University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Agnieszka Bodzenta-Skibińska

DG categories and derived categories of coherent sheaves

PhD dissertation

prof. dr hab. Adrian Langer
Institute of Mathematics University of Warsaw
prof. dr hab. Alexey Bondal
Steklov Mathematical Institute Russian Academy of Sciences

Author's declaration:
aware of legal responsibility I hereby declare that I have written this dissertation myself and all the contents of the dissertation have been obtained by legal means.

March 13, 2014
Agnieszka Bodzenta-Skibińska

Supervisor's declaration:
the dissertation is ready to be reviewed

March 13, 2014
date
prof. dr hab. Adrian Langer
the dissertation is ready to be reviewed

March 13, 2014

Abstract

In this thesis we investigate derived categories of coherent sheaves on smooth projective varieties and their behaviour under birational morphisms.

We give description of the bounded derived category of coherent sheaves $\mathcal{D}^{b}(X)$ on a smooth projective variety X provided it admits a full exceptional collection. We prove that if such a collection σ exists the category $\mathcal{D}^{b}(X)$ is equivalent to the homotopy category of DG modules over some finitely dimensional, directed DG category $\widetilde{\mathcal{C}_{\sigma}}$.

Then we address the problem of calculating the DG category $\widetilde{\mathcal{C}_{\sigma}}$. We propose three methods. The first one is based on mutating the given collection σ to a strong one. The second one uses the language of A_{∞}-categories and Massey products. More precisely, we use the fact that the DG category $\widetilde{\mathcal{C}_{\sigma}}$ can be calculated via a structure of A_{∞}-algebra on the endomorphism algebra of object of σ. We prove that higher multiplication $m_{n}\left(f_{n}, \ldots, f_{1}\right)$ in this A_{∞}-algebra is, up to a sign, given by n-tuple Massey products $\mu_{n}\left(f_{n}, \ldots, f_{1}\right)$ provided the second set is non-empty.

The third method is based on universal extensions, which originate in representation theory of quasi-hereditary algebras. This method works for full exceptional collections with second and higher Ext-groups between objects vanishing. It constructs from the given exceptional collection σ, a tilting object \widetilde{E} and uses its endomorphism algebra to calculate the DG category $\widetilde{\mathcal{C}_{\sigma}}$.

Comparing methods using Massey products and universal extensions we describe some new cohomological operations, the so called relative Massey products.

Smooth rational surfaces provide a list of examples where full exceptional collections with vanishing higher Ext-groups exist. In particular, on smooth toric surfaces we have canonical full exceptional collections satisfying this condition. We use universal extensions to calculate the corresponding DG categories explicitly.

We notice that most of calculations done for toric, or more generally rational, surfaces depend on the birational morphism from the surface to its minimal model. In more general contex we investigate the relation between $\mathcal{D}^{b}(X)$ and $\mathcal{D}^{b}(Y)$ for a birational morphism $f: X \rightarrow Y$ of smooth projective surfaces. We show that in this case $\mathcal{D}^{b}(X)$ admits a semi-orthogonal decomposition $\mathcal{D}^{b}(X)=\left\langle\mathcal{C}_{f}, \mathcal{D}^{b}(Y)\right\rangle$ and the category \mathcal{C}_{f} is uniquely determined by the exceptional divisor of the map f. More precisely, all objects in \mathcal{C}_{f} are scheme-theoretically supported on the discrepancy divisor of f. Finally, the natural abelian subcategory $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is a highest weight category with duality.

Higher weight categories appear in representation theory of semisimple Lie algebras as blocks of the BGG category \mathcal{O}. We show that for a family of morphisms $f: X \rightarrow Y$ of smooth projective surfaces the abelian category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is indeed equivalent to a singular block $\mathcal{O}_{\omega_{1}}$ of the BGG category \mathcal{O} for $\operatorname{sl}(n, \mathbb{C})$.

Key words: derived category, exceptional collection, differential graded category,
A_{∞}-category, quiver, Massey product, birational morphism, Lie algebra, category \mathcal{O}.
AMS MSC 2010 classification: 14F05, 16E45, 14E05, 14J26, 14M25, 17B10, 17B45.

Streszczenie

Tematem tej pracy są kategorie pochodne snopów koherentnych na gładkich rozmaitościach rzutowych oraz ich zachowanie przy morfizmach biwymiernych.

W pracy opisujemy ograniczoną kategorię pochodną snopów koherentnych $\mathcal{D}^{b}(X)$ na gładkiej rozmaitości rzutowej X, gdy na X istnieje pełna wyjątkowa kolekcja σ. Dowodzimy, że w tym przypadku kategoria $\mathcal{D}^{b}(X)$ jest równoważna kategorii homotopii DG modułów nad pewną skończenie wymiarową, skierowaną DG kategorią $\widetilde{\mathcal{C}_{\sigma}}$.

Następnie przedstawiamy trzy metody pozwalajace na obliczenie DG kategorii $\widetilde{\mathcal{C}_{\sigma}}$. Pierwsza z nich bazuje na mutacji danej kolekcji do silnej czyli takiej, w której wszystkie wyższe grupy Ext są zerowe. Druga opiera się na iloczynach Massey'a oraz języku A_{∞}-kategorii. Używa ona faktu, że DG kategoria $\widetilde{\mathcal{C}_{\sigma}}$ może być obliczona przy pomocy struktury A_{∞}-algebry na algebrze endomorfizmów obiektów kolekcji σ. Dowodzimy, że wartość wyższego mnożenia $m_{n}\left(f_{n}, \ldots, f_{1}\right)$ w tej A_{∞}-algebrze jest, z dokładnością do znaku, wyznaczona przez n-krotny iloczyn Massey'a $\mu_{n}\left(f_{n}, \ldots, f_{1}\right)$, jeżeli tylko ten zbiór jest niepusty.

Trzecia metoda wykorzystuje uniwersalne rozszerzenia. Metoda ta pozwala na obliczenie DG kategorii $\widetilde{\mathcal{C}_{\sigma}}$ dla kolekcji σ, w której znikaja grupy $\operatorname{Ext}^{\geq 2}\left(T_{i}, T_{j}\right)$. Z takiej kolekcji σ można skonstruować obiekt przechylający \widetilde{E} (ang. tilting object). Algebra endomorfizmów \widetilde{E} pozwala na obliczenie kategorii $\widetilde{\mathcal{C}_{\sigma}}$.

Porównując drugą i trzecią metodę znajdujemy nową operację kohomologiczną, którą nazywamy relatywnym iloczynem Massey'a.

Pełne wyjątkowe kolekcje z zerowymi grupami $\operatorname{Ext}^{\geq 2}\left(T_{i}, T_{j}\right)$ istnieja na gładkich powierzchniach wymiernych. W szczególności na gładkich powierzchniach torycznych można w kanoniczny sposób zdefiniować pełne wyjątkowe kolekcje wiązek liniwych spełniające warunek $\operatorname{Ext}^{\geq 2}\left(\mathcal{L}_{i}, \mathcal{L}_{j}\right)=0$. Przy pomocy uniwersalnych rozszerzeń w jawny sposób obliczamy odpowiadajace im DG kołczany.

W kolejnym rozdziale zauważamy, że obliczając DG kołczan dla powierzchni torycznej, w głównej mierze bierzemy pod uwage morfizm z tej powierzchni do jej modelu minimalnego. Przyjmując bardziej ogólny punkt widzenia, rozpatrujemy więc biwymierny morfizm $f: X \rightarrow Y$ gładkich powierzchni rzutowych i badamy, jaką zadaje on relację pomiędzy kategoriami $\mathcal{D}^{b}(X)$ i $\mathcal{D}^{b}(Y)$. Okazuje się, że odwzorowanie f zadaje rozkład półortogonalny $\mathcal{D}^{b}(X)=\left\langle\mathcal{C}_{f}, \mathcal{D}^{b}(Y)\right\rangle$. Kategoria \mathcal{C}_{f} jest jednoznacznie wyznaczona przez dywizor wyjątkowy f. Dodatkowo, wszystkie obiekty \mathcal{C}_{f} mają schemato-teoretyczny nośnik zawarty w dywizorze dyskrepancji odwzorowania f, a naturalna podkategoria abelowa $\operatorname{Coh}(X) \cap \mathcal{C}_{f} \subset \mathcal{C}_{f}$ jest kategorią najwyższych wag.

Kategorie najwyższych wag pojawiają się w teorii reprezentacji półprostych algebr Liego jako bloki kategorii \mathcal{O} Bernsteina - Gelfanda - Gelfanda. W ostatnim rozdziale pokazujemy, że dla pewnej rodziny morfizmów $f: X \rightarrow Y$ gładkich powierzchni rzutowych
kategoria $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ jest rzeczywiście równoważna blokowi $\mathcal{O}_{\omega_{1}}$ kategorii \mathcal{O} dla algebry Liego $\operatorname{sl}(n, \mathbb{C})$.

Słowa kluczowe: kategoria pochodna, wyjątkowa kolekcja, DG kategoria, $A_{\infty^{-}}$ kategoria, kołczan, iloczyn Massey'a, morfizm biwymierny, algebra Liego, kategoria \mathcal{O}.

Klasyfikacja AMS MSC 2010: 14F05, 16E45, 14E05, 14J26, 14M25, 17B10, 17 B 45.

Contents

1 DG categories and exceptional collections 14
1.1 Preliminary definitions 15
1.2 Exceptional collections 19
1.2.1 DG categories 21
$1.3 \quad A_{\infty}$-categories 26
1.3.1 The universal DG category of an A_{∞}-category 29
1.3.2 $\quad A_{\infty}$-modules 31
1.4 Existence of DG quivers 31
2 Calculating DG quivers 34
2.1 Action of the braid group 35
2.1.1 Example 37
2.2 Massey products 38
2.2.1 Minimal model by Merkulov's construction 39
2.2.2 Massey products in triangulated and DG setting 39
2.2.3 Triple Massey product 43
2.2.4 Quadruple Massey product 44
2.2.5 n-tuple Massey product 46
2.2.6 Massey products and A_{∞}-structure. 50
2.2.7 Examples 51
2.3 Calculating DG quivers via universal extensions 60
2.3.1 Universal extensions and coextensions 61
2.3.2 Relations to quasi-hereditary algebras 62
2.3.3 Example 65
2.4 Comparison of the methods 69
2.4.1 Further properties of Massey products in enhanced triangulated categories 70
3 DG quivers of smooth rational surfaces 73
3.1 Geometry of rational surfaces 74
3.2 Full exceptional collections on rational surfaces and their DG quivers 76
3.2.1 Ext-quiver of $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$ 76
3.2.2 The basis of $\operatorname{Hom}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)$ and $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)$ 80
3.2.3 Parameters entering the composition in the basis 82
3.2.4 Combinatorics of the composition 83
3.2.5 Maps from $\mathcal{O}_{R_{k}}\left(R_{k}\right)$ to $L^{*} \pi^{*} \mathcal{D}^{b}\left(X_{0}\right)$ 85
3.2.6 \quad DG quiver of $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right)[-1], \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)[-1], \mathcal{O}_{X}, \pi^{*} \mathcal{N}_{1}, \ldots, \pi^{*} \mathcal{N}_{t}\right\rangle$ 86
3.2.7 Tilting object 86
3.2.8 Ext 1 groups between $\mathcal{O}_{S_{l}}\left(S_{l}\right)$ and $\pi^{*} \mathcal{N}_{i}$ 90
3.3 Canonical DG algebras of toric surfaces 91
3.3.1 Toric surfaces 91
3.3.2 Exceptional collections on toric surfaces 92
3.3.3 Canonical DG algebra of a toric surface 92
3.3.4 Examples 93
4 Birational morphisms of surfaces and derived categories 97
$4.1 t$-structures, tilting and highest weight categories 98
4.2 Category \mathcal{C}_{f} 101
$4.3 t$-structures on \mathcal{C}_{f} 102
4.4 Support of objects in the category \mathcal{C}_{f} 103
4.5 Comparing the t-structures 106
4.5.1 Simple objects in $\mathcal{A}_{\text {coe }}$ 108
5 Birational morphisms of surfaces and representation theory of simple Lie algebras 112
5.1 Review of simple Lie algebras 113
5.2 The Bernstein Gelfand Gelfand category \mathcal{O} 116
5.2.1 Definition 116
5.2.2 Properties of the category \mathcal{O} 118
5.3 Singular block of the category \mathcal{O} and the category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ 120

Introduction

Theory of derived categories, developed by Grothendieck and Verdier, [63], appeared in algebraic geometry as a convenient language to formulate coherent duality theory, [22]. They also provided the setting for higher cohomology groups of sheaves. Shortly afterwards, other derived functors, such as higher direct images, entered the stage. However, for many years the language of derived categories and homological algebra remained only a formal tool applied to the study of schemes and sheaves on them.

The situation changed with the paper of Mukai [52] which presented a geometrically motivated equivalence between derived categories of non-isomorphic abelian varieties. Other examples of equivalences for K3 surfaces were later constructed by Orlov, [55]. These discoveries raised the question of the invariance of the derived categories of coherent sheaves under natural operations on varieties.

In [13] Bondal and Orlov proved that the bounded derived category of coherent sheaves, $\mathcal{D}^{b}(X)$ determines the smooth variety X if the canonical divisor K_{X} of X is either ample or anti-ample. For other varieties derived categories turn out to be a less rigid but still comprehensible invariant.

First properties of $\mathcal{D}^{b}(X)$. Full exceptional collections and semiorthogonal decompositions

The work of Bernstein Gelfand Gelfan, [6], and Beilinson's spectral sequence, [3] provided the first evidence that the category $\mathcal{D}^{b}\left(\mathbb{P}^{n}\right)$ can be understood in terms of finitely many objects and morphisms between them. More precisely, from these papers it follows that $\left\langle\mathcal{O}_{\mathbb{P}^{n}}, \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(n)\right\rangle$ is a full strong exceptional collection in $\mathcal{D}^{b}\left(\mathbb{P}^{n}\right)$.

We give a precise definition of an exceptional collection in Section 1.2. For now, let us just say that a collection $\sigma=\left\langle T_{1}, \ldots, T_{n}\right\rangle$ is a full strong exceptional collection on a smooth variety X if

$$
\operatorname{Ext}^{l}\left(T_{i}, T_{j}\right)=0 \text { for } l \neq 0, \quad \operatorname{dim} \operatorname{Hom}\left(T_{i}, T_{j}\right)= \begin{cases}0 & \text { for } i>j \\ 1 & \text { for } i=j\end{cases}
$$

and for every object E in $\mathcal{D}^{b}(X)$ there exist objects $0=E_{n}, E_{n-1}, \ldots, E_{0}=E$ and maps $E_{i} \rightarrow E_{i-1}$ with cones of the form $\bigoplus T_{i}\left[l_{j}\right]$ for some $l_{j} \in \mathbb{Z}$.

Due to a theorem by Bondal, [9, Theorem 6.2], if a variety X has a full strong exceptional collection then $\mathcal{D}^{b}(X)$ is equivalent to a bounded derived category of finitely dimensional modules over a finitely dimensional non-commutative algebra A. Moreover, the algebra A can be presented as a path algebra of a finite quiver with relations.

Beilinson's discovery was followed by papers of Kapranov, [32], [33], [34], in which full exceptional collections on quadrics, Grassmannians and homogeneous spaces. Later, full exceptional collections were also constructed on other varieties, such as Grassmannians of isotropic lines, [42], and rational surfaces, [26].

Conjectural full exceptional collections on isotropic Grassmannians were recently constructed by Kuznetsov and Polishchuk in [43]. What still remains to be proved is the fact that these collections are full. This question turns out to be the most difficult part of the theory, especially in the light of a recent discovery of existence of phantom categories, which are triangulated categories with all numerical invariants equal to zero (see [2], [8], [21]).

In the above examples collections are no longer strong and the above mentioned Bondal's theorem cannot be applied. Its generalisation, due to Bondal and Kapranov [10, Theorem 1], states that when X has a full exceptional collection σ then all the information about the category $\mathcal{D}^{b}(X)$ is captured by a certain DG category \mathcal{C}_{σ} with finitely many objects. However, the spaces of morphisms in \mathcal{C}_{σ} can a priori be infinitely dimensional.

In Chapter 1 we prove the following theorem:
Theorem A (Theorem 1.4.2). Let X be a smooth projective variety and let $\sigma=$ $\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\rangle$ be a full exceptional collection on X. Then, there exists an ordered, finite $D G$ category $\widetilde{\mathcal{C}_{\sigma}}$ such that $\mathcal{D}^{b}(X)$ is equivalent to $\mathcal{D}^{b}\left(\widetilde{\mathcal{C}_{\sigma}}\right)$.

The fact that $\widetilde{\mathcal{C}_{\sigma}}$ is an ordered finite DG category implies that $\widetilde{\mathcal{C}_{\sigma}}$ can be presented as a path algebra of a finite DG quiver with relations Q.

However, it is not at all obvious how to calculate this DG quiver Q. In Chapter 2 we present three methods to determine such a quiver. The first one, described in Section 2.1, uses mutation of exceptional collections. The second one, presented in Section 2.2, uses the language of A_{∞}-categories and Massey products. Finally, the third one, given in Section 2.3, relies on the construction of universal extensions, which originated in the study of representation theory of quasi-hereditary algebras.

In Chapter 2 we prove that Massey products μ_{n} can be used to calculate an $A_{\infty^{-}}$ structure on a complex in an enhanced triangulated category.

Theorem B (Theorem 2.2.12). Let \mathcal{C} be a pretriangulated $D G$ category and let

$$
T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}} T^{n}
$$

be a complex in $H^{0}(\mathcal{C})$. Assume that $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right) \neq \emptyset$ and choose $f \in$ $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$. Then, there exists a minimal A_{∞}-structure on $H(\mathcal{C})$ such that $m_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=-f$ and $m_{k}\left(\partial^{i+k-1}, \ldots, \partial^{i}\right)=0$ for $i \in\{0, \ldots, n-1\}$ and k such that $i+k \leq n-1$.

This A_{∞}-structure can be later easily translated into a DG structure. In the case when there are not many morphisms between objects of an exceptional collection this information can be sufficient to compute the DG quiver Q.

Using of universal extensions we obtain objects $E_{1}^{n}, \ldots, E_{n}^{n}$ from an exceptional collection $\left\langle E_{1}, \ldots, E_{n}\right\rangle$.

Theorem C (Theorem 2.3.1). Let $\sigma=\left\langle E_{1}, \ldots, E_{n}\right\rangle$ be a full exceptional collection on a smooth projective variety X such that $E x t^{i}\left(E_{j}, E_{k}\right)=0$ for $i \neq 0,1$ and any k, j. Then, the $D G$ quiver Q is determined by the endomorphism algebra of the tilting generator, $\operatorname{Hom}_{X}\left(\bigoplus_{i} E_{i}^{n}, \bigoplus E_{i}^{n}\right)$.

The assumptions of Theorem C are satisfied by a big family of exceptional collections on smooth toric surfaces. In Chapter 3 we explicitly calculate the corresponding DG quivers.

Derived categories and birational geometry

Derived categories are used in the study of birational geometry of varieties. One of the first results in this direction was a proof of existence of crepant resolutions in dimension three purely in the language of derived categories, see [16]. Recently, in [47] Lunts and Kuznetsov proved existence of a non-commutative crepant resolution for irregular singularities.

In [12] Bondal and Orlov suggested that the minimal model program could be understood as a process of minimalisation of derived category of coherent sheaves in a given birational class. They also stated a conjecture that for a variety Y with rational singularities and a proper birational morphism $\pi: X \rightarrow Y$ the functor $R^{*} \pi_{*}$ is simply a quotient of $\mathcal{D}^{b}(X)$ by the kernel of $R^{*} \pi_{*}$. Finally, the authors conjectured that for any generalized flip $X \rightarrow X^{+}$there exists a fully faithful functor $D^{b}\left(X^{+}\right) \rightarrow D^{b}(X)$.

Evidence for this conjecture were provided by Kawamata, [35]. It was proved for flops in dimension three by Bridgeland, [14]. In his paper Bridgeland constructed X^{+} as a moduli space of some objects in $\mathcal{D}^{b}(X)$. Moreover, he speculates that for a small contraction $f: X \rightarrow Y$ with $-K_{X}$ being f-ample, the moduli space of appropriate objects of $\mathcal{D}^{b}(X)$ should be isomorphic to the flip W of X and there should be a fully faithful functor $D(W) \rightarrow D(X)$. However, the theory of derived categories for singular spaces is not sufficiently well developed to prove this conjecture. The first steps in the direction
of developing the theory for singular varieties were taken by Kawamata in [35] and Abramovich and Chen in [1].

For a birational morphism $f: X \rightarrow Y$ of smooth projective surfaces Toda in [61] constructed Y as a moduli space of some stable objects in $\mathcal{D}^{b}(X)$. In particular, he obtained the minimal model of X in this way.

The calculations conducted in Chapter 3 turn out to depend mostly on the birational morphism from a smooth rational surface to its minimal model. Therefore, in Chapter 4 we focus our attention on a birational morphism $f: X \rightarrow Y$ of smooth projective surfaces. We investigate the relation between $\mathcal{D}^{b}(X)$ and $\mathcal{D}^{b}(Y)$ given by the map f.

We associate with f a category $\mathcal{C}_{f} \subset \mathcal{D}^{b}(X)$. Then, we prove the following theorem:
Theorem D (Theorem 4.4.4). Let $f: X \rightarrow Y$ be a birational morphism of smooth projective surfaces and let $E=\sum E_{i}$ be the exceptional divisor of f. It has a nonreduced scheme structure $\widetilde{E}=\sum a_{i} E_{i}$ given by the discrepancy of $f, K_{X}=f^{*} K_{Y}+\widetilde{E}$ and let $\iota: \widetilde{E} \hookrightarrow X$ denote the closed embedding.

Let $\mathcal{C}_{f}=\left\{\mathcal{E} \in \mathcal{D}^{b}(X) \mid R^{*} f_{*}(\mathcal{E})=0\right\}$ be a full subcategory of $\mathcal{D}^{b}(X)$. Then any object $\mathcal{E} \in \mathcal{C}_{f}$ is of the form $\iota_{*} \widetilde{\mathcal{E}}$ for some $\widetilde{\mathcal{E}} \in \mathcal{D}^{b}(\widetilde{E})$.

Thus, the category \mathcal{C}_{f} is closely related to the exceptional divisor of the map f.
We continue the study of \mathcal{C}_{f} and prove in Proposition 4.5.4 that its natural abelian subcategory $\operatorname{Coh}(X) \cap \mathcal{C}_{f} \subset \mathcal{C}_{f}$ has a structure of a highest weight category with duality.

Highest weight categories appeared first in the study of representation theory of semisimple Lie algebras. In Chapter 5 we prove that for some birational morphisms $f: X \rightarrow Y$ the abelian category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is indeed equivalent to a category of modules over $\operatorname{sl}(n, k)$.

Acknowledgements

First and foremost I want to thank my supervisors Alexey Bondal and Adrian Langer for their patience in explaining mathematics. It was a great pleasure and opportunity to learn from them, not only about mathematics but also life in general.

This thesis would not have been written and probably my big adventure with mathematics would not start if not Agnieszka Bojanowska. I will never be able to thank her enough for convincing me to leave home for a few months and discover mathematics in another part of Europe. This Erasmus exchange changed my life like nothing did before.

I am also very grateful for the opportunity of learning from professors Andrzej Białynicki-Birula, Sławomir Cynk, Piotr Pragacz and Jarosław Wiśniewski who gave several courses in algebraic geometry during my studies and were always ready to answer my questions.

During the years I spent at the university I had an opportunity to discuss math with many amazing people. Many thanks to Piotr Achinger, Giulia Battiston, Lorenzo Di Biagio, Weronika Buczyńska, Jarek Buczyński, Przemysław Chojecki, Maria DontenBury, Richar Eager, Alexander Efimov, Anton Fonarëv, Annabelle Hartmann, Joachim Jelisiejew, Oskar Kȩdzierski, Alexander Kuznetsov, Timothy Logvinenko, Arkadiusz Mȩcel, Mateusz Michałek, Evgey Shindler, Łukasz Sienkiewicz, Sofia Tirabassi, Stefano Urbinati and Maciej Zdanowicz.

I also want to thank my parents for their constant support and belief in me. Without the certainty that you will always be there for me I would not dare to enter the world of mathematics.

And last but not least I would like to thank my husband Piotr who witnessed all my struggles and was always there when I needed him. The time we spend together gives me the strength to go to work every morning.

Notation

In the following we work over an algebraically closed field k of characteristic zero. All the varieties are considered as algebraic varieties in the sense of [23].

Chapter 1

DG categories and exceptional collections

The main result of this chapter is Theorem 1.4.2 about existence of a finite DG quiver of any exceptional collection on a smooth projective variety X. This theorem provides description of the bounded derived category of coherent sheaves $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, provided a full exceptional collection exists. In this case, $\mathcal{D}^{b}(X)$ is equivalent to the homotopy category of DG modules over a DG algebra $\widetilde{\mathcal{C}_{\sigma}}$. This DG algebra is finitely dimensional over k and can be presented as a path algebra of an ordered DG quiver. Thus Theorem 1.4.2 generalises [9, Theorem 6.2].

Theorem 1.4.2 follows from existence of a DG enhancement of $\mathcal{D}^{b}(X)$, see [10, Theorem 1], and Theorem 1.4.1. Let \mathcal{C} be a DG category with finitely many objects and such that $H(\mathcal{C})$ is ordered and has finitely dimensional Hom-spaces. Theorem 1.4.1 allows us to substitute \mathcal{C} with a derived Morita-equivalent DG category $\widetilde{\mathcal{C}}$ which itself is ordered and has finitely dimensional Hom-spaces. Note that by the result of Lunts and Orlov, [48, Theorem 9.9], the DG enhancement of $\mathcal{D}^{b}(X)$ is unique.

The proof of Theorem 1.4.1 uses A_{∞}-categories and existence of a minimal model of an A_{∞}-category. It relies on existence of the universal enveloping DG category of an A_{∞}-category and explicit description of this DG category by bar and cobar construction given in [45, Section 2].

For the convenience of reader in Section 1.1 we recall all basic definitions from homological algebra in the thesis. In Section 1.2 we define after [9] exceptional collections, the associated quiver and description of $\mathcal{D}^{b}(X)$ it gives. In Section 1.2.1 we define DG categories and we recall the crucial result of Bondal and Kapranov (see [10, Theorem 1]). In Section 1.3 we define after [38] and [45] A_{∞}-categories and we describe the construction of [45] of the universal DG category associated to an A_{∞}-category. Finally, in Section 1.3.2 the category of A_{∞}-modules is introduced after [38, 45]. All of the above results and definitions are used in Section 1.4 to prove Theorems 1.4.1 and 1.4.2.

1.1 Preliminary definitions

We recall same basic homological algebra definitions following [20], [50] and [64].
We work only with k-linear categories, i.e. with categories in which the morphism space between any two objects has a structure of a k-vector space.

Definition 1.1.1. A category \mathcal{A} is preadditive if
(A1) For any pair of objects $A_{1}, A_{2} \in O b(\mathcal{A})$ the set $\operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{2}\right)$ has a structure of an abelian group, i.e. of a \mathbb{Z}-module.
(A2) For any three objects $A_{1}, A_{2}, A_{3} \in \operatorname{Ob}(\mathcal{A})$ the composition map

$$
\operatorname{Hom}_{\mathcal{A}}\left(A_{2}, A_{3}\right) \otimes_{\mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{3}\right)
$$

is a homomorphism of abelian groups.
Definition 1.1.2. A preadditive category \mathcal{A} is called additive if
(A3) There exists a zero object $0_{\mathcal{A}} \in O b(\mathcal{A})$ which is both initial and terminal in \mathcal{A}.
(A4) For any pair of objects $A_{1}, A_{2} \in O b(\mathcal{A})$ the direct sum $A_{1} \oplus A_{2}$ and the direct product $A_{1} \times A_{2}$ exist and they coincide, i.e. $A_{1} \oplus A_{2}=A_{1} \times A_{2}$.

The axioms $(A 1)$ - $(A 4)$ allow us to define in any additive category finite products and coproducts. In particular, for objects $A_{1}, A_{2} \in \operatorname{Ob}(\mathcal{A})$ and any map $f \in \operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{2}\right)$ we define the kernel of $f, \operatorname{Ker} f$, as the equaliser of f and the zero map $0_{A_{1}, A_{2}} \in$ $\operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{2}\right)$. From the definition of the equaliser it follows that there is a canonical morphism ι : $\operatorname{Ker} f \rightarrow A_{1}$. Analogously, we define the cokernel of f, $\operatorname{Coker} f$, as the coequaliser of f and the zero map $0_{A_{1}, A_{2}} \in \operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{2}\right)$. Again, it follows from the definition that there is a canonical morphism $\pi: A_{2} \rightarrow$ Coker f.

Definition 1.1.3. An additive category \mathcal{A} is abelian if
(A5) For any $A_{1}, A_{2} \in \operatorname{Ob}(\mathcal{A})$ and any $f \in \operatorname{Hom}_{\mathcal{A}}\left(A_{1}, A_{2}\right)$ there exists a sequence

$$
K \xrightarrow{\iota} A_{1} \xrightarrow{p} I \xrightarrow{i} A_{2} \xrightarrow{\pi} K^{\prime}
$$

such that
(i) $i \circ p=f$,
(ii) $\left(K, \iota: X \rightarrow A_{1}\right)$ is the kernel of $f,\left(K^{\prime}, \pi: A_{2} \rightarrow K^{\prime}\right)$ is the cokernel of f,
(iii) $\left(I, p: A_{1} \rightarrow I\right)$ is the cokernel of ι and $\left(I, i: I \rightarrow A_{2}\right)$ is the kernel of π.

