(ξ;x:=C),(ρ;x:=a′),∆(∆ ` ρ(m)))︸ ︷︷ ︸
approximation of [Γ`Tree]ξ,ρ,∆

(∆′ ` ρ(N)a′, ∅)︸ ︷︷ ︸
recursive argument

.

Observe how we chose the arguments for the operator G′.
We will now define the sequence g′

Γ,I,Q,~f,ξ,ρ,∆
[M,C(X), ~N ] of arguments for the interpre-

tation [Γ ` f ]ξ,ρ,∆ of the branch f . The sequence is defined by simultaneous induction with
respect to the definition of the operator G′ (see page 71). Recall that the type I is a small
inductive type so every type of constructor of I is small, the sequence of arguments ~N consists
of small objects and an interpretation of every Ni is equal to ∅.

• If C(X) = X then
g′

Γ,I,Q,~f,ξ,ρ,∆
[M,C(X), ~N ] = ε

where ε is an empty sequence,

• If C(X) = Πx : T.D(X) and X does not occur in T , and T is a small type, and
~N = N0 :: ~N ′ then

g′
Γ,I,Q,~f,ξ,ρ,∆

[M,C(X), ~N ] = (∆ ` N0, ∅) :: g′
Γ,I,Q,~f,ξ,ρ,∆

[M,D(X), ~N ′].



70

• If C(X) = Πx : T.D(X) and T = Π~y : ~t.X, and ~N = N0 :: ~N ′ then

g′
Γ,I,Q,~f,ξ,ρ,∆

[M,C(X), ~N ] = (∆ ` N0, ∅) :: (∆ ` e,R) :: g′
Γ,I,Q,~f,ξ,ρ,∆

[M,D(X), ~N ′]

with
e = λ~x : ρ(~t).Elim(ρ(I), ρ(Q), N0~x){ρ(~f)}

and R is a function which for an appropriate sequence of arguments (∆i, ai, Ci)ki=1

for (~x : ρ(~t )) at 〈ξ, ρ〉 in ∆ is defined as follows

R((∆i, ai, Ci)ki=1) = G′
(Γ,~x:~t),I,Q,~f,ξk,ρk,∆k

(pred(Γ,~x:~t),I,ξk,ρk,∆k
(∆k `M))(∆k ` N0~a, ∅).

•
(∆ ` m)

•
(∆, a : A1 ` m)

•
(∆, a : A2 ` m)

...

•
. . .

•
•
•
•
•
•

•
•
•

Figure 5.2: Simple sequents and the interpretation of an inductive type (incorrect)

We would like to define the operator G′ so that if m =βι Constr(n, I) ~N and (∆′ ` m) ∈ S
then

G′
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m) = [Γ ` fn]ξ,ρ,∆ · g′Γ,I,Q,~f,ξ,ρ,∆′ [Constr(n, I) ~N,Cn(I), ~N ] (5.2)

and in all other cases we have

G′
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}.

However, there is one problem with this definition. It does not satisfy the property that for
∆ ⊆ ∆′ we have

([Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆)|∆′ = [Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆′ . (5.3)

Suppose m = Constr(n, I) ~N and (∆′ ` m) ∈ [Γ ` I]ξ,ρ,∆′ . Then

[Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆′ = G′
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆′)(∆′ ` m)

= [Γ ` fn]ξ,ρ,∆ · g′Γ,I,Q,~f,ξ,ρ,∆′ [Constr(n, I) ~N,Cn(I), ~N ].

However, we cannot prove that (∆ ` m) ∈ [Γ ` I]ξ,ρ,∆. It is possible that

([Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆)|∆′ = (Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)})|∆′

= Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}.
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The two sets are not equal. This behaviour of the operator G′ is illustrated in Figure 5.2.
Suppose we want to compute the value G′

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆ ` m). The picture shows the set

of simple sequents of the form (∆′ ` m) where ∆′ ⊇ ∆. The sequents are naturally ordered
by the relation ⊆ on contexts, this order is represented in the picture by dotted lines. The
dashed area is the set S. It is a saturated set so it satisfies the property that if (∆′ ` m) is
in the set then so is every (∆′′ ` m) for ∆′′ ⊇ ∆′. Thus a dashed area is a union of “cones”
generated by some sequents of the form (∆′ ` m) (i.e. sets of sequents (∆′′ ` m) such that
∆′′ ⊇ ∆′). In the above definition (5.2) the value G′

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆ ` m) depends only

on whether the sequent (∆ ` m) is in the set S or not. In the picture this is the question
whether a gray circle is inside the dashed area or not. In order to satisfy property (5.3) the

•
(∆ ` m)

•
(∆, a : A1 ` m)

•
(∆, a : A2 ` m)

...

•
. . .

•
•
•
•
•
•

•
•
•

Figure 5.3: Simple sequents and the interpretation of an inductive type (correct)

value G′
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆ ` m) should depend on the relation between the set S and the whole
“cone” generated by (∆ ` m) as illustrated in Figure 5.3.

We have to change a little the definition of interpretation. We will make sure that the
interpretation changes smoothly as the context grows. This is why we need the notion of
a smooth union of a set.

The definition of interpretation for elimination terms

We may now give the definition of interpretation for elimination of a small inductive type.
Recall the abbreviation g′

Γ,I,Q,~f,ξ,ρ,∆
[M,C(I), ~N ] which was introduced on page 69. This

definition depends on the operator G′
Γ,I,Q,~f,ξ,ρ,∆

to be defined below. Recall that the operator

takes two arguments: an approximation S ∈ DΓ,I,ξ,ρ,∆ and a pair (∆′ ` m,U) ∈ T∆
ρ(I). The

value
G′

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U)

is defined as follows.

• If m =βι Constr(j, J) ~N and there exists ∆′′ such that

∆′′ ⊇ ∆′ and (∆′′ ` Constr(j, J) ~N) ∈ S

then
G′

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U) =

⊔
(Base ∪Min)
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where

– Base consists of all values of the form

[Γ ` fj ]ξ|∆′′ ,ρ,∆′′ · g
′
Γ,I,Q,~f,ξ|∆′′ ,ρ,∆′′

[Constr(j, J) ~M,Cj(I), ~M ]

such that ∆′′ ⊇ ∆′, m =βι Constr(j, J) ~M and (∆′′ ` Constr(j, J) ~M) ∈ S.
– Min consists of all values of the form

Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

such that ∆′′ ⊇ ∆′, m =βι Constr(j, J) ~M and (∆′′ ` Constr(j, J) ~M) ∈ T∆
ρ(I) − S.

• Otherwise

G′
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}.

The definition of the operator G′
Γ,I,Q,~f,ξ,ρ,∆

is sound. We will later prove that the set
(Base ∪Min) is consistent. In every recursive call to the operator (compare the definition
of the sequence g′) the first argument is smaller than the argument for which we are defining
the value. Thus the operator is in fact defined by induction with respect to the ordering
in DΓ,I,ξ,ρ,∆.

If I is a small inductive type then we define [Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆ in the following
way

[Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆ = G′
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(M), ∅).

The definition of interpretation for elimination for large inductive types

If I is a large inductive type the definition has to be adjusted accordingly. The only
thing that really changes is the definition of the sequence ~g′. We take into account the fact
that a large inductive object has its own set interpretation which has to be passed to the
interpretation of the branch.

Let us first see an example. Consider the type

List = Ind(X : ∗t){X | (T → ∗t)→ X → X}.

Suppose we want to find the interpretation for the term Elim(List,Q, cons A nil){~f}. Observe
that

Elim(List,Q, cons A nil){~f} →ι f1 A Elim(List,Q,nil){~f}.

Suppose that ρ(cons A nil) = cons A′ nil and The interpretation of the term (cons A nil) is
a triple U = 〈1, a, b〉. The sequence of arguments is equal to A′ :: nil. Then

g
Γ,I,Q,~f,ξ,ρ,∆′′ [cons A′ nil, 〈1, a, b〉, Cj(I), A′ :: nil] =

(∆ ` A′, a), (∆ ` nil, b),

(∆ ` Elim(I,Q, nil){~f}, G
Γ,List,Q,~f,ξ,ρ,∆

(predΓ,List,ξ,ρ,∆(∆ ` cons A nil))(∆ ` nil, b)).
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The interpretation of an argument is an appropriate projection of the interpretation U =
〈m, ~U〉 of the eliminated term. We define

g
Γ,I,Q,~f,ξ,ρ,∆

[M, 〈m, ~U〉, C(X), ~N ]

by simultaneous induction with the definition of the operator G
Γ,I,Q,~f,ξ,ρ,∆

as follows.

• If C(X) = X then
g

Γ,I,Q,~f,ξ,ρ,∆
[M,U,C(X), ~N ] = ε

where ε is an empty sequence.

• If C(X) = Πx : T.D(X), ~N = N0 :: ~N ′, U = 〈m, ~U〉 and ~U = U0 :: ~U ′, X 6∈ FV (T ) and
T is a large type then

g
Γ,I,Q,~f,ξ,ρ,∆

[M,U,C(X), ~N ] = (∆ ` N0, U0) :: g
Γ,I,Q,~f,ξ,ρ,∆

[M, 〈m, ~U ′〉, D(X), ~N ′].

• If C(X) = Πx : T.D(X), ~N = N0 :: ~N ′ and X ∈ FV (T ) and T = Π~x : ~t.I then

g
Γ,I,Q,~f,ξ,ρ,∆

[M, ~U,C(X), ~N ] =

(∆ ` N0, U0) :: (∆ ` e,R) :: g
Γ,I,Q,~f,ξ,ρ,∆

[M, 〈m, ~U ′〉, D(X), ~N ′]

with
e = λ~x : ρ(~t).Elim(ρ(I), ρ(Q), N0~x){ρ(~f)},

and R is a function which for an appropriate sequence of arguments (∆i, ai, Ci)ki=1

for (~x : ~t) at 〈ξ, ρ〉 in ∆ is defined as follows

R((∆i, ai, Ci)ki=1) = G
(Γ,~x:~t),I,Q,~f,ξk,ρk,∆k

(pred(Γ,~x:~t),I,ξk,ρk,∆k
(∆k `M))

(∆k ` N0~x, U0(∆i, ai, Ci)ki=1).

We will define the interpretation using the operator G
Γ,I,Q,~f,ξ,ρ,∆

. Recall that the operator

takes two arguments: an approximation S ∈ DΓ,I,ξ,ρ,∆ and a pair (∆′ ` m,U) ∈ T∆
ρ(I). The

value
G

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U)

is defined as follows

• If π1(U) = j and there exists J , ~N , ∆′′ ⊇ ∆′ such that m =βι Constr(j, J) ~N and
(∆′ ` Constr(j, J) ~N) ∈ S then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) =
⊔

(Base ∪Min)

where

– Base consists of all values of the form

[Γ ` fj ]ξ|∆′ ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(j, J) ~M,U,Cj(I), ~M ]

such that ∆′′ ⊇ ∆′, m =βι Constr(j, J) ~M and (∆′′ ` Constr(j, J) ~M) ∈ S
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– Min consists of all values of the form

Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

such that ∆′′ ⊇ ∆′, m =βι Constr(j, J) ~M and

(∆′′ ` Constr(j, J) ~M) ∈ T∆
ρ(I) − S.

• Otherwise

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

If I is a large inductive type then we define:

[Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆ = G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(M), [Γ `M ]ξ,ρ,∆).

In the following the abbreviation

g
Γ,I,Q,~f,ξ,ρ,∆

[M,U,Cn(I), (Ni)k−1
i=0 ],

will denote the subsequence of g
Γ,I,Q,~f,ξ,ρ,∆

[M,U,Cn(I), ~N ] associated with the first k elements
of ~N . Observe that g

Γ,I,Q,~f,ξ,ρ,∆
[M,U,Cn(I), (Ni)k−1

i=0 ] is a sequence of pairs (∆i ` ai, Ci)k−1
i=0 .

We will use the notation
g1

Γ,I,Q,~f,ξ,ρ,∆
[M,U,Cn(I), (Ni)k−1

i=0 ]

for the sequence consisting of terms (ai)k−1
i=0 .

We want to prove that the definition of interpretation is correct, i.e.

[Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ ∈ V∆(ρ(Elim(I,Q,m){~f})).

We will first prove that every element of the set Base ∪Min is in V∆′(ρ(Elim(I,Q,m){~f}))
for an appropriate ∆′. In particular, we will show it for elements of the form

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), ~N ].

For this we need an auxiliary fact: that every application of the form

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−1

i=0 ]

is correct.

Lemma 64. Suppose

1. Γ ` I : ∗t and I is a large inductive type, Cn(I) = Π~x : ~T .I;

2. Γ ` fn : 4{Cn(I), Q,Constr(n, I)} and [Γ ` fn]ξ,ρ,∆ ∈ V∆(ρ(fn)),

3. Constr(n, J) ~N =βι m for m such that ∆ ` m : ρ(I);

4. U ∈ V∆(Constr(n, J) ~N);
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5. for every context Γ′ ⊇ Γ, for every constructor valuation 〈ξ′, ρ′〉 which satisfies Γ′ at ∆′,
if S = predΓ′,I,ξ′,ρ′,∆′(∆′ ` Constr(n, J) ~N) then for every term u such that ∆′′ ` u : ρ(I)
for every C ∈ V∆′′(u) we have

G
Γ′,I,Q,~f,ξ′,ρ′,∆′(S)(∆′′ ` u,C) ∈ V∆′′(Elim(ρ′(I), ρ′(Q), u){ρ′(~f)});

6. k is a natural number at most equal to the length of the sequence ~N .

Then it holds that

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−1

i=0 ]

∈ V∆(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), (Ni)k−1
i=0 ]).

Proof. We proceed by induction with respect to k.
If k = 0 then the sequence g

Γ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)

k−1
i=0 ] is empty and the

conclusion follows from the assumption.
Suppose k > 0 and the conclusion holds for every k′ < k. We proceed by cases depending

on Nk−1. We only consider the more complex case: when Nk−1 is a recursive argument. The
case for non-recursive argument is similar but simpler. Then Nk−1 is of type Π~x : ~τ .I. By the
induction hypothesis

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−2

i=0 ]

∈ V∆(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), (Ni)k−2
i=0 ]).

By the definition of 4{Cn(I), Q,Constr(n, I)} and the definition of V∆(ρ(fn)) we know that

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−2

i=0 ]

is a function with the domain

{(∆′ `M,C) | ∆′ ⊇ ∆,∆′ `M : (Π~x : ρ(~τ).ρ(I)), C ∈ V∆′(M)}

such that

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−2

i=0 ](∆′ `M,C)

∈ V∆(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), (Ni)k−2
i=0 ]M).

Observe that ∆ ` Nk−1 : ρ(Π~x : ~τ .I), ∆ ⊆ ∆, Uk−1 ∈ V∆(Nk−1). Thus

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−2

i=0 ](∆ ` Nk−1, Uk−1)

∈ V∆(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), (Ni)k−2
i=0 ]Nk−1).

By the definition of V∆(ρ(fn))

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−2

i=0 ](∆ ` Nk−1, Uk−1)
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is a function with the domain

{(∆′ `M,C) | ∆′ ⊇ ∆,∆′ `M : (Π~x : ρ(~τ).ρ(Q)(Nk−1~x)), C ∈ V∆′(M)}

such that

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−2

i=0 ](∆ ` Nk−1, Uk−1)(∆′ `M,C)

∈ V∆(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), (Ni)k−2
i=0 ]Nk−1M).

By assumption that Nk−1 is of type Π~x : ~τ .I we get

∆ ` λ~x : ρ(~τ).Elim(ρ(I), ρ(Q), Nk−1~x){ρ(~f)} : (Π~x : ρ(~τ).ρ(Q)(Nk−1~x)).

Suppose C is a function which for any sequence of arguments (∆i, ai, Ci)
p
i=0 appropriate

for (~x : ~τ) at 〈ξ, ρ〉 in ∆p is defined as follows:

C((∆i, ai, Ci)i) = G
(Γ,~x:ρ(~τ)),I,Q,~f,ξp,ρp,∆p

(pred(Γ,~x:~τ),I,ξp,ρp,∆p
(∆p ` Constr(n, J) ~N))

(∆ ` Nk−1~a, Uk−1(∆i, ai, Ci)
p
i=0).

Then by the assumption 5

C ∈ V∆(λ~x : ρ(~τ).Elim(ρ(I), ρ(Q), Nk−1~x){ρ(~f)}).

Thus

[Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[Constr(n, J) ~N,U,Cn(I), (Ni)k−1

i=0 ]

∈ V∆(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), (Ni)k−1
i=0 ]).

Lemma 65. The set (Base ∪Min) is consistent for Elim(ρ(I), ρ(Q),m){ρ(~f)} at ∆.

Proof. Recall that the set is consistent for A at ∆ if for each h ∈ F there exists ∆′ ⊇ ∆ such
that h ∈ V∆′(A) and there exists h′ ∈ F such that h′ ∈ V∆(A).

Let h ∈ (Base ∪Min). If h ∈ Base then by Lemma 64

h ∈ V∆′(ρ(fn)·g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), ~N ]) = V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

If h ∈ Min then by Lemma 49 we have h ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}). In both cases
h ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Now we prove that there exists h′ ∈ (Base ∪Min) such that

h′ ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Case 1: If m =βι Constr(j, J) ~N and (∆′ ` Constr(j, J) ~N) ∈ S, take

h′ = [Γ ` fn]ξ,ρ,∆′ · gΓ,I,Q,~f,ξ,ρ,∆′ [Constr(n, J) ~N,U,Cn(I), ~N ].

We know that h′ ∈ Base and by Lemma 64 we have

h′ ∈ V∆′(ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), ~N ])

= V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).
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Case 2: Otherwise take

h′ = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Then h′ ∈Min and by Lemma 49 we have h′ ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Lemma 66. Let all assumptions of Lemma 64 hold. In addition assume that S ∈ DΓ,I,ξ,ρ,∆.
Then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Proof. If S ∈ DΓ,I,ξ,ρ,∆ then there exists α such that S = FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)). We proceed
by induction with respect to α. There are two cases.
Case 1: If π1(U) = n and there do not exist J , ~N and ∆′′ ⊇ ∆′ such that

m =βι Constr(n, J) ~N and (∆′′ ` Constr(n, J) ~N) ∈ S

then
G

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

By Lemma 49

Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}) ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

Note that if α = 0 this is the only case which is possible.

Case 2: If π1(U) = n, m =βι Constr(n, J) ~N and there exists ∆′′ ⊇ ∆′ such that

(∆′′ ` Constr(n, J) ~N) ∈ S

then
G

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U) =

⊔
F ,

where F = Base ∪Min as in the definition of G
Γ,I,Q,~f,ξ,ρ,∆

. We will use Lemma 61 to prove
that ⊔

F ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}.

We have to show two things:

1. for every f ∈ F there exists ∆′′ such that f ∈ V∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)},

2. there exists f ∈ F such that f ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}.

We show the first property. If f ∈ F then there are two possibilities. The first one
is f = [Γ ` fn]ξ,ρ,∆′′ · gΓ,I,Q,~f,ξ|∆′′ ,ρ,∆′′

[Constr(n, J) ~N,U,Cn(I), ~N ]. By Lemma 64 and the
induction hypothesis we have

[Γ ` fn]ξ,ρ,∆′′ · gΓ,I,Q,~f,ξ|∆′′ ,ρ,∆′′
[Constr(n, J) ~N,U,Cn(I), ~N ]

∈ V∆′′(ρ(fn) · g1
Γ,I,Q,~f,ξ|∆′′ ,ρ,∆′′

[Constr(n, J) ~N,U,Cn(I), ~N ])).

But

ρ(fn) · g1
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, J) ~N,U,Cn(I), ~N ] =βι Elim(ρ(I), ρ(Q),Constr(n, J) ~N){ρ(~f)}

=βι Elim(ρ(I), ρ(Q),m){ρ(~f)}
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and by Lemma 41

V∆′′(ρ(fn) · g1
Γ,I,Q,~f,ξ|∆′′ ,ρ,∆′′

[U,Cn(I), ~N ]) = V∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Thus
f ∈ V∆(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

The other possibility is that f = Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)}). By Lemma 49 indeed

Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)}) ∈ V∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

The second property is easy to observe. Either

Min∆′(Elim(ρ(I), ρ(Q),Constr(n, J) ~N){ρ(~f)}) ∈ F

or
[Γ ` fn]ξ,ρ,∆′ · gΓ,I,Q,~f,ξ|∆′ ,ρ,∆′

[Constr(n, J) ~N,U,Cn(I), ~N ] ∈ F .

Therefore by Lemma 61 we have proved⊔
F ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

and thus
G

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U) ∈ V∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Lemma 67. Suppose Γ, and ∆ are contexts and Γ ⊆ Γ′. Suppose

1. Γ ` I : ∗t and I is a large inductive type;

2. Γ `M : I;

3. Γ ` Elim(I,Q,M){~f} : QM ;

4. 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆.