The basic example of an abelian category is the category $\mathcal{A} b$ of abelian groups.
Morphisms

$$
X^{\bullet}=\ldots \xrightarrow{\partial^{n-2}} X^{n-1} \xrightarrow{\partial^{n-1}} X^{n} \xrightarrow{\partial^{n}} \ldots
$$

in an abelian category \mathcal{A} form a cochain complex if the composition $\partial^{n} \circ \partial^{n-1}=0$ for all $n \in \mathbb{Z}$. The n-th cohomology group of a cochain complex X^{\bullet} is defined as

$$
H^{n}\left(X^{\bullet}\right)=\operatorname{Coker} a^{n-1}=\operatorname{Ker} b^{n}
$$

where the maps a^{n-1}, b^{n} fit into the commutative diagram

A cochain complex $\left(X^{\bullet}, \partial^{\bullet}\right)$ is called exact if all its cohomology groups are zero.
An additive functor $F: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ between abelian categories is exact if for any short exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

in \mathcal{A} the sequence

$$
0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow 0
$$

is exact in \mathcal{A}^{\prime}.
Let us recall that an object $I \in \operatorname{Ob}(\mathcal{A})$ is injective if the functor $\operatorname{Hom}_{\mathcal{A}}(-, I): \mathcal{A} \rightarrow \mathcal{A} b$ is exact.

Finally, we say that an abelian category \mathcal{A} has enough injectives if any object $A \in$ $\operatorname{Ob}(\mathcal{A})$ can be embedded into an injective object of \mathcal{A}.

$$
0 \rightarrow A \rightarrow I
$$

An injective object I of \mathcal{A} is an injective envelope of A if $A \hookrightarrow I$ is an essential extension, i.e. any $J \subset I$ such that $J \cap A=0$ is zero.

We will be mostly interested in derived categories of abelian categories. Such categories are triangulated in the following sense:

Definition 1.1.4. A triangulated category \mathcal{T} is an additive category equipped with an automorphism $T: \mathcal{T} \rightarrow \mathcal{T}$ called a translation functor and a family of distinguished triangles of the form

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T(A)
$$

satisfying the following axioms:
(TR1) Every morphism $u: A \rightarrow B$ can be embedded into a distinguished triangle. If $A=B$ and $C=0$ then the triangle

$$
A \xrightarrow{\mathrm{id}_{A}} A \xrightarrow{0} 0 \xrightarrow{0} T(A)
$$

is distinguished. If a triangle (u, v, w) is isomorphic to a distinguished triangle $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$

then the triangle (u, v, w) is also distinguished.
(TR2) If

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T(A)
$$

is a distinguished triangle then so is

$$
B \xrightarrow{v} C \xrightarrow{w} T(A) \xrightarrow{-T(u)} T(B)
$$

(TR3) Any morphisms $f: A \rightarrow A^{\prime}, g: B \rightarrow B^{\prime}$ such that $g \circ u=u^{\prime} \circ f$ can be completed to a map of distinguished triangles

(TR4) Every diagram of the form

where triangles marked with \star are distinguished and the ones marked with ঠ commute, can be completed to an octahedron diagram, i.e. there exists an object B^{\prime} which fits into a diagram

Finally, we require that the composite morphisms $B \rightarrow B^{\prime}$, through C and C^{\prime}, coincide and that the composite morphisms $B^{\prime} \rightarrow B$, through A and A^{\prime} coincide.

The value of the functor T on an element $t \in \mathcal{T}$ is often denoted by $t[1]$. Analogously, $t[n]=T^{n}(t)$ and $t[-n]=\left(T^{-1}\right)^{n}(t)$.

The first example of a triangulated category is the homotopy category $K^{b}(\mathcal{A})$ of bounded complexes over an abelian category \mathcal{A}. The category $K^{b}(\mathcal{A})$ is constructed from an additive category $\operatorname{Kom}_{0}^{b}(\mathcal{A})$ of bounded complexes of objects of \mathcal{A}. Objects of both $\operatorname{Kom}_{0}^{b}(\mathcal{A})$ and $K^{b}(\mathcal{A})$ are cochain complexes of objects of \mathcal{A} with all but finitely many objects equal to zero. Morphisms in the category $\operatorname{Kom}_{0}^{b}(\mathcal{A})$ are morphisms of complexes, i.e. collections of morphisms $f^{i}: K^{i} \rightarrow L^{i}$ such that $\partial_{L^{.}}^{i+1} f^{i}-f^{i+1} \partial_{K^{\bullet}}^{i}=0$. Morphisms in the homotopy category $K^{b}(\mathcal{A})$ are morphisms in the category $\operatorname{Kom}_{0}^{b}(\mathcal{A})$ modulo the homotopy equivalence. Recall that a morphism $f^{i}: K^{i} \rightarrow L^{i}$ is homotopic to zero if there exists a homotopy $h^{i}: K^{i} \rightarrow L^{i-1}$ such that $f^{i}=h^{i} \partial_{K^{\bullet}}^{i-1}+\partial_{L^{i}}^{i} \cdot h^{i-1}$.

Analogously, one can consider categories $\operatorname{Kom}_{0}^{+}(\mathcal{A}), \operatorname{Kom}_{0}^{-}(\mathcal{A})$ and $\operatorname{Kom}_{0}(\mathcal{A})$ of respectively bounded from below, bounded from above and unbounded complexes of objects of \mathcal{A}. Dividing the spaces of morphisms in these categories by the relation of homotopy equivalence we obtain categories $K^{+}(\mathcal{A}), K^{-}(\mathcal{A})$ and $K(\mathcal{A})$.

A morphism $f^{\bullet}: K^{\bullet} \rightarrow L^{\bullet}$ in the category $\operatorname{Kom}_{0}^{b}(\mathcal{A})\left(\operatorname{Kom}_{0}^{+}(\mathcal{A}), \operatorname{Kom}_{0}^{-}(\mathcal{A}), \operatorname{Kom}_{0}(\mathcal{A})\right.$ respectively) is a quasi-isomorphism if it induces the identity morphism on the cohomology groups $H^{i}\left(K^{\bullet}\right) \simeq H^{i}\left(L^{\bullet}\right)$. Analogously, we define quasi-isomorphism in $K^{b}(\mathcal{A}), K^{+}(\mathcal{A})$, $K^{-}(\mathcal{A})$ and $K(\mathcal{A})$.

To every abelian category \mathcal{A} we can associate its bounded derived category $\mathcal{D}^{b}(\mathcal{A})$ which is a triangulated category. It can be characterised by the following universal property. There exists a functor $Q: \operatorname{Kom}_{0}^{b}(\mathcal{A}) \rightarrow \mathcal{D}^{b}(\mathcal{A})$ such that $Q(f)$ is an isomorphism if f is a quasi-isomorphism and any functor $F: \operatorname{Kom}_{0}^{b}(\mathcal{A}) \rightarrow \mathcal{D}$ which transforms quasiisomorphisms into isomorphisms can be uniquely factorised through $Q: \operatorname{Kom}_{0}^{b}(\mathcal{A}) \rightarrow$ $\mathcal{D}^{b}(\mathcal{A})$. Analogously, we define bounded from below $\mathcal{D}^{+}(\mathcal{A})$, bounded from above $\mathcal{D}^{-}(\mathcal{A})$ and unbounded $\mathcal{D}(\mathcal{A})$ derived category of \mathcal{A}. In general, $\mathcal{D}^{b}(\mathcal{A})$ is a localisation of $K^{b}(\mathcal{A})$ with respect to the class of quasi-isomorphisms, i.e. to obtain $\mathcal{D}^{b}(\mathcal{A})$ we formally invert all quasi-isomorphisms in $K^{b}(A)$. An analogous construction for $K^{+}(\mathcal{A}), K^{-}(\mathcal{A})$ and $K(\mathcal{A})$ gives $\mathcal{D}^{+}(A), \mathcal{D}^{-}(\mathcal{A})$ and $\mathcal{D}(\mathcal{A})$ respectively.

If the category \mathcal{A} has enough injectives then every object A has an injective resolution. The first element in the resolution, I^{0}, is the injective object such that there exists a monomorphism $A \hookrightarrow I_{0}$. Element I^{n} is constructed as the injective object into which the
cokernel of map $I^{n-2} \rightarrow I^{n-1}$ embeds, i.e. we have a diagram

The cochain complex $0 \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots$ has only zeroth cohomology group $H^{0}\left(I^{\bullet}\right)=$ A.

Let \mathcal{A} be an abelian category with enough injectives and let $\operatorname{Inj}_{\mathcal{A}} \subset \mathcal{A}$ be a full subcategory with the class of objects equal to the class of injective objects in \mathcal{A}. Then the bounded from below derived category of $\mathcal{A}, \mathcal{D}^{+}(\mathcal{A})$ is the homotopy category $K+\left(\operatorname{Inj}_{\mathcal{A}}\right)$ of complexes of injective objects of \mathcal{A} bounded from below. Injective resolutions of objects of \mathcal{A} define an additive functor $\mathcal{A} \rightarrow \mathcal{D}^{+}(\mathcal{A})$.

Let X be a smooth projective variety defined over k. We can associate to it a k linear abelian category $\operatorname{Coh}(X)$ of coherent sheaves on X. This category does not have injective objects. However, it is a full subcategory of the category $\mathrm{QCoh}(X)$ of quasicoherent sheaves on X. The category $\mathrm{QCoh}(X)$ has enough injectives and the construction described above gives $\mathcal{D}^{+}(\mathrm{QCoh}(X))$, the bounded from below derived category of quasicoherent sheaves on X. The bounded derived category of coherent sheaves on X, denoted by $\mathcal{D}^{b}(X)$ is then the full subcategory of $\mathcal{D}^{+}(\mathrm{QCoh}(X))=K^{+}\left(\operatorname{Inj}_{\mathrm{QCoh}(X)}\right)$ consisting of complexes having only finitely many non-zero and coherent cohomology sheaves.

1.2 Exceptional collections

Full strong exceptional collections provide an easy description of triangulated categories. We recall definitions and the resulting description of $\mathcal{D}^{b}(X)$ after [9].

Recall, that an object $T \in \mathcal{T}$ of a triangulated category is exceptional if $\operatorname{Hom}_{\mathcal{T}}(T, T)=k$ and $\operatorname{Hom}_{\mathcal{T}}(T, T[i])=0$ for $i \neq 0$. An ordered collection $\sigma=\left\langle T_{1}, \ldots, T_{n}\right\rangle$ of exceptional objects is called an exceptional collection if $\operatorname{Hom}_{\mathcal{T}}\left(T_{i}, T_{j}[l]\right)=0$ for $i>j$ and all l. An exceptional collection σ is strong if we also have $\operatorname{Hom}_{\mathcal{T}}\left(T_{i}, T_{j}[l]\right)=0$ for $l \neq 0$ and all i, j. Finally, the collection σ is full if the smallest strictly full subcategory of \mathcal{T} containing T_{1}, \ldots, T_{n} is equal to \mathcal{T}. Recall, that a subcategory $\mathcal{T}^{\prime} \subset \mathcal{T}$ is strictly full if it is full and if for any $T \in \mathcal{T}^{\prime}$ and S is isomorphic to T in \mathcal{T} we have $S \in \mathcal{T}^{\prime}$.

If an Ext-finite triangulated category \mathcal{T} has a full strong exceptional collection $\sigma=\left\langle T_{1}, \ldots, T_{n}\right\rangle$ then \mathcal{T} is equivalent to the bounded derived category of right modules over an algebra $A=\operatorname{End}_{\mathcal{T}}\left(\bigoplus T_{i}\right)$. Equivalence is given by the functor

$$
R \operatorname{Hom}\left(-, \bigoplus T_{i}\right): \mathcal{T} \rightarrow \mathcal{D}^{b}(\bmod -A)
$$

The endomorphism algebra A of $\bigoplus T_{i}$ can be represented as the path algebra of a quiver with relations Q. The vertices of the quiver correspond to objects T_{1}, \ldots, T_{n} of σ. The arrows between vertices correspond to a chosen basis of the Hom spaces. Finally, relations in the quiver are obtained from composition of homomorphisms in \mathcal{T}.

For a given quiver Q with n vertices its path algebra $\overline{k[Q]}$ is a k-algebra with basis consisting of all paths in the quiver Q together with paths ε_{i} of length zero at every vertex. The composition of two paths is equal to the path obtained by concatenation or zero if the head of one path does not coincide with the tail of another. If the quiver Q has finitely many arrows and no oriented cycles (as in the case of a quiver of a full strong exceptional collection on a smooth projective variety) then the path algebra $\overline{k[Q]}$ is a finitely generated non-commutative algebra with orthogonal projectors $\varepsilon_{1}, \ldots \varepsilon_{n}$.

Relations in the quiver Q are elements of $\overline{k[Q]}$ which are finite sums of paths having the same head and tail. Relations generate an ideal S of $\overline{k[Q]}$ and the path algebra of a quiver with relations is by definition $k[Q]=\overline{k[Q]} / S$.

The first example of a full strong exceptional collection is $\left.\left\langle\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2)\right)\right\rangle$ in $\mathcal{D}^{b}\left(\mathbb{P}^{2}\right)$. Its quiver Q has three vertices. As $\operatorname{Hom}_{\mathbb{P}^{2}}\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right) \simeq$ $\operatorname{Hom}_{\mathbb{P}^{2}}\left(\mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2)\right) \simeq k^{3}$ there are three arrows between adjacent vertices. Finally, the composition map

$$
\operatorname{Hom}_{\mathbb{P}^{2}}\left(\mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2)\right) \otimes \operatorname{Hom}_{\mathbb{P}^{2}}\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right) \rightarrow \operatorname{Hom}_{\mathbb{P}^{2}}\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(2)\right)
$$

is surjective and hence the quiver Q has the form

$$
\mathcal{O}_{\mathbb{P}^{2}} \xrightarrow[{\xrightarrow{\alpha_{3}}}]{\xrightarrow{\alpha_{3}}} \mathcal{O}_{\mathbb{P}^{2}}(1) \xrightarrow{\xrightarrow{\beta_{2}}} \mathcal{O}_{\mathbb{P}^{2}}(2)
$$

Relations in this quiver are given by

$$
\beta_{2} \alpha_{1}-\beta_{1} \alpha_{2}=0, \quad \beta_{3} \alpha_{1}-\beta_{1} \alpha_{3}=0, \quad \beta_{3} \alpha_{2}-\beta_{2} \alpha_{3}=0
$$

Let Q be a quiver with relations. As $\varepsilon_{1}+\ldots+\varepsilon_{n}=1$ any right $k[Q]$-module V can be decomposed as a direct sum $V=\bigoplus V_{i}$ with $V_{i}=V \cdot \varepsilon_{i}$. The structure of $k[Q]$-module gives also for every arrow a in Q with head $h(a)$ and tail $t(a)$ a linear map $\widetilde{a}: V_{h(a)} \rightarrow V_{t(a)}$. Composing these linear maps we obtain a map $\widetilde{p}: V_{h(p)} \rightarrow V_{t(p)}$ for any path in the quiver. Also, for any element $p_{1}+\ldots+p_{s}$ of the ideal S generated by relations the map $\widetilde{p}_{1}+\ldots+\widetilde{p}_{s}$ is zero.

On the other hand, a set V_{1}, \ldots, V_{n} of k-vector spaces and linear maps $\tilde{a}: V_{h(a)} \rightarrow V_{t(a)}$ for every arrow a in Q define a $k[Q]$ module structure on $V=\bigoplus V_{i}$ if for any $p_{1}+\ldots+p_{s} \in$ S the linear map $\widetilde{p}_{1}+\ldots+\widetilde{p}_{s}$ is zero.

One can also think of the path algebra $k[Q]$ as of a k-linear category \mathcal{A}_{Q} with n objects. The space $\operatorname{Hom}_{\mathcal{A}_{Q}}(i, j)$ has a k-basis consisting of paths between corresponding vertices
and the composition between them is given by multiplication in $k[Q]$. Then the category \mathcal{A}_{Q} is pre-additive and right modules over $k[Q]$ correspond to contravariant functors from \mathcal{A}_{Q} to the category Vect ${ }_{k}$ of k-vector spaces.

Already mentioned full strong exceptional collection $\left\langle\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2)\right\rangle$ on \mathbb{P}^{2}, and more generally, $\left\langle\mathcal{O}_{\mathbb{P}^{n}}, \mathcal{O}_{\mathbb{P}^{n}}(1), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(n)\right\rangle$ on \mathbb{P}^{n} were the first examples of full strong exceptional collections. The fact that they are full follows from Beilinson's spectral sequence, [3] and also [6]. In [54] Orlov described behaviour of derived categories of coherent sheaves under blow ups in smooth centres. In particular, [54, Theorem 4.3] shows that if $Z \subset X$ is smooth and both Z and X have full exceptional collections then so does $Y=\mathrm{Bl}_{Z}(X)$. However, even if the collections on X and Z are strong the resulting collection on Y does not need to be strong.

One of the simplest examples when such a situation occurs is that of a smooth surface X obtained from \mathbb{P}^{2} by blowing up a point and then blowing up a point on the exceptional divisor $E_{1} \subset X_{1}$. Let $X \xrightarrow{f} X_{1} \xrightarrow{g} \mathbb{P}^{2}$ be the blow ups of the points, let $E_{1} \subset X_{1}$ be the exceptional divisor of g and $E_{2} \subset X_{2}$ the exceptional divisor of f.

We have already seen that $\left\langle\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2)\right\rangle$ is a full strong exceptional collection on \mathbb{P}^{2}. Orlov's theorem says that $\left\langle\mathcal{O}_{E_{1}}\left(E_{1}\right)[-1], g^{*} \mathcal{O}_{\mathbb{P}^{2}}, g^{*} \mathcal{O}_{\mathbb{P}^{2}}(1), g^{*} \mathcal{O}_{\mathbb{P}^{2}}(2)\right\rangle$ is a full exceptional collection on X_{1}. It is easy to check that it is also strong. By the abuse of notation E_{1} also denotes the strict transform of E_{1} to X. Then, again by Orlov's theorem, $\left\langle\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1], f^{*} g^{*} \mathcal{O}_{\mathbb{P}^{2}}, f^{*} g^{*} \mathcal{O}_{\mathbb{P}^{2}}(1), f^{*} g^{*} \mathcal{O}_{\mathbb{P}^{2}}(2)\right\rangle$ is a full exceptional collection on X. However, as
$\operatorname{Hom}_{X}\left(\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1]\right)=k=\operatorname{Ext}_{X}^{1}\left(\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1]\right)$
the collection is not strong.

1.2.1 DG categories

In order to generalise the description of $\mathcal{D}^{b}(X)$ given by a full strong exceptional collection σ to the case of an arbitrary full exceptional collection Bondal and Kapranov used in [10] the techniques of differential graded categories.

Definition 1.2.1. A differential graded category (or a $D G$ category) is a preadditive category \mathcal{C} in which $\operatorname{Hom}_{\mathcal{C}}(A, B)$ are endowed with a \mathbb{Z}-grading and a differential ∂ of degree one. The composition of morphisms

$$
\operatorname{Hom}_{\dot{\mathcal{C}}}^{\dot{(}}(B, C) \otimes \operatorname{Hom}_{\dot{\mathcal{C}}}^{\dot{(}}(A, B) \rightarrow \operatorname{Hom}_{\dot{\mathcal{C}}}(A, C)
$$

is a morphism of complexes and for any object C of \mathcal{C} the identity morphism id d_{C} is a closed morphism of degree zero.

For an element x in a graded vector space the grading of x is denoted by $|x|$. The morphisms of degree i in \mathcal{C} are denoted by $\operatorname{Hom}_{\mathcal{C}}^{i}(A, B)$.

A DG category \mathcal{C} is ordered if there exists a partial order \preceq on the set of objects of \mathcal{C} such that $\operatorname{Hom}_{\mathcal{C}}(A, B)=0$ for $B \preceq A$. It is called finite if the set of objects of \mathcal{C} is finite and for any objects C_{1}, C_{2} of \mathcal{C} the vector space $\operatorname{Hom}_{\dot{\mathcal{C}}}^{\dot{(}}\left(C_{1}, C_{2}\right)$ is finite dimensional.

We associate to a DG category \mathcal{C} the following categories. The graded category $\mathcal{C}^{\mathrm{gr}}$ has the same objects as the category \mathcal{C} while for any pair of objects C_{1}, C_{2} the space $\operatorname{Hom}_{\mathcal{C} \text { gr }}\left(C_{1}, C_{2}\right)$ is a graded vector space obtained from $\operatorname{Hom}_{\mathcal{C}}\left(C_{1}, C_{2}\right)$ by forgetting the differential. The homotopy category $H(\mathcal{C})$ also has the same objects as \mathcal{C} and a space morphisms between any pair $\operatorname{Hom}_{H(\mathcal{C})}\left(C_{1}, C_{2}\right)$ is the graded vector space $H^{\cdot}\left(\operatorname{Hom}_{\mathcal{C}}\left(C_{1}, C_{2}\right)\right)$. Finally, $H^{0}(\mathcal{C})$ is a preadditive category with the same objects as \mathcal{C} and $\operatorname{Hom}_{H^{0}(\mathcal{C})}\left(C_{1}, C_{2}\right)=H^{0}\left(\operatorname{Hom}_{\mathcal{C}}\left(C_{1}, C_{2}\right)\right)$ for any pair of objects C_{1}, C_{2}.

A morphism $s: C \rightarrow C^{\prime}$ in \mathcal{C} is a homotopy equivalence if the induced map on cohomology $H(s)$ is an equivalence. Then we say that C and C^{\prime} are homotopy equivalent.

A DG functor $F: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ between two DG categories is an additive functor such that for any pair of objects C_{1}, C_{2} of \mathcal{C}_{1} the induced map $\operatorname{Hom}_{\mathcal{C}_{1}}\left(C_{1}, C_{2}\right) \rightarrow$ $\operatorname{Hom}_{\mathcal{C}_{2}}\left(F\left(C_{1}\right), F\left(C_{2}\right)\right)$ is a morphism of complexes. Such a functor F induces functors $F^{\mathrm{gr}}: \mathcal{C}_{1}^{\mathrm{gr}} \rightarrow \mathcal{C}_{2}^{\mathrm{gr}}, H(F): H\left(\mathcal{C}_{1}\right) \rightarrow H\left(\mathcal{C}_{2}\right)$ and $H^{0}(F): H^{0}\left(\mathcal{C}_{1}\right) \rightarrow H^{0}\left(\mathcal{C}_{2}\right)$.

We construct the DG category $\mathrm{DG}-\operatorname{Fun}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ of DG functors in the following way. Objects of this category are covariant DG functors $F, G: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ and we define morphism $\operatorname{Hom}_{\mathrm{DG}-\mathrm{Fun}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}^{k}(F, G)$ as the set of natural transformations $t: F^{\mathrm{gr}} \rightarrow G^{\mathrm{gr}}[k]$ (i.e. for $C \in$ \mathcal{C}_{1} we have $\left.t_{C} \in \mathcal{C}_{2}^{k}(F(C), G(C))\right)$. The differential ∂ is defined pointwise; for $t_{C}: F(C) \rightarrow$ $G[k](C)$ we have $(\partial(t))_{C}=\partial\left(t_{C}\right): F(C) \rightarrow G[k-1](C)$.

The category of contravariant DG functors is denoted by DG-Fun ${ }^{\circ}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$. A DG functor $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is called a quasi-equivalence if for any $C_{1}, C_{2} \in \operatorname{Ob\mathcal {C}}$ the map $\operatorname{Hom}_{\dot{\mathcal{C}}}^{\dot{(}}\left(C_{1}, C_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}^{\prime}}\left(F\left(C_{1}\right), F\left(C_{2}\right)\right)$ is a quasi-isomorphism and the map $H(F): H(\mathcal{C}) \rightarrow H\left(\mathcal{C}^{\prime}\right)$ is an equivalence of categories. A quasi-equivalence inducing a bijection on the set of objects of \mathcal{C} and \mathcal{C}^{\prime} is a quasi-isomorphism.

The category DGVect ${ }_{k}$ of complexes of vector spaces with morphisms $f^{\bullet}: V^{\bullet} \rightarrow W^{\bullet}$ for which there exists $l \in \mathbb{Z}$, such that $f^{\bullet}\left(V^{i}\right) \subset W^{i+l}$ and a differential

$$
\partial(f)^{i}=\partial_{W} f^{i+1}-(-1)^{l} f^{i+1} \partial_{V}
$$

is a DG category.
In general, if \mathcal{A} is an abelian category then the category $\operatorname{Kom}^{+}(\mathcal{A})$ of cochain complexes of objects of \mathcal{A} is a DG category with morphisms and differentials defined as in the category DGVect $_{k}$. If the category \mathcal{A} has enough injectives then one can also consider the DG category $\mathrm{Kom}^{+}\left(\operatorname{Inj}_{\mathcal{A}}\right)$ of bounded from below cochain complexes of injective objects in \mathcal{A}. Its homotopy category is the category $K^{+}\left(\operatorname{Inj}_{\mathcal{A}}\right)$ defined before. Hence, if an
abelian category \mathcal{A} has enough injectives we have $\mathcal{D}^{+}(\mathcal{A}) \simeq H^{0}\left(\operatorname{Kom}^{+}\left(\operatorname{Inj}_{\mathcal{A}}\right)\right)$. It turns out that the DG category $\operatorname{Kom}^{+}\left(\operatorname{Inj}_{\mathcal{A}}\right)$ has more structure, i.e. it is pretriangulated and the equivalence $\mathcal{D}^{+}(\mathcal{A}) \simeq H^{0}\left(\operatorname{Kom}^{+}\left(\operatorname{Inj}_{\mathcal{A}}\right)\right)$ is the first example of a DG enhancement of a triangulated category.

In order to define a DG enhancement of a triangulated category in full generality we need to introduce twisted complexes.

Analogously to modules over a quiver, we define a right $D G$ module M over a DG category C to be an element of $\mathrm{DG}-\mathrm{Fun}^{\circ}\left(\mathcal{C}, \mathrm{DGVect}_{k}\right)$. For simplicity we denote this category by $\mathcal{M o d}-\mathcal{C}$. Following [36, Section 4] we define a derived category $\mathcal{D}(\mathcal{C})$ as a localization of $H^{0}(\mathcal{M o d}-\mathcal{C})$ with respect to the class of quasi-equivalences.

Recall after [47] that an object A of an additive category \mathcal{A} is compact if $\operatorname{Hom}_{\mathcal{A}}(A,-)$ commutes with arbitrary direct sums. Let us denote by $\mathcal{D}^{b}(\mathcal{A})$ the subcategory of $\mathcal{D}(\mathcal{A})$ consisting of compact objects. Then the Yoneda embedding gives a functor $h: \mathcal{C} \rightarrow \mathcal{M o d}-\mathcal{C}$ which assigns to every $C \in \mathcal{C}$ a module $h_{C}=\operatorname{Hom}_{\mathcal{C}}(-, C)$. If a module M is quasi-isomorphic to h_{C} for some $C \in \mathcal{C}$ then it is quasi-representable.

A quasi-functor between DG categories \mathcal{C} and \mathcal{C}^{\prime} is a functor $F: \mathcal{C} \rightarrow \mathcal{M}$ od- \mathcal{C}^{\prime} whose essential image consists of quasi-representable functors, (see [48, Section 1]). Because the homotopy category of quasi-representable functors over \mathcal{C}^{\prime} is equivalent to the homotopy category of \mathcal{C}^{\prime}, a quasi-functor F gives a functor $H^{0}(F): H^{0}(\mathcal{C}) \rightarrow H^{0}\left(\mathcal{C}^{\prime}\right)$.

For a DG category \mathcal{C} we define the category $\widehat{\mathcal{C}}$ of formal shifts. The objects of $\widehat{\mathcal{C}}$ are $C[n]$ where $C \in \mathcal{C}$ and $n \in \mathbb{N}$. For elements $C_{1}[m]$ and $C_{2}[n]$ of $\widehat{\mathcal{C}}$ we put $\operatorname{Hom}_{\widehat{\mathcal{C}}}^{l}\left(C_{1}[m], C_{2}[n]\right)=$ $\operatorname{Hom}_{\mathcal{C}}^{l+n-m}\left(C_{1}, C_{2}\right)$. For appropriate sign convention see [11, Section 3].

Let B, C be objects of a DG category \mathcal{C} and let $f \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ be a closed morphism. Assume that $B[1]$ is also an object of \mathcal{C}, i.e., there exists an object B^{\prime} and closed morphisms $t: B \rightarrow B^{\prime}, t^{\prime}: B^{\prime} \rightarrow B$ of degree 1 and -1 respectively such that $t^{\prime} t=\mathrm{id}_{B}$ and $t t^{\prime}=\operatorname{id}_{B^{\prime}}$. An object D of \mathcal{C} is called a cone of f if there exist morphisms

$$
B^{\prime} \xrightarrow{i} D \xrightarrow{p} B^{\prime}, \quad C \xrightarrow{j} D \xrightarrow{s} C,
$$

such that

$$
p i=\mathrm{id}_{B^{\prime}}, \quad s j=\mathrm{id}_{C}, \quad s i=0, \quad p j=0, \quad i p+j s=\mathrm{id}_{D} .
$$

[11, Lemma 3.8] says that a cone of closed degree zero morphism is uniquely defined up to a DG isomorphism.

To every DG category \mathcal{C} one can formally add cones of closed morphisms by considering the category $\mathcal{C}^{\text {pre-tr }}$ of one-sided twisted complexes over \mathcal{C}.