In addition suppose that for each sequent Γ′ ` N ′ : T in the derivation of

Γ ` Elim(I,Q,M){~f} : QM

and for each constructor valuation 〈ξ′, ρ′〉 which satisfies Γ′ at ∆′ we have

5. [Γ′ ` N ′]ξ′,ρ′,∆′ ∈ V∆′(ρ′(T ));

6. if ∆′ ⊆ ∆′′ then ([Γ′ ` N ′]ξ′,ρ′,∆′)|∆′′ = [Γ′ ` N ′]ξ′|∆′′ ,ρ′,∆′′;

7. the value of [Γ′ ` N ′]ξ′,ρ′,∆′ depends only on the values of ξ′ and ρ′ for variables
in FV (N ′).

Then
([Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆)|∆′ = [Γ ` Elim(I,Q,M){~f}]ξ|∆′ ,ρ,∆′ .
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Proof. Let m = ρ(M). Then

([Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆)|∆′ = (G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` m, [Γ `M ]ξ,ρ,∆))|∆′

and

[Γ ` Elim(I,Q,M){~f}]ξ|∆′ ,ρ,∆′ = G
Γ,I,Q,~f,ξ|∆′ ,ρ,∆′

([Γ ` I]ξ|∆′ ,ρ,∆′)(∆
′ ` m, [Γ `M ]ξ|∆′ ,ρ,∆′).

There are two cases.
Case 1: π1([Γ ` M ]ξ,ρ,∆) = n and m =βι Constr(j, J) ~N and there exists ∆′′ ⊇ ∆′ such that
(∆′′ ` Constr(j, J) ~N) ∈ [Γ ` I]ξ,ρ,∆. Then

(G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(M), [Γ `M ]ξ,ρ,∆))|∆′ = (
⊔
F1)|∆′

where
F1 = (Base1 ∪Min1)

and
G

Γ,I,Q,~f,ξ|∆′ ,ρ,∆′
([Γ ` I]ξ|∆′ ,ρ,∆′)(∆

′ ` ρ(M), [Γ `M ]ξ|∆′ ,ρ,∆′) =
⊔
F2

where F2 = Base2 ∪Min2. By the assumption

[Γ `M ]ξ|∆′ ,ρ,∆′ = ([Γ `M ]ξ,ρ,∆)|∆′

and
[Γ ` I]ξ|∆′ ,ρ,∆′ = ([Γ ` I]ξ,ρ,∆)|∆′ .

Thus π1([Γ ` M ]ξ|∆′ ,ρ,∆′) = π1(([Γ ` M ]ξ,ρ,∆)|∆′) = n. Moreover m =βι Constr(j, J) ~N and
there exists ∆′′ ⊇ ∆′ such that

(∆′′ ` Constr(j, J) ~N) ∈ [Γ ` I]ξ|∆′ ,ρ,∆′ = ([Γ ` I]ξ,ρ,∆)|∆′ .

It is easy to observe that F1, F2 satisfy the assumption of Lemma 63. Thus

(
⊔
F1)|∆′ =

⊔
F2.

Case 2: Otherwise π1([Γ ` M ]ξ,ρ,∆) 6= n or m 6=βι Constr(j, J) ~N or there does not exist
∆′′ ⊇ ∆′ such that (∆′′ ` Constr(j, J) ~N) ∈ [Γ ` I]ξ,ρ,∆. Then

(G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` m, [Γ `M ]ξ,ρ,∆))|∆′

= (Min∆(Elim(ρ(I), ρ(Q),m){ρ(~f)}))|∆′ = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

But then as well π1([Γ ` M ]ξ|∆′ ,ρ,∆′) 6= n or m 6=βι Constr(j, J) ~N or there does not exist
∆′′ ⊇ ∆′ such that (∆′′ ` Constr(j, J) ~N) ∈ [Γ ` I]ξ|∆′ ,ρ,∆′ . Thus

G
Γ,I,Q,~f,ξ|∆′ ,ρ,∆′

([Γ ` I]ξ|∆′ ,ρ,∆′)(∆
′ ` m, [Γ `M ]ξ|∆′ ,ρ,∆′)

= Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}).

Hence indeed

(G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` m, [Γ `M ]ξ,ρ,∆))|∆′

= G
Γ,I,Q,~f,ξ|∆′ ,ρ,∆′

([Γ ` I]ξ|∆′ ,ρ,∆′)(∆
′ ` m, [Γ `M ]ξ|∆′ ,ρ,∆′).
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Corollary 68. Under the assumptions of Lemma 67 we have

• [Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆ ∈ V∆(ρ(Elim(I,Q,M){~f})),

• ([Γ ` Elim(I,Q,M){~f}]ξ,ρ,∆)|∆′ = [Γ ` Elim(I,Q,M){~f}]ξ|∆′ ,ρ,∆′ .

Proof. It follows from Lemma 66 and Lemma 67.

Lemma 69. If (∆ ` ρ(Constr(n, I) ~N)) ∈ [Γ ` I]ξ,ρ,∆ then

[Γ ` Elim(I,Q,Constr(n, I) ~N){~f}]ξ,ρ,∆
= [Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆

[ρ(Constr(n, I) ~N), [Γ ` Constr(n, I) ~N ]ξ,ρ,∆, Cn(I), ~N ].

Proof. By the definition of interpretation we have

[Γ ` Elim(I,Q,Constr(n, I) ~N){~f}]ξ,ρ,∆ =

G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(Constr(n, I) ~N), [Γ ` Constr(n, I) ~N ]ξ,ρ,∆).

Then for U = [Γ ` Constr(n, I) ~N ]ξ,ρ,∆ we have

G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(Constr(n, I) ~N), U) =
⊔

(Base ∪Min)

where Base and Min are as in the definition of the operator G
Γ,I,Q,~f,ξ,ρ,∆

. Let F be the set
of all values of the form(

[Γ ` fj ]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆
[ρ(Constr(n, I) ~N), [Γ ` Constr(n, I) ~N ]ξ,ρ,∆, Cn(I), ~N ]

)
|∆′

where ∆′ ⊇ ∆. By the Church-Rosser property and the definition of the set V∆(ρ(fj)) it is
easy to observe that F = Base. Moreover, if f ∈ Min then there exists h ∈ F such that
f ≤ h. Lemma 63 implies that ⊔

(Base ∪Min) =
⊔
F

The conclusion is a consequence of Lemma 62.

5.3.3. Interpretation of inductive predicates

In this section we give the interpretation of inductive predicates. The interpretation is a func-
tion which takes an appropriate sequence of arguments (depending on arity) and returns a set
of simple sequents. Only sequents which behave correctly under all possible eliminations are
in the set: we consider all possible targets of elimination Q together with their interpretations
and all possible branches for this target. We expect that under all such eliminations the term
in question is an element of the interpretation of Q. Suppose A = Π~x : ~τ .∗p. We use an
abbreviation I = Ind(X : A){~C}. We define the interpretation for an inductive formula as
the least fixpoint of a certain operator HΓ,I,ξ,ρ,∆ : V∆(ρ(I))→ V∆(ρ(I)):

[Γ ` I]ξ,ρ,∆ = lfp(HΓ,I,ξ,ρ,∆).
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The value HΓ,I,ξ,ρ,∆(S) is a function which takes an appropriate sequence of arguments
(Σi, ui, Ui)ni=1 for (~x : ~τ) at 〈ξ, ρ〉 in ∆; if the vector ~τ is empty then Σ0 will denote the
context ∆. The value is the union of two sets:

HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) = (
⋂
SATΣn

ρ(I)~u) ∪ hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1)

where hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) consists of simple sequents (∆′ ` m) ∈ SNΣn
ρ(I)~u such that

for every context ∆′′ and every term J such that (∆′′ ` J) ∈ SNΣn
ρ(A) and J =βι ρ(I),

for every context ∆′′′ and every term Q such that (∆′′′ ` Q) ∈ [Γ ` A]ξ|∆′′ ,ρ,∆′′ ,

for every P ∈ V∆′′′(Q), ,

for every context ∆′′′′ and for every vector ~f such that

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′′ ;X:=S|∆′′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′′

we have (∆′′′′ ` Elim(J,Q, ~u,m){~f}) ∈ P ((Σi, ui, Ui)ni=1).

The simple sequents in hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) are in the set SNΣn
ρ(I)~u, not SN

Σn
ρ(I~u)

because the intended use of the operator HΓ,I,ξ,ρ,∆ is for sequents already interpreted by ρ.
For example we have

[Γ ` Iu1]ξ,ρ,∆ = lfp(HΓ,I,ξ,ρ,∆)(∆ ` ρ(u1), [Γ ` u1]ξ,ρ,∆).

We prove that the definition of interpretation is correct, that is that the fixpoint actually
exists. First we state an auxiliary lemma.

Lemma 70. Let ∆ be a context and M , M ′, I, Q, ~u, ~f be terms such that (∆ `M) ∈ SN∆
I~u

and (∆ ` Elim(I,Q, ~u,M){~f}) ∈ SN∆
Q~u. If M

′ →k M then

(∆ ` Elim(I,Q, ~u,M ′){~f}) ∈ SN∆
Q~u.

Proof. It follows from Corollary 38.

We prove that the operator HΓ,I,ξ,ρ,∆ is well defined.

Lemma 71. Suppose Γ and ∆ are two contexts, I = Ind(X : A){~C} is an inductive predicate
in Γ and 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆. If S ∈ V∆(ρ(I)) then

HΓ,I,ξ,ρ,∆(S) ∈ V∆(ρ(I)).

Proof. Let S ∈ V∆(ρ(I)). Suppose A = Π~x : ~τ .∗p and ~τ is a vector of length n and
(Σi, ui, Ui)ni=1 is an appropriate sequence of arguments for (~x : ~τ) at 〈ξ, ρ〉 in ∆. We will
show that

HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) ∈ SATΣn
ρ(I)~u.

We have to prove the four conditions in the definition of a saturated set. The conditions
(SAT1), (SAT2) and (SAT3) are straightforward. We only show the condition (SAT4).

Suppose (∆′ ` M) ∈ HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1), M ′ →k M and (∆′ ` M ′) ∈ SN∆
ρ(I)~u.

We will prove that
(∆′ `M ′) ∈ HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1).
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There are two cases.
Case 1: (∆′ ` M) ∈

⋂
SATΣn

ρ(I)~u. Then (∆′ ` M ′) ∈ HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) as⋂
SATΣn

ρ(I)~u is saturated.
Case 2: (∆′ ` M) 6∈

⋂
SATΣn

ρ(I)~u. We have (∆′ ` M) ∈ hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1). We will
prove that (∆′ `M ′) ∈ hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1). Note that (∆′ `M) ∈ SNΣn

ρ(I)~u. Take

• a context ∆′′ and a term J such that (∆′′ ` J) ∈ SN∆′

ρ(A) and J =βι ρ(I)

• a context ∆′′′ and a term Q such that (∆′′′ ` Q) ∈ [Γ ` A]ξ|∆′′ ,ρ,∆′′

• an interpretation P ∈ V∆′′′(Q)

• a context ∆′′′′ and for every i = 1, . . . n take a term fi such that

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′′ ;X:=S|∆′′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′′

The assumption (∆′ `M) ∈ hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) implies that

(∆′′′′ ` Elim(J,Q, ~u,M){~f}) ∈ P ((Σi, ui, Ui)ni=1).

We also have
Elim(J,Q, ~u,M ′){~f} →k Elim(J,Q, ~u,M){~f}.

By Lemma 70 we have (∆′′′′ ` Elim(J,Q, ~u,M ′){~f}) ∈ SN∆′′′′

ρ(Q)~u. As P ((Σi, ui, Ui)ni=1) is
a saturated set we get

(∆′′′′ ` Elim(J,Q, ~u,M ′){~f}) ∈ P ((Σi, ui, Ui)ni=1).

Hence indeed it holds that (∆′ ` M ′) ∈ HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1). By the definition of
HΓ,I,ξ,ρ,∆ it is easy to observe that the remaining conditions in the definition of V∆(ρ(I)) are
satisfied.

We want to prove that the operator is monotone. First we show that interpretation of branches
are antimonotone.

Lemma 72. Suppose that

1. A = Π~x : ~τ .∗p,

2. (Γ, q : A,X : A,Γ′) and ∆ are contexts,

3. I is an inductive predicate in Γ and J =βι ρ(I),

4. S, S′ ∈ V∆(J),

5. ∆ ` Q : A and P ∈ V∆(Q),

6. 〈(ξ;X := S′; q := P ), (ρ;X := J ; q := Q)〉 and 〈(ξ;X := S; q := P ), (ρ;X := J ; q := Q)〉
are constructor valuations which satisfy (Γ, q : A,X : A,Γ′) at ∆.

7. the interpretation of any termM which occurs in the derivation of Γ ` I : A depends only
on the values of a constructor valuation for the free variables of M (recall the definition
on page 58.);
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8. C(X) is a type of constructor of I.

If S ≤ S′ (the definition of the relation ≤ was given on page 52) then

[Γ, q : A,X : A,Γ′ ` 4{C(X), q}](ξ;X:=S′;q:=P ),(ρ;X:=J ;q:=Q),∆

⊆ [Γ, q : A,X : A,Γ′ ` 4{C(X), q}](ξ;X:=S;q:=P ),(ρ;X:=J ;q:=Q),∆.

Proof. We will use the abbreviations

Γ̂ = Γ, q : A,X : A,Γ′ and ρ̂ = ρ;X := J ; q := Q,

ξ̂′ = ξ;X := S′; q := P and ξ̂ = ξ;X := S; q := P.

We proceed by induction with respect to the definition of 4{C(X), q}.

• C(X) = X~t′. We consider the case when every t′i is a large object, otherwise the proof
is similar. Then 4{X~t′, q} = q~t′ and

[Γ̂ ` 4{X~t′, q}]ξ̂′,ρ̂,∆ = P ((Σi, ui, U
′
i)
n
i=1)

and
[Γ̂ ` 4{X~t′, q}]ξ̂,ρ̂,∆ = P ((Σi, ui, Ûi)ni=1)

where ~Σ, ~u, ~U , ~̂U are vectors such that for every i:

Σi = ∆, and ui = ρ̂(t′i),

U ′i = [Γ ` t′i]ξ̂′,ρ̂,∆ and Ûi = [Γ ` t′i]ξ̂,ρ̂,∆.

Because X, q 6∈ FV (ti) we have ~U ′ = ~̂
U. Thus

[Γ̂ ` 4{X~t′, q}]ξ̂′,ρ̂,∆ = P ((Σi, ui, U
′
i)ni=1) = P (Σi, ui, Ûi)ni=1) = [Γ̂ ` 4{X~t′, q}]ξ̂,ρ̂,∆.

• C(X) = Πx : t.D(X) and X 6∈ FV (t). Then 4{Πx : t.D(X), q} = Πx : t.4{D(X), q}.
Suppose

(∆′ `M) ∈ [Γ̂ ` 4{Πx : t.D(X), q}]ξ̂′,ρ̂,∆.

By the definition of interpretation for the product it means that ∆ ⊆ ∆′ and

∆′ `M : ρ(4{Πx : t.D(X), q}).

It means that if (∆′′ ` a) ∈ [Γ̂ ` t]ξ̂′|∆′′ ,ρ̂,∆′′ and P
′ ∈ V∆′′(a) then

(∆′′ `Ma) ∈ [Γ̂, x : t ` 4{D(X), q}](ξ̂′|∆′′ ;x:=P ′),(ρ̂;x:=a),∆′′ .

We will prove that

(∆′ `M) ∈ [Γ̂ ` 4{Πx : t.D(X), q}]ξ̂,ρ̂,∆.

Take ∆′′, a and P such that

∆′′ ⊇ ∆′, (∆′′ ` a) ∈ [Γ̂ ` t]ξ̂|∆′′ ,ρ̂,∆′′ , and P
′ ∈ V∆′′(a).
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By the assumption the sets [Γ̂ ` t]ξ̂|∆′′ ,ρ̂,∆′′ and [Γ̂ ` t]ξ̂′|∆′′ ,ρ̂,∆′′ are equal. Thus

(∆′′ ` a) ∈ [Γ̂ ` t]ξ̂′|∆′′ ,ρ̂,∆′′ .

Then by assumption

(∆′′ `Ma) ∈ [Γ̂, x : t ` 4{D(X), q}](ξ̂′|∆′′ ;x:=P ),(ρ̂;x:=a),∆′′ .

By the induction hypothesis and the fact that S|∆′′ ≤ S′|∆′′ we get that

[Γ̂, x : t ` 4{D(X), q}](ξ̂′|∆′′ ;x:=P ),(ρ̂;x:=a),∆′′

⊆ [Γ̂, x : t ` 4{D(X), q}](ξ̂|∆′′ ;x:=P ),(ρ̂;x:=a),∆′′

and thus
(∆′′ `Ma) ∈ [Γ̂, x : t ` 4{D(X), q}](ξ̂|∆′′ ;x:=P ),(ρ̂;x:=a),∆′′ .

Hence indeed
(∆′ `M) ∈ [Γ̂ ` 4{Πx : t.D(X), q}]ξ̂,ρ̂,∆.

• C(X) =
(

Π~x : ~t.X~t′
)
→ D(X). Then

4{
(

Π~x : ~t.X~t′
)
→ D(X), q} = (Π~x : ~t.X~t′)→ (Π~x : ~t.q~t′)→4{D(X), q}.

Let (∆′ `M) ∈ [Γ̂ ` 4{
(

Π~x : ~t.X~t′
)
→ D(X), q}]ξ̂′,ρ̂,∆. Suppose

∆′′ ⊇ ∆′, (∆′′ ` a) ∈ [Γ̂ ` Π~x : ~t.X~t′]ξ̂|∆′′ ,ρ̂,∆′′ , P
′ ∈ V∆′′(a).

and
∆′′′ ⊇ ∆′′, (∆′′ ` b) ∈ [Γ̂ ` Π~x : ~t.q~t′]ξ̂|∆′′ ,ρ̂,∆′′′ , P

′′ ∈ V∆′′′(b).

Note that X 6∈ FV (~t) ∪ FV (~t′) and thus by the assumption

[Γ̂ ` Π~x : ~t.q~t′]ξ̂|∆′′′ ,ρ̂,∆′′′ = [Γ̂ ` Π~x : ~t.q~t′]ξ̂′|∆′′′ ,ρ̂,∆′′′ .

Moreover, it is easy to check that

[Γ̂ ` Π~x : ~t.X~t′]ξ̂|∆′′ ,ρ̂,∆′′ ⊆ [Γ̂ ` Π~x : ~t.X~t′]ξ̂′|∆′′ ,ρ̂,∆′′ .

Thus
(∆′′ ` a) ∈ [Γ̂ ` Π~x : ~t.X~t′]ξ̂′|∆′′ ,ρ̂,∆′′ ,

and
(∆′′ ` b) ∈ [Γ̂ ` Π~x : ~t.q~t′]ξ̂′|∆′′′ ,ρ̂,∆′′′ .

By the assumption we get that

(∆′′′ `Mab) ∈ [Γ̂, x : Π~x : ~t.X, y : Π~x : ~t.q
` 4{D(X), q}](ξ̂′|∆′′′ ;x:=P |′

∆′′′ ;y:=P ′′),(ρ̂;x:=a;y:=b),∆′′′ .
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By the induction hypothesis and the fact that S|∆′′′ ≤ S′|∆′′′

[Γ̂, x : Π~x : ~t.X, y : Π~x : ~t.q ` 4{D(X), q}](ξ̂′|∆′′′ ;x:=P ′|∆′′′ ;y:=P ′′),(ρ̂;x:=a;y:=b),∆′′′

⊆ [Γ̂, x : Π~x : ~t.X, y : Π~x : ~t.q ` 4{D(X), q}](ξ̂|∆′′′ ;x:=P ′|∆′′′ ;y:=P ′′),(ρ̂;x:=a;y:=b),∆′′′ .

Hence it holds that

(∆′′′ `Mab) ∈ [Γ̂ ` {
(
Π~x : ~t.X

)
→ D(X), q}](ξ̂|∆′′′ ;x:=P ′|∆′′′ ;y:=P ′′),(ρ̂;x:=a;y:=b),∆′′′ ,

Thus
(∆′ `M) ∈ [Γ̂ ` 4{Πx : t.D(X), q}]ξ̂,ρ̂,∆.

Now we prove that operator HΓ,I,ξ,ρ,∆ is monotone.

Lemma 73. Assume that

1. Γ and ∆ are contexts,

2. I is an inductive predicate in Γ,

3. S, S′ ∈ V∆(I),

4. 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆,

5. the interpretation of any subterm M of I depends only on the values of ξ and ρ for the
free variables of M .

If S ≤ S′ then HΓ,I,ξ,ρ,∆(S) ≤ HΓ,I,ξ,ρ,∆(S′).

Proof. Let S ≤ S′. Suppose (Σi, ui, Ui)ni=1 is an appropriate sequence of arguments for (~x : ~τ)
at 〈ξ, ρ〉 in ∆. We will prove that

HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) ⊆ HΓ,I,ξ,ρ,∆(S′)((Σi, ui, Ui)ni=1).