Definition 1.2.2. A one-sided twisted complex over a $D G$ category \mathcal{C} is a collection $\left\{\left(C_{i}\right), q_{i, j}: C_{i} \rightarrow C_{j}\right\}$ where C_{i} 's are objects of \mathcal{C}, zero for all but finitely many i, and $q_{i, j} \in \operatorname{Hom}_{\mathcal{C}}^{i-j+1}\left(C_{i}, C_{j}\right)$ satisfy $q_{i, j}=0$ for $i \geq j$ and $(-1)^{j} \partial q_{i, j}+\sum_{l=1}^{j-i-1} q_{i+l, j} q_{i, i+l}=0$. For brevity, a twisted complex will be denoted by $\left(C_{i}, q_{i, j}\right)$.

One-sided twisted complexes over \mathcal{C} form a $D G$ category $\mathcal{C}^{\text {pre-tr }}$ with morphism spaces equal to

$$
\operatorname{Hom}_{\mathcal{C} \text { pre-tr }}^{p}\left(\left(C_{i}, q_{i, j}\right),\left(D_{i}, r_{i, j}\right)\right)=\bigoplus_{l-s=p-q} \operatorname{Hom}_{\mathcal{C}}^{q}\left(C_{s}, D_{l}\right)
$$

and differential

$$
\partial_{\mathcal{C}^{\text {pre-tr }}}\left(\gamma_{k, l}\right)=(-1)^{l} \partial_{\mathcal{C}}\left(\gamma_{s, l}\right)+\sum r_{l, m} \circ \gamma_{s, l}-(-1)^{p} \gamma_{s, l} \circ q_{n, s}
$$

for $\gamma_{s, l} \in \operatorname{Hom}_{\mathcal{C}}^{q}\left(C_{s}, D_{l}\right)$.
The zeroth homotopy category of $\mathcal{C}^{\text {pre-tr }}$ is denoted $\mathcal{C}^{\text {tr }}$.
Let $C=\left(C_{i}, q_{i, j}\right)$ be an object of $\mathcal{C}^{\text {pre-tr } . ~ T h e ~ s h i f t ~ o f ~} C$ is defined as $C[1]=\left(D_{i}, r_{i, j}\right)$, where $D_{i}=C_{i+1}$ and $r_{i, j}=-q_{i+1, j+1}$. Clearly, the category $\mathcal{C}^{\text {pre-tr }}$ is closed under shifts.

Let $f:\left(C_{i}, q_{i, j}\right) \rightarrow\left(D_{i}, r_{i, j}\right)$ be a closed morphism of degree zero in $\mathcal{C}^{\text {pre-tr }}$. Assume that $C_{i}=0$ for $i<i_{0}$ or $i>i_{n}$ and $D_{i}=0$ for $i<j_{0}$ or $i>j_{l}$. The cone of f is a twisted complex Cone $(f)=\left(E_{i}, s_{i, j}\right)$, where

$$
\begin{aligned}
& E_{i}= \begin{cases}D_{i} & \text { for } i \in\left\{j_{0}, \ldots, j_{l}\right\} \\
C_{i+i_{n}+1-j_{0}}\left[j_{0}-i_{n}\right] & \text { for } i \in\left\{j_{0}-i_{n}+i_{0}-1, \ldots, j_{0}-1\right\}\end{cases} \\
& s_{i, j}= \begin{cases}r_{i, j} & \text { for } i, j \geq j_{0}, \\
(-1)^{i_{n}-j_{0}+1} q_{i, j} & \text { for } i, j<j_{0}, \\
(-1)^{\left(i_{n}+j_{0}\right)\left(i+i_{n}\right)} f_{i+i_{n}+1-j_{0}, j} & \text { for } i<j_{0} \leq j\end{cases}
\end{aligned}
$$

The convolution functor Tot: $\left(\mathcal{C}^{\text {pre-tr }}\right)^{\text {pre-tr }} \rightarrow \mathcal{C}^{\text {pre-tr }}$ establishes a quasi-equivalence between $\left(\mathcal{C}^{\text {pre-tr }}\right)^{\text {pre-tr }}$ and $\mathcal{C}^{\text {pre-tr }}$. The cone described above is the first example of a convolution.

The DG category \mathcal{C} is pretriangulated if the embedding $H^{0}(\mathcal{C}) \rightarrow \mathcal{C}^{t r}$ is an equivalence. The category $H^{0}(\mathcal{C})$ for a pretriangulated category is triangulated.

A triangulated category \mathcal{T} is enhanced if it has an enhancement - a pretriangulated DG category \mathcal{C} such that \mathcal{T} is equivalent to $H^{0}(\mathcal{C})$.

Recall that a preadditive category \mathcal{A} is Karoubian if every idempotent morphism $p: A \rightarrow A$ (i.e. such that $p^{2}=p$) has a kernel. Note that then every idempotent admits an image and p splits, that is $A=\operatorname{Ker} p \oplus \operatorname{Im} p$.

The category $\mathcal{C}^{\operatorname{tr}}$ needs not to be Karoubian. As showed in [11, Section 3.4] the category $D^{b}(\mathcal{C})$ is the Karoubisation of $\mathcal{C}^{\text {tr }}$.

As it has already been mentioned, a standard example of an enhanced triangulated category is the derived category $D^{+}(\mathcal{A})$ of an abelian category \mathcal{A} with enough injectives. Its enhancement is the category of complexes of injective sheaves $\operatorname{Kom}\left(\operatorname{Inj}_{\mathcal{A}}\right)$.

With the above definitions we are ready to state the following theorem.

Theorem 1.2.3. ([10, Theorem 1]) Let $\widetilde{\mathcal{C}}$ be a pretriangulated category, E_{1}, \ldots, E_{n} objects of $\widetilde{\mathcal{C}}$ and let $\mathcal{C} \subset \widetilde{\mathcal{C}}$ be the full $D G$ subcategory on the objects E_{i}. Then the smallest triangulated subcategory of $H^{0}(\widetilde{\mathcal{C}})$ containing E_{1}, \ldots, E_{n} is equivalent to $\mathcal{C}^{\text {tr }}$ as a triangulated category.

Therefore a full exceptional collection $\sigma=\left\langle T_{1}, \ldots, T_{n}\right\rangle$ in an enhanced Ext-finite triangulated category \mathcal{T} leads to an equivalence of \mathcal{T} with $\mathcal{C}_{\sigma}^{\operatorname{tr}}$ for some DG category \mathcal{C}_{σ}. The category \mathcal{C}_{σ} is a subcategory of the DG enhancement of \mathcal{T} and thus $H^{i}\left(\operatorname{Hom}_{\mathcal{C}_{\sigma}}^{\dot{*}}\left(T_{j}, T_{l}\right)\right)=\operatorname{Hom}_{\mathcal{T}}\left(T_{j}, T_{l}[i]\right)$ for all $j, l \in\{1, \ldots, n\}$.

Remark 1.2.4. If an enhanced triangulated category \mathcal{T} is Karoubian then a full exceptional collection σ in \mathcal{T} leads to an equivalence of \mathcal{T} and $\mathcal{D}^{b}\left(\mathcal{C}_{\sigma}\right)$.

For a smooth projective variety X the category $\mathcal{D}^{b}(X)$ is an enhanced triangulated category. Its DG enhancement is the full DG subcategory of $\operatorname{Kom}\left(\operatorname{Inj} \mathrm{QCoh}_{(X)}\right)$ consisting of complexes having only finitely many non-zero and coherent cohomology sheaves. Lunts and Orlov in [48, Theorem 9.9] show that in this case the DG enhancement of $\mathcal{D}^{b}(X)$ is strongly unique, i.e. for any two DG categories \mathcal{B} and \mathcal{B}^{\prime} and equivalences $\varepsilon: H^{0}(\mathcal{B}) \rightarrow$ $\mathcal{D}^{b}(X), \varepsilon^{\prime}: H^{0}\left(\mathcal{B}^{\prime}\right) \rightarrow \mathcal{D}^{b}(X)$ there exists a quasi-functor $F: \mathcal{B} \rightarrow \mathcal{M o d}-\mathcal{B}^{\prime}$ such that $\varepsilon^{\prime} \circ H^{0}(F)$ and ε are isomorphic.

Let $\sigma=\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\rangle$ be a full exceptional collection of coherent sheaves on X. By Theorem 1.2.3 there exists a DG category \mathcal{C}_{σ} with objects $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ such that $\mathcal{D}^{b}(X)$ is equivalent to $\mathcal{C}_{\sigma}^{\text {tr }}$. The category $\mathcal{D}^{b}(X)$ is Karoubian and so $\mathcal{D}^{b}(X)$ and $\mathcal{D}^{b}\left(\mathcal{C}_{\sigma}\right)$ are equivalent. Also, as σ is an exceptional collection the category $H\left(\mathcal{C}_{\sigma}\right)$ is ordered and finite.

Remark 1.2.5. If a $D G$ category \mathcal{C} has only zeroth cohomology then it is quasi-equivalent to $H(\mathcal{C})=H^{0}(\mathcal{C})$. Indeed, for $C_{1}, C_{2} \in \operatorname{ob} \mathcal{C}$ let $\operatorname{Hom}_{\mathcal{C}}^{\dot{C}}\left(C_{1}, C_{2}\right)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{C}}^{n}\left(C_{1}, C_{2}\right)$ with differential

$$
\partial_{C_{1}, C_{2}}^{n}: \operatorname{Hom}_{\mathcal{C}}^{n}\left(C_{1}, C_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}^{n+1}\left(C_{1}, C_{2}\right)
$$

and let \mathcal{C}_{I} be a DG category with the same objects as \mathcal{C} and morphisms defined by

$$
\operatorname{Hom}_{\mathcal{C}_{I}}^{\cdot}\left(C_{1}, C_{2}\right)=\bigoplus_{n<0} \operatorname{Hom}_{\mathcal{C}}^{n}\left(C_{1}, C_{2}\right) \oplus \operatorname{Ker} \partial_{C_{1}, C_{2}}^{0}
$$

Then the natural inclusion functor $\mathcal{C}_{I} \rightarrow \mathcal{C}$ is a quasi-equivalence. Let us also set

$$
J_{C_{1}, C_{2}}=\operatorname{Im}\left(\partial_{C_{1}, C_{2}}^{-1}\right) \oplus\left(\bigoplus_{n<0} \mathcal{C}^{n}\left(C_{1}, C_{2}\right)\right)
$$

for any objects C_{1} and C_{2} of \mathcal{C} and consider the category $\mathcal{C}_{I / J}$ with ob $\mathcal{C}_{I / J}=\mathrm{ob} \mathcal{C}$ and

$$
\operatorname{Hom}_{\dot{\mathcal{C}}_{I / J}}\left(C_{1}, C_{2}\right)=\operatorname{Hom}_{\dot{\mathcal{C}}_{I}}\left(C_{1}, C_{2}\right) / J_{C_{1}, C_{2}}
$$

Then $\mathcal{C}_{I / J}$ is isomorphic to $H(\mathcal{C})$ and the natural functor $\mathcal{C}_{I} \rightarrow \mathcal{C}_{I / J}$ is a quasi-equivalence.
In particular, if σ is a strong exceptional collection then the DG category \mathcal{C}_{σ} is quasiequivalent to an ordinary category.

$1.3 \quad A_{\infty}$-categories

The category $\mathcal{D}^{b}(X)$ has a strongly unique DG enhancement given by the full DG subcategory of $\operatorname{Kom}\left(\operatorname{Inj}_{\mathrm{QCoh}(X)}\right)$ and hence, a priori, calculating the category \mathcal{C}_{σ} from Theorem 1.2.3 requires taking injective resolutions. This suggest that the category \mathcal{C}_{σ} can have infinitely dimensional morphisms spaces. Using the techniques of A_{∞}-categories we will show that \mathcal{C}_{σ} is quasi-isomorphic to a finite and ordered DG category. First, we recall definitions and properties of A_{∞}-categories following Keller's survey papers [37], [38] and Lefèvre-Hasegawa unpublished thesis [45].

Definition 1.3.1. ([37, Definition 7.2]) $A n A_{\infty}$-category \mathcal{G} over k consists of

- a set of objects ob(G),
- for any two $G_{1}, G_{2} \in o b(\mathcal{G}) a \mathbb{Z}$ - graded k-vector space $\operatorname{Hom}_{\dot{\mathcal{G}}}^{\dot{(}}\left(G_{1}, G_{2}\right)$,
- for any $n \geq 1$ and a sequence $G_{0}, G_{1}, \ldots, G_{n} \in o b(\mathcal{G})$ a graded k-linear map:

$$
m_{n}: \operatorname{Hom}_{\dot{\mathcal{G}}}^{\dot{(}}\left(G_{n-1}, G_{n}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}_{\dot{\mathcal{G}}}^{\dot{G}}\left(G_{0}, G_{1}\right) \rightarrow \operatorname{Hom}_{\dot{\mathcal{G}}}^{\dot{(}}\left(G_{0}, G_{n}\right)
$$

of degree $2-n$ such that for any $n \geq 0$ and all $(n+1)$-tuples of objects G_{0}, \ldots, G_{n} we have the identity

$$
\sum_{\{r+s+t=n, s \geq 1, r, t \geq 0\}}(-1)^{r+s t} m_{r+1+t}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)=0
$$

of maps

$$
\operatorname{Hom}_{\mathcal{G}}^{\dot{G}}\left(G_{n-1}, G_{n}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}_{\dot{\mathcal{G}}}\left(G_{0}, G_{1}\right) \rightarrow \operatorname{Hom}_{\mathcal{G}}\left(G_{0}, G_{n}\right)
$$

When these formulae are applied to elements additional signs appear because of the Koszul sign rule:

$$
(f \otimes g)(x \otimes y)=(-1)^{|x||g|} f(x) \otimes g(y)
$$

An A_{∞}-algebra is an A_{∞}-category with one object.
An A_{∞}-category \mathcal{G} is ordered if there exists a partial order \preceq on the set $\operatorname{ob}(\mathcal{G})$ such that $\operatorname{Hom}_{\mathcal{G}}\left(G, G^{\prime}\right)=0$ for $G^{\prime} \preceq G$. It is finite if $\operatorname{ob}(\mathcal{G})$ is a finite set and $\operatorname{Hom}_{\mathcal{G}}^{\dot{\mathcal{G}}}\left(G, G^{\prime}\right)$ is finite-dimensional for any G and G^{\prime}.

An A_{∞}-category \mathcal{G} is strictly unital if for any object G of \mathcal{G} there exists a morphism $1_{G} \in \operatorname{Hom}_{\dot{\mathcal{G}}}^{\dot{\circ}}(G, G)$ of degree 0 such that for any object G^{\prime} of \mathcal{G} and any morphisms $\phi \in$ $\operatorname{Hom}_{\dot{\mathcal{G}}}\left(G, G^{\prime}\right), \psi \in \operatorname{Hom}_{\dot{\mathcal{G}}}\left(G^{\prime}, G\right)$ we have $m_{2}\left(\phi, 1_{G}\right)=\phi$ and $m_{2}\left(1_{G}, \psi\right)=\psi$. Moreover, for $n \neq 2$ the operation m_{n} equals 0 if any of its arguments is equal to 1_{G}.

An A_{∞}-category \mathcal{G} is homologically unital if there exist units for the homotopy category $H(\mathcal{G})$.

The operation m_{1} gives for any pair of objects G, G^{\prime} of \mathcal{G} a structure of a complex on $\operatorname{Hom}_{\mathcal{G}}^{\dot{G}}\left(G, G^{\prime}\right)$. Using m_{1}, analogously as for DG categories, we can associate to a homologically unital A_{∞}-category a graded homology category $H(\mathcal{G})$.

An A_{∞}-category is called minimal if the operation m_{1} is trivial.
Remark 1.3.2. Any DG category \mathcal{C} is an A_{∞}-category. Indeed, if ∂ is the differential on the spaces of morphisms of \mathcal{C} and μ is the composition of morphisms then putting $m_{1}=\partial, m_{2}=\mu$ and $m_{i}=0$ for $i \geq 3$ we obtain an A_{∞}-category.

Remark 1.3.3. Lefèvre-Hasegawa in [45, Section 1.1] considers a k-linear abelian semisimple, cocomplete category C with filtered exact limits. Recall that an abelian category C is semi-simple if every subobject is a direct summand and C is cocomplete if it has all colimits.

Then, Lefèvre-Hasegawa defines in [45, Section 1.2] an A_{∞}-algebra A as a graded module over C together with a family of graded maps $m_{i}: A^{\otimes i} \rightarrow A$ satisfying

$$
\sum_{\{r+s+t=n, s \geq 1, r, t \geq 0\}}(-1)^{r+s t} m_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)=0 .
$$

In order to define A_{∞}-categories he introduces in [45, Section 5.1] a a k-linear abelian, semi-simple, cocomplete category $\mathrm{C}(\mathfrak{G}, \mathfrak{G})$ with filtered exact limits for any set \mathfrak{G}. Then, he defines an A_{∞}-category \mathcal{G} with the set of objects \mathfrak{G} as an A_{∞}-algebra over the monoidal category $\mathrm{C}(\mathfrak{G}, \mathfrak{G})$. In [45, Remarque 5.1.2.2] he proves that this definition agrees with Definition 1.3 .1 given above.

Therefore, all the claims proved in [45] for A_{∞}-algebras remain valid for A_{∞}-categories.
For any set S there exists an A_{∞}-category $k S$. The objects of $k S$ are elements of S and

$$
\operatorname{Hom}_{k S}\left(s_{1}, s_{2}\right)= \begin{cases}k & \text { if } s_{1}=s_{2} \\ 0 & \text { otherwise }\end{cases}
$$

All operations m_{n} in $k S$ are trivial.
In particular, for any set S the category $k S$ is strictly unital.
Definition 1.3.4. A functor of A_{∞}-categories $F: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ is a map $F_{0}: o b(\mathcal{G}) \rightarrow \operatorname{ob}\left(\mathcal{G}^{\prime}\right)$ and a family of graded maps

$$
F_{n}: \operatorname{Hom}_{\mathcal{G}^{\prime}}^{\dot{(}}\left(G_{n-1}, G_{n}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}_{\mathcal{G}^{\prime}}\left(G_{0}, G_{1}\right) \rightarrow \operatorname{Hom}_{\mathcal{G}^{\prime}}^{\dot{\prime}}\left(F_{0}\left(G_{0}\right), F_{0}\left(G_{n}\right)\right)
$$

of degree $1-n$ such that

$$
\sum_{r+s+t=n}(-1)^{r+s t} F_{r+1+t}\left(i d^{\otimes r} \otimes m_{s} \otimes i d^{\otimes t}\right)=\sum_{i_{1}+\ldots+i_{r}=n}(-1)^{p} m_{r}\left(F_{i_{1}} \otimes \ldots \otimes F_{i_{r}}\right),
$$

where $p=(r-1)\left(i_{1}-1\right)+(r-2)\left(i_{2}-1\right)+\ldots+2\left(i_{r-2}-1\right)+\left(i_{r-1}-1\right)$.
Composition of functors is given by

$$
(F \circ G)_{n}=\sum_{i_{1}+\ldots+i_{s}=n} F_{s} \circ\left(G_{i_{1}} \otimes \ldots \otimes G_{i_{s}}\right) .
$$

A functor $F: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ is called an A_{∞}-quasi-equivalence if F_{1} induces an equivalence between homotopy categories $H(\mathcal{G})$ and $H\left(\mathcal{G}^{\prime}\right)$.

Theorem 1.3.5. ([45, Theorem 3.2.1.1]) Minimal homologically unital A_{∞}-category is A_{∞}-quasi-equivalent to a minimal strictly unital A_{∞}-category.

Remark 1.3.6. A minimal A_{∞}-category is equal to its homology category. Hence, an A_{∞}-quasi-isomorphism F given by the above proposition satisfies $F_{1}=\mathrm{id}$.

An A_{∞}-category \mathcal{G} is augmented if there exists a strict unit preserving functor $\epsilon: k \operatorname{ob}(\mathcal{G}) \rightarrow \mathcal{G}$. Then \mathcal{G} decomposes as $\mathcal{G}=k \operatorname{ob}(\mathcal{G}) \oplus \overline{\mathcal{G}}$.

Any A_{∞}-category \mathcal{G} is A_{∞}-quasi-equivalent to its homotopy category $H(\mathcal{G})$.

Theorem 1.3.7. ([31, Theorem 1], see also [44, Theorem 4.3]) If \mathcal{G} is an A_{∞}-category, then $H(\mathcal{G})$ admits an A_{∞}-category structure such that

1. $m_{1}=0$ and m_{2} is induced from $m_{2}^{\mathcal{G}}$ and
2. there is an A_{∞}-quasi-equivalence $\mathcal{G} \rightarrow H(\mathcal{G})$.

Moreover, this structure is unique up to a non unique A_{∞}-equivalence.

The A_{∞}-category $H(\mathcal{G})$ is called the minimal model of \mathcal{G}.

Remark 1.3.8. Let \mathcal{C} be a DG category. Its minimal model $H(\mathcal{C})$ is A_{∞}-quasi-equivalent to a strictly unital A_{∞}-category. Indeed, the category \mathcal{C} is strictly unital and hence homologically unital. Its homotopy category is also homologically unital and Theorem 1.3.5 guarantees that there exists a strictly unital minimal category A_{∞}-quasi-equivalent to $H(\mathcal{C})$.

1.3.1 The universal DG category of an A_{∞}-category

For any augmented A_{∞}-category \mathcal{G} there exists a DG category $U(\mathcal{G})$ and an A_{∞}-quasiisomorphism $\mathcal{G} \rightarrow U(\mathcal{G})$. To define the category $U(\mathcal{G})$ we need the following definitions taken from [45, Section 1.2], see also [49, Section 2].

Definition 1.3.9. A DG cocategory \mathcal{B} consists of

- the set of objects ob(B),
- for any pair of objects $B_{i}, B_{j} \in \operatorname{ob}(\mathcal{B})$ a complex of k-vector spaces $\operatorname{Hom}_{\mathcal{B}}\left(B_{i}, B_{j}\right)$ with a differential $d^{i j}$ of degree one, and
- a coassociative cocomposition, that is a family of linear maps

$$
\Delta: \operatorname{Hom}_{\dot{\mathcal{B}}}^{\dot{(}}\left(B_{i}, B_{j}\right) \rightarrow \sum_{B_{k} \in o b(\mathcal{B})} \operatorname{Hom}_{\dot{\mathcal{B}}}\left(B_{k}, B_{j}\right) \otimes_{k} \operatorname{Hom}_{\dot{\mathcal{B}}}^{\dot{(}}\left(B_{i}, B_{k}\right)
$$

These data have to satisfy the condition

$$
\Delta \circ d=(d \otimes i d+i d \otimes d) \circ \Delta
$$

For any set S the A_{∞}-category $k S$ is also a DG cocategory.
A functor Φ between $D G$ cocategories \mathcal{B} and \mathcal{B}^{\prime} preserves the grading and differentials on morphisms and satisfies the condition

$$
\Delta \circ \Phi=(\Phi \otimes \Phi) \circ \Delta .
$$

A DG cocategory \mathcal{B} is counital if it admits a counit, a functor $\eta: \mathcal{B} \rightarrow k \operatorname{ob}(\mathcal{B})$. The category \mathcal{B} is coaugmented if it is counital and admits a coaugmentation functor $\varepsilon: k \operatorname{ob}(\mathcal{B}) \rightarrow \mathcal{B}$ such that the composition $\eta \varepsilon$ is the identity on $k \operatorname{ob}(\mathcal{B})$.

Let \mathcal{B} be a coaugmented DG cocategory. Denote by $\overline{\mathcal{B}}$ a cocategory with the same objects as \mathcal{B} and morphisms $\operatorname{Hom}_{\overline{\mathcal{B}}}\left(B_{i}, B_{j}\right)=\operatorname{ker} \varepsilon$.

For an augmented A_{∞}-category \mathcal{G} one can define its bar DG cocategory $B_{\infty}(\mathcal{G})$. Recall that as an augmented category \mathcal{G} can be written as $\overline{\mathcal{G}} \oplus k \operatorname{ob}(\mathcal{G})$. Then $B_{\infty}(\mathcal{G})=T^{c}(S \overline{\mathcal{G}})$ is a tensor cocategory of the suspension of $\overline{\mathcal{G}}$. Here $S \overline{\mathcal{G}}$ denotes the category $\overline{\mathcal{G}}$ with a shift in a morphisms spaces $\operatorname{Hom}_{S \overline{\mathcal{G}}}^{n}\left(G, G^{\prime}\right)=\operatorname{Hom}_{\overline{\mathcal{G}}}^{n+1}\left(G, G^{\prime}\right)$. Note that $S \overline{\mathcal{G}}$ is not an $A_{\infty^{-}}$ category. However, the operations m_{n} in $\overline{\mathcal{G}}$ define the following graded maps of degree 1 in $S \overline{\mathcal{G}}$:

$$
\begin{gathered}
b_{n}: \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\bullet}\left(G_{n-1}, G_{n}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\cdot}\left(G_{0}, G_{1}\right) \rightarrow \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\cdot}\left(G_{0}, G_{n}\right), \\
b_{n}=-s \circ m_{n} \circ \omega^{\otimes n},
\end{gathered}
$$

where $s: V \rightarrow S V$ is a suspension of a graded vector space V and $\omega=s^{-1}$. That is, $(S V)^{i} \simeq V^{i+1}$ and $s: V \rightarrow S V$ is the map of degree one induced by the identity morphism of V.

The cocategory $B_{\infty}(\mathcal{G})$ has the same objects as \mathcal{G} and the morphisms in this category are defined by

$$
\begin{aligned}
& \operatorname{Hom}_{B_{\infty}(\mathcal{G})}^{\cdot}\left(G, G^{\prime}\right):= \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\cdot}\left(G, G^{\prime}\right) \oplus \bigoplus_{G_{1} \in \mathrm{ob}(\mathcal{G})} \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\cdot}\left(G_{1}, G^{\prime}\right) \otimes_{k} \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\cdot}\left(G, G_{1}\right) \\
& \oplus \bigoplus_{G_{1}, G_{2} \in \mathrm{ob}(\mathcal{G})} \operatorname{Hom}_{\overline{S \overline{\mathcal{G}}}}^{\cdot}\left(G_{2}, G^{\prime}\right) \otimes_{k} \operatorname{Hom}_{S \overline{\mathcal{G}}}^{\cdot}\left(G_{1}, G_{2}\right) \otimes_{k} \operatorname{Hom}_{\dot{S \overline{\mathcal{G}}}}^{\cdot}\left(G, G_{1}\right) \oplus \ldots
\end{aligned}
$$

for $G \neq G^{\prime}$. In the case $G=G^{\prime}$ we have to add to the above sum one copy of the base filed k in degree 0 corresponding to the identity morphism 1_{G}.

To simplify the notation we shall write $\left(\alpha_{n}, \ldots, \alpha_{1}\right)$ for $\alpha_{n} \otimes \ldots \otimes \alpha_{1}$. The differential in $B_{\infty}(\mathcal{G})$ is given by

$$
\begin{aligned}
& d\left(\alpha_{n}, \ldots, \alpha_{1}\right)= \\
& \sum_{s=1}^{n} \sum_{l=1}^{n-s+1}(-1)^{\left|\alpha_{l-1}\right|+\ldots+\left|\alpha_{1}\right|}\left(\alpha_{n}, \ldots \alpha_{l+s}, b_{s}\left(\alpha_{l+s-1}, \ldots, \alpha_{l}\right), \alpha_{l-1}, \ldots \alpha_{1}\right),
\end{aligned}
$$

for $\left(\alpha_{n}, \ldots, \alpha_{1}\right) \in \operatorname{Hom}_{B_{\infty}(\mathcal{G})}\left(G, G^{\prime}\right)$. The cocomposition is given by

$$
\begin{aligned}
& \Delta\left(\alpha_{n}, \ldots, \alpha_{1}\right)= \\
& 1_{G^{\prime}} \otimes\left(\alpha_{n}, \ldots, \alpha_{1}\right)+\left(\alpha_{n}, \ldots, \alpha_{1}\right) \otimes 1_{G}+\sum_{l=1}^{n-1}\left(\alpha_{n}, \ldots, \alpha_{l+1}\right) \otimes\left(\alpha_{l}, \ldots, \alpha_{1}\right)
\end{aligned}
$$

With these definitions $B_{\infty}(\mathcal{G})$ is an augmented DG cocategory.
Remark 1.3.10. Let \mathcal{G} be an ordered and finite A_{∞}-category such that $\operatorname{Hom}_{\overline{\mathcal{G}}}(G, G)=0$ for any object $G \in \mathrm{ob} \mathcal{G}$. Then the DG cocategory $B_{\infty}(\mathcal{G})$ also satisfies these conditions; i.e. it is ordered, finite and $\operatorname{Hom}_{\overline{B_{\infty}(\mathcal{G})}}^{\cdot}(G, G)=0$ for any object G.