Let (∆′ `M) ∈ HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1). Then there are two cases.
Case 1: (∆′ ` M) ∈

⋂
SATΣn

ρ(I)~u. By the definition of HΓ,I,ξ,ρ,∆ it obviously holds that
(∆′ `M) ∈ HΓ,I,ξ,ρ,∆(S′)((Σi, ui, Ui)ni=1).
Case 2: (∆′ ` M) 6∈

⋂
SATΣn

ρ(I)~u. Then (∆′ ` M) ∈ hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1). We will
prove that (∆′ `M) ∈ hΓ,I,ξ,ρ,∆(S′)((Σi, ui, Ui)ni=1). By the assumption we know that

∆′ ⊇ Σn, (∆′ `M) : ρ(I)~u, and (∆′ `M) ∈ SNΣn
ρ(I)~u.

Let

(∆′′ ` J) ∈ SN∆′

ρ(A) and J =βι ρ(I)

(∆′′′ ` Q) ∈ [Γ ` A]ξ|∆′′ ,ρ,∆′′ , P ∈ V∆′′′(Q),

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′ ;X:=S′|∆′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′ .

Note that

〈(ξ|∆′′′ ;X := S′|∆′′′ ; q := P ), (ρ;X := J ; q := Q)〉
and 〈(ξ|∆′′′ ;X:=S|∆′′′ ; q:=P ), (ρ;X:=J ; q:=Q)〉



86

are constructor valuations which satisfy (Γ, q : A,X : A) at ∆′′′. By Lemma 72

[Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′ ;X:=S′|∆′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′

⊆ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′ ;X:=S|∆′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′ .

Thus

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′ ;X:=S|∆′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′ .

Applying the assumption (∆′ `M) ∈ hΓ,I,ξ,ρ,∆(S′)((Σi, ui, Ui)ni=1) we get

(∆′′′′ ` Elim(J,Q, ~u,M){~f}) ∈ P ((Σi, ui, Ui)ni=1).

Thus indeed (∆′ `M) ∈ HΓ,I,ξ,ρ,∆(S′)((Σi, ui, Ui)ni=1).

Lemma 74. Assume that

1. Γ, ∆ and ∆′ are contexts, and ∆′ ⊇ ∆,

2. I is an inductive formula in Γ,

3. 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆,

4. the interpretation of any subterm M of I depends only on the values of ξ and ρ for the
free variables of M .

Then
([Γ ` Ind(X : ∗p){Ci(X)}]ξ,ρ,∆) |∆′ = [Γ ` Ind(X : ∗p){Ci(X)}]ξ|∆′ ,ρ,∆′ .

Proof. Recall that

([Γ ` Ind(X : ∗p){Ci(X)}]ξ,ρ,∆)|∆′ = (lfp(HΓ,I,ξ,ρ,∆))|∆′

and lfp(HΓ,I,ξ,ρ,∆)((Σi, ui, Ui)ni=1) =
⋃
α′<αH

α′
Γ,I,ξ,ρ,∆(Min∆(ρ(I)))((Σi, ui, Ui)ni=1) for a cer-

tain α. We will prove that

(HΓ,I,ξ,ρ,∆(S))|∆′ = HΓ,I,ξ|∆′ ,ρ,∆′(S|∆′).

Observe that the domains of both functions are the same. Moreover if ((Σi, ui, Ui)ni=1) is in
the domain then

(HΓ,I,ξ,ρ,∆(S))|∆′((Σi, ui, Ui)ni=1) = (
⋂
SATΣn

ρ(I)) ∪ hΓ,I,ξ,ρ,∆′(S)((Σi, ui, Ui)ni=1)

and

HΓ,I,ξ|∆′ ,ρ,∆′(S|∆′)((Σi, ui, Ui)ni=1) = (
⋂
SATΣn

ρ(I)) ∪ hΓ,I,ξ|∆′ ,ρ,∆′(S|∆′)((Σi, ui, Ui)ni=1)

Recall that hΓ,I,ξ,ρ,∆′(S)((Σi, ui, Ui)ni=1) consists of simple sequents (∆′ ` m) ∈ SNΣn
ρ(I)~u

such that

for every context ∆′′ and every term J such that (∆′′ ` J) ∈ SNΣn
ρ(A) and J =βι ρ(I),

for every context ∆′′′ and every term Q such that (∆′′′ ` Q) ∈ [Γ ` A]ξ|∆′′ ,ρ,∆′′ ,



87

for every P ∈ V∆′′′(Q), ,

for every context ∆′′′′ and for every vector ~f such that

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′′ ;X:=S|∆′′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′′

we have (∆′′′′ ` Elim(J,Q, ~u,m){~f}) ∈ P ((Σi, ui, Ui)ni=1).

and hΓ,I,ξ|∆′ ,ρ,∆′(S|∆′)((Σi, ui, Ui)ni=1) consists of simple sequents (∆′ ` m) ∈ SNΣn
ρ(I)~u such

that

for every context ∆′′ and every term J such that (∆′′ ` J) ∈ SNΣn
ρ(A) and J =βι ρ(I),

for every context ∆′′′ and every term Q such that (∆′′′ ` Q) ∈ [Γ ` A]ξ|∆′ |∆′′ ,ρ,∆′′ ,

for every P ∈ V∆′′′(Q), ,

for every context ∆′′′′ and for every vector ~f such that

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′ |∆′′′′ ;X:=S|∆′ |∆′′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′′

we have (∆′′′′ ` Elim(J,Q, ~u,m){~f}) ∈ P ((Σi, ui, Ui)ni=1).

Note that (ξ|∆′)|∆′′ = ξ|∆′′ and (S|∆′)|∆′′ = S|∆′′ for all ∆′′ ⊇ ∆′. Thus indeed

(HΓ,I,ξ,ρ,∆(S))|∆′ = HΓ,I,ξ|∆′ ,ρ,∆′(S|∆′).

Lemma 75. Assume that

1. Γ and ∆ are contexts,

2. I = Ind(X : A){~C} is an inductive predicate in Γ,

3. S, S′ ∈ V∆(I),

4. 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆,

5. the interpretation of any subterm M of I depends only on the values of ξ and ρ for the
free variables of M .

Then

• [Γ ` Ind(X : A){~C}]ξ,ρ,∆ ∈ V∆(ρ(I)).

• If ∆′ ⊇ ∆ then
(

[Γ ` Ind(X : A){~C}]ξ,ρ,∆
)
|∆′ = [Γ ` Ind(X : A){~C}]ξ|∆′ ,ρ,∆′ .

Proof. By Lemma 71 the function HΓ,I,ξ,ρ,∆ used in the definition of the interpretation
[Γ ` I]ξ,ρ,∆ is well defined and by Lemma 73 it is monotone. We have a monotone func-
tion on the complete lattice VΓ(ρ(I)) (see Lemma 42). Then lfp(HΓ,I,ξ,ρ,∆) exists and we
have

[Γ ` Ind(X : A){~C}]ξ,ρ,∆ = lfp(HΓ,I,ξ,ρ,∆) ∈ V∆(ρ(I)).

If ∆′ ⊇ ∆ then the second item follows from Lemma 74.
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Remark 76. The definitions for inductive types and inductive predicates are similar, yet
their interpretations are different. However, we could not use an operator F ′ similar to F
to define an interpretation for inductive predicates. This is because formula polymorphism
is allowed in the type system. If we tried to give a definition for F ′ we would have to have
an interpretation for an arbitrary formula Q, including formulas structurally greater than the
inductive predicate we are dealing with. But then the definition of F ′ would not be well-
founded. Similarly, we could not use an operator H ′ resembling H to define the interpretation
for inductive types. We are allowed to use dependent elimination for inductive objects. Thus
the interpretation of the result q would be a function taking the interpretation of an eliminated
term M . However, this elimination could not be given because M could be an arbitrary term
of type I.

5.3.4. Correctness of the interpretation

In this section we prove that the definition of interpretation is correct and that it has the
property

[Γ `M ]ξ,ρ,∆ ∈ V∆(ρ(M)).

We combine the correctness results stated in the previous sections: for inductive types, induc-
tive predicates and elimination terms. We also give correctness proofs for the missing cases:
the product, the abstraction, the application, the inductive object.

We begin the section with some technical lemmas. We prove that the interpretation of
a term M depends only on the values (up to βι-equality) of the constructor valuations for its
free variables.

Lemma 77. Let Γ, Γ′ and ∆ be contexts. Let M be a term such that Γ ` M : T . Let
〈ξ, ρ〉 be a constructor valuation which satisfies Γ at ∆ and 〈ξ′, ρ′〉 be a constructor valuation
which satisfies Γ′ at ∆. Suppose for each variable x ∈ FV (M) it holds that Γ(x) = Γ′(x),
ρ(x) =βι ρ

′(x) and ξ(x) = ξ′(x). Then

[Γ `M ]ξ,ρ,∆ = [Γ′ `M ]ξ′,ρ′,∆.

Proof. Induction with respect to the structure of M .

Lemma 78. Let Γ, Γ′ and ∆ be contexts. Suppose 〈ξ, ρ〉 is a constructor valuation which
satisfies Γ at ∆. Suppose that dom(Γ) = dom(Γ′) and for each x ∈ dom(Γ) we have
Γ(x) =βι Γ′(x). Then if M is a term such that Γ `M : T then it holds that

[Γ `M ]ξ,ρ,∆ = [Γ′ `M ]ξ,ρ,∆.

In particular, both interpretations are well defined.

Proof. If 〈ξ, ρ〉 satisfies Γ at ∆ then it also satisfies Γ′ at ∆: if (x : T ′) ∈ Γ′ then T =βι T
′,

and (x : T ) ∈ Γ. Then by assumption ∆ ` ρ(x) : ρ(T ) but also ∆ ` ρ(x) : ρ(T ′) by conversion
rule.

The proof is by easy induction with respect to the structure of M .

Lemma 79. Suppose

1. Γ, ∆ are two contexts and 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆,
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2. Γ ` (Πx : M1.M2) : s.

3. for every ∆′′ ⊇ ∆ we have [Γ ` M1]ξ|∆′′ ,ρ,∆′′ ∈ SAT∆′′

ρ(M1) and if ∆′′′ ⊇ ∆′′ then(
[Γ `M1]ξ|∆′′ ,ρ,∆′′

)
|∆′′′ = [Γ `M1]ξ|∆′′ |∆′′′ ,ρ,∆′′′ ,

4. for every ∆′′ ⊇ ∆ for every 〈ξ′, ρ′〉 satisfying (Γ, x : M1) at ∆′′ we have

[Γ, x : M1 `M2]ξ′,ρ′,∆′′ ∈ SAT∆′′

ρ′(M2)

and if ∆′′′ ⊇ ∆′′ then(
[Γ, x : M1 `M2]ξ′,ρ′,∆′′

)
|∆′′′ = [Γ, x : M1 `M2]ξ′|∆′′′ ,ρ′,∆′′′ .

Then

• [Γ ` Πx : M1.M2]ξ,ρ,∆ ∈ V∆(ρ(Πx : M1.M2)),

• if ∆′ ⊇ ∆ then ([Γ ` Πx : M1.M2]ξ,ρ,∆) |∆′ = [Γ ` Πx : M1.M2]ξ|∆′ ,ρ,∆′ .

Proof. We have

Γ `M1 : s1 Γ, x : M1 `M2 : s2

Γ ` Πx : M1.M2 : s

We want to prove that [Γ ` Πx : M1.M2]ξ,ρ,∆ is in SAT∆
ρ(Πx:M1.M2). Recall that

[Γ ` Πx : M1.M2]ξ,ρ,∆ = {(∆′ `M) | ∆ ⊆ ∆′ and ∆′ `M : ρ(Πx : M1.M2) and
for every ∆′′ ⊇ ∆′, for every a such that (∆′′ ` a) ∈ [Γ `M1]ξ|∆′′ ,ρ,∆′′

for every P ∈ V∆′′(a)
we have (∆′′ `Ma) ∈ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a);∆′′)}.

By assumption [Γ `M1]ξ|∆′′ ,ρ,∆′′ ∈ SAT
∆′′

ρ(M1) and thus if

(∆′′ ` a) ∈ [Γ `M1]ξ|∆′′ ,ρ,∆′′ and P ∈ V∆′′(a)

then 〈(ξ|∆′′ ;x := P ), (ρ;x := a)〉 is a constructor valuation which satisfies (Γ, x : M1) at ∆′′.
By assumption

[Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ ∈ SAT∆′′

(ρ;x:=a)(M2).

Let X = [Γ ` Πx : M1.M2]ξ,ρ,∆. We prove that X is a saturated set.

(SAT1) Let (∆′ ` M) ∈ X. We want to prove that M is strongly normalizing. By the
definition of X, for every ∆′′ ⊇ ∆, for every (∆′′ ` a) ∈ [Γ ` M1]ξ|∆′′ ,ρ,∆′′ , for every
P ∈ V∆′′(a) it holds that

(∆′′ `Ma) ∈ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ .

By the assumption the set [Γ, x : M1 ` M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ is saturated so every
element of it is strongly normalizing. In particular, the termMa is strongly normalizing
and thus M is strongly normalizing as well.
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(SAT2) Let (∆′ ` M) ∈ B∆
ρ(Πx:M1.M2). We will show that (∆′ ` M) ∈ X. By the definition

of B∆
ρ(Πx:M1.M2) we have

∆ ⊆ ∆′ and (∆′ `M) : ρ(Πx : M1.M2).

Let
∆′′ ⊇ ∆′, (∆′′ ` a) ∈ [Γ `M1]ξ|∆′′ ,ρ,∆′′ , P ∈ V∆′′(a).

By assumption [Γ ` M1]ξ|∆′′ ,ρ,∆′′ ∈ SAT∆′′

ρ(M1) and hence ∆′′ ` a : ρ(M1). Thus
∆′′ `Ma : (ρ;x := a)(M2) and

(∆′′ `Ma) ∈ B∆′′

(ρ;x:=a)(M2)

But B∆′′

(ρ;x:=a)(M2) ⊆ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ and thus indeed

(∆′′ `Ma) ∈ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ .

(SAT3) Let (∆′ `M) ∈ X and let ∆1 ⊇ ∆′. We will prove that

(∆1 `M) ∈ X.

By the definition of X we know that

∆′ `M : ρ(Πx : M1.M2),∆ ⊆ ∆′,

and for every ∆′′ ⊇ ∆′ for every a such that (∆′′ ` a) ∈ [Γ ` M1]ξ|∆′′ ,ρ,∆′′ for every
P ∈ V∆′′(a) we have

(∆′′ `Ma) ` [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ .

Then obviously ∆1 `M : ρ(Πx : M1.M2) and ∆ ⊆ ∆′ ⊆ ∆1. Let

∆′′ ⊇ ∆1, (∆′′ ` a) ∈ [Γ `M1]ξ|∆′′ ,ρ,∆′′ , P ∈ V∆′′(a).

Then it also holds that ∆′′ ⊇ ∆′ and thus

(∆′′ `Ma) ∈ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ .

Hence indeed
(∆1 `M) ∈ X.

(SAT4) Let (∆′ `M ′) ∈ X and M →k M
′ and (∆′ `M) ∈ SN∆

ρ(Πx:M1.M2). Then obviously
∆′ `M : ρ(Πx : M1.M2) and ∆ ⊆ ∆′. Let

∆′′ ⊇ ∆′, (∆′′ ` a) ∈ [Γ `M1]ξ|∆′′ ,ρ,∆′′ , P ∈ V∆′′(a).

By assumption

(∆′′ `M ′a) ∈ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a)∆′′ .

Note that Ma →k M
′a. By Corollary 38 the term Ma is strongly normalizing. Thus

(∆′′ `Ma) ∈ SN∆′′

(ρ;x:=a)(M2). As [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ is a saturated set
then (∆′ `Ma) ∈ [Γ, x : M1 `M2](ξ|∆′′ ;x:=P ),(ρ;x:=a),∆′′ .
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We have proved that X ∈ SAT∆
ρ(Πx:M1.M2). If ∆′ ⊇ ∆ then the equality

([Γ ` Πx : M1.M2]ξ,ρ,∆) |∆′ = [Γ ` Πx : M1.M2]ξ|∆′ ,ρ,∆′

holds because ξ|∆′ |∆′′ = ξ|∆′′ .

Lemma 80. Let Γ, ∆ be two contexts. If Γ ` M : A, where M is a large term, and 〈ξ, ρ〉 is
a constructor valuation which satisfies Γ at ∆, then

• [Γ `M ]ξ,ρ,∆ ∈ V∆(ρ(M)),

• if ∆′ ⊇ ∆ then [Γ `M ]ξ,ρ,∆|∆′ = [Γ `M ]ξ|∆′ ,ρ,∆.

Proof. Induction with respect to the structure of the derivation of Γ `M : A.
Case 1: The last rule used was the rule (Var). The conclusion is obvious by the definition of
constructor valuation.
Case 2: The last rule used was the rule (Weak). Easy induction with respect to the structure
of M .
Case 3: The last rule used was the rule (Conv). We have

Γ `M : A′ Γ ` A : s A =βι A
′

Γ `M : A
By the induction hypothesis [Γ `M ]ξ,ρ,∆ ∈ V∆(ρ(A′)). By Lemma 41 it holds that VΓ(ρ(A)) =
VΓ(ρ(A′)). Thus [Γ ` M ]ξ,ρ,∆ ∈ V∆(ρ(A)). Moreover by the induction hypothesis
[Γ `M ]ξ,ρ,∆|∆′ = [Γ `M ]ξ|∆′ ,ρ,∆′ .
Case 4: The last rule used was the rule (App).

Γ `M1 : Πx : A1.A2 Γ `M2 : A1

Γ `M1M2 : A2[x := M2]

Suppose A1 is a large type. The other case is similar. Then

[Γ `M1M2]ξ,ρ,∆ = [Γ `M1]ξ,ρ,∆(∆ ` ρ(M2), [Γ `M2]ξ,ρ,∆).

By the induction hypothesis

[Γ `M1]ξ,ρ,∆ ∈ V∆(ρ(M1)) and [Γ `M2] ∈ V∆(ρ(M2)).

Then [Γ `M1]ξ,ρ,∆ is a function with the domain

{(∆′ ` a, P ) | ∆′ ⊇ ∆,∆′ ` a : ρ(A1), P ∈ V∆′(a)}

such that [Γ `M1]ξ,ρ,∆(∆′ ` a, P ) ∈ V∆(ρ(M1)a). By Lemma 41 we have ∆ ` ρ(M2) : ρ(A1)
and thus

[Γ `M1M2]ξ,ρ,∆ ∈ V∆(ρ(M2)ρ(M2)) = V∆(ρ(M1M2)).

Now

([Γ `M1M2]ξ,ρ,∆)|∆′
= ([Γ `M1]ξ,ρ,∆(∆ ` ρ(M2), [Γ `M2]ξ,ρ,∆))|∆′
= [Γ `M1]ξ,ρ,∆(∆′ ` ρ(M2), [Γ `M2]ξ,ρ,∆|∆′) (by def. of V∆(ρ(M1)))
= [Γ `M1]ξ,ρ,∆|∆′(∆′ ` ρ(M2), [Γ `M2]ξ,ρ,∆|∆′)
= [Γ `M1]ξ|∆′ ,ρ,∆′(∆

′ ` ρ(M2), [Γ `M2]ξ|∆′ ,ρ,∆′)

= [Γ `M1M2]ξ|∆′ ,ρ,∆′ .

Case 5: The last rule used was the rule (Abs).
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Γ, x : A1 `M1 : A2

Γ ` λx : A1.M1 : (Πx : A1.A2)

If (∆′ ` a) ∈ T∆
ρ(A1), P ∈ V∆′(a), then 〈(ξ|∆′ ;x := P ), (ρ;x := a)〉 is a constructor valuation

which satisfies (Γ, x : A1) at ∆′. Thus by the induction hypothesis

[Γ, x : A1 `M1](ξ|∆′ ;x:=P ),(ρ;x:=a),∆′ ∈ V∆′((ρ;x := a)(M1)).

By the definition of V∆′((ρ;x := a)(M1))

[Γ ` λx : A1.M1]ξ,ρ,∆ = λλ(∆′ ` a, P ) : T∆
ρ(A1).[Γ, x : A1 `M1](ξ|∆′ ;x:=P ),(ρ;x:=a),∆′

is a function with the domain

{(∆′ ` a, P ) | ∆′ ⊇ ∆,∆′ ` a : ρ(A1), P ∈ V∆′(a)}

such that

[Γ ` λx : A1.M1]ξ,ρ,∆(∆′ ` a, P ) ∈ V∆′(ρ(λx : A.M1)a) = V∆′((ρ;x := a)(M1)).

Moreover, by Lemma 77 if a =βι a
′ then

[Γ ` λx : A1.M1]ξ,ρ,∆(∆′ ` a, P ) = [Γ ` λx : A1.M1]ξ,ρ,∆(∆′ ` a′, P ).

By the induction hypothesis if ∆ ⊆ ∆̂ ⊆ ∆′ then

([Γ ` λx : A1.M1]ξ,ρ,∆(∆̂ ` a, P ))|∆′
= ([Γ, x : A1 `M1](ξ|∆̂;x:=P ),(ρ;x:=a),∆̂)|∆′

= [Γ, x : A1 `M1](ξ|∆̂|∆′ ;x:=P |∆′ ),(ρ;x:=a),∆′

= [Γ, x : A1 `M1](ξ|∆′ ;x:=P |∆′ ),(ρ;x:=a),∆′

= [Γ ` λx : A1.M1]ξ,ρ,∆(∆′ ` a, P |∆′)

Thus [Γ ` λx : A1.M1]ξ,ρ,∆ ∈ V∆(ρ(λx : A1.M1)).
Now suppose ∆′ ⊇ ∆. Then

[Γ ` λx : A1.M1]ξ,ρ,∆|∆′ = λλ(∆̂ ` a, P ) : T∆′

ρ(A1)×V∆̂(a).[Γ, x : A1 `M1](ξ|∆̂;x:=P ),(ρ;x:=a),∆̂

and

[Γ ` λx : A1.M1]ξ|∆′ ,ρ,∆′ = λλ(∆̂ ` a, P ) : T∆′

ρ(A1) × V∆̂(a).

[Γ, x : A1 `M1](ξ|∆′ |∆̂;x:=P ),(ρ;x:=a),∆̂.

The equality follows from the fact that (ξ|∆′)|∆̂ = ξ|∆̂.
Case 6: The last rule used was the rule (Prod). It follows from Lemma 79 and the induction
hypothesis.
Case 7: The last rule used was the rule (Ind∗t). It follows from Lemma 60, Lemma 77 and
the induction hypothesis.
Case 8: The last rule used was the rule (Ind∗p). It follows from Lemma 75, Lemma 77 and
the induction hypothesis.
Case 9: The last rule used was the rule (Intro∗t). Easy induction with respect to the structure
of Cn(I).
Case 10: The last rule used was the rule (Elim). It follows from Lemma 68, Lemma 77 and
the induction hypothesis.
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5.4. Properties of the interpretation

In this section we show that the interpretations for convertible terms are equal. This property
will be proved in several steps. First we show that one-step reductions are preserved. We
prove the substitution lemma which entails that the interpretation preserves β-equality. The
substitution lemma has two variants, depending on whether the variable being substituted
is large (type, formula, kind, subset, etc. variable) or small (proof or small object variable).
Later we deal with one-step ι-reduction. Then we combine the two results to get the desired
conclusion.

5.4.1. Preserving beta equality

We begin the section by a few auxiliary lemmas which will be needed to prove the substitution
property. In this section we assume that (Γ, x : T,Γ′) and ∆ are two contexts, a term B is
such that Γ ` B : T and 〈ξ, ρ〉 is a constructor valuation which satisfies (Γ,Γ′[B/x]) at ∆.
The constructor valuation 〈ξ̂, ρ̂〉 is defined as follows.

• If B is a large term then

ξ̂ = ξ;x := [Γ ` B]ξ,ρ,∆,
ρ̂ = ρ;x := ρ(B).

• If B is a small object or a proof then

ξ̂ = ξ, x := ∅,
ρ̂ = ρ;x := ρ(B).

Lemma 81. The pair 〈ξ̂, ρ̂〉 is a constructor valuation which satisfies (Γ, x : T,Γ′) at ∆.

Proof. Suppose (y : τ) ∈ (Γ, x : T,Γ′). We will show that ∆ ` ρ̂(y) : ρ̂(τ) and ξ̂(y) ∈ V∆(ρ̂(y)).
There are three cases:

• (y : τ) ∈ Γ. Then for every variable z ∈ FV (τ) and for z = y it holds that ρ̂(z) = ρ(z)
and (if z is a large variable) we have ξ̂(z) = ξ(z). The conditions ∆ ` ρ̂(y) : ρ̂(τ) and
ξ̂(y) ∈ V∆(ρ̂(y)) follow from the assumption that 〈ξ, ρ〉 is a constructor valuation which
satisfies Γ at ∆.

• y = x and τ = T . We only consider the case when B is a large object; the other case is
similar. By Lemma 80 we have [Γ ` B]ξ,ρ,∆ ∈ V∆(ρ(B)). Thus

ξ̂(y) = [Γ ` B]ξ,ρ,∆ ∈ V∆(ρ(B)) = V∆(ρ̂(y)).

Moreover by Lemma 50 and the fact that ρ(z) = ρ̂(z) for z ∈ FV (τ) it holds that
∆ ` ρ(B) : ρ(τ). Thus ∆ ` ρ̂(x) : ρ̂(τ).

• (y : τ) ∈ Γ′. We only consider the case when y is a large object; the other case is similar.
Recall that 〈ξ, ρ〉 is a constructor valuation which satisfies (Γ,Γ′[B/x]) at ∆. Thus
∆ ` ρ(y) : ρ(τ [B/x]). But ρ̂(y) = ρ(y) and ρ̂(τ) = ρ(τ [B/x]). Thus ∆ ` ρ̂(y) : ρ̂(τ).
Moreover

ξ̂(y) = ξ(y) ∈ V∆(ρ(τ [B/x])) = V∆(ρ̂(τ)).
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The next lemma proves a substitution property for the function FΓ,I,ξ,ρ,∆, introduced on
page 58, used in the definition of interpretation for an inductive type.

Lemma 82. Let Γ, x : T,Γ′ ` I : T2 and suppose I is an inductive type. Suppose that for each
subterm M of I we have

[Γ,Γ′[B/x] `M [B/x]]ξ,ρ,∆ = [Γ, x : T,Γ′ `M ]ξ̂,ρ̂,∆.

Then
F(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆ = F(Γ,x:T,Γ′),I,ξ̂,ρ̂,∆.

Proof. By Lemma 81 the pair 〈ξ̂, ρ̂〉 is a constructor valuation which satisfies (Γ, x : T,Γ′)
at ∆. We will prove that

F(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆ = F(Γ,x:T,Γ′),I,ξ̂,ρ̂,∆.

Note that ρ(I[B/x]) = ρ̂(I) and thus

SAT∆
ρ(I[B/x]) = SAT∆

ρ̂(I).

The domains of functions F(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆ and F(Γ,x:T,Γ′),I,ξ̂,ρ̂,∆ are the same. Recall that

F(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆(S) =
(⋂

SAT∆
ρ(I[B/x])

)
∪ {(∆′ ` u) ∈ SN∆

ρ(I[B/x]) |

if ∆′′ ⊇ ∆′ and ∆′′ ` u→∗k Constr(n,X) ~N, and Cn(X) = Π~x : ~T .X

then for every j we have (∆′′ ` Nj) ∈ Interp((Γ,Γ′[B/x])j ` Tj)ξj ,ρj ,∆′′,X,S|∆′′}

and

F(Γ,x:T,Γ′),I,ξ̂,ρ̂,∆(S) =
(⋂

SAT∆
ρ̂(I)

)
∪ {(∆′ ` u) ∈ SN∆

ρ̂(I) |

if ∆′′ ⊇ ∆′ and ∆′′ ` u→∗k Constr(n,X) ~N, and Cn(X) = Π~x : ~T .X

then for every j we have (∆′′ ` Nj) ∈ Interp((Γ, x : T,Γ′)j ` Tj)ξ̂j ,ρ̂j ,∆′′,X,S|∆′′}

The conclusion follows from the fact that by Lemma 54 and the assumption we have

Interp((Γ,Γ′[B/x])j ` Tj [B/x])ξj ,ρj ,∆′′,X,S|∆′′
= [(Γ,Γ′[B/x])j ` Tj [B/x]](ξj ;X:=S|∆′′ ),(ρj ;X:=I[B/x]),∆′′

= [(Γ, x : T,Γ′)j ` Tj ](ξ̂j ;X:=S|∆′′ ),(ρ̂j ;X:=I),∆′′

= Interp((Γ, x : T,Γ′)j ` Tj ])ξ̂j ,ρ̂j ,∆′′,X,S|∆′′ .

Now we prove a substitution property for the function G, introduced on page 73, used in
the definition of interpretation for elimination terms.

Lemma 83. Let Γ, x : T,Γ′ ` I : T2 and suppose I is an inductive type. Suppose α is an
ordinal number such that

(∆ ` Constr(j, J) ~N) ∈ Fα(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆(
⋂
SAT∆

ρ(I[B/x]))
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and for each α′ < α if S = Fα
′

(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆(
⋂
SAT∆

ρ(I[B/x])) then

G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

(S) = G
(Γ,x:T,Γ′),I,Q,~f,ξ̂,ρ̂,∆(S).

Then for every (∆ `M) ∈ T∆
ρ(I) it holds that

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[M,U,Cj(I[B/x]), ~N ] = g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M,U,Cj(I), ~N ].

Proof. Note that by Lemma 82

S = Fα
′

(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆(SAT∆
ρ(I[B/x])) = Fα

′

(Γ,x:T,Γ′),I,ξ̂,ρ̂,∆
(SAT∆

ρ̂(I)).

We prove by induction with respect to the structure of Cj(X) that

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[M,U,Cj(I[B/x]), ~N ] = g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M,U,Cj(I), ~N ].

• If C(X) = X then

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[M,U,C(I[B/x]), ~N ] = ε = g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M,U,Cj(I), ~N ].

• If C(X) = Πx : T.D(X), X 6∈ FV (T ) then ~N = N0 :: ~N ′ and U = 〈m, ~U〉 and
~U = U0 :: ~U ′ and

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[M,U,C(I[B/x]), ~N ]

= (∆ ` N0, U0) :: g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆]

[M, 〈m, ~U〉, D(I[B/x]), ~N ′].

and

g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M,U,C(I), ~N ] = (∆ ` N0, U0) :: g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M, 〈m, ~U〉, D(I), ~N ′].

The conclusion follows from the induction hypothesis.

• If C(X) = Πx : T.D(X), X ∈ FV (T ) and T = Π~x : ~t.X then ~N = N0 :: ~N ′ and
U = 〈m, ~U〉 and ~U = U0 :: ~U ′. Recall that

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[M,U,C(I[B/x]), ~N ] = (∆ ` N0, U0) :: (∆ ` e, C)

:: g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[M, 〈m, ~U〉, D(I[B/x]), ~N ′]

where
e = λ~x : ρ(~t[B/x]).Elim(ρ(I[B/x]), ρ(Q[B/x]), N0~x){ρ(~f [B/x])}

and P is a function which for an appropriate sequence of arguments (∆i, xi, Pi)
p
i=0

at 〈ξ, ρ〉 in ∆ returns the value

P ((∆i, xi, Pi)
p
i=0) = G

(Γ,Γ′[B/x],~x:~t[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆p

(pred(Γ,Γ′[B/x]~x:~t[B/x]),I,ξp,ρp,∆p
(∆p ` Constr(j,X) ~N))

(∆ ` N0~x, U0(∆i, xi, Pi)
p
i=0)
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and

g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M,U,C(I), ~N ] =

(∆ ` N0, U0)(∆ ` ê, P̂ ) :: g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M, 〈m, ~U〉, D(I), ~N ′]

with
ê = λ~x : ρ̂(~t).Elim(ρ̂(I), ρ̂(Q), N0~x){ρ̂(~f)},

and P is a function which for an appropriate sequence of arguments (∆i, xi, Pi)
p
i=0

at 〈ξ, ρ〉 in ∆ returns the value

P̂ ((∆i, xi, Pi)
p
i=0) =G

(Γ,x:T,Γ′,~x:~t),I,Q,~f,ξ̂,ρ̂,∆p

(pred(Γ,x:T,Γ′,~x:~t),I,ξ̂p,ρ̂p,∆p
(∆p ` Constr(j,X) ~N)

(∆ ` N0~x, U0(∆i, xi, Pi)
p
i=0)).

Observe that by the induction hypothesis

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆]

[M,U,D(I[B/x]), ~N ′] = g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[M,U,D(I), ~N ′].

Moreover it is easy to note that e = ê and by Lemma 82

pred(Γ,Γ′[B/x]~x:~t[B/x]),I,ξp,ρp,∆p
(∆p ` Constr(j,X) ~N)

= pred(Γ,x:T,Γ′,~x:~t),I,ξ̂p,ρ̂p,∆p
(∆p ` Constr(j,X) ~N).

Then by the assumption

G
(Γ,Γ′[B/x],~x:~t[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆p

(pred(Γ,Γ′[B/x]~x:~t[B/x]),I,ξp,ρp,∆p
(∆p ` Constr(j,X) ~N))

= G
(Γ,x:T,Γ′,~x:~t),I,Q,~f,ξ̂,ρ̂,∆p

(pred(Γ,x:T,Γ′,~x:~t),I,ξ̂p,ρ̂p,∆p
(∆p ` Constr(j,X) ~N)).

We now prove the Substitution Lemma.

Lemma 84. Let A be a large term such that

Γ, x : T,Γ′ ` A : T2.

Then
[Γ,Γ′[B/x] ` A[B/x]]ξ,ρ,∆ = [Γ, x : T,Γ′ ` A]ξ̂,ρ̂,∆.

Proof. By Lemma 81 the pair 〈ξ̂, ρ̂〉 is a constructor valuation which satisfies (Γ, x : T,Γ′)
at ∆. We proceed by induction with respect to m(T2).

The cases when A is a sort, a variable, an application, an abstraction, a product, or
an inductive object are an easy consequence of the induction hypothesis. We consider the
remaining cases.
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Case 1: inductive type. If A = Ind(X : ∗t){~C} then A[B/x] = Ind(X : ∗t){~C[B/x]}.
From the induction hypothesis and Lemma 82 we get

[Γ,Γ′[B/x] ` Ind(X : ∗t){~C[B/x]}]ξ,ρ,∆ = lfp(F(Γ,Γ′[B/x]),A[B/x],ξ,ρ,∆)

= lfp(F(Γ,x:T,Γ′),A,ξ̂,ρ̂,∆) = [Γ, x : T,Γ′ ` Ind(X : ∗t){~C}]ξ̂,ρ̂,∆.

Case 2: elimination. Suppose A = Elim(I,Q,M){~f}. For simplicity, we only consider the
case when I is a large inductive type. The other case is similar. Recall that

[Γ,Γ′[B/x] ` A[B/x]]ξ,ρ,∆ = G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

([Γ,Γ′[B/x] ` I[B/x]]ξ,ρ,∆)

(∆ ` ρ(M [B/x]), [Γ,Γ′[B/x] `M [B/x]]ξ,ρ,∆)

and

[Γ, x : T,Γ′ ` A](ξ;x:=[Γ`B]ξ,ρ,∆),(ρ;x:=ρ(B)),∆

= G
(Γ,x:=T,Γ′),I,Q,~f,ξ̂,ρ̂,∆([Γ, x : T,Γ′ ` I]ξ̂,ρ̂,∆)(∆ ` ρ̂(M), [Γ, x : T,Γ′ `M ]ξ̂,ρ̂,∆).

Note that by the induction hypothesis

[Γ,Γ′[B/x] ` I[B/x]]ξ,ρ,∆ = [Γ, x : T,Γ′ ` I]ξ̂,ρ̂,∆
[Γ,Γ′[B/x] `M [B/x]]ξ,ρ,∆ = [Γ, x : T,Γ′ `M ]ξ̂,ρ̂,∆,

and for any i we have

[Γ,Γ′[B/x] ` fi[B/x]]ξ,ρ,∆ = [Γ, x : T,Γ′ ` fi]ξ̂,ρ̂,∆.

Moreover ρ(M [B/x]) = ρ̂(M). Thus the arguments in the above calls to the functions
G

(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆
and G

(Γ,x:=T,Γ′),I,Q,~f,ξ̂,ρ̂,∆ are the same. To get the con-
clusion it is enough to show that

G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

= G
(Γ,x:=T,Γ′),I,Q,~f,ξ̂,ρ̂,∆.

By the induction hypothesis (Lemma 82)

D(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆ = D(Γ,x:T,Γ′),I,ξ̂,ρ̂,∆

so the domains of both functions are equal. Suppose

S ∈ D(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆, ∆′ ` m : ρ(I[B/x]), and U ∈ V∆′(m).

We will prove

G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

(S)(∆′ ` m,U) = G
(Γ,x:=T,Γ′),I,Q,~f,ξ̂,ρ̂,∆(S)(∆′ ` m,U).

Note that if S ∈ D(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆ then there exists α such that

S = Fα(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆(
⋂
SAT∆

ρ(I[B/x])).
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We proceed by induction with respect to α. If α = 0 then S =
⋂
SAT∆

ρ(I[B/x]). By

Lemma 35 it is not possible that there exists ∆′′ and a term Constr(j,X)) ~N such that
(∆′′ ` Constr(j,X)) ~N ∈ S and m =βι Constr(j,X) ~N . Thus

G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

(S)(∆′ ` m,U)

= Min∆(Elim(ρ(I[B/x]), ρ(Q[B/x]),m){ρ(~f [B/x])})

and
G

(Γ,x:T,Γ′),I,Q,~f,ξ̂,ρ̂,∆(S)(∆′ ` m,U) = Min∆(Elim(ρ̂(I), ρ̂(Q),m){ρ̂(~f)}).

The conclusion follows from the fact that for all M we have ρ(M [B/x]) = ρ̂(M).

If α = α′ + 1 then there are two cases. The first case: π1(U) = j and m =βι Constr(j,X) ~N ,
(∆ ` Constr(j,X) ~N) ∈ S. Then

G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

(S)(∆′ ` m,U) =
⊔

(Base ∪Min)

where

• Base consists of all values of the form

[(Γ,Γ′[B/x]) ` fj ]ξ|∆′ ,ρ,∆′′

· g
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆′′ [Constr(j, J) ~M,U,Cj(I[B/x]), ~M ]

such that ∆′′ ⊇ ∆′, ~f [B/x] =βι Constr(j, J) ~M and (∆′′ ` Constr(j, J) ~M) ∈ S

• Min consists of all values of the form

Min∆′′(Elim(ρ(I[B/x]), ρ(Q[B/x]), ~f [B/x]){ρ(~f)})

such that ∆′′ ⊇ ∆′, ~f [B/x] =βι Constr(j, J) ~M and

(∆′′ ` Constr(j, J) ~M) ∈ T∆
ρ(I[B/x]) − S.

Moreover
G

(Γ,x:T,Γ′),I,Q,~f,ξ̂,ρ̂,∆(S)(∆′ ` m,U) =
⊔

(Base1 ∪Min1)

where

• Base1 consists of all values of the form

[(Γ, x : T,Γ′) ` fj ]ξ|∆′ ,ρ,∆′′

· g
(Γ,x:T,Γ′),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆′′ [Constr(j, J) ~M,U,Cj(I[B/x]), ~M ]

such that ∆′′ ⊇ ∆′, ~f [B/x] =βι Constr(j, J) ~M and (∆′′ ` Constr(j, J) ~M) ∈ S
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• Min1 consists of all values of the form

Min∆′′(Elim(ρ(I[B/x]), ρ(Q[B/x]), ~f [B/x]){ρ(~f)})

such that ∆′′ ⊇ ∆′, ~f [B/x] =βι Constr(j, J) ~M and

(∆′′ ` Constr(j, J) ~M) ∈ T∆
ρ(I[B/x]) − S.

By the induction hypothesis

[Γ,Γ′[B/x] ` fi[B/x]]ξ,ρ,∆ = [Γ, x : T,Γ′ ` fi]ξ̂,ρ̂,∆.

and by Lemma 83

g
Γ,I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

[Constr(j, J, ~N), U, Cj(I[B/x]), ~N ]

= g
Γ,I,Q,~f,ξ̂,ρ̂,∆

[Constr(j, J, ~N), U, Cj(I), ~N ].

Thus the equality holds.
Otherwise π1(U) 6= j or there does not exist a term Constr(j,X) ~N such that m =βι

Constr(j,X) ~N and (∆ ` Constr(j,X) ~N) ∈ S. Then

G
(Γ,Γ′[B/x]),I[B/x],Q[B/x], ~f [B/x],ξ,ρ,∆

(S)(∆ ` m,U)

= Min∆(Elim(ρ(I[B/x]), ρ(Q[B/x]),m){ρ(~f [B/x])})

and
G

(Γ,x:T,Γ′),I,Q,~f,ξ̂,ρ̂,∆(S)(∆ ` m,U) = Min∆(Elim(ρ̂(I), ρ̂(Q),m){ρ̂(~f)}).

The conclusion follows from the fact that ρ(I[B/x]) = ρ̂(I), ρ(Q[B/x]) = ρ̂(Q) and for all i
we have ρ(fi[B/x]) = ρ̂(fi),

If α is a limit ordinal then

S =
⋃
α′<α

(Fα
′

(Γ,Γ′[B/x]),I[B/x],ξ,ρ,∆(
⋂
SAT∆

ρ(I[B/x])))

and the conclusion follows from the induction hypothesis.
Case 3: inductive predicate. Suppose A = Ind(X : A){~C} where A = Π~z : ~τ .∗p. Then

[Γ,Γ′[B/x] ` A[B/x]]ξ,ρ,∆ = lfp(H(Γ,Γ′[B/x]),A[B/x],ξ,ρ,∆)

Recall that

H(Γ,Γ′[B/x]),A[B/x],ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) =

(
⋂
SATΣn

ρ(A[B/x])~u) ∪ h(Γ,Γ′[B/x]),A[B/x],ξ,ρ,∆(S)((Σi, ui, Ui)ni=1)

and h(Γ,Γ′[B/x]),A[B/x],ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) consists of simple sequents (∆′ ` m) ∈ SNΣn
ρ(A[B/x])~u

such that

for every context ∆′′ and every term J such that (∆′′ ` J) ∈ SNΣn
ρ(A) and J =βι ρ(A[B/x]),
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for every context ∆′′′ and every term Q such that (∆′′′ ` Q) ∈ [(Γ,Γ′[B/x]) ` A]ξ|∆′′ ,ρ,∆′′ ,

for every P ∈ V∆′′′(Q), ,

for every context ∆′′′′ and for every vector ~f such that

(∆′′′′ ` fi) ∈ [(Γ,Γ′[B/x]), q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′′ ;X:=S|∆′′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′′

we have (∆′′′′ ` Elim(J,Q, ~u,m){~f}) ∈ P ((Σi, ui, Ui)ni=1).