Analogously, via a cobar construction one can assign to an augmented DG cocategory \mathcal{B} a DG category $\Omega(\mathcal{B})$. Let \mathcal{B} be a DG cocategory with a differential d and cocomposition Δ. Its cobar DG category is equal to $T\left(S^{-1} \overline{\mathcal{B}}\right)$. Here $S^{-1} \overline{\mathcal{B}}$ denotes the shift of the cocategory \mathcal{B} and $T\left(S^{-1} \overline{\mathcal{B}}\right)$ is the tensor DG category of it. As before the morphisms spaces in $T\left(S^{-1} \overline{\mathcal{B}}\right)$ are given by

$$
\begin{aligned}
\operatorname{Hom}_{\Omega(\mathcal{B})}^{*}\left(B, B^{\prime}\right):=\operatorname{Hom}_{S^{-1} \overline{\mathcal{B}}}^{\cdot}\left(B, B^{\prime}\right) \oplus \bigoplus_{B_{1} \in \mathrm{ob}(\mathcal{B})} \operatorname{Hom}_{S^{-1} \overline{\mathcal{B}}}^{\cdot}\left(B_{1}, B^{\prime}\right) \otimes_{k} \operatorname{Hom}_{S^{-1} \overline{\mathcal{B}}}^{\cdot}\left(B, B_{1}\right) \\
\oplus \bigoplus_{B_{1}, B_{2} \in \mathrm{ob}(\mathcal{B})} \operatorname{Hom}_{S^{-1} \overline{\mathcal{B}}}^{\cdot}\left(B_{2}, B^{\prime}\right) \otimes_{k} \operatorname{Hom}_{S^{-1} \overline{\mathcal{B}}}^{\cdot}\left(B_{1}, B_{2}\right) \otimes_{k} \operatorname{Hom}_{S^{-1} \overline{\mathcal{B}}}^{\cdot}\left(B, B_{1}\right) \oplus \ldots
\end{aligned}
$$

for $B \neq B^{\prime}$. Again, for $B=B^{\prime}$ one has to add one copy of the base filed k in degree zero, corresponding to the identity morphism, 1_{B}.

The composition in $\Omega(\mathcal{B})$ is defined by concatenation and the differential ∂ on the morphisms spaces is given by

$$
\partial=\sum 1 \otimes \ldots \otimes 1 \otimes(d+\Delta) \otimes 1 \otimes \ldots \otimes 1
$$

Remark 1.3.11. If an ordered and finite DG cocategory \mathcal{B} satisfies the condition $\operatorname{Hom}_{\overline{\mathcal{B}}}^{\cdot}(B, B)=0$, then the category $\Omega(\mathcal{B})$ is also finite, ordered and $\operatorname{Hom}_{\overline{\Omega(B)}}^{\cdot}(B, B)=0$.

For an augmented A_{∞}-category \mathcal{G} its universal DG category $U(\mathcal{G})$ is defined as $\Omega\left(B_{\infty}(\mathcal{G})\right)$. There is a natural map $\mathcal{G} \rightarrow U(\mathcal{G})$. [45, Lemma 1.3.2.3] proves that this map extends to a functor and it is an A_{∞}-quasi-equivalence. Moreover, for an A_{∞}-quasi-equivalence ϕ the functor $U(\phi)$ is a quasi-equivalence of DG categories.

1.3.2 $\quad A_{\infty}$-modules

Definition 1.3.12. An A_{∞}-module over an A_{∞}-category \mathcal{G} is an A_{∞}-functor $M: \mathcal{G} \rightarrow D G$ Vect $_{k}$. A morphism of modules $F: M \rightarrow N$ is given by a family $\left\{F_{G}: M_{0}(G) \rightarrow N_{0}(G)\right\}_{G \in o b \mathcal{G}}$ of morphisms in $D G$ Vect $_{k}$ such that the diagrams

commute for any $n \in \mathbb{N}, G_{i} \in$ ob \mathcal{G} and $\alpha_{i} \in \operatorname{Hom}_{\dot{\mathcal{G}}}\left(G_{i}, G_{i+1}\right)$.
The category of A_{∞}-modules over an A_{∞}-category \mathcal{G} will be denoted as $\mathcal{M o d}_{\infty}-\mathcal{G}$.
The morphism $F: M \rightarrow N$ of modules is an A_{∞}-quasi-isomorphism if F_{G} is a quasiisomorphism of complexes for any $G \in \mathrm{ob} \mathcal{G}$.

The derived category $\mathcal{D}_{\infty}(\mathcal{G})$ of an A_{∞}-category \mathcal{G} is defined as a localization of the category $\mathcal{M o d}_{\infty}-\mathcal{G}$ with respect to the class of A_{∞}-quasi-isomorphisms. For A_{∞}-quasiequivalent A_{∞}-categories their derived categories are equivalent.

Remark 1.3.13. ([45, Lemme 2.4.3.2]) For a DG category \mathcal{C} the derived categories $\mathcal{D}^{b}(\mathcal{C})$ and $\mathcal{D}_{\infty}(\mathcal{C})$ are equivalent. Hence, for any augmented A_{∞}-category \mathcal{G} the category $\mathcal{D}_{\infty}(\mathcal{G})$ is equivalent to $\mathcal{D}(U(\mathcal{G}))$.

1.4 Existence of DG quivers

Theorem 1.4.1. Let \mathcal{C} be a $D G$ category with finitely many objects. Assume that $H(\mathcal{C})$ is an ordered and finite graded category such that $\operatorname{Hom}_{H(\mathcal{C})}^{*}(C, C)=k$ for any object C of
\mathcal{C}. Then there exists an ordered and finite $D G$ category $\widetilde{\mathcal{C}}$ such that $\mathcal{D}(\mathcal{C})$ is equivalent to $\mathcal{D}(\widetilde{\mathcal{C}})$.

Proof. Theorem 1.3.7 guarantees existence of the minimal model of \mathcal{C} given by the homology A_{∞}-category $H(\mathcal{C})$. By Remark 1.3 .8 we can assume that $H(\mathcal{C})$ is strictly unital. As $\operatorname{Hom}_{H(\mathcal{C})}^{-}(C, C)=k$ for any C the category $H(C)$ is an augmented ordered A_{∞}-category. We have

$$
\mathcal{D}=\mathcal{D}\left(\mathcal{C}_{\sigma}\right)=\mathcal{D}_{\infty}\left(H\left(\mathcal{C}_{\sigma}\right)\right)=\mathcal{D}\left(\mathcal{U}\left(H\left(\mathcal{C}_{\sigma}\right)\right) .\right.
$$

Remarks 1.3 .10 and 1.3 .11 show that the category $\mathcal{U}\left(H\left(\mathcal{C}_{\sigma}\right)\right)$ is ordered and finite.

As a corollary we get
Theorem 1.4.2. Let X be a smooth projective variety and let $\sigma=\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\rangle$ be a full exceptional collection on X. Then there exists an ordered, finite $D G$ category $\widetilde{\mathcal{C}_{\sigma}}$ such that $\mathcal{D}^{b}(X)$ is equivalent to $\mathcal{D}^{b}\left(\widetilde{\mathcal{C}_{\sigma}}\right)$.

Proof. By Theorem 1.2.3 there exists a DG category \mathcal{C}_{σ} such that $\mathcal{D}^{b}(X)=\mathcal{D}^{b}\left(\mathcal{C}_{\sigma}\right)$. Since the sheaves $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ are exceptional and the category $\mathcal{D}^{b}(X)$ is Ext-finite, by construction the category \mathcal{C}_{σ} satisfies conditions of Theorem 1.4.1. Hence there exists a DG category $\widetilde{\mathcal{C}_{\sigma}}$ such that the categories $\mathcal{D}\left(\mathcal{C}_{\sigma}\right)$ and $\mathcal{D}\left(\widetilde{\mathcal{C}_{\sigma}}\right)$ are equivalent. It follows that $\mathcal{D}^{b}\left(\widetilde{\mathcal{C}_{\sigma}}\right) \simeq \mathcal{D}^{b}(X)$.

The category $\widetilde{\mathcal{C}_{\sigma}}$ is A_{∞}-quasi-equivalent to the category \mathcal{C}_{σ} and hence $\operatorname{Hom}_{H\left(\widetilde{\left.\mathcal{C}_{\sigma}\right)}\right.}^{l}\left(\mathcal{E}_{i}, \mathcal{E}_{j}\right)=$ $\operatorname{Ext}_{X}^{l}\left(\mathcal{E}_{i}, \mathcal{E}_{j}\right)$.

To graphically present the DG category $\widetilde{\mathcal{C}_{\sigma}}$ we introduce the following definition.
A $D G$ quiver is a quiver Q endowed with a \mathbb{Z}-grading on the set of arrows Q_{1} and a structure of a DG algebra on the path algebra $k[Q]$ such that the following conditions are satisfied:

- The \mathbb{Z}-grading of $k[Q]$ is compatible with the grading of Q_{1}.
- For any path $p \in k[Q]$ the differential $\partial(p)$ is a combination of paths with the same head and tail as p.
- For any vertex i of Q the trivial path $\varepsilon_{i} \in k[Q]$ is closed of degree 0 .

The DG category $\widetilde{\mathcal{C}_{\sigma}}$ has finitely dimensional space of morphisms and so one can associate to it a DG quiver Q_{σ}. If the collection σ is strong it follows from Remark 1.2.5 that the DG quiver coincides with the quiver introduced in [9].

Remark 1.4.3. The DG quiver, or the DG category $\widetilde{\mathcal{C}_{\sigma}}$, is determined only up to a quasi-isomorphism. Therefore, we can always modify it by finding a quasi-isomorphic DG subcategory or a quasi-isomorphic quotient.

For example, let S be a subspace of the space of morphisms in $\widetilde{\mathcal{C}_{\sigma}}$ which has a basis consisting of pairs $\alpha, \partial(\alpha)$. Clearly, if S is an ideal then the quotient DG category $\widetilde{\mathcal{C}}_{\sigma}{ }^{\prime}$ is quasi-isomorphic to $\widetilde{\mathcal{C}_{\sigma}}$. On the other hand, if there is no morphism in S which is a nontrivial composition of two morphisms not in S then the subcategory $\widetilde{\mathcal{C}_{\sigma}}{ }^{\prime \prime}$ of $\widetilde{\mathcal{C}_{\sigma}}$ obtained by removing all the morphisms in S is quasi-isomorphic to $\widetilde{\mathcal{C}_{\sigma}}$.

Chapter 2

Calculating DG quivers

In this chapter we describe how to calculate DG quivers given by Theorem 1.4.2. We give three algorithms depending on available data.

In Section 2.1 we define after Bondal and Kapranov, [10] mutations of DG categories. They allow us to calculate a DG quiver of an exceptional collection, provided we know the DG quiver of one of its mutations. In particular, they allow us to calculate a DG quiver of a collection that can be mutated to a strong one. In Section 2.1.1 we show how to use this method to find a DG quiver of a full exceptional collection on a surface X obtained from \mathbb{P}^{2} by blowing up a point and then blowing up a point on the exceptional divisor.

In Section 2.2 we show how to calculate the DG quiver from the A_{∞}-quiver of an exceptional collection. The A_{∞}-quiver can be in some cases computed using some homological operations called Massey products are. Results of Sections 2.2.2-2.2.6 lead to Theorem 2.2 .12 which proves that a non-empty n-tuple Massey product in a uniquely enhanced triangulated category \mathcal{T} provides important information about the structure of A_{∞}-category.

In Section 2.2.2 we recall definition of Massey products in a triangulated category. This definition uses Postnikov systems and convolutions of complexes. In Sections 2.2.3 and 2.2 .4 we provide explicit calculations of triple and quadruple Massey products. Observations made in these sections are generalized to n-tuple Massey products in Section 2.2.5. Proposition 2.2 .8 of this section describes how Massey products are connected with Postnikov systems and existence of convolutions. Then, we introduce after [41] defining systems which are Massey products in homotopy category of a DG category. Lemma 2.2.10 proves that in the case when \mathcal{T} is an enhanced triangulated category both definitions agree up to a sign.

In Section 2.2.6 we use these results, together with Merkulov's description of a minimal A_{∞}-model recalled in 2.2.1, Theorem 2.2.12 relating Massey products with the minimal A_{∞}-structure.

These techniques are then used in Section 2.2.7 to calculate the A_{∞}-structure of a DG
quiver of an exceptional collection on the surface X considered before, that is the surface obtained from \mathbb{P}^{2} by blowing up a point and then blowing up a point on the exceptional divisor. In this section we also explain why Massey products are not sufficient to find the A_{∞}-structure on the full collection. We also briefly recall that Polishchuk used the same methods in [57] in order to calculate A_{∞}-structure on the category of line bundles on elliptic curves.

In Section 2.3 we describe how to find DG quivers of exceptional collections $\sigma=$ $\left\langle E_{1}, \ldots, E_{n}\right\rangle$ such that $\operatorname{Ext}^{i}\left(E_{j}, E_{l}\right)=0$ for $i \neq 0,1$ and all pairs j, l. The method relies on universal extensions and coextensions defined after Hille and Perling, [25] in Section 2.3.1. Both constructions systematically make the first Ext groups between objects vanish and allow us to construct a tilting object in the category $\mathcal{D}^{b}(X)$ from an exceptional collection with vanishing higher Ext-groups. Theorem 2.3.1 states that the endomorphism algebra of this tilting object determines the DG quiver of σ.

Universal extensions and coextensions first appeared in representation theory of quasihereditary algebras (see [17]). In Section 2.3 .2 we recall definitions of quasi-hereditary algebras. We also prove in that endomorphism algebras of tilting generators obtained from σ by universal extensions and coextensions are so called Ringel dual quasi-hereditary algebras (see Proposition 2.3.3).

In Section 2.3.3 we come back to the example of an exceptional collection on the surface X obtained from \mathbb{P}^{2} as a two-step blow-up. We calculate the DG quiver using universal extensions.

In Section 2.2.7 we showed that this DG quiver could not be calculated by Massey products only. Therefore, in Section 2.4 we investigate what additional information is provided by the endomorphism algebra of the tilting object given by universal extensions. We describe a cohomological operation, a relative triple Massey product. We also conclude that triple Massey products and relative triple Massey products are sufficient to calculate the DG quiver of the exceptional collection on X.

In Section 2.4 .1 we show that there are many equivalent ways to calculate n-tuple Massey products in enhanced triangulated categories. This observation explains the name "relative triple Massey product".

2.1 Action of the braid group

First, let us recall after [9, Section 2] action of the braid group on the set of exceptional collections in a triangulated category \mathcal{T}.

Let $\langle E, F\rangle$ be an exceptional pair in \mathcal{T}. Then $\left\langle L_{E} F, E\right\rangle$ and $\left\langle F, R_{F} E\right\rangle$ are also exceptional pairs for $L_{E} F$ and $R_{F} E$ defined by means of distinguished triangles in \mathcal{T}.

$$
\begin{aligned}
L_{E} F & \rightarrow \operatorname{Hom}_{\mathcal{T}}(E, F) \otimes E \rightarrow F \rightarrow L_{E} F[1] \\
E & \rightarrow \operatorname{Hom}_{\mathcal{T}}(E, F)^{*} \otimes F \rightarrow R_{F} E \rightarrow E[1] .
\end{aligned}
$$

Here, $\operatorname{Hom}_{\mathcal{T}}(E, F)=\bigoplus_{l} \operatorname{Hom}_{\mathcal{T}}(E, F[l])$ denotes a complex of k-vector spaces with trivial differential. For an element $E \in \mathcal{T}$ and a complex V^{\bullet} the tensor product is defined by $E \otimes V^{\boldsymbol{\bullet}}=\bigoplus_{l \in \mathbb{Z}} \bigoplus_{i=1}^{\operatorname{dim} V^{l}} E[-l]$.

For an exceptional collection $\sigma=\left\langle E_{1}, \ldots, E_{n}\right\rangle$ the i-th left mutation $L_{i} \sigma$ and the i-th right mutation $R_{i} \sigma$ are defined by

$$
\begin{array}{r}
L_{i} \sigma=\left\langle E_{1}, \ldots, E_{i-1}, L_{E_{i}} E_{i+1}, E_{i}, E_{i+2}, \ldots, E_{n}\right\rangle \\
R_{i} \sigma=\left\langle E_{1}, \ldots, E_{i-1}, E_{i+1}, R_{E_{i+1}} E_{i}, E_{i+2}, \ldots, E_{n}\right\rangle .
\end{array}
$$

Clearly, if the collection σ is full then the same is true about $L_{i} \sigma$ and $R_{i} \sigma$.
The action of the braid group on the set of full exceptional collections can be lifted to associated DG categories (see also [10, Section 5]).

Twisted complexes provide description of the categories $\widetilde{\mathcal{C}_{L_{i} \sigma}}$ and $\widetilde{\mathcal{C}_{R_{i} \sigma}}$ by means of $\widetilde{\mathcal{C}_{\sigma}}$. To see it we need to define tensor product of a twisted complex with a complex of vector spaces.

Let \mathcal{C} be a finite DG category, let $C \in \mathrm{ob} \mathcal{C}^{\text {pre-tr }}$ be a twisted complex and let V^{*} be a finite dimensional complex of vector spaces with differential $\partial^{i}: V^{i} \rightarrow V^{i+1} . C \otimes V$ is defined as $\left(\bigoplus_{\left\{i \mid V^{i} \neq 0\right\}} C[-i]^{\oplus \operatorname{dim} V^{i}}, q_{i, j}\right) \in\left(\mathcal{C}^{\text {pre-tr }}\right)^{\text {pre-tr }}$. The morphisms $q_{i, i+1}$ are induced by the differential ∂^{i} tensored with the identity on C and $q_{i, j}=0$ for $j \neq i+1$.

Now let $C, D \in \mathcal{C}^{\text {pre-tr }}$ be twisted complexes. There exist closed morphisms of degree 0

$$
\phi: C \otimes \operatorname{Hom}_{\mathcal{C}^{\text {pre-tr }}}(C, D) \rightarrow D
$$

where $\phi_{i, 0}: C[-i]^{\oplus \operatorname{dim} \operatorname{Hom}^{i}(C, D)} \rightarrow D$ is given by morphisms of degree i between C and D. The morphism

$$
\psi: C \rightarrow \operatorname{Hom}_{\mathcal{C}^{\text {pre-tr }}}(C, D)^{*} \otimes D
$$

is defined analogously.
Now we define new twisted complexes over \mathcal{C}

$$
\begin{aligned}
L_{C} D & =\operatorname{Tot}(\operatorname{Cone}(\phi)[-1]) \\
R_{D} C & =\operatorname{Tot}(\operatorname{Cone}(\psi))
\end{aligned}
$$

Let $\sigma=\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\rangle$ be a full exceptional collection on a smooth projective variety X and let $\widetilde{\mathcal{C}_{\sigma}}$ be the category described in Theorem 1.4.1. Let E_{1}, \ldots, E_{n} denote the objects of $\widetilde{\mathcal{C}_{\sigma}}$. We define two full subcategories of $\widetilde{\mathcal{C}_{\sigma}}{ }^{\text {pre-tr }}$; category $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}$ with objects $E_{1}, \ldots, E_{i-1}, L_{E_{i}} E_{i+1}, E_{i}, E_{i+2}, \ldots E_{n}$ and category $\widetilde{\mathcal{C}_{\sigma}^{R_{i}}}$ with objects $E_{1}, \ldots, E_{i-1}, E_{i+1}, R_{E_{i+1}} E_{i}, E_{i+2}, \ldots, E_{n}$.

Proposition 2.1.1. Let $\sigma=\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\rangle$ be a full exceptional collection on X and let $\widetilde{\mathcal{C}_{\sigma}}$ be a finite $D G$ category with objects E_{1}, \ldots, E_{n} with $H^{l} \mathcal{C}_{\sigma}\left(E_{i}, E_{j}\right)=\operatorname{Ext}_{X}^{l}\left(\mathcal{E}_{i}, \mathcal{E}_{j}\right)$ and such that $\mathcal{D}^{b}(X)$ is equivalent to $\mathcal{D}^{b}\left(\widetilde{\mathcal{C}_{\sigma}}\right)$. Then the categories $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}$ and $\widetilde{\mathcal{C}_{\sigma}^{R_{i}}}$ satisfy analogous conditions for the collections $L_{i} \sigma$ and $R_{i} \sigma$, respectively.

Proof. As the category $\widetilde{\mathcal{C}_{\sigma}}$ is finite, mutations of twisted complexes over $\widetilde{\mathcal{C}_{\sigma}}$ are well defined. Furthermore, the category $\mathcal{D}^{b}(X)$ is equivalent to $\widetilde{\mathcal{C}_{\sigma}}{ }^{\text {tr }}$. Under this equivalence $L_{\mathcal{E}_{i}} \mathcal{E}_{i+1}$ corresponds to $L_{E_{i}} E_{i+1}$. Hence the category $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}$ is the DG category described by Theorem 1.2.3. By construction it is also finite.

Let $\operatorname{Hom} \underset{\mathcal{C}_{\sigma}^{L_{i}}}{\dot{0}}\left(L_{E_{i}} E_{i+1}, L_{E_{i}} E_{i+1}\right)=k \cdot$ id $\oplus S^{\prime}$ be any splitting of the space of morphisms and let $S=S^{\prime} \oplus \operatorname{Hom}_{\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}}^{\dot{-}}\left(E_{i}, L_{E_{i}} E_{i+1}\right)$. Then Remark 1.4.3 guarantees that the DG subcategory $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}{ }^{\prime \prime}$, obtained from $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}$ by removing morphisms in S, is quasi-isomorphic to $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}$. Then the category $\widetilde{\mathcal{C}_{\sigma}^{L_{i}}}{ }^{\prime \prime}$ is both finite and ordered.

2.1.1 Example

Let X be a smooth surface obtained from \mathbb{P}^{2} by blowing up a point and then blowing up the point on the exceptional divisor. Let E_{2} denote the exceptional divisor of the second blow up, let E_{1} be a strict transform of the exceptional divisor of the first blow up and let $\mathcal{O}_{X}(H)$ be a pullback to X of $\mathcal{O}_{\mathbb{P}^{2}}(1)$. By Orlov's theorem, [54, Theorem 4.3]

$$
\left\langle\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1], \mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle
$$

is a full exceptional collection. This collection is not strong and it has the following Ext-quiver

$$
\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1] \xrightarrow{\stackrel{\bar{\gamma}}{\gamma}} \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1] \xrightarrow{\bar{\delta}} \mathcal{O}_{X} \xrightarrow{\substack{\alpha_{1} \\ \alpha_{2}}} \mathcal{O}_{X}(H) \xrightarrow{\substack{\alpha_{3} \\ \beta_{3}}} \mathcal{O}_{X}(2 H)
$$

with morphisms

$$
\begin{aligned}
& \gamma \in \operatorname{Hom}\left(\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1]\right), \\
& \bar{\gamma} \in \operatorname{Ext}{ }^{1}\left(\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1]\right) \\
& \bar{\delta} \in \operatorname{Hom}\left(\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1], \mathcal{O}_{X}\right)=\operatorname{Ext}^{1}\left(\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}\right)
\end{aligned}
$$

and relations given by

$$
\begin{array}{lll}
\beta_{1} \alpha_{2}=\beta_{2} \alpha_{1}, & \beta_{1} \alpha_{3}=\beta_{3} \alpha_{1}, & \beta_{2} \alpha_{3}=\beta_{3} \alpha_{2}, \\
\bar{\delta} \circ \bar{\gamma}=0, & \alpha_{1} \circ \bar{\delta}=0, & \alpha_{2} \circ \bar{\delta}=0 .
\end{array}
$$

If we mutate $\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1]$ to the right over \mathcal{O}_{X} then the resulting collection $\left\langle\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle$ is strong and has quiver

with relations

$$
\begin{array}{lll}
e_{1} \circ d_{2}=e_{2} \circ d_{1}, & e_{1} \circ d_{3}=e_{3} \circ d_{1} \circ c, & e_{2} \circ d_{3}=e_{3} \circ d_{2} \circ c, \\
c \circ a=0, & d_{1} \circ b=0, & d_{3} \circ a=d_{2} \circ b .
\end{array}
$$

We can thus present $\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)$ as a twisted complex $\left\{\mathcal{O}_{X} \xrightarrow{c} \mathcal{O}_{X}\left(E_{1}+E_{2}\right)\right\}$. This shows that the sought after DG quiver is
with ϵ_{1} and ϵ_{2} in degree minus one, $\bar{\gamma}$ in degree one and the remaining arrows in degree zero. The differentials in this quiver are given by

$$
\partial\left(\epsilon_{1}\right)=\alpha_{1} \circ \bar{\delta}, \quad \partial\left(\epsilon_{2}\right)=\alpha_{2} \circ \bar{\delta}
$$

and relations

$$
\begin{array}{llll}
\beta_{1} \circ \alpha_{2}=\beta_{2} \circ \alpha_{1}, & \beta_{1} \circ \alpha_{3}=\beta_{3} \circ \alpha_{1}, & \beta_{2} \circ \alpha_{3}=\beta_{3} \circ \alpha_{2}, & \\
\beta_{2} \circ \epsilon_{1}=\beta_{1} \circ \epsilon_{2}, & \bar{\delta} \circ \bar{\gamma}=0, & \epsilon_{1} \circ \bar{\gamma}=0, & \epsilon_{2} \circ \bar{\gamma}=\alpha_{3} \circ \bar{\delta} \circ \gamma .
\end{array}
$$

2.2 Massey products

Instead of finding the DG quiver of an exceptional collection σ one can try to calculate the minimal A_{∞}-structure on the Ext-quiver of σ. Since every DG category has a unique minimal model and every A_{∞}-category is A_{∞}-quasi-isomorphic to a DG category, both approaches are equivalent.

The structure of an A_{∞}-category on the Ext-quiver of σ can be sometimes calculated by means of Massey products.

2.2.1 Minimal model by Merkulov's construction

In [51, Section 3] Merkulov gives an algorithm for calculating the A_{∞}-category $H(\mathcal{C})$ for any DG-category \mathcal{C}. As in Remark 1.3 .2 we denote by ∂ the differential on the space of morphisms of \mathcal{C} and by μ the composition of morphisms. To find higher multiplications on $H(\mathcal{C})$ we need maps $i: H(\mathcal{C}) \rightarrow \mathcal{C}, \pi: \mathcal{C} \rightarrow H(\mathcal{C})$ of degree zero and $h: \mathcal{C} \rightarrow \mathcal{C}$ of degree minus one such that

$$
\pi \circ i=\operatorname{id}, \quad i \circ \pi=\operatorname{id}-\partial(h), \quad h^{2}=0
$$

With chosen π, i and h we define operations

$$
\lambda_{n}: \operatorname{Hom}_{\mathcal{C}}^{\dot{C}}\left(X^{n-1}, X^{n}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}_{\mathcal{C}} \dot{(}\left(X^{0}, X^{1}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(X^{0}, X^{n}[2-n]\right)
$$

We put $\lambda_{1}=-h^{-1}, \lambda_{2}=\mu$ and

$$
\lambda_{n}=\sum_{l=1}^{n-1}(-1)^{n-l+1} \mu\left(h\left(\lambda_{n-l}\right), h\left(\lambda_{l}\right)\right) .
$$

Then, the operations $m_{n}: \operatorname{Hom}_{H(\mathcal{C})}^{\bullet}\left(X^{n-1}, X^{n}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}_{H(\mathcal{C})}^{\dot{ }}\left(X^{0}, X^{1}\right) \rightarrow$ $\operatorname{Hom}_{H(\mathcal{C})}\left(X^{0}, X^{n}[2-n]\right)$ defined by

$$
m_{n}=\pi \circ \lambda_{n} \circ i^{\otimes n}
$$

give the A_{∞}-structure on $H(\mathcal{C})$.

2.2.2 Massey products in triangulated and DG setting

We will later see that Merkulov's construction can be sometimes identified with Massey products in enhanced triangulated categories. First, we recall some definitions after [20, Chapter IV, Section 2.10] and [41].

Let \mathcal{T} be a triangulated category and let $T^{\bullet}=\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} \ldots \rightarrow T^{n}\right\}$ be a finite complex in \mathcal{T}.

Definition 2.2.1. A right Postnikov system of T^{\bullet} is a diagram

in which all triangles

$$
T^{l}[n-l] \xrightarrow{i_{l}} Y^{l+1} \rightarrow Y^{l} \xrightarrow{j_{l-1}} T^{l}[n-l+1]
$$

are distinguished and all diagrams of the form

commute. Here, $\widetilde{\partial^{i}}: T^{i}[i] \rightarrow T^{i+1}[i-1]$ is a map of degree 1 corresponding to the map ∂^{i} under the equality $\operatorname{Hom}\left(T^{i}, T^{i+1}\right) \simeq \operatorname{Ext}^{1}\left(T^{i}[1], T^{i+1}\right)$.
Definition 2.2.2. A left Postnikov system of T^{\bullet} is a diagram

in which all triangles of the form

$$
Z^{l-1} \xrightarrow{j_{l-1}} T^{l} \xrightarrow{i_{l}} Z^{l} \rightarrow Z^{l-1}[1]
$$

are distinguished and all diagrams

commute.
Definition 2.2.3. An object S of \mathcal{D} is called a right (left) convolution of T^{\bullet} if there exists a right (left) Postnikov system of T^{\bullet} with $S=Y^{0}[1]$ ($S=Z^{n}$, respectively).

Lemma 2.2.4. ([20, Chapter III.4, Exercise 1]) The set of left convolutions of T^{\bullet} coincides with the set of right convolutions of T^{\bullet}.