The value
[Γ, x : T,Γ′ ` A]ξ̂,ρ̂,∆ = lfp(H(Γ,x:T,Γ′),A,ξ̂,ρ̂,∆)

is defined in a similar way. By the induction hypothesis and the fact that for all M we have
ρ(M [B/x]) = ρ̂(M) for every S we get that

H(Γ,Γ′[B/x]),A[B/x],ξ,ρ,∆(S) = H(Γ,x:T,Γ′),A,ξ̂,ρ̂,∆(S).

Hence the conclusion.

5.4.2. Preserving iota equality

Let Γ, ∆ be contexts. We say that 〈ξ, ρ〉 is an object valuation which satisfies Γ at ∆ if 〈ξ, ρ〉 is
a constructor valuation which satisfies Γ at ∆ and if (x : A) ∈ Γ then (∆ ` ρ(x)) ∈ [Γ ` A]ξ,ρ,∆.

Lemma 85. Let S = FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)) for a certain α. If

(∆ `M) ∈ S and M =βι Constr(j,X) ~N

then there exist terms X ′, ~N ′ such that

M =βι Constr(j,X ′) ~N ′ and (∆ ` Constr(j,X ′) ~N ′) ∈ S.

Proof. If M =βι Constr(j,X) ~N then by Lemma 35 we have α > 0. By the Church-Rosser
property there exists a term D such that M →∗βι D and Constr(j,X) ~N →∗βι D. Note that
D = Constr(j,X∗) ~N∗. Then M →∗k Constr(j,X ′) ~N ′. By the definition of the operator
FΓ,I,ξ,ρ,∆ (see page 58) the set S is closed for the key reduction and thus

(∆ ` Constr(j,X ′) ~N ′) ∈ S.

Lemma 86. Suppose S, S′ ∈ DΓ,I,ξ,ρ,∆. If S ⊆ S′ and (∆′ ` m) ∈ S then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = G
Γ,I,Q,~f,ξ,ρ,∆

(S′)(∆′ ` m,U).

Proof. If S ∈ DΓ,I,ξ,ρ,∆ then S = FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)). We proceed by induction with respect
to α. There are two cases.

Case 1: If there are no J , ~N ′ such that m =βι Constr(n, J) ~N ′ then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

and
G

Γ,I,Q,~f,ξ,ρ,∆
(S′)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

and the conclusion is true. Note that if α = 0 then S =
⋂
SAT∆

ρ(I) and by Lemma 35 this is
the only possible case.
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Case 2: By the preceding remark we may assume that α > 0. Then S 6=
⋂
SAT∆

ρ(I) and we
assume that the conclusion is true for every S′′ < S (that is if S′′ ≤ S and S′′ 6= S). If S′′ < S
then S′′ = Fα

′′
Γ,I,Q,ξ,ρ,∆(

⋂
SAT∆

ρ(I)). We may apply the induction hypothesis.

We have m =βι Constr(n, J) ~N and (∆′ ` m) ∈ S. Then m →∗k Constr(n, J ′) ~N ′ and
(∆′ ` Constr(n, J ′) ~N ′) ∈ S. Recall that in this case

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) =
⊔
F1

where F1 = Base1 ∪Min1 and

• Base1 consists of all values of the form

[Γ ` fn]ξ|∆′ ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(n, J) ~M,U,Cn(I), ~M ]

such that ∆′′ ⊇ ∆′, m =βι Constr(n, J) ~M and (∆′′ ` Constr(n, J) ~M) ∈ S
• Min1 consists of all values of the form

Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

such that ∆′′ ⊇ ∆′, m =βι Constr(n, J) ~M and

(∆′′ ` Constr(n, J) ~M) ∈ T∆
ρ(I) − S.

The value G
Γ,I,Q,~f,ξ,ρ,∆

(S′)(∆′ ` m,U) =
⊔
F2 is defined similarly as the union of sets Base2

and Min2. We will use Lemma 63 to show that

F1 = G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = G
Γ,I,Q,~f,ξ,ρ,∆

(S′)(∆′ ` m,U) = F2.

First we show that F2 ⊆ F1. Let C ∈ F2. Then either C ∈ Base2 or C ∈Min2. If C ∈Min2

then obviously C ∈Min1. If C ∈ Base2 then there exist ∆′′ ⊇ ∆ and n, J1 and ~M1 such that

C = [Γ ` fn]ξ|∆1
,ρ,∆1

· g
Γ,I,Q,~f,ξ,ρ,∆1

[Constr(n, J1) ~M1, U, Cn(I), ~M1]

and m =βι Constr(n, J1) ~M1 and (∆′′ ` Constr(n, J1) ~M1) ∈ S′. But then

m =βι Constr(n, J1) ~M1 =βι Constr(n, J ′) ~N ′ and (∆′′ ` Constr(n, J ′) ~N ′) ∈ S.

Observe that

C = [Γ ` fn]ξ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(n, J1) ~M1, U, Cn(I), ~M1]

= [Γ ` fn]ξ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(n, J ′) ~N ′, U, Cn(I), ~N ′].

Thus C ∈ Base1 and consequently F2 ⊆ F1. On the other hand, if f ∈ F1 −F2 then

f = Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

for a certain ∆′′. There exist terms J2, ~M2 such that

f ′ = [Γ ` fj ]ξ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(j, J2) ~M2, U, Cj(I), ~M2] ∈ F2.

But then f ≤ f ′.
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The basic property we want to prove is

[Γ ` Elim(I,Q,Constr(n, I) ~N){~f}]ξ,ρ,∆ = [Γ ` fn~e[Cn(X), ~N, I,Q, ~f ]ξ,ρ,∆. (5.4)

Then under some reasonable assumptions we have

[Γ ` Elim(I,Q,Constr(n, I) ~N){~f}]ξ,ρ,∆
= [Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,~f,ξ,ρ,∆

[Constr(n, I) ~N,U,Cn(I), ~N ]

and for a certain sequence ~g the following equality holds

[Γ ` fn~e[C(X), ~N, I,Q, ~f ]ξ,ρ,∆ = [Γ ` fn]ξ,ρ,∆ · ~g.

We would like to prove that the sequence ~g is equal to g
Γ,I,Q,~f,ξ,ρ,∆

[Constr(n, I) ~N,U,Cn(I), ~N ].
However, this equality does not hold in general. Consider the type Tree introduced on page 24.
Recall that the type of the second constructor of Tree is (Nat → Tree). Suppose we want to
eliminate a term M = cons A B and U = 〈1, a, b〉 and ρ(M) = cons N0 N1. Then

g
Γ,T ree,Q,~f,ξ,ρ,∆

[M,U,C1(Tree), (N0, N1)] = (∆ ` N0, a), (∆ ` N1, b),

(∆ ` λx : Nat .Elim(Tree, ρ(Q), N1x){ρ(~f)},
λ(∆′ ` a,C).G

Γ,T ree,Q,~f,ξ,ρ,∆
(pred(∆′ ` ρ(M)))(∆′ ` N1a,C))

and

~g = (∆ ` N0, a), (∆ ` N1, b), (∆ ` λx : Nat .Elim(Tree, ρ(Q), N1x){ρ(~f)},

λ(∆′ ` a,C).[Γ, x : Nat .Elim(Tree,Q,Bx){~f}](ξ;x:=C),(ρ;x:=a),∆).

We should prove that

λ(∆′ ` a,C).G
Γ,T ree,Q,~f,ξ,ρ,∆

(pred(∆′ ` ρ(M)))(∆′ ` N1a,C))

= λ(∆′ ` a,C).[Γ, x : Nat .Elim(Tree,Q,Bx){~f}](ξ;x:=C),(ρ;x:=a),∆.

Lemma 86 only proves that the values of the functions are equal for arguments (∆′ ` a,C)
such that (∆′ ` a) ∈ [Γ ` Nat ]ξ,ρ,∆. In the general case we cannot say anything about
the values of the functions. It turns out that this property (functions have equal values for
certain arguments) is enough to have the equality 5.4 in the cases we really need it. We define
a relation which formalizes the property of partial equality.

Let Γ, ∆ be two contexts and 〈ξ, ρ〉 and 〈ξ′, ρ〉 be two constructor valuations which satisfy
Γ at ∆. If Γ ` A : T and A is a large term then we define the relation 'Γ,ξ,ξ′,ρ,∆ in V∆(ρ(A)).

• If A is a type, a formula or a kind then

C 'Γ,ξ,ξ′,ρ,∆ C ′ ⇔ C = C ′.

• If A is a subset or a constructor with an argument of type T1 then

C 'Γ,ξ,ξ′,ρ,∆ C ′ ⇔ for every Γ ` t : T1

such that (∆′ ` ρ(t)) ∈ [Γ ` T1]ξ,ρ,∆ ∩ [Γ ` T1]ξ′,ρ,∆
for every A,A′ ∈ V∆′(ρ(A)ρ(t))
if A 'Γ,ξ,ξ′,ρ,∆ A′

then C(∆′ ` ρ(t),A) 'Γ,ξ,ξ′,ρ,∆ C ′(∆′ ` ρ(t),A′).
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• If T is a large inductive type and A =βι Constr(n, I) ~N then

C 'Γ,ξ,ξ′,ρ,∆ C ′ ⇔ ∀i > 0 (πi(C) 'Γ,ξ,ξ′,ρ,∆ πi(C ′)) ∧ π0(C) = π0(C ′).

Let Γ, ∆ be two contexts and 〈ξ1, ρ〉, 〈ξ′1, ρ〉, 〈ξ, ρ〉 and 〈ξ′, ρ〉 be constructor valuations
which satisfy Γ at ∆. We write ξ1 'Γ,ξ,ξ′ρ,∆ ξ′1 when

∀α (ξ1(α) 'Γ,ξ,ξ′,ρ,∆ ξ′1(α)).

Lemma 87. Let A be a large term in the context Γ1. Suppose ∆ is a context, ρ is an object
substitution, C,C ′ ∈ V∆(ρ(A)), and Γ ⊆ Γ1, and FV (A) ⊆ dom(Γ). Suppose that

• 〈ξ, ρ〉, 〈ξ′, ρ〉 are constructor valuations which satisfy Γ at ∆ such that ξ 'Γ,ξ,ξ′,ρ,∆ ξ′;

• 〈ξ1, ρ〉, 〈ξ′1, ρ〉 are constructor valuations which satisfy Γ1 at ∆ such that

ξ1 'Γ1,ξ1,ξ′1,ρ,∆
ξ′1.

Suppose that for every x ∈ dom(Γ) we have ξ(x) = ξ1(x) and ξ′(x) = ξ′1(x). Then

C 'Γ1,ξ1,ξ′1,ρ,∆
C ′ if and only if C 'Γ,ξ,ξ′,ρ,∆ C ′.

Proof. Easy induction with respect to the definition of 'Γ,ξ,ξ′,ρ,∆ using
Lemmas 77 and 78. We only consider the case when Γ1 ` A : T is a subset or a constructor
of large inductive object with an argument of type T1.
(⇒) Suppose C 'Γ1,ξ1,ξ′1,ρ,∆

C ′. For every x ∈ FV (A) we have Γ1(x) = Γ(x), thus Γ ` A : T .
Suppose Γ ` t : T1 is such that

(∆′ ` ρ(t)) ∈ [Γ ` T1]ξ,ρ,∆ ∩ [Γ ` T1]ξ′,ρ,∆

and A,A′ ∈ V∆′(ρ(A)ρ(t)) such that A 'Γ,ξ,ξ′,ρ,∆ A′. By Lemma 77

[Γ ` T1]ξ,ρ,∆ = [Γ1 ` T1]ξ1,ρ,∆ and [Γ ` T1]ξ′,ρ,∆ = [Γ1 ` T1]ξ′1,ρ,∆.

Thus
(∆′ ` ρ(t)) ∈ [Γ1 ` T1]ξ1,ρ,∆ ∩ [Γ1 ` T1]ξ′1,ρ,∆.

By the induction hypothesis we have A 'Γ1,ξ1,ξ′1,ρ,∆
A′ and thus by the assumption

C(∆′ ` ρ(t),A) 'Γ1,ξ1,ξ′1,ρ,∆
C ′(∆′ ` ρ(t),A′).

By the induction hypothesis

C(∆′ ` ρ(t),A) 'Γ,ξ,ξ′,ρ,∆ C ′(∆′ ` ρ(t),A′).

(⇐) Suppose C 'Γ,ξ,ξ′,ρ,∆ C ′. We will prove that

C 'Γ1,ξ1,ξ′1,ρ,∆
C ′.

Suppose Γ ` t : T1 is such that

(∆′ ` ρ(t)) ∈ [Γ1 ` T1]ξ1,ρ,∆ ∩ [Γ1 ` T1]ξ′1,ρ,∆
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and A,A′ ∈ V∆′(ρ(A)ρ(t)) such that A 'Γ1,ξ1,ξ′1,ρ,∆
A′. By Lemmas 77 and 78 we have

[Γ ` T1]ξ,ρ,∆ = [Γ1 ` T1]ξ1,ρ,∆ and [Γ ` T1]ξ′,ρ,∆ = [Γ1 ` T1]ξ′1,ρ,∆.

Thus
(∆′ ` ρ(t)) ∈ [Γ ` T1]ξ,ρ,∆ ∩ [Γ ` T1]ξ′,ρ,∆.

By the induction hypothesis we have A 'Γ,ξ,ξ′,ρ,∆ A′ and thus by the assumption

C(∆′ ` ρ(t),A) 'Γ,ξ,ξ′,ρ,∆ C ′(∆′ ` ρ(t),A′).

By the induction hypothesis

C(∆′ ` ρ(t),A) 'Γ1,ξ1,ξ′1,ρ,∆
C ′(∆′ ` ρ(t),A′).

Lemma 88. Suppose I is an inductive type such that Γ ` I : ∗t. Suppose that

• for every constructor valuation 〈ξ̂, ρ̂〉 which satisfies Γ at ∆, if Γ′ ` t : C is structurally
smaller than Γ ` I : ∗t then (∆ ` ρ̂(t)) ∈ [Γ′ ` C]ξ,ρ,∆;

• for every pair 〈ξ̂, ρ̂〉, 〈ξ̂′, ρ̂〉 of constructor valuations which satisfy Γ at ∆ such that
ξ̂ 'Γ,ξ̂,ξ̂′,ρ̂,∆ ξ̂′, and for every sequent Γ′ ` t : C structurally smaller than Γ ` I : ∗t, we
have

[Γ′ ` t]ξ̂,ρ̂,∆ 'Γ,ξ̂,ξ̂′,ρ,∆ [Γ′ ` t]ξ̂′,ρ̂,∆.

If Γ and ∆ are contexts, 〈ξ, ρ〉, 〈ξ′, ρ〉 are two constructor valuations which satisfy Γ at ∆ such
that ξ 'Γ,ξ,ξ′,ρ,∆ ξ′ then for every saturated set S ∈ V∆(ρ(I)) we have

FΓ,I,ξ,ρ,∆(S) = FΓ,I,ξ′,ρ,∆(S).

Proof. By the definition

FΓ,I,ξ,ρ,∆(S) =
(⋂

SAT∆
ρ(I)

)
∪ {(∆′ ` u) ∈ SN∆

ρ(I) |

if ∆′′ ⊇ ∆′ and ∆′′ ` u→∗k Constr(n,X) ~N, and Cn(X) = Π~x : ~T .X

then for every j we have (∆′′ ` Nj) ∈ Interp(Γj ` Tj)ξj ,ρj ,∆′′,X,S|∆′′}

where ξj , ρj are as in the definition of FΓ,I,ξ,ρ,∆(S) (see page 58). The value FΓ,I,ξ′,ρ,∆(S) is
defined similarly. By Lemma 54 we have

Interp(Γj ` Tj)ξj ,ρj ,∆′′,X,S|∆′′ = [Γj ` Tj ](ξj ;X:=S|∆′′ ),(ρj ;X:=ρ(I)),∆′′

and
Interp(Γj ` Tj)ξ′j ,ρj ,∆′′,X,S|∆′′ = [Γj ` Tj ](ξ′j ;X:=S|∆′′ ),(ρj ;X:=ρ(I)),∆′′ .

By the assumption we have

[Γj ` Tj ](ξj ;X:=S|∆′′ ),(ρj ;X:=ρ(I)),∆′′ = [Γj ` Tj ](ξ′j ;X:=S|∆′′ ),(ρj ;X:=ρ(I)),∆′′ .

The conclusion follows from the facts above.

Lemma 89. Suppose I is an inductive predicate such that Γ ` I : A. Suppose that
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• for every constructor valuation 〈ξ̂, ρ̂〉 which satisfies Γ at ∆, if Γ′ ` t : C is structurally
smaller than Γ ` I : A then (∆ ` ρ̂(t)) ∈ [Γ′ ` C]ξ̂,ρ̂,∆;

• for every pair 〈ξ̂, ρ̂〉, 〈ξ̂′, ρ̂′〉 of constructor valuations which satisfy Γ at ∆ such that
ξ̂ 'Γ,ξ̂,ξ̂′,ρ̂,∆ ξ̂′ for every Γ′ ` t : C structurally smaller than Γ ` I : A we have

[Γ′ ` t]ξ̂,ρ̂,∆ 'Γ,ξ̂,ξ̂′,ρ̂,∆ [Γ′ ` t]ξ̂′,ρ̂,∆.

If Γ and ∆ are contexts, 〈ξ, ρ〉, 〈ξ′, ρ〉 are two constructor valuations which satisfy Γ at ∆ such
that ξ 'Γ,ξ,ξ′,ρ,∆ ξ′ then for every S ∈ V∆(ρ(I)) we have

HΓ,I,ξ,ρ,∆(S) 'Γ,ξ,ξ′,ρ,∆ HΓ,I,ξ′,ρ,∆(S).

Proof. Let (~Σ, ~u, ~U) be an appropriate sequence of arguments for (~x : ~τ). By the definition of
the operator H (see page 81) we have

HΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) = (
⋂
SATΣn

ρ(I)~u) ∪ hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1)

where hΓ,I,ξ,ρ,∆(S)((Σi, ui, Ui)ni=1) consists of simple sequents (∆′ ` m) ∈ SNΣn
ρ(I)~u such that

for every context ∆′′ and every term J such that (∆′′ ` J) ∈ SNΣn
ρ(A) and J =βι ρ(I),

for every context ∆′′′ and every term Q such that (∆′′′ ` Q) ∈ [Γ ` A]ξ|∆′′ ,ρ,∆′′ ,

for every P ∈ V∆′′′(Q), ,

for every context ∆′′′′ and for every vector ~f such that

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′′ ;X:=S|∆′′′′ ;q:=P ),(ρ;X:=J ;q:=Q),∆′′′′

we have (∆′′′′ ` Elim(J,Q, ~u,m){~f}) ∈ P ((Σi, ui, Ui)ni=1).

The value HΓ,I,ξ′,ρ,∆(S) is defined similarly. It is easy to show that under the assumption

[Γ, q : A,X : A ` 4{Ci(X), q}](ξ|∆′′′ ;X:=S|∆′′′ ;q:=C),(ρ;X:=J ;q:=Q),∆′′′ 'Γ,ξ,ξ′,ρ,∆

[Γ, q : A,X : A ` 4{Ci(X), q}](ξ′|∆′′′ ;X:=S|∆′′′ ;q:=C),(ρ;X:=J ;q:=Q),∆′′′ .

Thus we get the conclusion.

Lemma 90. Let F and F ′ be two sets which satisfy the condition: for every f ∈ F there
exists f ′ ∈ F ′ such that f 'Γ,ξ,ξ′,ρ,∆ f ′ and for every f ′ ∈ F ′ there exists f ∈ F such that
f ′ 'Γ,ξ,ξ′,ρ,∆ f . Then ⊔

F 'Γ,ξ,ξ′,ρ,∆

⊔
F ′.