Proof. Assume first that the complex has length 3. Then $S=Y^{0}[-1]$ is a convolution of $T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2}$ if there is a diagram

Then the octahedron axiom

tell us that S is a convolution of a right Postnikov system

For a complex of length $n+1$ we proceed by induction.
Assume that $S=Y^{0}[-1]$ is a right convolution of $T^{0} \rightarrow \ldots \rightarrow T^{n}$. Then we have a diagram

where Z is the cone of $T^{n-2}[2] \rightarrow T^{n-1}[1]$. Again, the octahedron

gives maps $r: Y^{n-2}[-1] \rightarrow Z$ and $q: Z \rightarrow T^{n}[1]$ such that $v \circ r=j_{n-3}[1]$ and $q \circ u=\partial^{n-1}$.
Now, we consider a map $p: T^{n-3}[1] \xrightarrow{i_{n-3}[-2]} Y^{n-2}[-2] \xrightarrow{r[-1]} Z[-1]$ and a complex

$$
T^{0}[1] \xrightarrow{\partial^{0}} T^{1}[1] \rightarrow \ldots \rightarrow T^{n-3}[1] \xrightarrow{p} Z[-1] \xrightarrow{q[-1]} T^{n} .
$$

We will show that $Y^{0}[-1]$ is a right convolution of this complex. Indeed, we have a diagram

which is a Postnikov system because $r \circ i_{n-3}=p[2]$.
The new complex has length n and hence each right convolution is also a left one, i.e. we have a diagram

It follows that P^{n} is a left convolution of a complex $T^{0}[1] \rightarrow \ldots \rightarrow T^{n-3}[1] \rightarrow Z$. As this complex has length $n-1, P^{n}$ is also its right convolution. Then, from the diagram

it follows that P^{n} is a convolution of $T^{0} \rightarrow \ldots \rightarrow T^{n-1}$ (because $v[1] \circ p[1]=v[1] \circ r \circ$ $\left.i_{n-3}[-2]=\partial^{n-3}\right)$. Finally, from the fact that Y^{0} is a cone of a map P^{n} to T^{n} it follows that Y^{0} is also a left convolution of $T^{0} \rightarrow \ldots \rightarrow T^{n}$.

The proof that every left convolution is a right convolution is analogous.
Definition 2.2.5. Let $T^{\bullet}=\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2} \rightarrow \cdots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}} T^{n}\right\}$ be a complex in \mathcal{T} and let

be a convolution.
The n-fold Massey product $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$ is defined as the subset of $\operatorname{Hom}\left(T^{0}, T^{n}[2-\right.$ $n])$ consisting of compositions

$$
q \circ p: T^{0} \rightarrow T^{n}[2-n]
$$

where

$$
p: T^{0} \rightarrow S[2-n], \quad q: S \rightarrow T^{n}
$$

are such that

$$
\rho \circ p=\partial^{0}, \quad q \circ i=\partial^{n-1}
$$

For any pair of morphisms $T^{0} \xrightarrow{f} T^{1} \xrightarrow{g} T^{2}$ we can also put

$$
\mu_{2}(g, f)=g \circ f
$$

2.2.3 Triple Massey product

The triple Massey product is always defined for a complex $T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2} \xrightarrow{\partial^{2}} T^{3}$ in \mathcal{T}.
Let

be a distinguished triangle.
Applying the functor $\operatorname{Hom}_{\mathcal{T}}\left(T^{0},-\right)$ to this distinguished triangle we get the following long exact sequence

$$
\operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{2}[-1]\right) \xrightarrow{\alpha[-1]^{*}} \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S[-1]\right) \xrightarrow{\beta[-1]^{*}} \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{1}\right) \xrightarrow{\left(\partial^{1}\right)^{*}} \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{2}\right)
$$

Since, $\left(\partial^{1}\right)^{*}\left(\partial^{0}\right)=\partial^{1} \circ \partial^{0}=0$ there exists $q \in \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S[-1]\right)$ such that $\partial^{0}=\beta[-1]^{*}(q)$. Moreover, an element $q \in \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S[-1]\right)$ is determined up to elements of the form $\alpha[-1] \circ \widetilde{q}$ for $\widetilde{q} \in \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{2}[-1]\right)$.

Analogously, applying $\operatorname{Hom}_{\mathcal{T}}\left(-, T^{3}\right)$ we get a long exact sequence

$$
\operatorname{Hom}_{\mathcal{T}}\left(T^{1}[1], T^{3}\right) \xrightarrow{(-) \circ \beta} \operatorname{Hom}_{\mathcal{T}}\left(S, T^{3}\right) \xrightarrow{(-) \circ \alpha} \operatorname{Hom}_{\mathcal{T}}\left(T^{2}, T^{3}\right) \xrightarrow{(-) \circ \partial^{1}} \operatorname{Hom}_{\mathcal{T}}\left(T^{1}, T^{3}\right) .
$$

Then there exists $p \in \operatorname{Hom}_{\mathcal{T}}\left(S, T^{3}\right)$ such that $\partial_{2}=p \circ \alpha$ and an element p is determined up to elements of the form $\widetilde{p} \circ \beta[-1]$ for $\widetilde{p} \in \operatorname{Hom}_{\mathcal{T}}\left(T^{1}[1], T^{3}\right)$.

The triple Massey product $\mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)$ is then the composition $p \circ q \in \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{3}[-1]\right)$.
As we can choose $q+\alpha \circ \widetilde{q}$ instead of q and $p+\widetilde{p} \circ \beta[-1]$ instead of p, the composition $p \circ q$ is determined only up to

$$
(p+\widetilde{p} \circ \beta[-1]) \circ(q+\alpha \circ \widetilde{q})-p \circ q=\widetilde{p} \circ \partial^{0}+\partial^{2}[-1] \circ \widetilde{q} .
$$

Hence the triple Massey product takes value in $\operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{3}[-1]\right) / A$ for

$$
A=\operatorname{Hom}_{\mathcal{T}}\left(T^{1}[1], T^{3}\right) \circ \partial^{0}+\partial^{2}[-1] \circ \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{2}[-1]\right)
$$

The following lemma can be found as [20, Chapter IV 2, Exercise 3].
Lemma 2.2.6. The complex $T^{\bullet}=\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2} \xrightarrow{\partial^{2}} T^{3}\right\}$ has a convolution if and only if the image of $\mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)$ in $\operatorname{Hom}_{\mathcal{T}}\left(T^{0}, T^{3}[-1]\right) / A$ vanishes.

Proof. We have a diagram

Thus, T^{\bullet} has a convolution if and only if there exists a map $j_{2}: Z^{2} \rightarrow T^{3}$ such that $j_{2} \circ i_{2}=\partial^{2}$ 。
Z^{2} is a convolution of the complex $\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2}\right\}$. By Lemma 2.2.4 it can be also calculated by means of a right Postnikov system, i.e. we have a diagram

Moreover, as $\partial^{2} \circ \partial^{1}=0$ there exists $q: Y^{1} \rightarrow T^{3}$ such that $q \circ \alpha=\partial^{2}$.
The octahedron axiom tells us that the map $i_{2}: T^{2} \rightarrow Z^{2}$ equals $\alpha_{2} \circ \alpha$:

Now, we can apply the functor $\operatorname{Hom}_{\mathcal{T}}\left(-, T^{3}\right)$ to the distinguished triangle

$$
T^{0}[1] \xrightarrow{p} Y^{1} \xrightarrow{\alpha_{2}} Z^{2} \rightarrow T^{0}[2] .
$$

We obtain

$$
\operatorname{Hom}_{\mathcal{T}}\left(Z^{2}, T^{3}\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(Y^{1}, T^{3}\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(T^{0}[1], T^{3}\right)
$$

$$
q \longmapsto q \vee p
$$

If the triple Massey product $q \circ p=\mu_{3}\left(d^{2}, d^{1}, d^{0}\right)$ can be chosen to be zero then there exists $j_{2}: Z^{2} \rightarrow T^{3}$ such that $j_{2} \circ \alpha_{2}=q$. It follows that $j_{2} \circ i_{2}=j_{2} \circ \alpha_{2} \circ \alpha=q \circ \alpha=\partial^{3}$.

Conversely, if there exists $j_{2}: Z^{2} \rightarrow T^{3}$ such that $j_{2} \circ i_{2}=j_{2} \circ \alpha_{2} \circ \alpha=\partial^{2}$ then taking $q=j_{2} \circ \alpha_{2}$ we get that $q \circ p=j_{2} \circ \alpha_{2} \circ p=0$ (because α_{2} and p are consecutive maps in a distinguished triangle).

Thus the triple Massey product is defined for any complex of length four and such a complex has a convolution if the triple Massey product vanishes. The picture gets slightly more complicated when the length of the complex increases.

2.2.4 Quadruple Massey product

Let $T^{\bullet}=\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2} \xrightarrow{\partial^{2}} T^{3} \xrightarrow{\partial^{3}} T^{4}\right\}$ be a complex of length five and let

be a convolution.
We show that the quadruple Massey product $\mu_{4}\left(\partial^{3}, \partial^{2}, \partial^{1}, \partial^{0}\right)$ is non-empty if the triple Massey products $\mu_{3}\left(\partial^{3}, \partial^{2}, \partial^{1}\right)$ and $\mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)$ vanish simultaneously. Note that [20, Chapter IV, Exercise 2.3.b)] omits this condition. However, already in 1978 O'Neill in [53] gave an example of a topological space X and elements in $H^{*}(X, \mathbb{Z})$ such that $0 \in \mu_{3}\left(u_{1}, u_{2}, u_{3}\right), 0 \in \mu_{3}\left(u_{2}, u_{3}, u_{4}\right)$ but $\mu_{4}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\emptyset$.

The quadruple Massey product is defined as the set
$\mu_{4}\left(\partial^{3}, \partial^{2}, \partial^{1}, \partial^{0}\right)=\left\{q \circ p: T^{0} \rightarrow T^{4}[-2] \mid p: T^{0} \rightarrow S[-2], q: S \rightarrow T^{4}, \rho \circ p=\partial^{0}, q \circ i=\partial^{3}\right\} ;$

The quadruple Massey product $\mu_{4}\left(\partial^{3}, \partial^{2}, \partial^{1}, \partial^{0}\right)$ is non-empty if the triple Massey products $\mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)$ and $\mu_{3}\left(\partial^{3}, \partial^{2}, \partial^{1}\right)$ vanish simultaneously. To see it consider the diagram

Here, Z^{2} is the cone of the map $\partial^{1}: T^{1} \rightarrow T^{2}$. As $\partial^{1} \circ \partial^{0}=0$ and $\partial^{2} \circ \partial^{1}=0$ there exist $p_{1}: T^{0} \rightarrow Z^{2}[-1]$ and $j_{2} \circ Z^{2} \rightarrow T^{3}$ such that $\rho_{2} \circ p_{1}=\partial^{0}$ and $j_{2} \circ i_{2}=\partial^{2}$. Then S^{1} is defined by means of a distinguished triangle

$$
Z^{2} \xrightarrow{j_{2}} T^{3} \xrightarrow{i_{3}} S^{1} \xrightarrow{\rho_{3}} Z^{2}[1] .
$$

After applying the functor $\operatorname{Hom}_{\mathcal{T}}\left(T^{0},-\right)$ to it we get

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S^{1}[-2]\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, Z^{2}[-1]\right) & \longrightarrow \operatorname{Hom}-\mathcal{T}\left(T^{0}, T^{3}[-1]\right) \\
p_{1} & \longmapsto j_{2} \circ p_{1} \in \mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)
\end{aligned}
$$

Hence, there exists $p: T^{0} \rightarrow S^{1}[-2]$ such that $\rho_{3} \circ p=p_{1}$ (and also $\rho_{2} \circ \rho_{3} \circ p=\partial^{0}$) if and only if one can choose p_{1} and j_{2} in such a way that $j_{2} \circ p_{1}=0$, i.e. if $0 \in \mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)$. Note, that S^{1} is defined as a cone of j_{2} and hence depends on the choice of j_{2}.

To give a necessary condition for the existence of $q: S^{1} \rightarrow T^{4}$ such that $q \circ i_{3}=\partial^{3}$ we use Lemma 2.2.4 again.

Consider the diagram

Here, Y^{2} is the cone of the map $d^{2}: T^{2} \rightarrow T^{3}$. As $\partial^{3} \circ \partial^{2}=0$ and $\partial^{2} \circ \partial^{1}=0$ there exist $q_{1}: Y^{2} \rightarrow T^{4}$ and $\gamma_{1}: T^{1} \rightarrow Y^{2}[-1]$ such that $q_{1} \circ \alpha_{1}=\partial^{3}$ and $\beta_{1} \circ \gamma_{1}=\partial^{1}$.
S^{2} is defined by means of a distinguished triangle

$$
T^{1} \xrightarrow{\gamma_{1}} Y^{2}[-1] \xrightarrow{\alpha_{2}} S^{2}[-1] \xrightarrow{\beta_{2}} T^{1}[1] .
$$

Applying $\operatorname{Hom}_{\mathcal{T}}\left(-, T^{4}\right)$ to this triangle we get

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{T}}\left(S^{2}, T^{4}\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(Y^{2}, T^{4}\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(T^{1}[1], T^{4}\right) \\
& q_{1} \longmapsto q_{1} \circ \gamma_{1} \in \mu_{3}\left(\partial^{3}, \partial^{2}, \partial^{1}\right)
\end{aligned}
$$

Hence, there exists $q: S^{2} \rightarrow T^{4}$ such that $q \circ \alpha_{2}=q_{1}$ (and hence $q \circ \alpha_{2} \circ \alpha_{1}=\partial^{3}$) if and only if one can choose $q_{1}: Y^{2} \rightarrow T^{4}$ and $\gamma_{1}: T^{1} \rightarrow Y^{2}[-1]$ in such a way that $\gamma_{1} \circ q_{1}=0$, i. e. if $0 \in \mu_{3}\left(\partial^{3}, \partial^{2}, \partial^{1}\right)$. Again, note that S^{2} is defined as a cone of γ_{1} and hence depends on the choice made.

The quadruple Massey product $\mu_{4}\left(\partial^{3}, \partial^{2}, \partial^{1}, \partial^{0}\right)$ is non-empty if one can choose maps j_{2}, p_{1}, γ_{1} and q_{1} in such a way that S^{1} - the cone of j_{2} is equal to S^{2} - the cone of γ_{1} that is when $\mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)$ and $\mu_{3}\left(\partial^{3}, \partial^{2}, \partial^{1}\right)$ vanish simultaneously.

2.2.5 n-tuple Massey product

Definition 2.2.7. Consider a complex $T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \rightarrow T^{n} \xrightarrow{\partial^{n}} T^{n+1}$. The n-tuple Massey products $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$ and $\mu_{n}\left(\partial^{n}, \ldots, \partial^{1}\right)$ vanish simultaneously if there exists a convolution S of $T^{1} \rightarrow \ldots \rightarrow T^{n-1}$, a convolution \widetilde{S} of $T^{2} \rightarrow \ldots \rightarrow T^{n}$ and maps $p: T^{0} \rightarrow S[2-n], q: S \rightarrow T^{n}, \widetilde{p}: T^{1} \rightarrow \widetilde{S}[2-n]$ and $\widetilde{q}: \widetilde{S} \rightarrow T^{n+1}$ defining Massey products such that

$$
q \circ p=0, \quad \widetilde{q} \circ \widetilde{p}=0, \quad \text { Cone } q=\text { Cone } \widetilde{p}
$$

Proposition 2.2.8. The n-tuple Massey product $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$ is non-empty if and only if $\mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{1}\right)$ and $\mu_{n-1}\left(\partial^{n-2}, \ldots, \partial^{0}\right)$ vanish simultaneously. The complex $T^{\bullet}=\left\{T^{0} \xrightarrow{\partial^{0}} T^{2} \rightarrow \cdots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}} T^{n}\right\}$ has a Postnikov system if and only if $0 \in \mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$.

Proof. We have already seen the proof for small n.
Assume by induction that for any complex $\left\{A^{0} \xrightarrow{f^{0}} A^{1} \rightarrow \cdots \rightarrow A^{n-2} \xrightarrow{f^{n-2}} A^{n-2}\right\}$ of length $n-1$ there exists a Postnikov system if and only if $0 \in \mu_{n-1}\left(f^{n-2}, \ldots, f^{0}\right)$ and that for any complex $\left\{B^{0} \xrightarrow{g^{0}} B^{1} \rightarrow \cdots \rightarrow B^{n-1} \xrightarrow{g^{n-1}} B^{n}\right\}$ of length n the n fold Massey product $\mu_{n}\left(g^{n-1}, \ldots, g^{0}\right)$ is non-empty if and only if $\mu_{n-1}\left(g^{n-2}, \ldots, g^{0}\right)$ and $\mu_{n-1}\left(g^{n-1}, \ldots, g^{1}\right)$ vanish simultaneously.

Now, take $T^{\bullet}=\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \cdots \rightarrow T^{n} \xrightarrow{\partial^{n}} T^{n+1}\right\}$ and consider the diagram

The morphisms $j_{n-1}: S^{n-1} \rightarrow T^{n}$ such that $j_{n-1} \circ i_{n-1}=\partial^{n-1}$ exists if and only if $\left\{T^{1} \rightarrow \cdots \rightarrow T^{n}\right\}$ has a Postnikov system, if and only if $0 \in \mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{1}\right)$.

The map $p_{n-1}: T^{0} \rightarrow S^{n-1}[2-n]$ such that $\rho_{n-1} \circ p_{n-1}=\partial^{0}$ exists if and only if $\left\{T^{0} \rightarrow \cdots \rightarrow T^{n-1}\right\}$ has a Postnikov system, if and only if $0 \in \mu_{n-1}\left(\partial^{n-2}, \ldots, \partial^{0}\right)$.

We have a distinguished triangle

$$
S^{n-1} \xrightarrow{j_{n-1}} T^{n} \xrightarrow{i_{n}} S^{n} \xrightarrow{l_{n}} S^{n-1}[1]
$$

which leads to

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S^{n}[1-n]\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S^{n-1}[2-n]\right) \\
& p_{n-1} \longmapsto \operatorname{Hom}_{\mathcal{T}}\left(T^{0}, S^{n}[2-n]\right) \\
& \longrightarrow j_{n-1} \circ p_{n-1} \in \mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right) .
\end{aligned}
$$

It follows that there exists $p_{n}: T^{0} \rightarrow S^{n}[1-n]$ such that $\rho_{n-1} \circ l_{n} \circ p_{n}=\partial^{0}$ if and only if there exists a Postnikov system for $\left\{T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \cdots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}} T^{n}\right\}$, if and only if $0 \in \mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$.

It finishes the proof that a complex of length $n+1$ has a Postnikov system if and only if the n-tuple Massey product contains zero.

Now consider a diagram

The map $\gamma_{1}: T^{1} \rightarrow \widetilde{S}^{2}[2-n]$ such that $\beta_{2} \circ \gamma_{1}=\partial^{1}$ exists if and only if $0 \in \mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{1}\right)$ and $q_{2}: \widetilde{S}^{2} \rightarrow T^{n+1}$ such that $q_{2} \circ \alpha_{2}=\partial^{n}$ exists if and only if $0 \in \mu_{n-1}\left(\partial^{n}, \ldots, \partial^{2}\right)$.

The distinguished triangle

$$
T^{1} \xrightarrow{\gamma_{1}} \widetilde{S}^{2}[2-n] \xrightarrow{\alpha_{1}} \widetilde{S}^{1}[2-n] \xrightarrow{\beta_{1}} T^{1}[1]
$$

gives

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{T}}\left(\widetilde{S}^{1}, T^{n+1}\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(\widetilde{S}^{2}, T^{n+1}\right) \longrightarrow & \operatorname{Hom}_{\mathcal{T}}\left(T^{1}[2-n], T^{n+1}\right) \\
q_{2} \longmapsto & q_{2} \circ \gamma_{1} \in \mu_{n}\left(\partial^{n}, \ldots, \partial^{1}\right) .
\end{aligned}
$$

Hence, $q_{1}: \widetilde{S}^{1} \rightarrow T^{n+1}$ such that $q_{1} \circ \alpha_{1} \circ \alpha_{2}=\partial^{n}$ exists if and only if $0 \in \mu_{n}\left(\partial^{n}, \ldots, \partial^{1}\right)$.
As in the case of the fourfold Massey product, the choice of maps $j_{n-1}: S^{n-1} \rightarrow T^{n}$ and $\gamma_{1}: T^{1} \rightarrow \widetilde{S}^{2}$ determines objects S^{n} and \widetilde{S}^{1}. Therefore, the $(n+1)$-tuple Massey product $\mu_{n+1}\left(\partial^{n}, \ldots, \partial^{0}\right)$ is not empty if and only if there exist objects S^{n-1} - a convolution of $\left\{T^{1} \rightarrow \ldots \rightarrow T^{n-1}\right\}$ and $\widetilde{S}^{2}-$ a convolution of $\left\{T^{2} \rightarrow \ldots \rightarrow T^{n}\right\}$ and maps $j_{n-1}: S^{n-1} \rightarrow T^{n}, p_{n-1}: T^{0} \rightarrow S^{n-1}[2-n], \gamma_{1}: T^{1} \rightarrow \widetilde{S}^{2}[2-n]$ and $q_{2}: \widetilde{S}^{2} \rightarrow T^{n+1}$ such that

$$
\begin{array}{lll}
j_{n-1} \circ p_{n-1}=0, & q_{2} \circ \gamma_{1}=0, & q_{2} \circ \alpha_{2}=\partial^{n}, \\
\beta_{2} \circ \gamma_{1}=\partial^{1}, & j_{n-1} \circ i_{n-1}=\partial^{n-1}, & \rho_{n-1} \circ p_{n-1}=\partial^{0}
\end{array}
$$

and

$$
\operatorname{Cone}\left(\gamma_{1}\right)=\operatorname{Cone}\left(j_{n-1}\right),
$$

that is when $\mu_{n}\left(\partial_{n}, \ldots, \partial_{1}\right)$ and $\mu_{n}\left(\partial_{n-1}, \ldots, \partial_{0}\right)$ vanish simultaneously.

If $H(\mathcal{C})$ is a homotopy category of a DG category \mathcal{C} then Massey products on $H(\mathcal{C})$ can be defined using the DG structure of \mathcal{C}. These two definitions coincide for enhanced triangulated categories.

Definition 2.2.9. Let $T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}} T^{n}$ be a complex in $H(\mathcal{C})$. A defining system for morphisms $\partial^{n-1}, \ldots, \partial^{0}$ is a set of morphisms $\alpha_{i, j} \in \operatorname{Hom}_{\mathcal{C}}\left(T^{i}, T^{j}\right)$, $0 \leq i<j \leq n,(i, j) \neq(0, n)$ such that the class of $\alpha_{i, i+1}$ in $H(\mathcal{C})$ is ∂^{i} and

$$
\partial\left(\alpha_{i, j}\right)=\sum_{l=1}^{j-i-1}(-1)^{j+i+l+1+(l+1)\left(\left|\partial^{i+l}\right|+\ldots+\left|\partial^{j-1}\right|\right)} \alpha_{i+l, j} \circ \alpha_{i, i+l} .
$$

Then, the n-tuple Massey product $\overline{\mu_{n}}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=$ is defined as the set of

$$
\left[\sum_{l=1}^{n-1}(-1)^{l+n+1+(l+1)\left(\left|\partial^{i+l}\right|+\ldots+\left|\partial^{n-1}\right|\right)} \alpha_{l, n} \circ \alpha_{0, l}\right]
$$

for all defining systems $\left(\alpha_{i, j}\right)$ for $\partial^{n-1}, \ldots, \partial^{0}$. Here, the square brackets denote the class in $H(\mathcal{C})$.

A set of maps $\left(\alpha_{i, j}\right)$ for any pair $0 \leq i<j \leq n$ satisfying the above conditions is called extended defining system.

Lemma 2.2.10. Let $T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \rightarrow T^{n}$ be a complex in $H^{0}(\mathcal{C})$ for a pretriangulated $D G$ category \mathcal{C}. Then

$$
\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=-\overline{\mu_{n}}\left(\partial^{n-1}, \ldots, \partial^{0}\right)
$$

Proof. First, we will show that for a complex $T^{1} \xrightarrow{\partial^{1}} T^{2} \rightarrow \ldots \rightarrow T^{n-2} \xrightarrow{\partial^{n-2}} T^{n-1}$ a convolution S in $H^{0}(\mathcal{C})$ is an object representing a twisted complex $\left(C_{i}, q_{i, j}\right)[1-n]$ with $C_{i}=T^{i}$ and $q_{i, j}=(-1)^{j} \alpha_{i, j}$ for $\left(\alpha_{i, j}\right)$ - an extended defining system for $\partial^{n-2}, \ldots, \partial^{1}$. Indeed, $\left(C_{i}, q_{i, j}\right)$ is a twisted complex as

$$
(-1)^{j} q_{i, j}+\sum_{l} q_{l, j} q_{i, l}=\sum_{l}(-1)^{l+j+1} \alpha_{l, j} \alpha_{i, l}+\sum_{l}(-1)^{l+j} \alpha_{l, j} \alpha_{i, l}=0 .
$$

Moreover, a map $f=\left(f_{0, n}\right)$ of degree $n-2$ from T^{0} to $\left(C_{i}, q_{i, j}\right)[1-n]$ which is the same as a map of degree 0 from $T^{0}[-1]$ to $\left(C_{i}, q_{i, j}\right)$ is given by $f_{0, l}=(-1)^{l} \beta_{0, l}$. Here $\beta_{i, j}$ is an extended defining system for $\partial^{n-2}, \ldots, \partial^{0}$ such that $\beta_{i, j}=\alpha_{i, j}$ if $i \neq 0$. Indeed, it is a closed map as

$$
\begin{aligned}
& (-1)^{l} \partial\left(\varphi_{0, l}\right)+\sum_{s} q_{s, l} \circ f_{0, s}=\partial\left(\beta_{0, l}\right)+\sum_{s}(-1)^{l} \alpha_{s, l}(-1)^{s} f_{0, s} \\
& =\sum_{s}(-1)^{s+l+1} \beta_{s, l} \beta_{0, s}+\sum_{s}(-1)^{s+l} \beta_{s, l} \beta_{0, s}=0 .
\end{aligned}
$$

The cone of this map, which is the convolution of a complex $T^{0} \rightarrow \ldots \rightarrow T^{n-1}$ is a twisted complex with differentials given by $(-1)^{j} \beta_{i, j}$, where $\left(\beta_{i, j}\right)$ is an extended defining system for $\partial^{n-2}, \ldots, \partial^{0}$. Inductive argument proves that the convolution of a complex
$T^{1} \rightarrow \ldots \rightarrow T^{n}$ in $H^{0}(\mathcal{C})$ is given by a twisted complex $\left(C_{i}, q_{i, j}\right)$ with $C_{i}=T^{n+i}$ and $q_{i-n, j-n}=(-1)^{j+n} \alpha_{i, j}$ for an extended defining system $\left(\alpha_{i, j}\right)$.

Now, let $g=\left(g_{l, n}\right)$ be a map of degree zero from $\left(C_{i}, q_{i, j}\right)[1-n]$ to $T^{n}[1-n]$. Then $g_{l, n}=(-1)^{n} \gamma_{l, n}$ where $\gamma_{i, j}$ is an extended defining system for $\partial^{n-1}, \ldots, \partial^{1}$ such that $\gamma_{i, j}=\alpha_{i, j}$ if $j \neq n$. Indeed, it is a closed map of degree zero, as its differential is

$$
\begin{aligned}
& (-1)^{n-1} \partial\left(g_{l, n}\right)-\sum_{s} g_{s, n} q_{l, s}=-\partial\left(\gamma_{l, n}\right)-\sum_{s}(-1)^{n} \gamma_{s, n}(-1)^{k} \gamma_{l, s}= \\
& -\sum_{s}(-1)^{s+n+1} \gamma_{s, n} \gamma_{l, s}-\sum_{s}(-1)^{s+n} \gamma_{s, n} \gamma_{l, s}=0
\end{aligned}
$$

Thus, a choice of a convolution S of a complex $T^{1} \rightarrow \ldots \rightarrow T^{n-1}$ in $H^{0}(\mathcal{C})$ is the same as the choice of an extended defining system in \mathcal{C}, a choice of a map from T^{0} to S is the same as a choice of an extended defining system for $T^{0} \rightarrow \ldots \rightarrow T^{n-1}$ and a choice of a map from S to T^{n} is the same as a choice of an extended defining system for $T^{1} \rightarrow \ldots \rightarrow T^{n}$. Moreover, these defining systems have to agree and together they form a defining system $\left(\delta_{i, j}\right)$ for $T^{0} \rightarrow \ldots \rightarrow T^{n}$.

The n-tuple Massey product $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$ is a composition of g and f, i.e. a class of a map

$$
\begin{aligned}
& \mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=\left[\sum_{s=1}^{n-1} g_{s, n} f_{0, s}\right]=\left[\sum_{s=1}^{n-1}(-1)^{n} \gamma_{s, n}(-1)^{s} \beta_{0, s}\right] \\
& =-\left[\sum_{s=1}^{n-1}(-1)^{s+n+1} \delta_{s, n} \circ \delta_{0, s}\right]=-\overline{\mu_{n}}\left(\partial^{n-1}, \ldots, \partial^{0}\right)
\end{aligned}
$$

Remark 2.2.11. From the proof of Lemma 2.2 .10 it follows that if \mathcal{C} is a pretriangulated category then a complex in $H^{0}(\mathcal{C})$ can be lifted to a twisted complex over \mathcal{C} if and only if it has a convolution.

2.2.6 Massey products and A_{∞}-structure.

Lemma 2.2.10 allows us to prove the following Theorem, see also [46, Theorem 3.1].
Theorem 2.2.12. Let \mathcal{C} be a pretriangulated $D G$ category and let

$$
T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}} T^{n}
$$

be a complex in $H^{0}(\mathcal{C})$. Assume that $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right) \neq \emptyset$ and choose $f \in$ $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$. Then, there exists a minimal A_{∞}-structure on $H(\mathcal{C})$ such that $m_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=-f$ and $m_{l}\left(\partial^{i+l-1}, \ldots, \partial^{i}\right)=0$ for $i \in\{0, \ldots, n-1\}$ and l such that $i+l \leq n-1$.

Proof. Recall from 2.2 .1 that Merkulov's construction of a minimal model of a DG category \mathcal{C} is based on a choice of maps $i: H(\mathcal{C}) \rightarrow \mathcal{C}, \pi: \mathcal{C} \rightarrow H(\mathcal{C})$ and $h: \mathcal{C} \rightarrow \mathcal{C}$ which define operations λ_{n}.

Note also that the defining system $\left(\alpha_{i, j}\right)$ for a complex $T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \rightarrow T^{n-1} \xrightarrow{\partial^{n-1}}$ T^{n} is such that $\alpha_{i, i+1}$ is some lift of ∂^{i} to \mathcal{C} and

$$
\partial\left(\alpha_{i, j}\right)=\lambda_{j-i}\left(\alpha_{j-1, j}, \ldots, \alpha_{i, i+1}\right) .
$$

By Lemma 2.2.10 we know that $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=-\overline{\mu_{n}}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$. As $\partial\left(\alpha_{i, j}\right)=\lambda_{j-i}\left(\alpha_{j-1, j}, \ldots, \alpha_{i, i+1}\right)$ for any pair i, j such that $(i, j) \neq(0, n)$ the element $\lambda_{j-i}\left(\alpha_{j-1, j}, \ldots, \alpha_{i, i+1}\right)$ has a trivial cohomology class and hence by Merkulov's construction $m_{j-i}\left(\partial^{j-1}, \ldots, \partial^{i}\right)=0$.

Also, for a suitable choice of h

$$
\begin{aligned}
\lambda_{n}\left(\alpha_{n-1, n}, \ldots, \alpha_{0,1}\right) & =\sum(-1)^{n-l+1} h \lambda_{n-l}\left(\partial^{n-1}, \ldots, \partial^{l}\right) \circ h \lambda_{l}\left(\partial^{l-1}, \ldots, \partial^{0}\right) \\
& =\sum(-1)^{n-l+1} \alpha_{l, n} \circ \alpha_{0, n}
\end{aligned}
$$

which shows that one can choose $\left(\alpha_{i, j}\right)$ in such a way that

$$
m_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)=\pi\left(\lambda_{n}\left(\alpha_{n-1, n}, \ldots, \alpha_{0,1}\right)\right)=-f
$$

2.2.7 Examples

Recall that in Section 2.1.1 we have been considering a smooth surface X obtained from \mathbb{P}^{2} by blowing up a point x_{0} and then a point x_{1} on an exceptional divisor. In the previous notation, we know that the collection $\left\langle\mathcal{O}_{E_{2}}\left(E_{2}\right)[-1], \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+\right.\right.$ $\left.\left.E_{2}\right)[-1], \mathcal{O}_{X}, \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle$ is full. If we mutate $\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)[-1]$ and $\mathcal{O}_{E_{2}}\left(E_{2}\right)$ to the right over \mathcal{O}_{X} we obtain a full exceptional collection of line bundles on X, namely

$$
\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle
$$

We show in Section 2.2.7 that Massey products are not enough to calculate the $A_{\infty^{-}}$ structure on the Ext-quiver of this collection. However, they provide sufficient information to calculate the A_{∞}-structure on the Ext-quiver of $\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H)\right\rangle$. We do all the necessary calculations in Section 2.2.7 and present the sought for $A_{\infty}{ }^{-}$ structure.

Example of A_{∞}-structure that can be calculated via Massey products

The Ext-quiver of the collection

$$
\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle
$$

is

$$
\mathcal{O}_{X} \xrightarrow{\gamma} \mathcal{O}_{X}\left(E_{2}\right) \xrightarrow{\stackrel{\theta}{\delta} \mathcal{O}_{X}}\left(E_{1}+E_{2}\right) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\longrightarrow}} \mathcal{O}_{X}(H) \underset{\eta}{\stackrel{\substack{\beta_{1} \\ \beta_{3}}}{\stackrel{\beta_{1}}{\longrightarrow}} \mathcal{O}_{X}(2 H)}
$$

with θ in degree 1 and relations

$$
\begin{array}{ll}
\beta_{1} \alpha_{2}=\beta_{2} \alpha_{1}, & \beta_{1} \eta=\beta_{3} \alpha_{1} \delta \gamma, \\
\beta_{2} \eta=\beta_{3} \alpha_{2} \delta \gamma, & \theta \gamma=0, \\
\alpha_{1} \theta=0, & \alpha_{2} \theta=0 .
\end{array}
$$

Note that the pushforward of $\mathcal{O}_{X}\left(-E_{1}-E_{2}\right)$ to \mathbb{P}^{2} is an ideal of a 0 -dimensional scheme Z of length 2 . This scheme determines the tangent direction at the point x_{0} that we blow up. In particular, there exists a unique line containing this subscheme Z. Let D_{2} denote the strict transform of a line on \mathbb{P}^{2}. Then $D_{2} \cap E_{2} \neq \emptyset$. The morphism α_{2} in the above quiver is zero along $D_{2}+E_{2} . \gamma$ has zeros along E_{2} and δ has zeroes along E_{1}. These three morphisms are determined uniquely up to a constant. Let D_{1} be a line in \mathbb{P}^{2} passing through x_{0} and not containing Z. Then, $D_{1} \cap E_{1} \neq \emptyset$. The map α_{1} is zero along D_{1}. The divisor D_{1} is not determined uniquely and one can change α_{1} in the above quiver by adding some multiplicity of α_{2}.

Note that morphisms form \mathcal{O}_{X} to $\mathcal{O}_{X}(H)$ are pull backs of sections of $\mathcal{O}_{\mathbb{P}^{2}}(H)$. As the preimage of x_{0} in X is $E_{1} \cup E_{2}$, a section of $\mathcal{O}_{X}(H)$ on X is either zero on both E_{1} and E_{2} (possibly with some multiplicities) or it is non-zero on every point of E_{1} and E_{2}. Sections having zeros along E_{1} and E_{2} are linear combinations of $\alpha_{1} \delta \gamma$ and $\alpha_{2} \delta \gamma$.

The morphisms η in the quiver is any section of $\mathcal{O}_{X}(H)$ which is non-zero on E_{1} and E_{2}. Hence, it can be changed by adding any linear combination of $\alpha_{1} \delta \gamma$ and $\alpha_{2} \delta \gamma$.

To obtain the above relations we note that $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(H)\right) \simeq \operatorname{Hom}\left(\mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right)$. Then we put β_{1} as the morphism corresponding to $\alpha_{1} \delta \gamma, \beta_{2}$ as the morphism corresponding to $\alpha_{2} \delta \gamma$ and β_{3} as the morphism corresponding to η.

To sum up, γ, δ and α_{2} are determined uniquely. Other morphisms can be changed by

$$
\begin{aligned}
\alpha_{1} & \rightsquigarrow \alpha_{1}+a \alpha_{2} \\
& \rightsquigarrow \eta+b \alpha_{1} \delta \gamma+c \alpha_{2} \delta \gamma
\end{aligned}
$$

for $a, b, c \in k$. These morphism determine β_{i} 's in such a way that the above relations are satisfied.

Due to degree reasons only m_{3} operations on the Ext-quiver of this collection can be
non-trivial. The A_{∞}-structure is thus determined by the value of

$$
\begin{array}{lll}
m_{3}\left(\alpha_{1}, \theta, \gamma\right), & m_{3}\left(\alpha_{2}, \theta, \gamma\right), & \\
m_{3}\left(\beta_{1}, \alpha_{1}, \theta\right), & m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right), & m_{3}\left(\beta_{3}, \alpha_{1}, \theta\right), \\
m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right), & m_{3}\left(\beta_{2}, \alpha_{2}, \theta\right), & m_{3}\left(\beta_{3}, \alpha_{2}, \theta\right), \\
m_{3}\left(\beta_{1} \alpha_{1}, \theta, \gamma\right), & m_{3}\left(\beta_{2} \alpha_{1}, \theta, \gamma\right), & m_{3}\left(\beta_{3} \alpha_{1}, \theta, \gamma\right), \\
m_{3}\left(\beta_{2} \alpha_{2}, \theta, \gamma\right), & m_{3}\left(\beta_{3} \alpha_{2}, \theta, \gamma\right) . &
\end{array}
$$

Let us denote by $\left(\mathcal{G}, m_{n}\right)$ the A_{∞}-category given by this quiver. The A_{∞}-structure is unique only up to an A_{∞}-quasi-isomorphism. Thus, we can choose a quasi-isomorphism $F:\left(\mathcal{G}, m_{n}\right) \rightarrow\left(\mathcal{G}, \widetilde{m_{n}}\right)$. Such a functor F is a quasi-isomorphism if $F_{1}=$ id. Putting

$$
\begin{aligned}
& F_{2}\left(\beta_{1} \alpha_{1}, \theta\right)=-m_{3}\left(\beta_{1}, \alpha_{1}, \theta\right), \\
& F_{2}\left(\beta_{1} \alpha_{2}, \theta\right)=-m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right), \\
& F_{2}\left(\beta_{2} \alpha_{2}, \theta\right)=-m_{3}\left(\beta_{2}, \alpha_{2}, \theta\right), \\
& F_{2}\left(\beta_{3} \alpha_{1}, \theta\right)=-m_{3}\left(\beta_{3}, \alpha_{1}, \theta\right), \\
& F_{2}\left(\beta_{3} \alpha_{2}, \theta\right)=-m_{3}\left(\beta_{3}, \alpha_{2}, \theta\right),
\end{aligned}
$$

and all other values of F_{n} to be equal to zero we obtain a new A_{∞}-structure on \mathcal{G} with

$$
\begin{aligned}
& \widetilde{m_{2}}=\widetilde{m_{2}}\left(F_{1} \otimes F_{1}\right)=F_{1} m_{2}=m_{2} \\
& \widetilde{m_{3}}\left(F_{1} \otimes F_{1} \otimes F_{1}\right)-\widetilde{m_{2}}\left(F_{2} \otimes F_{1}\right)+\widetilde{m_{2}}\left(F_{1} \otimes F_{2}\right)=F_{1} m_{3}+F_{2}\left(m_{2} \otimes \mathrm{id}\right)-F_{2}\left(\mathrm{id} \otimes m_{2}\right)
\end{aligned}
$$

In particular

$$
\begin{array}{ll}
\widetilde{m_{2}}=m_{2}, & \\
\widetilde{m_{3}}\left(\beta_{1}, \alpha_{1}, \theta\right)=0, & \widetilde{m_{3}}\left(\beta_{1}, \alpha_{2}, \theta\right)=0, \\
\widetilde{m_{3}}\left(\beta_{2}, \alpha_{2}, \theta\right)=0, & \widetilde{m_{3}}\left(\beta_{3}, \alpha_{1}, \theta\right)=0,
\end{array} \widetilde{m_{3}}\left(\beta_{3}, \alpha_{2}, \theta\right)=0
$$

and

$$
\widetilde{m_{3}}\left(\beta_{2}, \alpha_{1}, \theta\right)=m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right)-m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right) .
$$

Moreover, the relation
$m_{3}\left(m_{2} \otimes \mathrm{id} \otimes \mathrm{id}\right)-m_{3}\left(\mathrm{id} \otimes m_{2} \otimes \mathrm{id}\right)+m_{3}\left(\mathrm{id} \otimes \mathrm{id} \otimes m_{2}\right)-m_{2}\left(m_{3} \otimes \mathrm{id}\right)-m_{2}\left(\mathrm{id} \otimes m_{3}\right)=0$ gives that always

$$
\begin{aligned}
& m_{3}\left(\beta_{1} \alpha_{1}, \theta, \gamma\right)=m_{3}\left(\beta_{1}, \alpha_{1}, \theta\right) \gamma-\beta_{1} m_{3}\left(\alpha_{1}, \theta, \gamma\right) \\
& m_{3}\left(\beta_{1} \alpha_{2}, \theta, \gamma\right)=m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right) \gamma-\beta_{1} m_{3}\left(\alpha_{2}, \theta, \gamma\right) \\
& m_{3}\left(\beta_{2} \alpha_{2}, \theta, \gamma\right)=m_{3}\left(\beta_{2}, \alpha_{2}, \theta\right) \gamma-\beta_{2} m_{3}\left(\alpha_{2}, \theta, \gamma\right) \\
& m_{3}\left(\beta_{3} \alpha_{1}, \theta, \gamma\right)=m_{3}\left(\beta_{3}, \alpha_{1}, \theta\right) \gamma-\beta_{3} m_{3}\left(\alpha_{1}, \theta, \gamma\right) \\
& m_{3}\left(\beta_{3} \alpha_{2}, \theta, \gamma\right)=m_{3}\left(\beta_{3}, \alpha_{2}, \theta\right) \gamma-\beta_{3} m_{3}\left(\alpha_{2}, \theta, \gamma\right)
\end{aligned}
$$

Unfortunately, Theorem 2.2 .12 does not allow to calculate the A_{∞}-structure of the collection $\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle$ as it does not provide a way to calculate $m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right)-m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right)$. However, Massey products allow us to determine the A_{∞}-structure on the (not full) exceptional collection $\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+\right.\right.$ $\left.\left.E_{2}\right), \mathcal{O}_{X}(H)\right\rangle$.

Calculations of triple Massey products

In order to calculate the A_{∞}-structure of this collection we have to determine $m_{3}\left(\alpha_{1}, \theta, \gamma\right)$ and $m_{3}\left(\alpha_{2}, \theta, \gamma\right)$. These values can be determined by Massey products $\mu_{3}\left(\alpha_{1}, \theta, \gamma\right)$ and $\mu_{3}\left(\alpha_{2}, \theta, \gamma\right)$.

The cone of θ is a vector bundle V which is a non-trivial extension of $\mathcal{O}_{X}\left(E_{2}\right)$ by $\mathcal{O}_{X}\left(E_{1}+E_{2}\right)$.

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X}\left(E_{1}+E_{2}\right) \xrightarrow{\phi_{1}} V \xrightarrow{\phi_{2}} \mathcal{O}_{X}\left(E_{2}\right) \longrightarrow 0 \tag{*}
\end{equation*}
$$

Because $\theta \circ \gamma=0$ there exists $\zeta: \mathcal{O}_{X} \rightarrow V$ such that $\phi_{2} \zeta=\gamma$. Analogously, from the fact that compositions $\alpha_{1} \circ \theta$ and $\alpha_{2} \circ \theta$ are zero follows the existence of maps $\iota_{1}, \iota_{2}: V \rightarrow \mathcal{O}_{X}(H)$ such that $\iota_{i} \phi_{1}=\alpha_{i}$. Then,

$$
\iota_{1} \circ \zeta \in \mu_{3}\left(\alpha_{1}, \theta, \gamma\right), \quad \iota_{2} \circ \zeta \in \mu_{3}\left(\alpha_{2}, \theta, \gamma\right)
$$

Massey products $\mu_{3}\left(\alpha_{1}, \theta, \gamma\right)$ and $\mu_{3}\left(\alpha_{1}, \theta, \gamma\right)$ are not defined uniquely. On the other hand, from Merkulov's construction it follows that the A_{∞}-structure depends on the choice of the lifting homotopy on $\overline{\alpha_{1}} \circ \bar{\theta}, \overline{\alpha_{2}} \circ \bar{\theta}$ and $\bar{\theta} \circ \bar{\gamma}$ where by \bar{f} we denote some lift of a morphism f in $H^{0}(\mathcal{C})$ to a morphism in \mathcal{C}. Then one can treat maps ι_{1}, ι_{2} and ζ as the choice of values of the lifting homotopy on these three compositions. Thus for any ι_{1}, ι_{2} and ζ putting

$$
m_{3}\left(\alpha_{1}, \theta, \gamma\right)=\iota_{1} \circ \zeta, \quad m_{3}\left(\alpha_{2}, \theta, \gamma\right)=\iota_{2} \circ \zeta
$$

leads to a correct A_{∞}-structure.
The maps ζ, ι_{1} and ι_{2} are not determined uniquely, they can change by

$$
\begin{aligned}
& \zeta \rightsquigarrow \zeta+d \phi_{1} \delta \gamma, \\
& \iota_{1} \rightsquigarrow \iota_{1}+e \alpha_{1} \delta \phi_{2}+f \alpha_{2} \delta \phi_{2}, \\
& \iota_{2} \rightsquigarrow \iota_{2}+g \alpha_{1} \delta \phi_{2}+h \alpha_{2} \delta \phi_{2}
\end{aligned}
$$

for $d, \ldots, h \in k$.
Short exact sequence $\left(^{*}\right)$ gives $c_{1}(V)=E_{1}+2 E_{2}$ and $c_{2}(V)=0$. Let us consider the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{\zeta} V \xrightarrow{\psi} \mathcal{F} \longrightarrow 0 .
$$

Let $T \hookrightarrow \mathcal{F}$ be the torsion part of \mathcal{F}. Then we have the commutative diagram

in which \mathcal{G} is a sheaf of rank $1 . \mathcal{G}$ fits into a short exact sequence

$$
0 \rightarrow \mathcal{G} \rightarrow V \rightarrow \mathcal{F} / T \rightarrow 0
$$

with V locally free and \mathcal{F} / T torsion-free. Hence, \mathcal{G} is torsion-free and it injects into its double dual $\mathcal{G}^{* *}$ with cokernel T^{\prime},

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{G}^{* *} \rightarrow T^{\prime} \rightarrow 0
$$

T^{\prime} is a torsion sheaf and a subsheaf of \mathcal{F} / T, hence $T^{\prime}=0$ and \mathcal{G} is reflexive. Hartshorne in [24, Corollary 1.4] proves that every reflexive sheaf on a smooth surface is locally free and therefore we obtain that $\mathcal{G}=\mathcal{O}_{X}(D)$ for some effective divisor D. The composition of morphisms

$$
\mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}(D) \xrightarrow{\chi} V \xrightarrow{\psi_{2}} \mathcal{O}_{X}\left(E_{2}\right)
$$

is equal to δ, so the morphism $\mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}\left(E_{2}\right)$ is non-zero. It follows that D is equal either to 0 or to E_{2}. If $D=E_{2}$ then we would have a splitting

As V is a non-trivial extension of $\mathcal{O}_{X}\left(E_{2}\right)$ by $\mathcal{O}_{X}\left(E_{1}+E_{2}\right)$ we get a contradiction. Hence, $D=0$ and \mathcal{F} is a torsion-free sheaf of rank 1 . As $c_{2}(\mathcal{F})=0, \mathcal{F}$ is a line bundle. $c_{1}(\mathcal{F})=E_{1}+2 E_{2}$ shows that $\mathcal{F}=\mathcal{O}_{X}\left(E_{1}+2 E_{2}\right)$. Hence, ζ fits into the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{\zeta} V \xrightarrow{\psi} \mathcal{O}_{X}\left(E_{1}+2 E_{2}\right) \longrightarrow 0 .
$$

Let $\mathcal{L}_{i}=\operatorname{ker}\left(\iota_{i}\right), \mathcal{K}_{i}=\operatorname{coker}\left(\iota_{i}\right)$ and $\mathcal{M}_{i}=\operatorname{Im}\left(\iota_{i}\right)$. There are three short exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{L}_{i} \longrightarrow \mathcal{M}_{i} \longrightarrow 0, \\
& 0 \longrightarrow \mathcal{M}_{i} \longrightarrow \mathcal{O}_{X}(H) \longrightarrow \mathcal{K}_{i} \longrightarrow 0, \\
& 0 \longrightarrow \mathcal{O}_{X}\left(E_{1}+E_{2}\right) \longrightarrow \mathcal{M}_{i} \longrightarrow \mathcal{N}_{i} \longrightarrow 0 .
\end{aligned}
$$

The diagram

gives relations between the Chern classes:

$$
\begin{aligned}
& c_{1}(V)=E_{1}+2 E_{2}=c_{1}\left(\mathcal{L}_{i}\right)+c_{1}\left(\mathcal{M}_{i}\right) \\
& c_{2}(V)=0=c_{1}\left(\mathcal{L}_{i}\right) c_{1}\left(\mathcal{M}_{i}\right)+c_{2}\left(\mathcal{M}_{i}\right) \\
& H=c_{1}\left(\mathcal{M}_{i}\right)+c_{1}\left(\mathcal{K}_{i}\right) \\
& c_{2}\left(\mathcal{O}_{X}(H)\right)=0=c_{1}\left(\mathcal{M}_{i}\right) c_{1}\left(\mathcal{K}_{i}\right)+c_{2}\left(\mathcal{M}_{i}\right)+c_{2}\left(\mathcal{K}_{i}\right) \\
& c_{1}\left(\mathcal{M}_{i}\right)=E_{1}+E_{2}+c_{1}\left(\mathcal{N}_{i}\right) \\
& c_{2}\left(\mathcal{M}_{i}\right)=\left(E_{1}+E_{2}\right) c_{1}\left(\mathcal{N}_{i}\right)+c_{2}\left(\mathcal{N}_{i}\right) \\
& E_{2}=c_{1}\left(\mathcal{L}_{i}\right)+c_{1}\left(\mathcal{N}_{i}\right) \\
& 0=c_{1}\left(\mathcal{L}_{i}\right) c_{1}\left(\mathcal{N}_{i}\right)+c_{2}\left(\mathcal{N}_{i}\right)
\end{aligned}
$$

Diagrams

show that the support of N_{1} is D_{1}, and the support of N_{2} is contained in $D_{2} \cup E_{2}$.
\mathcal{K}_{1} can be supported on a finite number of points or on the whole D_{1}. In the second case we would get that \mathcal{M}_{1} - the image of ι_{1} is equal to $\mathcal{O}_{X}\left(E_{1}+E_{2}\right)$ and hence the sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(E_{1}+E_{2}\right) \xrightarrow{\psi_{1}} V \xrightarrow{\psi_{2}} \mathcal{O}_{X}\left(E_{2}\right) \longrightarrow 0
$$

splits. But V is a non-trivial extension of $\mathcal{O}_{X}\left(E_{2}\right)$ by $\mathcal{O}_{X}\left(E_{1}+E_{2}\right)$ so we know that \mathcal{K}_{1} must be supported on a finite number of points. Hence, $c_{1}\left(\mathcal{K}_{1}\right)=0$ and $c_{1}\left(\mathcal{N}_{1}\right)=D_{1}$.

An analogous argument shows that the support of \mathcal{K}_{2} can not be equal to $D_{2}+E_{2}$. Hence, $c_{1}\left(\mathcal{K}_{2}\right)$ is either E_{2}, D_{2} or 0 and $c_{1}\left(N_{2}\right)=D_{2}, E_{2}$ or $D_{2}+E_{2}$.

The above diagrams give additional relations

$$
\begin{aligned}
& H-E_{1}-E_{2}=c_{1}\left(\mathcal{N}_{i}\right)+c_{1}\left(\mathcal{K}_{i}\right) \\
& 0=c_{1}\left(\mathcal{N}_{i}\right) c_{1}\left(\mathcal{K}_{i}\right)+c_{2}\left(\mathcal{N}_{i}\right)+c_{2}\left(\mathcal{K}_{i}\right)
\end{aligned}
$$

For ι_{1} we have:

$$
\begin{aligned}
c_{1}\left(\mathcal{N}_{1}\right) & =D_{1}, \\
c_{1}\left(\mathcal{K}_{1}\right) & =c_{1}\left(\mathcal{O}_{D_{1}}(H)\right)-c_{1}\left(\mathcal{N}_{1}\right)=H-E_{1}-E_{2}-D_{1}, \\
c_{1}\left(\mathcal{M}_{1}\right) & =H-c_{1}\left(\mathcal{K}_{1}\right)=E_{1}+E_{2}+D_{1}, \\
c_{1}\left(\mathcal{L}_{1}\right) & =E_{2}-c_{1}\left(\mathcal{N}_{1}\right)=E_{2}-D_{1}, \\
c_{2}\left(\mathcal{M}_{1}\right) & =-c_{1}\left(\mathcal{L}_{1}\right) c_{1}\left(\mathcal{M}_{1}\right)=1, \\
c_{2}\left(\mathcal{K}_{i}\right) & =-c_{1}\left(\mathcal{M}_{1}\right) c_{1}\left(\mathcal{K}_{1}\right)-c_{2}\left(\mathcal{M}_{1}\right)=0, \\
c_{2}\left(\mathcal{N}_{1}\right) & =c_{2}\left(\mathcal{M}_{1}\right)-\left(E_{1}+E_{2}\right) c_{1}\left(\mathcal{N}_{1}\right)=0 .
\end{aligned}
$$

- $\mathcal{M}_{1}=m_{x} \otimes \mathcal{O}_{X}\left(E_{1}+E_{2}+D_{1}\right)$, where m_{x} is the maximal ideal of functions vanishing at a point $x \in D_{1}$,
- $\mathcal{L}_{1}=\mathcal{O}_{X}\left(E_{2}-D_{1}\right)$,
- $\mathcal{N}_{1}=\mathcal{O}_{D_{1}}$,
- $\mathcal{K}_{1}=\mathcal{O}_{x}(H) \simeq \mathcal{O}_{x}$, (because of the exact sequences $\mathcal{N}_{1} \rightarrow \mathcal{O}_{D_{1}}(H) \rightarrow \mathcal{K}_{1}$ and $\left.m_{x} \otimes \mathcal{O}_{X}\left(E_{1}+E_{2}+D_{1}\right) \rightarrow \mathcal{O}_{X}(H) \rightarrow \mathcal{O}_{x}(H)\right)$.

We want to know whether the composition

$$
\mathcal{O}_{X} \xrightarrow{\zeta} V \xrightarrow{\iota_{1}} \mathcal{O}_{X}(H)
$$

is equal to zero or η.
ζ and ι_{1} fit into a diagram

We tensor this diagram with $\mathcal{O}_{E_{2}}$.
$\mathcal{O}_{X}\left(E_{1}+E_{2}+D_{1}\right) \otimes \mathcal{O}_{E_{2}}=\mathcal{O}_{E_{2}}, m_{x} \otimes \mathcal{O}_{E_{2}}=\mathcal{O}_{E_{2}}$ as $x \notin E_{2}$ so there exists an epimorphism $\left.V\right|_{E_{2}} \rightarrow \mathcal{O}_{E_{2}}$ with kernel $\mathcal{O}_{E_{2}}(-1)$.

It follows that $\left.V\right|_{E_{2}}=\mathcal{O}_{E_{2}} \oplus \mathcal{O}_{E_{2}}(-1)$ and the composition

$$
\mathcal{O}_{X} \xrightarrow{\zeta} V \xrightarrow{\iota_{1}} \mathcal{M}_{1} \longleftrightarrow \mathcal{O}_{X}(H)
$$

restricted to E_{2} is an isomorphism. Hence $\iota_{1} \zeta$ does not have zeros along E_{2}. Changing ι_{1} if necessary we obtain that

$$
\iota_{1} \zeta=\eta .
$$

For ι_{2} there are three possibilities

$$
c_{1}\left(\mathcal{N}_{2}\right)= \begin{cases}D_{2}, & \text { case }(A) \\ E_{2}, & \text { case }(B) \\ E_{2}+D_{2}, & \text { case }(C)\end{cases}
$$

Hence,

$$
c_{1}\left(\mathcal{M}_{2}\right)= \begin{cases}E_{1}+E_{2}+D_{2}, & \text { case }(A) \\ E_{1}+2 E_{2}, & \text { case }(B) \\ E_{1}+2 E_{2}+D_{2}, & \text { case }(C)\end{cases}
$$

\mathcal{M}_{2} is a subsheaf of $\mathcal{O}_{X}(H)$ and hence it is of the form $\mathcal{O}_{X}(L) \otimes \mathcal{I}_{Z}$, where \mathcal{I}_{Z} is an ideal sheaf of a set of points $Z \in D_{2} \cup E_{2}$. Then $c_{1}\left(\mathcal{M}_{2}\right)=L$ and $c_{2}\left(\mathcal{M}_{2}\right)=\operatorname{deg}(Z) \geq 0$.

In case (A) we have:

$$
\mathcal{L}_{2}=\mathcal{O}_{X}\left(E_{2}-D_{2}\right), \quad \mathcal{N}_{2}=\mathcal{O}_{D_{2}}, \quad c_{1}\left(\mathcal{M}_{2}\right)=E_{1}+E_{2}+D_{2}, \quad c_{2}\left(\mathcal{M}_{2}\right)=-1 .
$$

The second Chern class of \mathcal{M}_{2} is negative and it follows that this case cannot happen.
In case (B) we have:

$$
\mathcal{L}_{2}=\mathcal{O}_{X}, \quad \mathcal{N}_{2}=\mathcal{O}_{E_{2}}, \quad c_{1}\left(\mathcal{M}_{2}\right)=E_{1}+2 E_{2}, \quad c_{2}\left(\mathcal{M}_{2}\right)=0
$$

On X we have an inclusion $\mathcal{O}_{X}\left(E_{1}+E_{2}\right) \rightarrow \mathcal{M}_{2} \rightarrow \mathcal{O}_{X}(H)$. Tensoring with $\mathcal{O}_{D_{2}}$ we get $\mathcal{O}_{D_{2}}\left(E_{1}+E_{2}\right)=\mathcal{O}_{D_{2}}(1)$ and $\mathcal{O}_{D_{2}}(H)=\mathcal{O}_{D_{2}}(1)$. It follows that $\mathcal{M}_{2} \otimes \mathcal{O}_{D_{2}}$ modulo torsion is equal to $\mathcal{O}_{D_{2}}(1)$. Whereas, in this case it equals to $\mathcal{O}_{D_{2}}(2)$.

Thus, we are left we case (C):

$$
\mathcal{L}_{2}=\mathcal{O}_{X}\left(-D_{2}\right), \quad \mathcal{N}_{2}=\mathcal{O}_{D_{2}+E_{2}}, \quad c_{1}\left(\mathcal{M}_{2}\right)=E_{1}+2 E_{2}+D_{2}, \quad c_{2}\left(\mathcal{M}_{2}\right)=1
$$

We obtain that $\mathcal{M}_{2}=m_{y} \otimes \mathcal{O}_{X}\left(E_{1}+2 E_{2}+D_{2}\right)$ for some $y \in E_{2} \cup D_{2}$. If $y \in D_{2}$ then $\mathcal{M}_{2} \otimes \mathcal{O}_{D_{2}}=\mathcal{O}_{D_{2}}$ and there is no epimorphism from $\left.V\right|_{D_{2}}=\mathcal{O}_{D_{2}}(1) \oplus \mathcal{O}_{D_{2}}(1)$ onto $\mathcal{O}_{D_{2}}$. So $y \in E_{2} \backslash D_{2}$.