Proof. We proceed by induction with respect to the definition of 'Γ,ξ,ξ′,ρ,∆. If F is a set of
saturated sets the conclusion is obvious. Suppose that F is a set of functions. Let (∆′ ` m) ∈
[Γ ` T ]ξ,ρ,∆ ∩ [Γ ` T ]ξ′,ρ,∆ and C,C ′ ∈ V∆′(m) and C 'Γ,ξ,ξ′ρ,∆ C ′. Then

(
⊔
F)(∆′ ` m,C) =

⊔
F1 and (

⊔
F ′)(∆′ ` m,C ′) =

⊔
F2
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where

F1 = {f(∆′′ ` m,C|∆′′) | ∆′′ ⊇ ∆′, (∆′′ ` m,C|∆′′) ∈ dom(f), f ∈ F},
F2 = {f(∆′′ ` m,C ′|∆′′) | ∆′′ ⊇ ∆′, (∆′′ ` m,C ′|∆′′) ∈ dom(f), f ∈ F ′}.

We show that the sets F1, F2 satisfy the assumption. Let g ∈ F1. Then g = f(∆′′ ` m,C|∆′′)
for a certain f ∈ F , ∆′′ ⊇ ∆′, and (∆′′ ` m,C|∆′′) ∈ dom(f). By the assumption there
exists f ′ ∈ F2 such that f 'Γ,ξ,ξ′,ρ,∆ f ′. We know that (∆′′ ` m) ∈ [Γ ` T ]ξ′,ρ,∆ and
C ′|∆′′ ∈ V∆′′(m). Thus (∆′′ ` m,C ′|∆′′) ∈ dom(f ′). Let g′ = f ′(∆′′ ` m,C ′|∆′′). Then
g 'Γ,ξ,ξ′,ρ,∆ g′ and g′ ∈ F2. Similarly one can prove that for every g′ ∈ F2 there exists g ∈ F1

such that g 'Γ,ξ,ξ′,ρ,∆ g′. The sets F1, F2 indeed satisfy the assumption thus by the induction
hypothesis we have F1 'Γ,ξ,ξ′,ρ,∆ F2.
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Lemma 91. Suppose that

• for every constructor valuation 〈ξ̂, ρ̂〉 which satisfies Γ at ∆ if Γ′ ` t : C is structurally
smaller than Γ ` Elim(I,Q,m){~f} : A then (∆ ` ρ̂(t)) ∈ [Γ′ ` C]ξ̂,ρ̂,∆;

• for every pair 〈ξ̂, ρ̂〉, 〈ξ̂′, ρ̂′〉 of constructor valuations which satisfy Γ at ∆ such that
ξ̂ 'Γ,ξ̂,ξ̂′,ρ̂,∆ ξ̂′ for every Γ′ ` t : C structurally smaller than Γ ` T : A we have

[Γ ` t]ξ̂,ρ̂,∆ 'Γ,ξ̂,ξ̂′,ρ̂,∆ [Γ ` t]ξ̂′,ρ̂,∆;

• Γ and ∆ are contexts, 〈ξ, ρ〉, 〈ξ′, ρ〉 are two constructor valuations which satisfy Γ at ∆
and ξ 'Γ,ξ,ξ′,ρ,∆ ξ′;

• S is a saturated set and S ∈ DΓ,I,ξ′,ρ,∆.

If U 'Γ,ξ,ξ′,ρ,∆ U ′ then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) 'Γ,ξ,ξ′,ρ,∆ G
Γ,I,Q,~f,ξ′,ρ,∆(S)(∆′ ` m,U ′).

Proof. We proceed by induction with respect to the ordering in DΓ,I,ξ′,ρ,∆. If S =
⋂
SAT∆

ρ(I)
then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}

= G
Γ,I,Q,~f,ξ′,ρ,∆(S)(∆′ ` m,U ′).

Suppose the conclusion is true for every S′ < S. There are two cases.
Case 1: If m 6=βι Constr(n, J) ~N then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) = Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

'Γ,ξ,ξ′,ρ,∆

Min∆′(Elim(ρ(I), ρ(Q),m){ρ(~f)}) = G
Γ,I,Q,~f,ξ′,ρ,∆(S)(∆′ ` m,U ′).

Case 2: If m =βι Constr(n, J) ~N then

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆′ ` m,U) =
⊔

(Base ∪Min)

and
G

Γ,I,Q,~f,ξ,ρ,∆
(S)(∆′ ` m,U ′) =

⊔
(Base′ ∪Min′).

Recall that Base consists of all values of the form

[Γ ` fn]ξ|∆′ ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(n, J) ~M,U,Cn(I), ~M ]

such that ∆′′ ⊇ ∆′, m =βι Constr(n, J) ~M and (∆′′ ` Constr(n, J) ~M) ∈ S and Base′ consists
of all values of the form

[Γ ` fn]ξ|∆′ ,ρ,∆′′ · gΓ,I,Q,~f,ξ,ρ,∆′′ [Constr(n, J) ~M,U ′, Cn(I), ~M ]
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such that ∆′′ ⊇ ∆′, m =βι Constr(n, J) ~M and (∆′′ ` Constr(n, J) ~M) ∈ S. The sequences

~g1 = g
Γ,I,Q,~f,ξ,ρ,∆′′ [Constr(j, J) ~M,U,Cj(I), ~M ],

~g2 = g
Γ,I,Q,~f,ξ,ρ,∆′′ [Constr(j, J) ~M,U ′, Cj(I), ~M ]

are two sequences of pairs of the form (∆ ` a,C). For every index i we have

(~g1)i = (∆ ` a,C) and (~g2)i = (∆ ` a,C ′).

The elements C, C ′ in the sequence are either appropriate elements of sequences U , U ′ or
applications of the operator G to equivalent arguments. Using the induction hypothesis it is
easy to observe that for every f ∈ Base there exists f ′ ∈ Base′ such that f 'Γ,ξ,ξ′,ρ,∆ f ′ and
vice versa.

The set Min consists of all values of the form

Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

such that ∆′′ ⊇ ∆′, m =βι Constr(n, J) ~M and

(∆′′ ` Constr(n, J) ~M) ∈ T∆
ρ(I) − S.

At the same time Min′ consists of all values of the form

Min∆′′(Elim(ρ(I), ρ(Q),m){ρ(~f)})

such that ∆′′ ⊇ ∆′, m =βι Constr(n, J) ~M and

(∆′′ ` Constr(n, J) ~M) ∈ T∆
ρ(I) − S.

Then Min = Min′. The conclusion follows from Lemma 90.

Lemma 92. Suppose Γ and ∆ are contexts, 〈ξ, ρ〉 and 〈ξ′, ρ〉 are object valuations which
satisfy Γ at ∆, S ∈ DΓ,I,ξ′,ρ,∆ and

(∆ ` ρ(N)) ∈ [Γ ` C(X)](ξ′;X:=S),(ρ;X:=ρ(I)),∆

where C(X) = Π~x : ~T .X is a type of constructor in X. Let R be a function such that if
(∆i, xi, Ci)ni=1 is an appropriate sequence of arguments for (~x : ρ(~T )) then

R((∆i, xi, Ci)ni=1) = G
Γ,I,Q,~f,ξ′,ρ,∆(S)(∆ ` ρ(N)~x, [Γ ` N ]ξ′,ρ,∆(∆i, xi, Ci)ni=1).

Then
[Γ ` λ~x : ~T .Elim(I,Q,N~x){~f}]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ R.

Proof. Lemma 66 implies that R ∈ V∆(ρ(λ~x : ~T .Elim(I,Q,N~x){~f})). By the definition

[Γ ` λ~x : ~T .Elim(I,Q,N~x){~f}]ξ,ρ,∆
= λλ(∆i, xi, Ci)i.GΓ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(N)~x, [Γ ` N ]ξ,ρ,∆(∆i, xi, Ci)i).
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We proceed by induction with respect to the ordering in DΓ,I,ξ′,ρ,∆. Let (∆i, ai, Ci)i be a se-
quence of arguments such that

(∆i ` ai) ∈ [Γ, (xj : Tj)i−1
j=0 ` Ti]ξi−1,ρi−1,∆i−1

∩ [Γ, (xj : Tj)i−1
j=0 ` Ti]ξ′i−1,ρi−1,∆i−1

and

Ci ∈ V∆i(ρ(N)(aj)i−1
j=0).

By the assumption (∆ ` ρ(N)~a) ∈ [Γ, ~x : ~T ` X](ξ′;~x:= ~C;X:=S),(ρ;~x:=~a,X:=ρ(I)),∆.
If S =

⋂
SAT∆

ρ(I) then we have

(∆n ` ρ(N)~a) ∈ S =
⋂
SAT∆

ρ(I).

By Lemma 35 there is no m, I, ~N ′ such that Constr(m, I) ~N ′ =βι ρ(N)~a. Thus

[Γ ` λ~x : ~T .Elim(I,Q,N~x){~f}]ξ,ρ,∆((∆i, ai, Ci)ni=1)

= Min∆n(Elim(ρ(I), ρ(Q), ρ(N)~a){ρ(~f)}))

and
R((∆i, ai, Ci)ni=1) = Min∆n(Elim(ρ(I), ρ(Q), ρ(N)~a){ρ(~f)})).

Thus the conclusion holds.
Assume that the induction hypothesis holds for every S′ < S. There are two cases.

Case 1: π1([Γ ` N ]ξ,ρ,∆~a) = j and ρ(N)~a =βι Constr(j,X) ~N ′. Lemma 88 implies that
DΓ,I,ξ′,ρ,∆ = DΓ,I,ξ,ρ,∆. Thus S ⊆ [Γ ` I]ξ,ρ,∆. By Lemma 86 we have

G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(N)~x, [Γ ` N ]ξ,ρ,∆(∆i, xi, Ci)ni=1)

= G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆ ` ρ(N)~x, [Γ ` N ]ξ,ρ,∆(∆i, xi, Ci)ni=1).

By Lemma 91 and the induction hypothesis we get the conclusion.

Case 2: Otherwise

G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(N)~a, [Γ ` N ]ξ,ρ,∆(∆i, ai, Ci)ni=1)

= Min∆(Elim(ρ(I), ρ(Q), ρ(N)~a){ρ(~f)}.

for every j, X, ~N ′ such that Constr(j,X) ~N ′ =βι ρ(N)~a we have

(∆′′ ` Constr(j,X) ~N ′) ∈ T∆
ρ(I) − [Γ ` I]ξ,ρ,∆

then (∆′′ ` Constr(j,X) ~N ′) ∈ T∆
ρ(I) − S as S ⊆ [Γ ` I]ξ,ρ,∆. Thus

G
Γ,I,Q,~f,ξ,ρ,∆

(S)(∆ ` ρ(N)~a, [Γ ` N ]ξ,ρ,∆(∆i, ai, Ci)ni=1

= Min∆(Elim(ρ(I), ρ(Q), ρ(N)~a){ρ(~f)}.
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Either way
[Γ ` λ~x : ~T .Elim(I,Q,N~x){~f}]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ R.

Lemma 93. Suppose that

1. Γ ` T : A and Γ ` T ′ : A and

T = Elim(I,Q,Constr(n, I) ~N){~f} and T ′ = fn~e[Cn(I), ~N, I,Q, ~f ].

2. For every constructor valuation 〈ξ̂, ρ̂〉 which satisfies Γ at ∆, for every Γ′ ` t : C
structurally smaller than at least one of sequents Γ ` T : A, Γ ` T ′ : A we have

(∆ ` ρ̂(t)) ∈ [Γ′ ` C]ξ̂,ρ̂,∆.

3. For every pair 〈ξ̂, ρ̂〉, 〈ξ̂′, ρ̂′〉 of constructor valuations which satisfy Γ at ∆ such that
ξ̂ 'Γ,ξ̂,ξ̂′,ρ̂,∆ ξ̂′, for every Γ′ ` t : C structurally smaller than Γ ` T : A or Γ ` T ′ : A we
have

[Γ′ ` t]ξ̂,ρ̂,∆ 'Γ,ξ̂,ξ̂′,ρ̂,∆ [Γ′ ` t]ξ̂′,ρ̂,∆.

If 〈ξ, ρ〉, 〈ξ′, ρ′〉 is a pair of constructor valuations which satisfy Γ at ∆ such that ξ 'Γ,ξ,ξ′,ρ,∆ ξ′

then
[Γ ` T ]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ ` T ′]ξ′,ρ,∆.

Proof. We have
T = Elim(I,Q,Constr(n, I) ~N){~f}

and
T ′ = fn~e[Cn(I), ~N, I,Q, ~f ].

Then

[Γ ` T ]ξ,ρ,∆ = G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(Constr(n, I) ~N), [Γ ` Constr(n, I) ~N ]ξ,ρ,∆′)

and
[Γ ` T ′]ξ′,ρ,∆ = [Γ ` fn~e[Cn(I), ~N, I,Q, ~f ]]ξ′,ρ,∆.

By the assumption (∆ ` ρ(Constr(n, I) ~N)) ∈ [Γ ` I]ξ,ρ,∆ and thus by Lemma 69

G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(Constr(n, I) ~N), [Γ ` Constr(n, I) ~N ]ξ,ρ,∆′)

= [Γ ` fn]ξ,ρ,∆ · gΓ,I,Q,ξ,ρ,∆[ρ(Constr(n, I) ~N), [Γ ` Constr(n, I) ~N ]ξ,ρ,∆, Cn(I), ~N ].

By the assumption
[Γ ` fn]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ ` fn]ξ′,ρ,∆.

We thus have to prove that the above interpretations are applied to equivalent arguments.
This follows from Lemma 92.

Lemma 94. Suppose that

1. Γ ` T : A and Γ ` T ′ : A and T →βι T
′.
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2. For every constructor valuation 〈ξ, ρ〉 which satisfies Γ at ∆, for every Γ′ ` t : C
structurally smaller than at least one of sequents Γ ` T : A or Γ ` T ′ : A, we have

(∆ ` ρ(t)) ∈ [Γ ` C]ξ,ρ,∆.

3. For every Γ′ ` t : C structurally smaller at least one of sequents Γ ` T : A or Γ ` T ′ : A
for every pair 〈ξ̂, ρ̂〉, 〈ξ̂′, ρ̂′〉 of constructor valuations which satisfy Γ′ at ∆ such that
ξ̂ 'Γ′,ξ̂,ξ̂′,ρ̂,∆ ξ̂′, we have

[Γ′ ` t]ξ̂,ρ̂,∆ 'Γ′,ξ̂,ξ̂′,ρ̂,∆ [Γ′ ` t]ξ̂′,ρ̂,∆.

Then
[Γ ` T ]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ ` T ′]ξ′,ρ,∆.

Proof. Induction with respect to the definition of T →βι T
′.

Case 1: T is a beta-redex. Then T = (λx : A.B)C and T ′ = B[x := C]. We only consider
the case when A is a large type. The other case is similar. We have

[Γ ` (λx : A.B)C]ξ,ρ,∆

= (λλ(∆′ ` a, U) : T∆
ρ(A).[Γ, x : A ` B](ξ;x:=C),(ρ;x:=a),∆′)(∆ ` ρ(C), [Γ ` C]ξ,ρ,∆)

= [Γ, x : A ` B](ξ;x:=[Γ`C]ξ,ρ,∆),(ρ;x:=ρ(C)),∆

and
[Γ ` B[x := C]]ξ′,ρ,∆ = [Γ, x : A ` B](ξ′;x:=[Γ`C]ξ′,ρ,∆),(ρ;x:=ρ(C)),∆.

By the assumption
[Γ ` C]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ ` C]ξ′,ρ,∆

and for every pair 〈ξ̂, ρ̂〉, 〈ξ̂′, ρ̂′〉 of constructor valuations which satisfy (Γ, x : A) at ∆ such
that ξ̂ 'Γ,ξ̂,ξ̂′,ρ̂,∆ ξ̂′ we have

[Γ, x : A ` B]ξ̂,ρ̂,∆ '(Γ,x:A),ξ̂,ξ̂′,ρ̂,∆ [Γ, x : A ` B]ξ̂′,ρ̂,∆.

Thus

[Γ, x : A ` B](ξ;x:=[Γ`C]ξ,ρ,∆),(ρ;x:=ρ(C)),∆

'(Γ,x:A),ξ,ξ′,ρ,∆ [Γ, x : A ` B](ξ′;x:=[Γ`C]ξ′,ρ,∆),(ρ;x:=ρ(C)),∆.

But
[Γ, x : A ` B](ξ;x:=[Γ`C]ξ,ρ,∆),(ρ;x:=ρ(C)),∆ = [Γ ` B[x := C]]ξ,ρ,∆.

Thus by Lemma 87

[Γ ` B[x := C]]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ ` B[x := C]]ξ′,ρ,∆.

Case 2: T is iota-redex and T ′ is iota-reduct. This is a consequence of Lemma 93.

Case 3: In the other cases the proof is a routine application of the induction hypothesis.
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5.5. Adequacy lemma and strong normalization proof

In this section we combine the previous results to prove the adequacy lemma, that is if
Γ ` M : T then for an appropriate constructor valuation 〈ξ, ρ〉 which satisfies Γ at a con-
text ∆ we have

(∆ ` ρ(M)) ∈ [Γ ` T ]ξ,ρ,∆.

Lemma 95. If (∆′ ` M) ∈ [Γ ` I]ξ,ρ,∆ then either M →∗k M ′ and (∆′ ` M ′) ∈ B∆
ρ(I) for

a certain ∆′, or M →∗k Constr(n,X) ~N .

Proof. If (∆′ `M) ∈ [Γ ` I]ξ,ρ,∆ then by the definition of [Γ ` I]ξ,ρ,∆ we have

(∆′ `M) ∈ SN∆
ρ(I).

Thus there exists M ′ in key normal form such that M →∗k M ′. By induction with respect to
the structure of M ′ it is easy to observe that if M ′ is in key normal form then one of the
following cases hold

(∆′ `M ′) ∈ B∆
τ , M ′ = Constr(n,X) ~N , M ′ = λx : A.B, M ′ = Πx : A.B

or M ′ = Ind(X : s){~C}.

IfM ′ is of type ρ(I) andM ′ 6∈ B∆
ρ(I) thenM

′ = Constr(n,X) ~N . By the Generation Lemma 17
the other forms mentioned above are not possible.

Let C(X) = Π~x : ~t.X~t′ be a type of constructor in X. Let ∆, Γ be two contexts and let
〈ξ, ρ〉 be a constructor valuation which satisfies Γ at ∆. Suppose the vector ~t has length n.
Let (∆i, Ni, Pi)ni=1 be an appropriate sequence of arguments for (~x : ~t) at 〈ξ, ρ〉 in ∆. We say
that it is an adequate sequence of arguments for (~x : ~t) at 〈ξ, ρ〉 in ∆ if for every j = 1, . . . , n
we have

(∆j ` Nj) ∈ [Γ, (xi : ti)
j−1
i=1 ` tj ]ξj−1|∆j ,ρj−1,∆j

Here we state an auxiliary technical lemma which expresses the fact that elimination for
inductive objects behaves in the expected way.

Lemma 96. Let I = Ind(X : ∗t){~C} be an inductive type with n constructors. Suppose that

1. Γ and ∆ are contexts;

2. Q is a term such that Γ ` Q : I → s where s is ∗t or ∗p;

3. for every sequence of types ~τ in the context Γ′, for every ordinal number α′ < α, and for
every object valuation 〈ξ′, ρ′〉 which satisfies (Γ′, x : (Π~y : ~τ .I), ~y : ~τ) at ∆′, if

(∆′ ` ρ′(x~y)) ∈ Fα′(Γ′,x:(Π~y:~τ.I),~y:~τ),I,ξ′,ρ′,∆′(
⋂
SAT∆′

ρ′(I))

then

(∆′ ` Elim(ρ′(I), ρ′(Q), ρ′(x~y)){ρ′(~f)}) ∈ [Γ′, x : (Π~y : ~τ .I), ~y : ~τ ` Q(x~y)]ξ′,ρ′,∆′ ;

4. ~σ is a sequence of types in the context Γ and 〈ξ, ρ〉 is an object valuation which satisfies
(Γ, x : (Π~y : ~σ.I), ~y : ~σ) at ∆;
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5. for every i = 0, . . . , n− 1 we have (∆ ` ρ(fi)) ∈ [Γ ` 4{Ci(I), fi,Constr(i, I)}]ξ,ρ,∆;

6. (∆ ` ρ(x~y)) ∈ FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)).

Then

(∆ ` Elim(ρ(I), ρ(Q), ρ(x~y)){ρ(~f)}) ∈ [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆.

Proof. Let M = ρ(x~y). Recall that FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)) ⊆ [Γ ` I]ξ,ρ,∆. By Lemma 95 the
term M key-reduces either

• to a base term M ′, or

• to a constructor term Constr(m,X) ~N .

Case 1 (Reduction to a base term): If M →∗k M ′ and (∆ `M ′) ∈ B∆
ρ(I) then

(∆ ` Elim(ρ(I), ρ(Q),M ′){ρ(~f)}) ∈ B∆
ρ(Q)M ′ = B∆

ρ(Q)M ⊆ [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆

and
Elim(ρ(I), ρ(Q),M){ρ(~f)} →∗k Elim(ρ(I), ρ(Q),M ′){ρ(~f)}.

By Lemma 70 we know that (∆ ` Elim(ρ(I), ρ(Q),M){ρ(~f)}) ∈ SN∆
ρ(Q)M . As the set

[Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆ is saturated we indeed get

(∆ ` Elim(ρ(I), ρ(Q),M){ρ(~f)}) ∈ [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆.