Thus, we know that $\iota_{2} \zeta$ is zero on a point $y \in E_{2}$. Hence it has zeros along E_{2} and one can choose ι_{2} in such a way that

$$
\iota_{2} \zeta=0 .
$$

Thus the A_{∞}-structure sought for is

$$
\mathcal{O}_{X} \stackrel{\gamma}{\stackrel{\gamma}{\longrightarrow}} \mathcal{O}_{X}\left(E_{2}\right) \xrightarrow{\stackrel{\theta}{\delta} \mathcal{O}_{X}}\left(E_{1}+E_{2}\right) \stackrel{\alpha_{1}}{\stackrel{\alpha_{2}}{\longrightarrow}} \mathcal{O}_{X}(H)
$$

with

$$
\begin{array}{lll}
m_{2}(\theta, \gamma)=0, & m_{2}\left(\alpha_{1}, \theta\right)=0, & m_{2}\left(\alpha_{2}, \theta\right)=0 \\
m_{3}\left(\alpha_{1}, \theta, \gamma\right)=\eta, & m_{3}\left(\alpha_{2}, \theta, \gamma\right)=0 . &
\end{array}
$$

Remark 2.2.13. In [57] Polishchuk considered A_{∞}-structure on the category of line bundles on an elliptic curve E. In [57, Theorem 2.2] he showed that the A_{∞}-structure is uniquely determined by operations
$m_{3}: \operatorname{Hom}\left(\mathcal{O}_{E}, L_{1}\right) \otimes \operatorname{Ext}^{1}\left(L_{1}, L_{1} \otimes M\right) \otimes \operatorname{Hom}\left(L_{1} \otimes M, L_{1} \otimes M \otimes L_{2}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{E}, L_{1} \otimes M \otimes L_{2}\right)$
with $\operatorname{deg} L_{1}=\operatorname{deg} L_{2}=1$ and $\operatorname{deg} M=-1$. Moreover, these operations can be calculated by means of triple Massey products on E.

2.3 Calculating DG quivers via universal extensions

Another way of calculating DG quivers of exceptional collections was presented in [7]. It is based on a construction of universal extensions and coextensions defined by Hille and Perling in [25].

2.3.1 Universal extensions and coextensions

Let E, F be objects of a k-linear abelian category. Note that

$$
\operatorname{End}\left(\operatorname{Ext}^{1}(E, F)\right)=\operatorname{Ext}^{1}\left(E, F \otimes \operatorname{Ext}^{1}(E, F)^{*}\right)
$$

As id $\in \operatorname{End}\left(\operatorname{Ext}^{1}(E, F)\right)$ there exists a distinguished element $\widetilde{\mathrm{id}}$ of $\operatorname{Ext}^{1}\left(E, F \otimes \operatorname{Ext}^{1}(E, F)^{*}\right)$.
Following [25] we say that an object \bar{E} is the universal extension of E by F if \bar{E} is the extension of E by $F \otimes \operatorname{Ext}^{1}(E, F)^{*}$ corresponding to $\widetilde{\mathrm{id}} \in \operatorname{Ext}^{1}\left(E, F \otimes \operatorname{Ext}^{1}(E, F)^{*}\right)$. \bar{E} fits into the short exact sequence:

$$
0 \longrightarrow F \otimes \operatorname{Ext}^{1}(E, F)^{*} \longrightarrow \bar{E} \longrightarrow E \longrightarrow 0
$$

This short exact sequence gives the long exact sequence

$$
0 \longrightarrow \operatorname{Hom}(E, F) \longrightarrow \operatorname{Hom}(\bar{E}, F) \longrightarrow \operatorname{Hom}(F, F) \otimes \operatorname{Ext}^{1}(E, F) \longrightarrow \operatorname{Ext}^{1}(E, F) \longrightarrow \ldots
$$

Assume that $\operatorname{Ext}^{n}(F, F)=0$ for $n \geq 0$. Then the above sequence shows that $\operatorname{Ext}^{1}(\bar{E}, F)=$ 0 and the groups $\operatorname{Ext}^{n}(\bar{E}, F)$ and $\operatorname{Ext}^{n}(E, F)$ are isomorphic for $n>1$.

If we assume that F is simple, i.e. $\operatorname{Hom}(F, F)=k$ and that $\operatorname{Hom}(F, E)=0$ then the long exact sequence

$$
0 \longrightarrow \operatorname{Hom}(F, F) \otimes \operatorname{Ext}^{1}(E, F)^{*} \longrightarrow \operatorname{Hom}(F, \bar{E}) \longrightarrow \operatorname{Hom}(F, E) \longrightarrow \ldots
$$

shows that $\operatorname{Hom}(F, \bar{E})=\operatorname{Ext}^{1}(E, F)^{*}$.
Thus, if F is exceptional and $\operatorname{Ext}^{n}(F, E)=0$ for all n then the objects \bar{E}, F and morphisms between them determine E as a cone of the canonical morphism

$$
F \otimes \operatorname{Hom}(F, \bar{E}) \xrightarrow{\text { can }} \bar{E} \longrightarrow E .
$$

Assume that (E, F) is an exceptional pair in an enhanced triangulated category with the enhancement $\widetilde{\mathcal{C}}$ and denote by \mathcal{C} the DG subcategory of $\widetilde{\mathcal{C}}$ with objects \bar{E} and F. Then the cone of the canonical morphism $F \otimes \operatorname{Hom}_{\mathcal{C}}(F, \bar{E}) \rightarrow \bar{E}$ in $\mathcal{C}^{\text {pre-tr }}$ corresponds to E in $\widetilde{\mathcal{C}}$. Hence, as in the case of mutations, if we know \mathcal{C} we can calculate the DG subcategory of $\widetilde{\mathcal{C}}$ with objects E and F.

Analogously, we define an object \bar{F} to be the universal coextension of E by F if \bar{F} is the extension of $E \otimes \operatorname{Ext}^{1}(E, F)$ by F corresponding to the above defined $\widetilde{\mathrm{id}} \in$ $\operatorname{Ext}^{1}\left(E \otimes \operatorname{Ext}^{1}(E, F), F\right) \simeq \operatorname{Ext}^{1}\left(E, F \otimes \operatorname{Ext}^{1}(E, F)^{*}\right)$. The object \bar{F} fits into a short exact sequence

$$
0 \longrightarrow F \longrightarrow \bar{F} \longrightarrow E \otimes \operatorname{Ext}^{1}(E, F) \longrightarrow 0
$$

The same arguments as in the case of universal extensions show that if E is exceptional and $\operatorname{Hom}(F, E)=0$ then $\operatorname{Ext}^{1}(E, \bar{F})=0, \operatorname{Ext}^{n}(E, \bar{F}) \simeq \operatorname{Ext}^{n}(E, F)$ for $n>1$ and
$\operatorname{Ext}^{1}(E, F) \simeq \operatorname{Hom}(\bar{F}, E)^{*}$. From the last equality it follows that F is the shift by -1 of the cone of the canonical map

$$
\bar{F} \xrightarrow{\mathrm{can}} E \otimes \operatorname{Hom}^{\bullet}(\bar{F}, E) .
$$

Let $\left\langle E_{1}, \ldots, E_{n}\right\rangle$ be an exceptional collection on a smooth projective variety X such that $\operatorname{Ext}^{i}\left(\mathcal{E}_{j}, \mathcal{E}_{l}\right)=0$ for $i \geq 2$ and all j, l. Following [25] we define $\mathcal{E}_{i}(j)$ as E_{i} if $j=1, \ldots, i$. For $j>i$ we define $\mathcal{E}_{i}(j)$ as the universal extension of $\mathcal{E}_{i}(j-1)$ by \mathcal{E}_{j}, so that $\mathcal{E}_{i}(j)$ fits into the short exact sequence

$$
0 \longrightarrow E_{j} \otimes \operatorname{Ext}^{1}\left(\mathcal{E}_{i}(j-1), E_{j}\right)^{*} \longrightarrow \mathcal{E}_{i}(j) \longrightarrow \mathcal{E}_{i}(j-1) \longrightarrow 0
$$

Then, by [25, Theorem 4.1], $\mathscr{E}=\bigoplus_{i=1}^{n} \mathcal{E}_{i}(n)$ is a tilting object. Recall that a tilting object is an object \mathscr{E} such that $\operatorname{Ext}^{i}(\mathscr{E}, \mathscr{E})=0$ for $i>0$ and $\mathcal{D}^{b}(X)$ is the smallest strictly full subcategory of $\mathcal{D}^{b}(X)$ containing \mathscr{E} and closed under taking direct summands.

Theorem 2.3.1. Let $\sigma=\left\langle E_{1}, \ldots, E_{n}\right\rangle$ be a full exceptional collection on a smooth projective variety X. Let us assume that $\operatorname{Ext}^{i}\left(E_{j}, E_{l}\right)=0$ for $i \neq 0,1$ and any l, j. Then the $D G$ category \mathcal{A}_{σ} is determined up to a quasi-isomorphism by the endomorphism algebra of the tilting generator $\operatorname{Hom}_{X}\left(\bigoplus_{i} E_{i}^{n}, \bigoplus E_{i}^{n}\right)$.

Proof. The E_{i} 's are exceptional and there are no morphisms from E_{j} to $\mathcal{E}_{i}(j-1)$. Thus the objects $\mathcal{E}_{1}(n), \ldots, \mathcal{E}_{n}(n)$ determine \mathcal{E}_{i} 's. Thus, as described above, the endomorphisms algebra of $\bigoplus_{i=1}^{n} \mathcal{E}_{i}(n)$ determines the DG structure of the collection $\left\langle E_{1}, \ldots, E_{n}\right\rangle$.

Remark 2.3.2. In the above theorem instead of universal extensions we can use universal coextensions and define object $\mathcal{F}_{i}(j)$ for $i, j=1, \ldots, n$. We put $\mathcal{F}_{i}(i)=\ldots=\mathcal{F}_{i}(n)=E_{i}$ and for $j \leq i$ define $\mathcal{F}_{i}(j-1)$ as the universal coextension of $\mathcal{F}_{i}(j)$ by E_{j-1},

$$
0 \rightarrow \mathcal{F}_{i}(j) \rightarrow \mathcal{F}_{i}(j-1) \rightarrow E_{j-1} \otimes \operatorname{Ext}^{1}\left(E_{j-1}, \mathcal{F}_{i}(j)\right) \rightarrow 0
$$

Then, $\mathscr{F}=\bigoplus_{i} \mathcal{F}_{i}(1)$ is a tilting object in $\mathcal{D}^{b}(X)$ and from its endomorphism algebra one can read off the DG quiver of collection $\left\langle E_{1}, \ldots, E_{n}\right\rangle$.

2.3.2 Relations to quasi-hereditary algebras

The construction of universal extensions and coextensions originates in the theory of quasi-hereditary algebras. We recall some definitions after Klucznik and König, [40].

Let A be a finite dimensional k-algebra. Let Λ be an indexing set for the isomorphism classes of simple A-modules. For $\lambda \in \Lambda$ the corresponding isomorphism class of a simple A-module is denoted by $L(\lambda)$. Let \preceq be a partial order on Λ.

The algebra (A, Λ) is quasi-hereditary if for every $\lambda \in \Lambda$ there exists a left A-module $\Delta(\lambda)$ such that

- there is a surjection $\phi_{\lambda}: \Delta(\lambda) \rightarrow L(\lambda)$ for which all the composition factors $L(\mu)$ of the kernel satisfy $\mu \prec \lambda$. The module $\Delta(\lambda)$ is called a standard module (or a Verma module).
- The indecomposable projective cover $P(\lambda)$ of $L(\lambda)$ maps onto $\Delta(\lambda)$ via a map $\psi_{\lambda}: P(\lambda) \rightarrow \Delta(\lambda)$ whose kernel is filtered by modules $\Delta(\mu)$ with $\mu \succ \lambda$.

Analogously, one can consider costandard modules $\nabla(\lambda)$ and injective covers of simple modules $I(\lambda)$. An algebra A is quasi-hereditary if there is an injective morphism $L(\lambda) \rightarrow$ $\nabla(\lambda)$ whose cokernel has a filtration with composition factors $L(\mu)$ for $\mu \prec \lambda$ and if there is an injective morphism $\nabla(\lambda) \rightarrow I(\lambda)$ whose cokernel has a filtration with composition factors $\nabla(\mu)$ for $\lambda \prec \mu$.

From the above conditions it follows that $\operatorname{Hom}(\Delta(\lambda), \Delta(\lambda))=k$, (see [18, Lemma 1.6]).

Universal extensions and coextensions defined in Section 2.3.1 play an important role in the theory of quasi-hereditary algebras.

The algorithm presented in the proof of Theorem 2.3.1 and Remark 2.3.2 allow us to remove all Ext ${ }^{1}$-groups between any sequence E_{1}, \ldots, E_{n} of objects in an abelian category \mathcal{A}. Universal extensions lead to an object $\mathscr{E}=\bigoplus \overline{E_{i}}$, while universal coextesions to $\mathscr{F}=\bigoplus \overline{F_{i}}$.

If the starting set is the partially ordered set of standard modules over a quasihereditary algebra then the objects obtained by universal extensions are $\overline{E_{\lambda}}=P(\lambda)$, the projective cover of $\Delta(\lambda)$ and $\overline{F_{\lambda}}=T(\lambda)$, a direct summand of the characteristic tilting module.

The endomorphism algebra of $T=\bigoplus T(\lambda)$ is again quasi-hereditary and it is called the Ringel dual of the initial algebra A. The associated poset is dual to the poset of A (see [58, Theorem 6]).

A quasi-hereditary algebra can be also constructed from a standardisable set of objects in an abelian category. We recall some relevant definitions and constructions from [18]. Let \mathcal{A} be an abelian category. For a set $\Psi \subset \operatorname{ob} \mathcal{A}$ we denote by $\mathcal{F}(\Psi)$ a full subcategory of \mathcal{A} consisting of objects that admit a filtration with quotients in Ψ.

Let $\Theta=\{\Theta(\lambda) \mid \lambda \in \Lambda\}$ be a finite set of objects of an abelian k-linear category \mathcal{A}. We define a quiver $Q(\Lambda)$ with vertex set Λ. There is an arrow $\lambda \rightarrow \mu$ in $Q(\Lambda)$ provided the set of non-invertible maps $\Theta(\lambda) \rightarrow \Theta(\mu)$ or the set $\operatorname{Ext}^{1}(\Theta(\lambda), \Theta(\mu))$ is non-empty.

We say that a finite set $\Theta=\{\Theta(\lambda) \mid \lambda \in \Lambda\}$ is standardisable if for all $\lambda, \mu \in \Lambda$ the spaces $\operatorname{Hom}(\Theta(\Lambda), \Theta(\mu))$ and $\operatorname{Ext}^{1}(\Theta(\Lambda), \Theta(\mu))$ are finite-dimensional over k and if the quiver $Q(\Lambda)$ has no oriented cycles. In particular, any object $\Theta(\lambda)$ has one-dimensional endomorphism space and $\operatorname{Ext}^{1}(\Theta(\lambda), \Theta(\lambda))=0$. Moreover, the quiver $Q(\Lambda)$ defines a partial order on the set Λ with $\mu \prec \lambda$ if there is an arrow $\mu \rightarrow \lambda$.

The universal extensions algorithm applied to a standardisable set Θ gives a quasihereditary algebra A such that the subcategory $\mathcal{F}(\Theta)$ and the category $\mathcal{F}\left(\Delta_{A}\right)$ are equivalent. Similarly, universal extensions allow us to construct a quasi-hereditary algebra B such that the subcategory $\mathcal{F}(\Theta)$ of \mathcal{A} and the category $\mathcal{F}\left(\nabla_{B}\right)$ are equivalent.

Let $\left\langle E_{1}, \ldots, E_{n}\right\rangle=\mathcal{T}$ be an full exceptional collection in a triangulated category \mathcal{T}. Then E_{1}, \ldots, E_{n} is a standardisable set in \mathcal{T} and one can construct two associated quasihereditary algebras out of it. We shall also assume that only Hom and the first Ext-groups between E_{i}, E_{j} are non-zero.

First, using universal extensions, we define the objects $\overline{E_{i}}$ and put

$$
\mathscr{E}=\oplus_{i=1}^{n} \overline{E_{i}}
$$

Note that \mathscr{E} is a tilting generator of \mathcal{T}. Moreover, $\operatorname{Ext}^{1}\left(\mathscr{E}, \overline{E_{j}}\right)=0$ for all j.
Analogously, using universal coextensions, we define the objects $\overline{F_{i}}$ and put

$$
\widehat{\mathscr{F}}=\oplus_{i=1}^{n} \overline{F_{i}}
$$

to be another tilting generator of \mathcal{T}. Then for all j we have $\operatorname{Ext}^{1}\left(E_{j}, \mathscr{F}\right)=0$.
The endomorphism algebra of $\mathscr{E}, \mathcal{A}_{\mathscr{E}}=\operatorname{End}(\mathscr{E})$ is quasi-hereditary. The order on the set $\{1, \ldots, n\}$ is the standard one. The projective modules are $P_{\mathscr{E}}(i)=\operatorname{Hom}\left(\mathscr{E}, \overline{E_{i}}\right)$. Because $\operatorname{Ext}^{1}\left(\mathscr{E}, E_{j}\right)$ vanish we have short exact sequences

$$
0 \rightarrow \operatorname{Hom}\left(\mathscr{E}, E_{j}\right) \otimes \operatorname{Ext}^{1}\left(E_{i}^{j-1}, E_{j}\right)^{*} \rightarrow \operatorname{Hom}\left(\mathscr{E}, E_{i}^{j}\right) \rightarrow \operatorname{Hom}\left(\mathscr{E}, E_{i}^{j-1}\right) \rightarrow 0
$$

If we compose the surjections $\operatorname{Hom}\left(\mathscr{E}, \overline{E_{i}}\right) \rightarrow \operatorname{Hom}\left(\mathscr{E}, E_{i}^{n-1}\right) \rightarrow \ldots \rightarrow \operatorname{Hom}\left(\mathscr{E}, E_{i}\right)$ we get the required map from $P \mathscr{E}(i)$ to

$$
\Delta_{\mathscr{E}}(i)=\operatorname{Hom}\left(\mathscr{E}, E_{i}\right)
$$

Similarly, the endomorphism algebra $\mathcal{A}_{\mathscr{F}}=\operatorname{End}(\mathscr{F})$ is quasi-hereditary. The order on the set $\{1, \ldots, n\}$ is the opposite one, $i \preceq j$ if and only if $j \leq i$. The projective modules are $P_{\mathscr{F}}(i)=\operatorname{Hom}\left(\overline{F_{i}}, \mathscr{F}\right)$. Again, the sequence

$$
0 \rightarrow \operatorname{Hom}\left(E_{j}, \mathscr{F}\right) \otimes \operatorname{Ext}^{1}\left(E_{j}, F_{i}^{j}\right) \rightarrow \operatorname{Hom}\left(F_{i}^{j-1}, \mathscr{F}\right) \rightarrow \operatorname{Hom}\left(F_{i}^{j}, \mathscr{F}\right) \rightarrow 0
$$

is exact. This shows that the composition $\operatorname{Hom}\left(\overline{F_{i}}, \mathscr{F}\right) \rightarrow \operatorname{Hom}\left(F_{i}^{2}, \mathscr{F}\right) \rightarrow \ldots \rightarrow$ $\operatorname{Hom}\left(E_{i}, \mathscr{F}\right)$ is injective and we get the required map from $P \mathscr{F}(i)$ to

$$
\Delta_{\mathscr{F}}(i)=\operatorname{Hom}\left(E_{i}, \mathscr{F}\right) .
$$

Functors

$$
\begin{aligned}
& \Phi=\operatorname{Hom}(\mathscr{E},-): \mathcal{F}\left(\left\{E_{i} \mid i=1, \ldots, n\right\}\right) \rightarrow \mathcal{F}\left(\Delta_{\mathcal{A}_{\mathscr{E}}}\right) \\
& \Psi=\operatorname{Hom}(-, \mathscr{F})^{\vee}: \mathcal{F}\left(\left\{E_{i} \mid i=1, \ldots, n\right\}\right) \rightarrow \mathcal{F}\left(\nabla_{\mathcal{A}_{\mathscr{F}}}\right)
\end{aligned}
$$

define equivalences of categories.
In order to find the Ringel dual of the algebra $A_{\mathscr{E}}$ we have to compute the characteristic modules. We know that $T(1)=\Delta(1)=\Phi\left(E_{1}\right)$ and that the remaining $T(i)$'s are obtained as universal coextensions from $\Delta_{A_{\mathscr{E}}}(i)$. Under the equivalence of $\mathcal{F}\left(\left\{E_{i} \mid i=1, \ldots, n\right\}\right)$ and $\mathcal{F}\left(\Delta_{A_{\mathscr{E}}}\right)$ we see that $T(i)$ corresponds exactly to the module $F_{i}(1)$ and hence $R\left(A_{\mathscr{E}}\right)=$ $\operatorname{End}(\bigoplus T(i))=\operatorname{End}\left(\bigoplus F_{i}(1)\right)=A_{\mathscr{F}}$ which proves

Proposition 2.3.3. Algebras $A_{\mathscr{E}}$ and $A_{\mathscr{F}}$ are Ringel dual to each other.

2.3.3 Example

Let us go back to the example of Section 2.2.7. Recall that X is obtained from \mathbb{P}^{2} by blowing up a point and then blowing up a point of the exceptional divisor. The collection

$$
\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle
$$

is a full exceptional collection on X. There is one non-zero Ext ${ }^{1}$ group between objects in this collection, namely $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right)\right)=k$.

In order to calculate the DG quiver of this collection using universal extensions one has to understand endomorphism algebra of

$$
\mathcal{O}_{X} \oplus V \oplus \mathcal{O}_{X}\left(E_{1}+E_{2}\right) \oplus \mathcal{O}_{X}(H) \oplus \mathcal{O}_{X}(2 H)
$$

where V is a non-trivial extension of $\mathcal{O}_{X}\left(E_{1}+E_{2}\right)$ by $\mathcal{O}_{X}\left(E_{2}\right)$ defined by short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(E_{1}+E_{2}\right) \xrightarrow{\phi_{1}} V \xrightarrow{\phi_{2}} \mathcal{O}_{X}\left(E_{2}\right) \longrightarrow 0
$$

Recall, that we have considered maps $\zeta: \mathcal{O}_{X} \rightarrow V, \iota_{1}: V \rightarrow \mathcal{O}_{X}(H)$ and $\iota_{2}: V \rightarrow$ $\mathcal{O}_{X}(H)$ such that

$$
\phi_{2} \circ \zeta=\gamma, \quad \iota_{1} \circ \phi_{1}=\alpha_{1}, \quad \iota_{2} \circ \phi_{1}=\alpha_{2}
$$

Calculations of the previous section show that

$$
\iota_{1} \circ \zeta=\eta, \quad \iota_{2} \circ \zeta=0
$$

Then, the collection (not exceptional!) $\left\langle\mathcal{O}_{X}, V, \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle$ has a quiver

with relations:

$$
\begin{aligned}
& \iota_{1} \circ \zeta=\eta, \quad \delta \phi_{2} \circ \phi_{1}=0, \quad \iota_{2} \circ \zeta=0, \\
& \beta_{1} \circ \iota_{1} \circ \zeta=\beta_{3} \circ \iota_{1} \circ \phi_{1} \circ \delta \phi_{2} \circ \zeta, \quad \beta_{2} \circ \iota_{1} \circ \zeta=\beta_{3} \circ \iota_{2} \circ \phi_{1} \circ \delta \phi_{2} \circ \zeta, \\
& \beta_{1} \iota_{2}-\beta_{2} \iota_{1} \in \operatorname{span}\left\{\beta_{1} \circ \iota_{1} \circ \phi_{1} \circ \delta \phi_{2}, \beta_{1} \circ \iota_{2} \circ \phi_{1} \circ \delta \phi_{2}, \beta_{2} \circ \iota_{2} \circ \phi_{1} \circ \delta \phi_{2},\right. \\
& \left.\beta_{3} \circ \iota_{1} \circ \phi_{1} \circ \delta \phi_{2}, \beta_{3} \circ \iota_{2} \circ \phi_{1} \circ \delta \phi_{2}\right\} .
\end{aligned}
$$

The last inclusion follows from applying functor $\operatorname{Hom}\left(-, \mathcal{O}_{X}(2 H)\right)$ to the short exact sequence (*).

Recall also that some of the morphisms can be changed:

$$
\begin{aligned}
\alpha_{1} & \rightsquigarrow \alpha_{1}+a \alpha_{2} \\
\eta & \rightsquigarrow \eta+b \alpha_{1} \delta \gamma+c \alpha_{2} \delta \gamma, \\
\zeta & \rightsquigarrow \zeta+d \phi_{1} \delta \gamma, \\
\iota_{1} & \rightsquigarrow \iota_{1}+e \alpha_{1} \delta \phi_{2}+f \alpha_{2} \delta \phi_{2}, \\
\iota_{2} & \rightsquigarrow \iota_{2}+g \alpha_{1} \delta \phi_{2}+h \alpha_{2} \delta \phi_{2} .
\end{aligned}
$$

A change of a morphism from \mathcal{O}_{X} to $\mathcal{O}_{X}(H)$ results in a change of a morphism from $\mathcal{O}_{X}(H)$ to $\mathcal{O}_{X}(2 H)$ according to the following correspondence

$$
\beta_{1} \leftrightarrow \alpha_{1} \delta \gamma, \quad \quad \beta_{2} \leftrightarrow \alpha_{2} \delta \gamma, \quad \quad \beta_{3} \leftrightarrow \eta
$$

A change $\alpha_{1} \rightsquigarrow \alpha_{1}+a \alpha_{2}$ changes ι_{1} to $\iota_{1}+a \iota_{2}$ (because $\iota_{1} \phi_{1}=\alpha_{1}$). As also β_{1} depends on α_{1} we get

$$
\beta_{1} \iota_{2}-\beta_{2} \iota_{1} \rightsquigarrow\left(\beta_{1}+a \beta_{2}\right) \iota_{2}-\beta_{2}\left(\iota_{1}+a \iota_{2}\right)=\beta_{1} \iota_{2}+a \beta_{2} \iota_{2}-\beta_{2} \iota_{1}-a \beta_{2} \iota_{2}=\beta_{1} \iota_{2}-\beta_{2} \iota_{1}
$$

and hence the parameter a has no influence on the relation between $\beta_{1} \iota_{2}$ and $\beta_{2} \iota_{1}$.
As we want $\iota_{2} \zeta=0$ the calculation

$$
\left(\iota_{2}+g \alpha_{1} \delta \phi_{2}+h \alpha_{2} \delta \phi_{2}\right)\left(\zeta+d \phi_{1} \delta \gamma\right)=\iota_{2} \zeta+(d+h) \alpha_{2} \delta \gamma+g \alpha_{1} \delta \gamma
$$

show that g must be 0 and h can be arbitrary, as putting $d=-h$ will not lead to any changes in this relation.

The morphism $\eta=\iota_{1} \zeta$ can be changed by any combination of $\alpha_{1} \delta \gamma$ and $\alpha_{2} \delta \gamma$ so there is no condition on e and f.

Calculating
$\beta_{1}\left(\iota_{2}+h \alpha_{2} \delta \phi_{2}\right)-\beta_{2}\left(\iota_{1}+e \alpha_{1} \delta \phi_{2}+f \alpha_{2} \delta \phi_{2}\right)=\beta_{1} \iota_{2}-\beta_{2} \iota_{1}+(h-e) \beta_{1} \alpha_{2} \delta \phi_{2}-f \beta_{2} \alpha_{2} \delta \phi_{2}$
we see that e and f can be chosen in such a way that

$$
\beta_{1} \iota_{2}-\beta_{2} \iota_{1}=A \beta_{1} \iota_{1} \phi_{1} \delta \phi_{2}+B \beta_{3} \iota_{1} \phi_{1} \delta \phi_{2}+C \beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} .
$$

Furthermore, the relation $\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta=\beta_{2} \iota_{1} \zeta$ gives

$$
\begin{aligned}
0=\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta-\beta_{2} \iota_{1} \zeta & =\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta-\beta_{1} \iota_{2} \zeta+A \beta_{1} \iota_{1} \phi_{1} \delta \phi_{2} \zeta+B \beta_{3} \iota_{1} \phi_{1} \delta \phi_{2} \zeta \\
+C \beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta & =A \beta_{1} \iota_{1} \phi_{1} \delta \phi_{2} \zeta+B \beta_{3} \iota_{1} \phi_{1} \delta \phi_{2} \zeta+(C+1) \beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta
\end{aligned}
$$

and leads to $A=0=B$ and $C=-1$ due to linear independence of $\beta_{1} \iota_{1} \phi_{1} \delta \phi_{2} \zeta, \beta_{3} \iota_{1} \phi_{1} \delta \phi_{2} \zeta$ and $\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta$.

Note that the relation $\beta_{1} \iota_{2}+\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2}=\beta_{2} \iota_{1}$ composed with ζ gives $\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} \zeta=$ $\beta_{2} \iota_{1} \zeta$ which is exactly the relation $\beta_{3} \alpha_{2} \delta \gamma=\beta_{2} \eta$ in the Ext quiver of the collection.