Case 2 (Reduction to a constructor term): Otherwise M →∗k Constr(m,X) ~N . Suppose
Cm(X) = Π~z : ~τ .X. Let

U = [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` x~y]ξ,ρ,∆.

Then U = 〈m, ~P 〉 ∈ V∆(M) and for each object Ni there is a corresponding set Pi ∈ V∆(Ni).
Moreover

Elim(ρ(I), ρ(Q),M){ρ(~f)} →∗k ρ(fm)~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)]

and by Lemma 70 we have (∆ ` Elim(ρ(I), ρ(Q),M){ρ(~f)}) ∈ SN∆
ρ(Q)M . By the assumption

(∆ ` ρ(fm)) ∈ [Γ ` 4{Cm(I), Q,Constr(m, I)}]ρ,ξ,∆.

We will prove that

(∆ ` ρ(fm)~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)]) ∈ [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆. (5.5)

For every j less than the length of the sequence ~τ we introduce the following abbreviations.

Γ0 = Γ, X : ∗t, Γj = Γj−1, zj : τj ,

Γ0 = Γ, Γj = Γj−1
, zj : τj [I/X],

ξ0 = ξ, ξj = ξj−1; zj := Can∆(Nj),

ξ̄0 = ξ, ξ̄j = ξ̄j−1; zj := Cj ,

ρ0 = ρ, ρj = ρj−1; zj := Nj .
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In order to show the claim (5.5) we will prove that the arguments applied to ρ(fm) are good:
if τj = Π~w : ~T .X then

(∆ ` (~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)])j) ∈ [Γj−1 ` τj [I/X]]ξ̄j−1,ρj−1,∆ (5.6)

(∆ ` (~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)])Rj ) ∈ [Γj ` Π~y : ~T .Q(zj~y)]ξ̄j ,ρj ,∆. (5.7)

We show (5.6): By the definition of FαΓ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I)) we know that for each j we have

(∆ ` Nj) ∈ Interp(Γj−1 ` τj)ξj−1,ρj−1,∆,X,Fα−1
Γ,I,ξ,ρ,∆(

T
SAT∆

ρ(I)
).

By the monotonicity of Interp we get

(∆ ` Nj) ∈ Interp(Γj−1 ` τj)ξj−1,ρj−1,∆,X,[Γ`I]ξ,ρ,∆ .

By Lemma 54

Interp(Γj−1 ` τj)ξj−1,ρj−1,∆,X,[Γ`I]ξ,ρ,∆ = [Γj−1 ` τj ](ξj−1;X:=[Γ`I]ξ,ρ,∆),(ρj−1;X:=ρ(I)),∆.

Note that ξj−1 and ξ̄j−1 only differ in subset or object variables. Thus by Lemma 55 and
Lemma 84

[Γj−1 ` τj ](ξj−1;X:=[Γ`I]ξ,ρ,∆),(ρj−1;X:=ρ(I)),∆ = [Γj−1 ` τj [I/X]]ξ̄j−1,ρj−1,∆.

Thus for each j we get (5.6):

(∆ ` (~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)])j) ∈ [Γj−1 ` τj [I/X]]ξ̄j−1,ρj−1,∆.

Consider the case when Nj is a recursive argument. To prove (5.7) recall that

(~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)])Rj = λ~x : ρ(~T ).Elim(ρ(I), ρ(Q), Nj~x){ρ(~f)}.

Suppose that (∆l,Ml, Cl)
p
l=0 is an adequate sequence of arguments for (~y : ~T ) at 〈ξj , ρj〉 in ∆

and that 〈ξj,l, ρj,l〉 is the sequence of constructor valuations associated with it. Note that
then (∆l,Ml, Cl)

p
l=0 is an adequate sequence of arguments for (~y : ~T ) at 〈ξ̄j , ρj〉 in ∆ and let

〈ξ̄j,l, ρj,l〉 be the sequence of constructor valuations associated with it. We will show that

(∆p ` Elim(ρ(I), ρ(Q), Nj
~M){ρ(~f)}) ∈ [Γj , (~y : ~T ) ` Q(zj~y)]ξ̄j,p,ρj,p,∆p

.

By the assumption we know that there exists α′ < α such that

(∆ ` Nj) ∈ Interp(Γj−1 ` τj)ξj−1,ρj−1,∆,X,Fα
′

Γ,I,ξ,ρ,∆(
T
SAT∆

ρ(I)
)
.

By the definition of interpretation for Interp we have

(∆p ` Nj
~M) ∈ Fα′Γ,I,ξ,ρ,∆(

⋂
SAT∆

ρ(I))|∆p .

By Lemma 58

Fα
′

Γ,I,ξ,ρ,∆(
⋂
SAT∆

ρ(I))|∆p = Fα
′

Γ,I,ξ|∆p ,ρ,∆p
(
⋂
SAT∆

ρ(I)|∆p) = Fα
′

Γ,I,ξ|∆p ,ρ,∆p
(
⋂
SAT

∆p

ρ(I)).
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But by Lemma 77

Fα
′

Γ,I,ξ|∆p ,ρ,∆p
(
⋂
SAT

∆p

ρ(I)) = Fα
′

(Γ
j−1

,zj :(Π~y:~T .I),~y:~T ),I,ξ
j,p|∆p ,ρj,p,∆p

(
⋂
SAT

∆p

ρ(I)).

Thus we have

(∆p ` Nj
~M) ∈ Fα′

(Γ
j−1

,zj :(Π~y:~T .I),~y:~T ),I,ξ̄j,p|∆p ,ρ̄j,p,∆p
(
⋂
SAT

∆p

ρ(I)).

Note that 〈ξ̄j,p, ρj,p〉 is an object valuation which satisfies (Γj−1
, zj : (Π~y : ~T .I), ~y : ~T ) at ∆.

By assumption 3 we have

(∆p ` Elim(ρ(I), ρ(Q), Nj
~M){ρ(~f)}) ∈ [Γj−1

, zj : (Π~y : ~T .I), ~y : ~T ` Q(zj~y)]ξ̄j,p,ρj,p,∆p
.

Hence

(∆ ` λ~x : ρ(~T ).Elim(ρ(I), ρ(Q), Nj~x){ρ(~f)}) ∈ [Γj−1
, zj : (Π~y : ~T .I) ` Π~y : ~T .Q(zj~y)]ξ̄j ,ρj ,∆.

Thus we have shown (5.7):

(∆ ` (~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)])Rj ) ∈ [Γj ` Π~y : ~T .Q(zj~y)]ξ̄j ,ρj ,∆.

We now conclude the proof. Let Dj ∈ V∆(λ~y : ~ρ(T ).Elim(ρ(I), ρ(Q), Ni~y){ρ(~f)}) for j
such that τj = Π~y : ~T .I is a recursive argument. Let us define a sequence of contexts ~Γ′ as

Γ′0 = Γ,

Γ′j = Γ′j−1, pj : τj , qj : Π~y : ~T .(Q(pj~y)), if τi = Π~y : ~T i.I is a recursive type,

Γ′j = Γ′j−1, pj : τj , if τi is not a recursive type,

a sequence of valuations ~ξ′ as

ξ′0 = ξ,

ξ′j = ξj−1; pj := Cj , if Nj is not a recursive argument,

ξ′j = ξ′j−1; pj := Cj ; qj := Dj , if Nj is a recursive argument,

and a sequence of substitutions ~ρ′ as

ρ′0 = ρ,

ρ′j = ρ′j−1; pj := Nj , if Nj is not a recursive argument,

ρ′j = ρ′j−1; pj := Nj ; qj := λ~y : ~ρ(T ).Elim(ρ(I), ρ(Q), Nj~y){ρ(~f)},
if Nj is a recursive argument.

Thus by the definition of [Γ ` 4{Cm(I), Q,Constr(m, I)}]ρ,ξ,∆ we have

(∆ ` ρ(fm)~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)]) ∈ [Γ′ ` Q(Constr(m, I)~x)]ξ′,ρ′,∆.
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But

[Γ′ ` Q(Constr(m, I)~p)]ξ′,ρ′,∆

= [Γ′ ` Q]ξ′,ρ′,∆(∆ ` Constr(m, ρ′(I)) ~N, 〈m, ~C〉)
= [Γ ` Q]ξ,ρ,∆(∆ ` Constr(m, ρ(I)) ~N, 〈m, ~C〉) (by Lemma 77)

= [Γ ` Q]ξ,ρ,∆(∆ `M, 〈m, ~C〉)
= [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q]ξ,ρ,∆(∆ `M, 〈m, ~C〉) (by Lemma 77)
= [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q]ξ,ρ,∆(∆ `M, [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` x~y]ξ,ρ,∆)
= [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆.

Thus we have

• (∆ ` Elim(ρ(I), ρ(Q), ρ(x~y)){ρ(~f)}) ∈ SN∆
ρ(Q)M ,

• Elim(ρ(I), ρ(Q), ρ(x~y)){ρ(~f)} →∗k ρ(fm)~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)],

• (∆ ` ρ(fm)~e [Cm(I), ~N, ρ(I), ρ(Q), ρ(~f)]) ∈ [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆.

As [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆ is a saturated set we get

(∆ ` Elim(ρ(I), ρ(Q), ρ(c)ρ(~y)){ρ(~f)}) ∈ [Γ, x : (Π~y : ~σ.I), ~y : ~σ ` Q(x~y)]ξ,ρ,∆.

Lemma 97. Suppose that I is an inductive predicate. Let Π~x : ~τ .I~t′ be such that I does not
occur as a subterm neither in ~τ nor in ~t′. If (∆′ ` N) ∈ [Γ ` Π~x : ~τ .I~t′]ξ,ρ,∆ and n is the
length of ~τ then there exists an ordinal α such that for each adequate sequence (∆i, ai, Ci)i, of
arguments for (~x : ~τ) at 〈ξ, ρ〉 in ∆, we have

(∆n ` N~a) ∈ Hα
(Γ,~x:~τ),I,ξn,ρn,∆n

(Min∆n

ρn(I))(∆ ` ρ(t′i), [Γ ` t′i]ξn,ρn,∆n)ni=1.

Proof. By the definition of [Γ ` Π~x : ~τ .I~t′]ξ,ρ,∆ we know that for each adequate sequence
(∆i, ai, Ci)i of arguments for (~x : ~τ) at 〈ξ, ρ〉 in ∆, if 〈ξi, ρi〉 is the sequence of constructor
valuations associated with it then we have

(∆n ` N~a) ∈ [Γ, ~x : ~τ ` I~t′]ξn,ρn,∆n .

Thus for each (∆i, ai, Ci)i there exists the least ordinal number α(∆i,ai,Ci)i such that

(∆n ` N~a) ∈ Hα(∆i,ai,Ci)i

(Γ,~x:~τ),I,ξn,ρn,∆n
(Min∆n

ρn(I))(∆ ` ρ(t′i), [Γ ` t′i]ξn,ρn,∆n)ni=1.

Take α = sup{α(∆i,ai,Ci)i}. Since H(Γ,~x:~τ),I,ξn,ρn,∆n
is a monotone function such α satisfies the

condition in the lemma.

Lemma 98. Suppose I is an inductive predicate, C(X) = Π~x : ~τ .X~t is a type of constructor
of I, and α > 0 is an ordinal number. Assume that

1. Γ, ∆ are two contexts;

2. 〈ξ, ρ〉 is a constructor valuation which satisfies Γ at ∆;
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3. (∆i, Ni, Ci)mi=1 is an adequate sequence of arguments for (~x : ~τ) at 〈ξ, ρ〉 in ∆;

4. for each recursive argument τj there exists an ordinal α′ < α such that if τj = Π~y : ~σ.I~t′

and (∆′i, ai, C
′
i)
n
i=1 is an adequate sequence of arguments for (~y : ~σ) at 〈ξj , ρj〉 then

(∆′n ` Nj~a) ∈ Hα′

(Γ,(xi:τi)
j−1
i=0 ,~y:~σ),I,ξn,ρn,∆n

(Min∆n

ρn(I))(∆ ` ρn(t′i), [Γ ` t′i]ξn,ρn,∆n)ni=1.

Then

(∆m ` Constr(k, ρ(I)) ~N) ∈ Hα
(Γ,~x:~τ),I,ξm,ρm,∆m

(Min∆m

ρm(I))(∆ ` ρm(ti), [Γ ` ti]ξm,ρm,∆m)ni=1.

Proof. There are two cases.

Case 1: α is a successor ordinal. Let Hα−1 denote Hα−1
(Γ,~x:~τ),I,ξm,ρm,∆m

(Min∆m

ρm(I)). Recall that

Hα
(Γ,~x:~τ),I,ξm,ρm,∆m

(Min∆m

ρm(I))(∆i, ρi(ti), [Γ ` ti]ξi,ρi,∆i
)mi=1 = (

⋂
SAT∆m

ρm(I~t)
)∪

h(Γ,~x:~τ),I,ξm,ρm,∆m
(Hα−1)((∆i, ρi(ti), [Γ ` ti]ξi,ρi,∆i

)mi=1)

and hΓ,I,ξm,ρm,∆m(S)((Σi, ui, Ui)ni=1) consists of simple sequents (∆′ ` m) ∈ SNΣn
ρm(I)~u such

that

for every context ∆′′ and every term J such that (∆′′ ` J) ∈ SNΣn
ρm(A) and J =βι ρm(I),

for every context ∆′′′ and every term Q such that (∆′′′ ` Q) ∈ [Γ ` A]ξm|∆′′ ,ρm,∆′′ ,
for every P ∈ V∆′′′(Q), ,
for every context ∆′′′′ and for every vector ~f such that

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξm|∆′′′′ ;X:=S|∆′′′′ ;q:=P ),(ρm;X:=J ;q:=Q),∆′′′′

we have (∆′′′′ ` Elim(J,Q, ~u,m){~f}) ∈ P ((Σi, ui, Ui)ni=1).

We obviously have
(∆m ` Constr(k, ρm(I)) ~N) ∈ SN∆m

ρm(I).

Let J , Q and ~f be such that

(∆′′ ` J) ∈ SNΣn
ρm(A), J =βι ρm(I),

(∆′′′ ` Q) ∈ [Γ ` A]ξm|∆′′ ,ρm,∆′′ , P ∈ V∆′′′(Q)

(∆′′′′ ` fi) ∈ [Γ, q : A,X : A ` 4{Ci(X), q}](ξm;q:=P,X:=Hα−1),(ρm;q:=Q,X:=J),∆′′′ .

Note that
Elim(J,Q,Constr(k, ρ(I)) ~N){~f} →k fk~e [Ck(J), ~N, J,Q, ~f ].

By assumptions 3 and 4 and the definition of

[Γ, q : A,X : A ` 4{Ci(X), q}](ξm;q:=P,X:=Hα−1),(ρm;q:=Q,X:=J),∆′′′

we get
(∆′′′′ ` fk~e [Ck(J), ~N, J,Q, ~f ]) ∈ P (∆ ` ρ(ti), [Γ ` ti]ξm,ρm,∆m)mi=1.

By Corollary 38 the term Elim(J,Q,Constr(k, ρ(I)) ~N){~f} is strongly normalizing. But P is
a saturated set and thus

(∆′′′′ ` Elim(ρm(I), Q,Constr(k, ρm(I)) ~N){~f}) ∈ P (∆ ` ρ(ti), [Γ ` ti]ξm,ρm,∆m)mi=1.

Hence we get the conclusion.
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Case 2: α is a limit ordinal. There is only a finite number of recursive arguments. Each
recursive argument has its own α′ as in the statement of the lemma. One of those (finitely
many) ordinals is the greatest, we denote it by α′′. The conclusion follows from case 1 for
α′′ + 1 and the monotonicity of H.

We now prove the adequacy lemma.

Lemma 99 (Adequacy Lemma). Let Γ `M : T .

1. If 〈ξ, ρ〉 is an object valuation which satisfies Γ at ∆ then (∆ ` ρ(M)) ∈ [Γ ` T ]ξ,ρ,∆.

2. If M is neither a proof nor a small object then for every pair 〈ξ, ρ〉, 〈ξ′, ρ〉 of object
valuations which satisfy Γ at ∆ and ξ 'Γ,ξ,ξ′,ρ,∆ ξ′ we have

[Γ `M ]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ `M ]ξ′,ρ,∆.

Proof. We proceed by induction with respect to the length of the longest reduction in any type-
like term (i.e. a type, a formula, a kind or a sort) occurring in the derivation of Γ ` M : T .
By Lemma 31 every type-like term is strongly normalizing, thus every reduction sequence
beginning in a type-like term is finite. Suppose for all non-proofsN in the derivation Γ `M : T
every reduction sequence beginning in N has length at most n. For a fixed n we proceed by
auxiliary induction with respect to the structure of the derivation. The cases depend on the
last rule used in the derivation.

(Var) Part 1 follows from the assumption that 〈ξ, ρ〉 is an object valuation which satisfies Γ
at ∆. Part 2 follows from the assumption that

[Γ `M ]ξ,ρ,∆ = ξ(M) 'Γ,ξ,ξ′,ρ,∆ ξ′(M) = [Γ `M ]ξ′,ρ,∆.

(Weak) Part 1 is a consequence of Lemma 77. Part 2 follows from the auxiliary induction
hypothesis and Lemma 87.

(Conv) We prove Part 1. We have

Γ `M : T ′ Γ ` T : s T ′ =βι T

Γ `M : T

By the auxiliary induction hypothesis (∆ ` ρ(M)) ∈ [Γ ` T ′]ξ,ρ,∆. By the Church-Rosser
property there exists T ′′ such that

T →∗βι T ′′ and T ′ →∗βι T ′′ and Γ ` T ′′ : s.

By the main induction hypothesis and Lemma 94

[Γ ` T ′]ξ,ρ,∆ 'Γ,ξ,ξ,ρ,∆ [Γ ` T ′′]ξ,ρ,∆,
[Γ ` T ]ξ,ρ,∆ 'Γ,ξ,ξ,ρ,∆ [Γ ` T ′′]ξ,ρ,∆.

Thus

[Γ ` T ′]ξ,ρ,∆ 'Γ,ξ,ξ,ρ,∆ [Γ ` T ]ξ,ρ,∆.
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By the definition of the relation 'Γ,ξ,ξ,ρ,∆

[Γ ` T ′]ξ,ρ,∆ = [Γ ` T ]ξ,ρ,∆

and thus
(∆ ` ρ(M)) ∈ [Γ ` T ]ξ,ρ,∆.

Part 2 follows from the auxiliary induction hypothesis.

(Ax) Part 1 follows immediately from‘ the definition of [Γ ` T ]ξ,ρ,∆. Part 2 is immediate
consequence of the definition of [Γ ` T ]ξ,ρ,∆.

(Abs) We prove Part 1. We have M = λx : A.P and

Γ, x : A ` P : B
Γ ` (λx : A.P ) : (Πx : A.B)

Let u = ρ(λx : A.P ) = λx : ρ(A).ρ(P ). (We may assume that the variable x is not free in
ρ(y) for every y ∈ FV (P )− {x}.) We want to prove that

(∆ ` u) ∈ [Γ ` Πx : A.B]ξ,ρ,∆.

We know that ∆ ` u : ρ(Πx : A.B). By the auxiliary induction hypothesis we get that ρ(P )
is strongly normalizing. This entails that the term u is strongly normalizing. Let

∆′′ ⊇ ∆, (∆′′ ` a) ∈ [Γ ` A]ξ|∆′′ ,ρ,∆′′ , C ∈ V∆′′(a).

Then 〈ξ′, ρ′〉 where
ρ′ = ρ;x := a, ξ′ = ξ|∆′′ ;x := C

is an object valuation which satisfies (Γ, x : A) at ∆′′. Moreover

ua = (λx : ρ(A).ρ(P ))a→k (ρ;x := a)(P ) = ρ′(P ).

By the auxiliary induction hypothesis

(∆′′ ` ρ′(P )) ∈ [Γ, x : A ` B]ξ′|∆′′ ,ρ′,∆′′ .

By Corollary 38 the term ua is strongly normalizing. One can easily see that the set
[Γ, x : A ` B]ξ′|∆′′ ,ρ′,∆′′ is saturated, so we have

(∆′′ ` ua) ∈ [Γ, x : A ` B]ξ′|∆′′ ,ρ′,∆′′ .

Thus
(∆ ` u) ∈ [Γ ` Πx : A.B]ξ,ρ,∆.

Part 2 follows from the auxiliary induction hypothesis.

(App) We prove Part 1. We have M = AB and

Γ `M : (Πx : A.B) Γ ` N : A
Γ `MN : B[x := N ]
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We only consider the case when A is a large type or ∗p. The other case is similar. By the
auxiliary induction hypothesis we know that

(∆ ` ρ(M)) ∈ [Γ ` Πx : A.B]ξ,ρ,∆,
(∆ ` ρ(N)) ∈ [Γ ` A]ξ,ρ,∆.

Then by the definition of [Γ ` Πx : A.B]ξ,ρ,∆,

(∆ ` ρ(M)ρ(N)) ∈ [Γ, x : A ` B](ξ;x:=[Γ`N ]ξ,ρ,∆),(ρ;x:=ρ(N)),∆.

By Lemma 84

[Γ, x : A ` B](ξ;x:=[Γ`N ]ξ,ρ,∆),(ρ;x:=ρ(N)),∆ = [Γ ` B[N/x]]ξ,ρ,∆.

Therefore we get the conclusion.

Part 2 follows from the auxiliary induction hypothesis.

(Prod) We prove Part 1. If M = Πx : A.B then the derivation ends with

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s3

By the auxiliary induction hypothesis

(∆ ` ρ(A)) ∈ [Γ ` s1]ξ,ρ,∆ = SN∆
s1 .

and for all C ∈ V∆,x:ρ(A)(ρ(x)) it holds that 〈(ξ;x := C), (ρ;x := x)〉 is an object valuation
which satisfies (Γ, x : A) at (∆, x : ρ(A)). Thus

(∆, x : ρ(A) ` ρ(B)) ∈ [Γ, x : A ` s2](ξ;x:=C),(ρ;x:=x),∆ = SN∆
s2 .

Then

(∆ ` ρ(Πx : A.B)) = (∆ ` Πx : ρ(A).ρ(B)) ∈ SN∆
s3 = [Γ ` s3]ξ,ρ,∆.

Part 2 follows from the auxiliary induction hypothesis.

(Ind-t) We have

Γ, X : ∗t ` Cn(X) : ∗t

Γ ` Ind(X : ∗t){~C} : ∗t

Let ∆′ = (∆, X : ∗t). Note that 〈(ξ|∆′ ;X := SN∆′
X ), (ρ;X := X)〉 is an object valuation

which satisfies (Γ, X : ∗t) at ∆′. By the auxiliary induction hypothesis

(∆′ ` ρ(Cn(X))) ∈ [Γ, X : ∗t ` ∗t](ξ;X:=SN∆
X ),(ρ;X:=X),∆′ = SN∆′

∗t .

Then
(∆ ` ρ(I)) ∈ [Γ ` ∗t]ξ,ρ,∆ = SN∆

∗t

as expected.

To prove Part 2 note that
[Γ ` I]ξ,ρ,∆ = lfp(FΓ,I,ξ,ρ,∆)

and
[Γ ` I]ξ′,ρ,∆ = lfp(FΓ,I,ξ′,ρ,∆).

The conclusion follows from the auxiliary induction hypothesis and Lemma 88.
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(Intro-t) We prove Part 1. We have

Γ ` Constr(n, I) : Cn(I).

We want to prove
(∆ ` ρ(Constr(n, I))) ∈ [Γ ` Cn(I)]ξ,ρ,∆.

Let us assume that Cn(X) = Π~x : ~τ .X. Suppose (∆i, Ni, Ci)mi=1 is an adequate sequence
of arguments for (~x : ~τ) at 〈ξ, ρ〉 in ∆ and 〈ξi, ρi〉 is a sequence of constructor valuations
associated with it. It suffices to show that

(∆m ` Constr(n, ρ(I)) ~N) ∈ [Γ, ~x : ~τ ` I]ξm|∆m ,ρm,∆m
.

Note that

Constr(n, ρ(I)) ~N →∗k Constr(n, ρ(I)) ~N

and by the definition of adequate sequence of arguments

(∆i ` Ni) ∈ [Γ, ~x : ~τ [I/X] ` τi[I/X]]ξi,ρi,∆i
.

Moreover

[Γ, ~x : ~τ [I/X] ` τi[I/X]]ξi|∆i ,ρi,∆i

= [Γ, X : ∗t, ~x : ~τ ` τi](ξi|∆i ;X:=[Γ`I]ξi|∆i ,ρ,∆i
),(ρi;X:=ρ(I)),∆i

(by Lemma 54)

= Interp(Γ, X : ∗t, ~x : ~τ ` τi)ξi,ρi,∆i,X,[Γ`I]ξi|∆i ,ρ,∆i
(by Lemma 84).

Thus
(∆i ` Ni) ∈ Interp(Γ, X : ∗t, ~xj : ~τj ` τi)ξi,ρi,∆i,X,[Γ`I]ξi|∆i ,ρ,∆i

.

The by definition of [Γ ` I]ξ,ρ,∆ we get that

(∆m ` Constr(n, ρ(I)) ~N) ∈ [Γ ` I]ξm|∆m ,ρm,∆m
.

Part 2 follows from the auxiliary induction hypothesis.

(Elim-t) We prove Part 1. We have

Γ ` c : I Γ ` Q : I → s Γ ` fi : 4{Ci(I), Q,Constr(i, I)}
Γ ` Elim(I,Q, c){~f} : Qc

By the auxiliary induction hypothesis

(∆ ` ρ(c)) ∈ [Γ ` I]ξ,ρ,∆,
(∆ ` ρ(Q)) ∈ [Γ ` I → s]ξ,ρ,∆,
(∆ ` ρ(fi)) ∈ [Γ ` 4{Ci(I), Q,Constr(i, I)}]ξ,ρ,∆.
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Note that [Γ ` I]ξ,ρ,∆ = [Γ ` I](ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆. Since

(∆ ` ρ(c)) ∈ [Γ ` I]ξ,ρ,∆

then
(∆ ` ρ(c)) ∈ [Γ ` I](ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆.

There exists α such that

(∆ ` ρ(c)) ∈ FαΓ,I,(ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆(
⋂
SAT∆

(ρ;x:=ρ(c))(I)).

We proceed by induction on α:

• α = 0. Then (∆ ` ρ(c)) ∈
⋂
SAT∆

(ρ;x:=ρ(c))(I). But

(ρ;x := ρ(c))(I) = ρ(I) and thus SAT∆
(ρ;x:=ρ(c))(I) = SAT∆

ρ(I).

By Lemma 35 there exists m such that ρ(c)→∗k m and (∆ ` m) ∈ B∆
ρ(I). Then

Elim(ρ(I), ρ(Q), ρ(c)){ρ(~f)} →∗k Elim(ρ(I), ρ(Q),m){ρ(~f)}

and
(∆ ` Elim(ρ(I), ρ(Q),m){ρ(~f)}) ∈ B∆

ρ(Q)m = B∆
ρ(Q)ρ(c) ⊆ [Γ ` Qc]ξ,ρ,∆.

By Corollary 38 the sequent (∆ ` Elim(ρ(I), ρ(Q), ρ(c)){ρ(~f)}) is strongly normalizing.
Thus

(∆ ` Elim(ρ(I), ρ(Q), ρ(c)){ρ(~f)}) ∈ [Γ ` Qc]ξ,ρ,∆.

• α = α′ + 1 and the conclusion is true for all α′′ ≤ α′. Assume that

(∆ ` ρ(c)) ∈ Fα′Γ,I,(ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆(
⋂
SAT∆

(ρ;x:=ρ(c))(I)).

By Lemma 96

(∆ ` Elim(ρ(I), ρ(Q), ρ(c)){ρ(~f)}) ∈ [Γ, x : I ` Qx](ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆.

But by Lemma 84

[Γ, x : I ` Qx](ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆ = [Γ ` Qc]ξ,ρ,∆.

Thus we have the conclusion.

• α is a limit ordinal and the conclusion is true for all α′ < α. If

(∆ ` ρ(c)) ∈ FαΓ,I,(ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆(
⋂
SAT∆

(ρ;x:=ρ(c))(I))

then there exists α′ < α such that

(∆ ` ρ(c)) ∈ Fα′Γ,I,(ξ;x:=[Γ`c]ξ,ρ,∆),(ρ;x:=ρ(c)),∆(
⋂
SAT∆

(ρ;x:=ρ(c))(I)).

The conclusion follows from the induction hypothesis for α′.
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We prove Part 2. Note that

[Γ ` Elim(I,Q,m){~f}]ξ,ρ,∆ = G
Γ,I,Q,~f,ξ,ρ,∆

([Γ ` I]ξ,ρ,∆)(∆ ` ρ(m), [Γ ` m]ξ,ρ,∆)

and

[Γ ` Elim(I,Q,m){~f}]ξ′,ρ,∆ = G
Γ,I,Q,~f,ξ′,ρ,∆([Γ ` I]ξ′,ρ,∆)(∆ ` ρ(m), [Γ ` m]ξ′,ρ,∆).

By the auxiliary induction hypothesis

[Γ ` I]ξ,ρ,∆ 'Γ,ξ,ξ′,ρ,∆ [Γ ` I]ξ′,ρ,∆

and thus
[Γ ` I]ξ,ρ,∆ = [Γ ` I]ξ′,ρ,∆.

The conclusion follows from Lemma 91 and the auxiliary induction hypothesis.

(Ind-p) Then M = Ind(X : A){~C} where A = Π~x : ~τ .∗p. We prove Part 1. We have

Γ ` A : s Γ, X : A ` Ci(X) : ∗p

Γ ` Ind(X : A){~C} : A

Recall that by the definition of interpretation for the product the interpretation [Γ ` A]ξ,ρ,∆
is the set of simple sequents (∆′ ` u) of type ρ(A) such that, for every adequate sequence of
arguments (Σi, ai, Ui)ni=1 for (~x : ~τ) at 〈ξ, ρ〉 in ∆, the term u~a is strongly normalizing. Let
∆′ = (∆, X : A). Note that 〈(ξ|∆′ ;X := SN∆′

X ), (ρ;X := X)〉 is an object valuation which
satisfies (Γ, X : A) at ∆′. By the auxiliary induction hypothesis

(∆′ ` ρ(Ci(X))) ∈ [Γ, X : A ` ∗p]
(ξ;X:=SN∆′

X ),(ρ;X:=X),∆′ = SN∆′
∗p .

Thus ρ(Ind(X : A){~C}) is strongly normalizing. In an adequate sequence of arguments
(Σi, ai, Ui)ni=1 the terms ~a are strongly normalizing. Then ρ(Ind(X : A){~C})~a is strongly
normalizing as it is not a redex and every subterm of it is strongly normalizing. Hence indeed

(∆ ` ρ(Ind(X : A){~C})) ∈ [Γ ` A]ξ,ρ,∆.

To prove Part 2 note that
[Γ `M ]ξ,ρ,∆ = lfp(HΓ,M,ξ,ρ,∆)

and
[Γ `M ]ξ′,ρ,∆ = lfp(HΓ,M,ξ′,ρ,∆).

The conclusion follows from the auxiliary induction hypothesis and Lemma 89.

(Intro-p) Then M = Constr(j, I). We prove Part 1. We have

Γ ` Ind(X : A){~C} : A
Γ ` Constr(j, I) : Cj(I)
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We want to prove that (∆ ` ρ(Constr(j, I))) ∈ [Γ ` Cj(I)]ξ,ρ,∆. Suppose Cj(I) = Π~x : ~T .I~t.
By the definition of interpretation for the product [Γ ` Cj(I)]ξ,ρ,∆ it is enough to prove that
for every adequate sequence of arguments (∆i, Ni, Ci)n−1

i=0 for (~x : ~T ) at 〈ξ, ρ〉 in ∆, if 〈ξi, ρi〉
is a constructor valuation associated with it, then we have

(∆n ` Constr(j, ρ(I)) ~N) ∈ [Γ, ~x : ~T ` I~t]ξn,ρn,∆n .

By Lemma 97 for each recursive argument Nm, if Tm = Π~y : ~T ′.I~t′ and there exists an ordinal
number αm such that for each adequate sequence (∆′l, al, Cl)

nm
l=0, of arguments for (~y : ~T ′) at

〈ξm, ρm〉 in ∆′, then we have

(∆′nm ` Nm~a) ∈ Hαm
Γnm ,I,ξnm ,ρnm ,∆nm

([Γ ` I]ξnm ,ρnm ,∆nm
)(∆ ` ρ(~t′), [Γ ` ~t′]ξn,ρn,∆n).

The conclusion follows from Lemma 98 for α = max{αm}+ 1.

We do not have to prove Part 2 as M is a proof.

(Elim-p) We prove Part 1. We have I = Ind(X : A){~C} and A = Π~x : ~T .∗p

Γ ` I~t′ : ∗p Γ ` c : I~t′ Γ ` Q : A Γ ` fi : 4{Ci(I), Q}
(Elim∗p)

Γ ` Elim(I,Q, ~t′, c){~f} : Q~u

For simplicity we consider only the case when every term ti is large, in other cases the proof
is similar. By the induction hypothesis

(∆ ` ρ(I)ρ(~t′)) ∈ [Γ ` ∗p]ξ,ρ,∆,

(∆ ` ρ(c)) ∈ [Γ ` I~t′]ξ,ρ,∆,
(∆ ` ρ(Q)) ∈ [Γ ` A]ξ,ρ,∆,
(∆ ` ρ(fi)) ∈ [Γ ` 4{Ci(I), Q}]ξ,ρ,∆.

By the definition of [Γ ` I]ξ,ρ,∆

[Γ ` I~t′]ξ,ρ,∆ = HΓ,I,ξ,ρ,∆([Γ ` I]ξ,ρ,∆)(∆ ` ρ(t′i), [Γ ` t′i]ξ,ρ,∆)pi=1.

Then there are two cases.

Case 1: (∆ ` ρ(c)) ∈
⋂
SAT∆

ρ(I). Then by Lemma 35, ρ(c)→∗k m ∈ B∆
ρ(I) and thus

ρ(Elim(I,Q, ~t′, c){~f})→∗k Elim(ρ(I), ρ(Q), ~t′,m){ρ(~f)}

where
(∆′ ` Elim(ρ(I), ρ(Q), ~t′,m){ρ(~f)}) ∈ B∆

ρ(Q~t′)
⊆ [Γ ` Q~t′]ξ,ρ,∆.

Moreover, the terms ρ(I), ρ(Q), ρ(~t′) ρ(c), ρ(~f) are strongly normalizing and thus by
Corollary 38 the term ρ(Elim(I,Q, ~t′, c){~f}) is strongly normalizing, too. As [Γ ` Q~t′]ξ,ρ,∆
is a saturated set we get

(∆ ` ρ(Elim(I,Q, ~t′, c){~f})) ∈ [Γ ` Q~t′]ξ,ρ,∆.
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Case 2: (∆ ` ρ(c)) 6∈
⋂
SAT∆

ρ(I~t′)
. Then

(∆ ` ρ(c)) ∈ h∆,I,Q,ξ,ρ([Γ ` I]ξ,ρ,∆)((∆i, ρ(t′i)i, [Γ ` t
′
i]ξ,ρ,∆i)

n
i=1).

Note that

(∆ ` ρ(I)) ∈ SN∆
ρ(A),

(∆ ` ρ(Q)) ∈ [Γ ` A]ξ,ρ,∆,

[Γ ` Q~t′]ξ,ρ,∆ ∈ V∆(ρ(Q~t′)),
(∆ ` ρ(fi)) ∈ [Γ ` 4{Ci(I), Q}]ξ,ρ,∆.

By Lemma 84

[Γ, q : A,X : A ` 4{Ci(X), q}](ξ;X:=[Γ`I]ξ,ρ,∆;q:=[Γ`Q]ξ,ρ,∆),(ρ;X:=ρ(I);q:=ρ(Q)),∆

= [Γ ` 4{Ci(I), Q}]ξ,ρ,∆.

Thus
(∆ ` ρ(Elim(I,Q, c, ~t′){~f})) ∈ [Γ ` Q~t′]ξ,ρ,∆.

We do not have to prove Part 2 as M is a proof.

Theorem 100. If Γ `M : T then M is strongly normalizing.

Proof. Let Γ `M : T . Define 〈ρ, ξ〉 so that ρ(x) = x and ξ(x) = CanΓ(x) if x : A ∈ Γ. Then
〈ξ, ρ〉 is an object valuation which satisfies Γ at Γ. By Lemma 99,

(Γ ` ρ(M)) ∈ [Γ ` T ]ξ,ρ,Γ.

But
[Γ ` T ]ξ,ρ,Γ ⊆ SNΓ

ρ(T ) and ρ(M) = M,ρ(T ) = T.

Thus M is strongly normalizing.





Chapter 6

Conclusions and further work

6.1. Conclusions

We have defined a type system with inductive types. The basis of our theory is a Pure Type
System which has a rule of the form (s1, s2, s3) where s2 6= s3. There are few examples of
systems like that in the literature. As noted by van Benthem Jutting [53] several members
of the Automath family, see [43], can be described as PTSs with such rules. One is the
system λAUT-68

S = ∗,�,4
A = ∗ : �

R = (∗, ∗, ∗), (∗,�,4), (�, ∗,4), (�,�,4), (∗,4,4), (�,4,4).

The other one is λAUT-QE

S = ∗,�,4
A = ∗ : �

R = (∗, ∗, ∗), (∗,�,�), (�, ∗,4), (�,�,4), (∗,4,4), (�,4,4).

Constructions allowed in LNTT are function space, implication, universal quantification,
dependent types and formula polymorhism. The rule (∗t,�p, ∗t) causes that powersets become
ordinary types, which is unusual in type theories. We can reason about subsets in the same
way we reason about other objects. LNTT defines the logic of the theory. Due to the presence
of the formula polymorphism the system is powerful enough to define all logical connectives:

⊥ = ∀P : ∗p.P,
¬α = α→ ⊥,

α ∧ β = ∀P : ∗p.((α→ β → P )→ P ),
α ∨ β = ∀P : ∗p.((α→ P )→ (β → P )→ P ),
α↔ β = (α→ β) ∧ (β → α),

∃x : τ.ϕ(x) = ∀P : ∗p((∀x : τ.ϕ(x)→ P )→ P ).

We extend LNTT with inductive types, which are syntactically similar to inductive types
in the Calculus of Inductive Constructions [55]. One difference is that in LNTT with induc-
tive types we cannot define types via strong elimination. However, we can still define many
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functions for which in other type systems one needs strong elimination. An example is the
union of the list of sets. Suppose we have an inductive type For example we may define the
union of a list of sets. For a fixed type τ we define a list of subsets of τ as follows:

List(τ → ∗p) = Ind(X : ∗t){X | (τ → ∗p)→ X → X}.

We may define the function union : List(τ → ∗p)→ ∗p:

union l = Elim(List(τ → ∗t), λl : List(τ → ∗t).τ → ∗t, l)
{λx : τ.⊥ | λh : τ → ∗pλr : τ → ∗pλx : τ.hx ∨ rx}.

The equivalent type in CIC is

List(τ → ∗) = Ind(X : ∗){X | (τ → ∗)→ X → X}.

and it is a large inductive type. One would need the strong elimination over large inductive
type to define the union function. But this elimination is forbidden.

There are also types and functions which can be defined in CIC but cannot be defined
in LNTT with inductive types. CIC has type polymorphism while LNTT does not. We can
define heterogeneous lists in CIC

PolyList = Ind(X : ∗){X | ΠT : ∗(T → X → X)}

and we cannot have similar lists in LNTT with inductive types.
We conclude that LNTT with inductive types is incomparable to CIC. There are things

which can be done in LNTT with inductive types and cannot be done in CIC and the other
way round. Moreover, even without strong elimination scheme one can define functions which
require the use of strong elimination in other type systems.

6.2. Further work

LNTT defines the logic of the system. Inductive types allow to define some basic data types.
Our theory is by no means complete. There are many features which can be added to the
system.

Equality. Equality is an important notion in type theory. There are many different
equalities: conversion, Leibniz equality, equality as an inductive predicate, extensional equality
for functions. These notions are not equivalent. It remains to be seen which are appropriate
for our naive type theory.

Partial functions. In ordinary mathematics we often use partial functions. However, the
basic notion in type theory is a complete function and the basic type constructor is a space of
complete functions. Thus partial functions have to encoded. Two natural encoding methods
are: partial function as a subtype and partial functions with the help of appropriate predicate
in the domain. It is not clear which of these approaches would be more suitable in our system.
Apart from partial functions we should define equality and the natural extension ordering.

Quotient types. We would like to extend our system with quotients. For a given equiv-
alence relation, we want the quotient to be a type. There is no satisfactory solution in
the literature. Some propositions can be found in Barthe [6], Barthe and Geuvers [7], and
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Courtieu [18]. Barthe’s approach seems to be the most general and at the same time the most
natural. It will be our starting point in further work on this issue.

Subtypes. Subtypes enable to create a type which consists of only some objects of a base
type. This is a very useful feature and it is often used in elementary mathematics. For
example integers can be seen as a subtype of the type of reals. Objects of the subtype keep
their relation with the base type. They can be seen as having two types: the base type and
the subtype. Subtype inherits equality from the base type. It is not clear how to add subtypes
to the type system.

6.3. Luo and Goguen’s UTT

It is conjectured that the strong normalization of Less Naive Type Theory with inductive
types can be derived from the similar result for Luo and Goguen’s UTT [29, 35, 36]. However,
there are some important differences between the two systems which suggest that the trans-
lation might be difficult. UTT is predicative while our system is impredicative. As a system
formulated in Martin-Löf type theory, UTT is a system with judgemental equality while our
system uses conversion. In [29] there is a auxiliary notion of reduction but it is not part of
the formal system. Equality in UTT is beta-, eta- and iota-equality, while our system only
uses beta- and iota-equality. In UTT there are no inductive predicates so one would have to
use an impredicative encoding to express them. In spite of those differences we are going to
examine the possibility of the reduction.
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