Hence relations in the endomorphism algebra of $\mathcal{O}_{X} \oplus V \oplus \mathcal{O}_{X}\left(E_{1}+E_{2}\right) \oplus \mathcal{O}_{X}(H) \oplus$ $\mathcal{O}_{X}(2 H)$ in the notation introduced before are:

$$
\begin{aligned}
\iota_{2} \zeta & =0, & \delta \phi_{2} \phi_{1} & =0, \\
\beta_{1} \iota_{1} \zeta & =\beta_{3} \iota_{1} \phi_{1} \delta \phi_{2} \zeta, & \beta_{1} \iota_{2}+\beta_{3} \iota_{2} \phi_{1} \delta \phi_{2} & =\beta_{2} \iota_{1} .
\end{aligned}
$$

The collection $\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle$ has the DG quiver of the collection

$$
\begin{array}{cc}
\mathcal{O}_{X}\left(E_{1}+E_{2}\right) \\
{ }_{V}^{\phi_{1}} & \left.\mathcal{O}_{X}\left(E_{1}+E_{2}\right), \quad \mathcal{O}_{X}(H), \quad \mathcal{O}_{X}(2 H)\right) \\
V &
\end{array}
$$

Morphisms from \mathcal{O}_{X} to $\mathcal{O}_{X}\left(E_{2}\right)$ have basis

with $\partial\left(a_{1}\right)=a_{2}$.

Morphisms from $\mathcal{O}_{X}\left(E_{2}\right)$ to $\mathcal{O}_{X}\left(E_{1}+E_{2}\right)$ have basis:

with b_{1} in degree 1 .
Morphisms from $\mathcal{O}_{X}\left(E_{2}\right)$ to $\mathcal{O}_{X}(H)$ are

with $\partial\left(c_{1}\right)=c_{2}$ and $\partial\left(c_{4}\right)=c_{5}$.
Morphisms from $\mathcal{O}_{X}\left(E_{2}\right)$ to $\mathcal{O}_{X}(2 H)$ factor through $\mathcal{O}_{X}(H)$ so can be written as $\beta_{i} c_{j}$.
Relations between these morphisms are

$$
\begin{aligned}
& b_{1} a_{3}=0, \\
& \iota_{1} \phi_{1} b_{2}=c_{3}, \\
& \partial\left(c_{1}\right)=\iota_{1} \phi_{1} b_{1}, \\
& c_{4} a_{3}=0, \\
& b_{2} a_{3}=\delta \phi_{2} \zeta, \\
& \iota_{1} \phi_{1} b_{1}=c_{2}, \\
& \iota_{2} \phi_{1} b_{1}=c_{5}, \\
& \partial\left(c_{4}\right)=\iota_{2} \phi_{1} b_{1}, \\
& \iota_{2} \phi_{1} b_{2}=c_{6}, \\
& \beta_{2} c_{1} a_{3}=\beta_{3} \iota_{2} \phi_{1} b_{2} a_{3}, \quad \beta_{1} c_{4}=\beta_{2} c_{1}, \\
& c_{1} a_{3}=\iota_{1} \zeta, \\
& \beta_{1} c_{1} a_{3}=\beta_{3} \iota_{1} \phi_{1} b_{2} a_{3}, \quad \beta_{1} c_{4}+\beta_{3} c_{6}=\beta_{2} c_{1} .
\end{aligned}
$$

Putting $\gamma=a_{3}, \delta=b_{2}, \theta=b_{1}, \alpha_{1}=\iota_{1} \phi_{1}, \alpha_{2}=\iota_{2} \phi_{2}, \epsilon_{1}=c_{1}$ and $\epsilon_{2}=c_{4}$ we obtain the following DG quiver

$$
\mathcal{O}_{X} \xrightarrow{\gamma} \mathcal{O}_{X}\left(E_{2}\right) \underbrace{\stackrel{\theta}{\stackrel{\delta}{\longrightarrow}} \mathcal{O}_{X}}_{\epsilon_{2}}\left(E_{1}+E_{2}\right) \stackrel{\alpha_{1}}{\stackrel{\alpha_{1}}{\alpha_{2}}} \mathcal{O}_{X}(H) \underset{\xrightarrow{\stackrel{\beta_{1}}{\beta_{3}}}}{\stackrel{\beta_{3}}{\longrightarrow}} \mathcal{O}_{X}(2 H)
$$

with relations and differentials given by

$$
\left.\begin{array}{llrl}
\partial\left(\epsilon_{1}\right) & =\alpha_{1} \theta, & \partial\left(\epsilon_{2}\right)=\alpha_{2} \bar{\delta}, & \epsilon_{2} \gamma
\end{array}\right)=0, ~ 子 \beta_{1} \epsilon_{2}+\beta_{3} \alpha_{2} \delta=\beta_{2} \epsilon_{1} .
$$

Calculating A_{∞}-structure on the cohomology of this category gives

$$
m_{3}\left(\alpha_{1}, \theta, \gamma\right)=\eta, \quad m_{3}\left(\alpha_{2}, \theta, \gamma\right)=0, \quad m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right)-m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right)=\beta_{3} \alpha_{2} \delta
$$

where η denotes the cohomology class of $\epsilon_{1} \gamma$.

2.4 Comparison of the methods

We have seen in Section 2.2.7 that Massey products are not enough to determine the A_{∞}-structure on the Ext-quiver of the exceptional collection

$$
\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}\left(E_{2}\right), \mathcal{O}_{X}\left(E_{1}+E_{2}\right), \mathcal{O}_{X}(H), \mathcal{O}_{X}(2 H)\right\rangle
$$

More precisely, Massey products were not sufficient to calculate the value of the difference $m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right)-m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right)$ which is an invariant of the A_{∞}-quasi-isomorphism class of the corresponding A_{∞}-category.

However, methods of Section 2.3.3 allowed us to calculate the A_{∞}-category in this case. The value $m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right)-m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right)$ was in this case determined by the cohomological operation $\widetilde{\mu_{3}}\left(\beta_{1}, \alpha_{2} ; \beta_{2}, \alpha_{1}, \theta\right)$. We call it a relative triple Massey product. We will motivate this name in Section 2.4.1.

Such a product is defined for maps in a triangulated category \mathcal{T}

such that

$$
b \circ a=0, \quad d \circ a=0, \quad e \circ d=c \circ b .
$$

If we denote by F the cone of a

$$
A \xrightarrow{a} B \xrightarrow{\iota} F \xrightarrow{\pi} A[1]
$$

the conditions $b \circ a=0$ and $d \circ a=0$ guarantee that there exist maps $\beta: F \rightarrow C$ and $\delta: F \rightarrow E$ such that

$$
\beta \circ \iota=b, \quad \delta \circ \iota=d
$$

Then, from the fact that $e \circ d=c \circ b$ it follows that there exists a map $\gamma: A[1] \rightarrow D$ such that $\gamma \circ \pi=c \circ \beta-e \circ \delta$. Let us denote the set of all maps γ like this by

$$
\widetilde{\mu_{3}}(c, b ; e, d ; a) .
$$

Then

$$
\begin{aligned}
m_{3}\left(\alpha_{1}, \theta, \gamma\right) & \in \mu_{3}\left(\alpha_{1}, \theta, \gamma\right), \\
m_{3}\left(\alpha_{2}, \theta, \gamma\right) & \in \mu_{3}\left(\alpha_{2}, \theta, \gamma\right), \\
m_{3}\left(\beta_{1}, \alpha_{2}, \theta\right)-m_{3}\left(\beta_{2}, \alpha_{1}, \theta\right) & \in \widetilde{\mu_{3}}\left(\beta_{1}, \alpha_{2} ; \beta_{2}, \alpha_{1} ; \theta\right)
\end{aligned}
$$

2.4.1 Further properties of Massey products in enhanced triangulated categories

In Section 2.2 .5 we have seen that in order to calculate an n-tuple Massey product of a complex in an enhanced triangulated category $\mathcal{T}=H^{0}(\mathcal{C})$ one has to find a defining system in \mathcal{C}. In this section we will use this observation to give an equivalent definition of Massey products in triangulated language.

Lemma 2.4.1. Let $S \in \operatorname{Tot}^{*}$ be a convolution of a complex T^{\cdot} in an enhanced triangulated category $\mathcal{T}=H^{0}(\mathcal{C})$ and let $i \in\{0, \ldots, n-1\}$. Finally, let S^{i} be a cone of ∂^{i};

$$
T^{i} \xrightarrow{\partial^{i}} T^{i+1} \xrightarrow{\iota_{i}} S^{i} \xrightarrow{\pi_{i}} T^{i}[1] .
$$

Then, there exist $\widetilde{\partial}^{i-1}: T^{i-1} \rightarrow S^{i}[1], \widetilde{\partial}^{i+1}: S^{i} \rightarrow T^{i+2}$ such that $\pi_{i} \circ \widetilde{\partial}^{i-1}=\partial^{i-1}, \widetilde{\partial}^{i+1} \circ \iota_{i}=$ ∂^{i+1} and S is a convolution of a complex

$$
T_{i}^{*}: T^{0} \xrightarrow{\partial^{0}} T^{1} \rightarrow \ldots \xrightarrow{\partial^{i-2}} T^{i-1} \xrightarrow{\widetilde{\partial}^{i-1}} S^{i}[-1] \xrightarrow{\widetilde{\partial}^{i+1}} T^{i+1}[-1] \xrightarrow{\partial^{i+2}} \ldots \xrightarrow{\partial^{n-1}} T^{n}[-1] .
$$

Proof. From Section 2.2.5 it follows that there exists an extended defining system $\alpha_{i, j}$ for the complex T^{*} such that $S \in \mathcal{T}$ represents a twisted complex $\left(T^{i}, \alpha_{i, j}\right) \in \mathcal{C}^{\text {pre-tr }}$.

Object S_{i} can be presented as a twisted complex $\left\{T^{i} \xrightarrow{\alpha_{i, i+1}} T^{i+1}\right\}$ in $\mathcal{C}^{\text {pre-tr }}$, where T^{i} is in gradation minus one.
$\widetilde{\partial}^{i-1}$ and $\widetilde{\partial}^{i+1}$ are maps in \mathcal{T} corresponding respectively to maps

in $\mathcal{C}^{\text {pre-tr }}$.
Remark 2.4.2. The same argument as in the proof of the above Lemma shows that any defining system for the complex T^{*} is also a defining system for T_{i}^{*}.

Proposition 2.4.3. Let $T^{\bullet}=T^{0} \rightarrow \ldots \rightarrow T^{n}$ be a complex in an enhanced triangulated category \mathcal{T}, φ an element of $\mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$ and let $i \in\{0, \ldots, n-1\}$.

If $i \neq 0, n-1$ then φ is an element of $\mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{i+2}, \widetilde{\partial}^{i+1}, \widetilde{\partial}^{i-1}, \partial^{i-2}, \ldots, \partial^{0}\right)$ for the complex T_{i}^{*} defined in Lemma 2.4.1.

If $i=0$ then $\varphi \circ \iota_{0}$ is an element of $\mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{2}, \widetilde{\partial}^{0}\right)$ for the complex T_{0}^{\cdot}. Similarly, for $i=n-1$ morphism $\pi_{n-1} \circ \varphi$ belongs to $\mu_{n-1}\left(\widetilde{\partial}^{i-1}, \partial^{i-2}, \ldots, \partial^{0}\right)$.

Moreover, $\mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{i+2}, \widetilde{\partial}^{i+1}, \widetilde{\partial}^{i-1}, \partial^{i-2}, \ldots, \partial^{0}\right)$ is the subset of $\mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$ for $i \neq 0, n-1$.

If $i=0$ then any element of $\mu_{n-1}\left(\partial^{n-1}, \ldots, \partial^{2}, \widetilde{\partial}^{0}\right)$ is of the form $\psi \circ \iota_{0}$ for some $\psi \in \mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$. Analogously, if $i=n-1$ then any element of $\mu_{n-1}\left(\widetilde{\partial}^{i-1}, \partial^{i-2}, \ldots, \partial^{0}\right)$ is of the form $\pi_{n-1} \circ \psi$ for some $\psi \in \mu_{n}\left(\partial^{n-1}, \ldots, \partial^{0}\right)$.

Proof. By Lemma 2.2.10 Massey products in \mathcal{T} coincide up to a sign with Massey products defined using the DG structure.

Then, the claim follows from Remark 2.4.2.
To see that any $(n-1)$-tuple Massey product defined for T_{0}^{*} factors through ι_{0} we note that S^{0} can be considered as a twisted complex $\left\{T^{0} \xrightarrow{\alpha_{0,1}} T^{1}\right\}$. Similar argument works for T_{n-1}^{*}.

Let

$$
T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\partial^{1}} T^{2} \xrightarrow{\partial^{2}} T^{3}
$$

be a complex in an enhanced triangulated category and let

$$
T^{0} \xrightarrow{\partial^{0}} T^{1} \xrightarrow{\iota} S \xrightarrow{\pi} T^{0}[1]
$$

be a distinguished triangle.
Since $\partial^{1} \circ \partial^{0}=0$ there exists $\widetilde{\partial}^{1}: S \rightarrow T^{2}$ such that $\widetilde{\partial}^{1} \circ \iota=\partial^{1}$.
Note that $\left(\partial^{2} \circ \widetilde{\partial}^{1}\right) \circ \iota=\partial^{2} \circ \partial^{1}=0$ and hence there exists $\varphi: T^{0}[1] \rightarrow T^{3}$ such that $\varphi \circ \pi=\partial^{2} \circ \widetilde{\partial}^{1}$.

By Proposition 2.4.3

$$
\varphi \in \mu_{3}\left(\partial^{2}, \partial^{1}, \partial^{0}\right)
$$

This motivates the name "relative Massey product" used in Section 2.4.

Remark 2.4.4. As there are many ways to calculate Massey products, the relative Massey product described in Section 2.4 is in fact a triple Massey product of the following complex

$$
A \xrightarrow{a} B \xrightarrow{\binom{b}{-d}} C \oplus E \xrightarrow{(c, e)} D
$$

Chapter 3

DG quivers of smooth rational surfaces

Smooth rational surfaces have full exceptional collections with vanishing second and higher Ext-groups. Therefore, results of Section 2.3 allow us to calculate corresponding DG quivers. It turns out that a large class of full exceptional collections can be mutated to collections for which the tilting object and its endomorphism algebra can be written down explicitly in terms of generators and relations. Such a presentation is given in Proposition 3.2.16 and Lemma 3.2.18.

In Section 3.1 we recall basic facts about rational surfaces and prove some useful lemmas.

In Section 3.2 we describe exceptional collections on smooth rational surfaces obtained from exceptional collections on \mathbb{P}^{2} and Hirzebruch surfaces \mathbb{F}_{a}. In Section 3.2.1 for a rational surface X we calculate Ext-quiver of the part of the collection corresponding to the map $f: X \rightarrow X_{0}$ to its minimal model. In Section 3.2.2 we choose basis of Hom- and Ext-groups appearing in this collection and in Section 3.2.3 we show how composition of Hom and Ext-groups can be written in this basis. We also describe in Section 3.2.4 how to calculate which compositions are zero purely in terms of the intersection matrix of irreducible components of the exceptional divisor of f.

In Section 3.2 .5 we describe the full Ext-quiver of the exceptional collection on X, provided the exceptional collection on X_{0} we start with is strong.

In Section 3.2.6 we describe the DG quiver of such a collection. In Section 3.2.7 we explicitly describe the tilting object on X obtained by universal coextensions. With Proposition 3.2.16 and Lemma 3.2.18 we describe how the endomorphism algebra of this tilting object looks like in a large family of examples.

We then show that above construction allows to calculate DG quiver of full exceptional collections of line bundles naturally arising on smooth toric surfaces. We recall after [19] basis definitions in Section 3.3.1 and give examples of full exceptional collections on smooth toric surfaces in Section 3.3.2. We show that all of these exceptional collections give an exceptional collection on the total space of the canonical bundle, therefore we
introduce a canonical DG algebra of a toric surface in Section 3.3.3. We describe how methods of Section 3.2.6 allow us to calculate this DG algebra. We conclude with some examples of these DG algebras in Section 3.3.4.

3.1 Geometry of rational surfaces

The first examples of smooth rational surfaces are the projective plane \mathbb{P}^{2} and Hirzebruch surfaces \mathbb{F}_{a} for $a \geq 0$.

Recall that the Hirzebruch surface \mathbb{F}_{a} is a projectivisation of a bundle $\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-a)$. Its Picard group is generated by the class of fiber F of $\mathbb{F}_{a} \rightarrow \mathbb{P}^{1}$ and the class C of the zero section. The intersection form on \mathbb{F}_{a} is given by

$$
F^{2}=0, \quad F . C=1, \quad C^{2}=-a
$$

The canonical divisor of \mathbb{P}^{2} is $K_{X}=-3 H$ and the canonical divisor of \mathbb{F}_{a} is $K_{\mathbb{F}_{a}}=-2 C-(a+2) F$.

The collection $\left\langle\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(H), \mathcal{O}_{\mathbb{P}^{2}}(2 H)\right\rangle$ is a full strong exceptional collection on \mathbb{P}^{2} while $\left\langle\mathcal{O}_{\mathbb{F}_{a}}, \mathcal{O}_{\mathbb{F}_{a}}(F), \mathcal{O}_{\mathbb{F}_{a}}(a F+C), \mathcal{O}_{\mathbb{F}_{a}}((a+1) F+C)\right\rangle$ is a full strong exceptional collection on \mathbb{F}_{a} (see for example [26]).

Any smooth rational surface X is obtained by a sequence of blow-ups from \mathbb{P}^{2} or \mathbb{F}_{a}. We have a sequence of maps

$$
X=X_{n} \xrightarrow{\pi_{n}} X_{n-1} \xrightarrow{\pi_{n-1}} \ldots \longrightarrow X_{1} \xrightarrow{\pi_{1}} X_{0},
$$

where $X_{0}=\mathbb{P}^{2}$ or \mathbb{F}_{a}. We can also assume that every π_{i} is a blow up of X_{i-1} at one point x_{i-1}.

Let us denote by $\pi: X \rightarrow X_{0}$ the composition of all π_{i} 's.
Let $E_{i} \subset X_{i}$ be the exceptional divisor of π_{i}. By an abuse of notation the strict transform of E_{i} in X is also denoted by E_{i}. By $R_{i} \subset X$ we denote the pullback of E_{i} under $\pi_{i+1} \ldots \pi_{n}$. By definition we can write R_{i} as a sum $\sum a_{i}^{j} E_{j}$ for some $a_{i}^{j} \in \mathbb{Z}^{\geq 0}$.

The intersection form is preserved by π^{*}, i.e. for $\pi: X \rightarrow Y$ and divisors D_{1}, D_{2} on Y we have $D_{1} \cdot D_{2}=\pi^{*}\left(D_{1}\right) \cdot \pi^{*}\left(D_{2}\right)$. Hence, R_{i} 's form an orthogonal basis and $R_{i}^{2}=-1$ for every i.

We have a natural partial order on the set of R_{i} 's, namely

$$
R_{i} \geq R_{j} \quad \Leftrightarrow \quad R_{i}-R_{j} \geq 0
$$

Lemma 3.1.1. We have

$$
R_{i} \cdot E_{j}=\left\{\begin{array}{cl}
0 & j>i \\
-1 & j=i \\
\geq 0 & j<i
\end{array}\right.
$$

Proof. We proceed by induction on the number n of blow ups. Assume that the statement is true for $R_{i}^{n-1}=\pi_{n-1}^{*} \circ \ldots \circ \pi_{i+1}^{*}\left(E_{i}\right) \subset X_{n-1}$. Then obviously the lemma is true for $R_{n}=E_{n}$. Also, since $R_{i}=\pi_{n}^{*}\left(R_{i}^{n-1}\right)$ we know that $R_{i} . E_{n}=0$ for $i<n$. Finally, for $i, j<n$

$$
\pi_{n}^{*}\left(R_{i}^{n-1}\right) \cdot \pi_{n}^{*}\left(E_{j}\right)=R_{i}^{n-1} \cdot E_{j}
$$

and the assertion follows from the induction assumption.
Remark 3.1.2. In fact, one can say more about the intersection form. Assume that the order on the set $\left\{R_{j}\right\}_{j=1, \ldots, n}$ is linear and that in the exceptional divisor $E(\pi)$ of the map π the irreducible component E_{i} intersects E_{l} for some $l>i$. Then

$$
E_{i} \cdot R_{j}=\left\{\begin{array}{cl}
-1 & \text { for } j=i \\
1 & \text { for } j=i+1, \ldots, l \\
0 & \text { for } j>l
\end{array}\right.
$$

In order to see it, we look at X_{l}, where the irreducible components of $E(\pi)$ intersect as $E_{i}-E_{l}-E_{l-1}-\ldots-E_{i+1}$. Then, for $j=i+1, \ldots, l$ the divisor $R_{j}=E_{j}+E_{j+1}+\ldots+E_{l}$. When we pass to X these coefficients do not change. Also, on X the divisors R_{j} with $j>l$ are sums of E_{s} with $s \geq j$.

It follows that

$$
E_{i}^{2}=\sharp\left\{j \mid E_{i} R_{j}=1\right\}-1 .
$$

Lemma 3.1.3. Let $E_{i} E_{i+l}=1$ for some $l \geq 1$. Then $R_{i}=E_{i}+\sum_{j=i+1}^{i+l} R_{j}$.
Proof. Without loss of generality we can assume that the order on the set $\left\{R_{l}\right\}$ is linear, i.e. the map $\pi_{l}: X_{l} \rightarrow X_{l-1}$ blows up a point on $E_{l-1} \subset X_{l-1}$.

We look at the irreducible component E_{i} in the exceptional fiber of π. Assume that E_{i} intersects E_{i+l} for some $l>0$. We have seen before that in this case in X_{i+l} the irreducible curves intersect as

$$
E_{i}-E_{i+l}-E_{i+l-1}-\ldots-E_{i+1} .
$$

Then, the pull back of E_{i} to X_{l} is equal to

$$
E_{i}+E_{i+1}+2 E_{i+2}+\ldots+l E_{i+l}=E_{i}+R_{i+1}+R_{i+2}+\ldots+R_{l} .
$$

The map from X to X_{i+l} blows up points on E_{i+1}, \ldots, E_{i+l} and hence for $j>i+l$ the multiplicity of E_{j} in LHS coincides with multiplicity in RHS.

Finally, the canonical divisor of X is $K_{X}=\pi^{*} K_{X_{0}}+\sum_{i} R_{i}$. In particular $R_{i} K_{X}=-1$ for any i.

3.2 Full exceptional collections on rational surfaces and their DG quivers

Let $\pi: X \rightarrow X_{0}$ be a map from a smooth rational surface to \mathbb{P}^{2} or \mathbb{F}_{a} and let $\left\langle\mathcal{O}_{X_{0}}, \mathcal{N}_{1}, \ldots, \mathcal{N}_{t}\right\rangle$ be a full exceptional collection on X_{0}. By [54, Theorem 4.3] in this situation $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right), \mathcal{O}_{X}, \pi^{*}\left(\mathcal{N}_{1}\right), \ldots, \pi^{*}\left(\mathcal{N}_{t}\right)\right\rangle$ is a full exceptional collection on X.

Let us understand the Ext-quiver of this collection.

3.2.1 Ext-quiver of $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$

Lemma 3.2.1. For $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ and $\mathcal{O}_{R_{j}}\left(R_{j}\right)$ we have
$\operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)=\left\{\begin{array}{cc}k & \text { if } R_{i} \leq R_{j} \\ 0 & \text { otherwise; }\end{array} \quad \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)= \begin{cases}k & \text { if } R_{i}<R_{j} \\ 0 & \text { otherwise }\end{cases}\right.$ and the higher Ext-groups are always 0.

Proof. From the fact that sheaves $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ are in the right orthogonal to \mathcal{O}_{X} and short exact sequences

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}\left(R_{i}\right) \rightarrow \mathcal{O}_{R_{i}}\left(R_{i}\right) \rightarrow 0
$$

it follows that

$$
\operatorname{Ext}^{l}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \simeq \operatorname{Ext}^{l}\left(\mathcal{O}_{X}\left(R_{i}\right), \mathcal{O}_{X}\left(R_{j}\right)\right) \simeq H^{l}\left(X, \mathcal{O}_{X}\left(R_{j}-R_{i}\right)\right)
$$

From the above sequence we also conclude that $H^{0}\left(\mathcal{O}_{X}\left(R_{i}\right)\right)=k$ and $H^{j}\left(\mathcal{O}_{X}\left(R_{i}\right)\right)=0$ for $j \neq 0$.

From Riemann-Roch theorem it follows that $\chi\left(R_{j}-R_{i}\right)=0$.
Then, from the short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(R_{j}-R_{i}\right) \rightarrow \mathcal{O}_{X}\left(R_{j}\right) \rightarrow \mathcal{O}_{R_{i}}\left(R_{j}\right) \rightarrow 0
$$

we deduce that $H^{0}\left(\mathcal{O}_{X}\left(R_{j}-R_{i}\right)\right)=k=H^{1}\left(\mathcal{O}_{X}\left(R_{j}-R_{i}\right)\right)$ if only the divisor $R_{j}-R_{i}$ is effective and all cohomology groups of $\mathcal{O}_{X}\left(R_{j}-R_{i}\right)$ are zero otherwise.

Now, let us calculate the composition of Hom and Ext ${ }^{1}$ groups between $\mathcal{O}_{R_{i}}\left(R_{i}\right)$.
Clearly, the composition

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{2}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right)
$$

is zero as groups $\operatorname{Ext}^{2}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right)$ are zero.

Remark 3.2.2. In order to understand the composition in the Ext-algebra of the exceptional collection $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$ it is enough to understand it in the case when the partial order on the set of R_{i} 's is in fact linear. To see it we consider the partially ordered set I of R_{i} 's and a subset $J \subset I$ satisfying

- for $i, j \in J$ and $l \in I$ such that $i \leq l \leq j$ the element l also belongs to J,
- for $j \in J$ and $l \in I$ such that $j \leq l$ the element l also belongs to J.

Then, the map $\pi=\pi_{I}$ which leads to the poset I factors through a map π_{J} which gives a partial order J on divisors $\left\{R_{j} \mid j \in J\right\}$.

It is slightly easier to answer questions about compositions of Hom and Ext ${ }^{1}$ groups in a different category. More precisely, let \mathcal{C}_{π} denote the category generated by $\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)$. If we mutate this category to the right over \mathcal{O}_{X} we obtain an equivalent category $\widetilde{\mathcal{C}_{\pi}}$ with a full exceptional collection $\left\langle\mathcal{O}_{X}\left(R_{n}\right), \ldots, \mathcal{O}_{X}\left(R_{1}\right)\right\rangle$. We will do the calculations in the category $\widetilde{\mathcal{C}_{\pi}}$.

Till the end of this section we will assume that the divisors R_{1}, \ldots, R_{n} are linearly ordered. It means that the map $\pi_{j+1}: X_{j+1} \rightarrow X_{j}$ blows up a point on the exceptional divisor $E_{j} \subset X_{j}$.

Lemma 3.2.3. Let $R_{l}<R_{j}<R_{i}$. The composition

$$
\operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right) \otimes \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{j}\right)\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)
$$

is always non-zero.
Proof. Let $\widetilde{\alpha_{l j}} \in \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{j}\right)\right)$ and $\widetilde{\alpha_{j i}} \in \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)$ be non-zero. The map $\widetilde{\alpha_{j i}}$ is injective and hence

$$
\widetilde{\alpha_{j i}} \circ \widetilde{\alpha_{l j}} \neq 0
$$

Lemma 3.2.4. Let $R_{l}<R_{j}<R_{i}$. The composition

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right) \otimes \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)
$$

is always non-zero.
Proof. Consider non-zero elements $\widetilde{\alpha_{l j}} \in \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{j}\right)\right)$ and $\widetilde{\beta_{j i}} \in \operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)$. The first one fits into a short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(R_{l}\right) \rightarrow \mathcal{O}_{X}\left(R_{j}\right) \rightarrow \mathcal{O}_{R_{j}-R_{l}}\left(R_{j}\right) \rightarrow 0
$$

Applying $\operatorname{Hom}\left(-, \mathcal{O}_{X}\left(R_{i}\right)\right)$ to it we get a long exact sequence from which it follows that

$$
\widetilde{\beta_{j i}} \circ \widetilde{\alpha_{l j}}=0 \Leftrightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}-R_{l}}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)=k
$$

We have short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{X}\left(R_{j}\right) \rightarrow \mathcal{O}_{X}\left(R_{j}+R_{l}\right) \rightarrow \mathcal{O}_{R_{l}}\left(R_{j}+R_{l}\right) \simeq \mathcal{O}_{R_{l}}\left(R_{l}\right) \rightarrow 0 \\
& 0 \rightarrow \mathcal{O}_{X}\left(R_{l}\right) \rightarrow \mathcal{O}_{X}\left(R_{l}+R_{j}\right) \rightarrow \mathcal{O}_{R_{j}}\left(R_{j}+R_{l}\right) \rightarrow 0 \\
& 0 \rightarrow \mathcal{O}_{R_{j}-R_{l}}\left(R_{j}\right) \rightarrow \mathcal{O}_{R_{j}}\left(R_{j}+R_{l}\right) \rightarrow \mathcal{O}_{R_{l}}\left(R_{l}+R_{j}\right) \simeq \mathcal{O}_{R_{l}}\left(R_{l}\right) \rightarrow 0
\end{aligned}
$$

From the first sequence and the fact that $\operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{j}+R_{l}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)=0$ it follows that $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{j}+R_{l}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)=k$. Then, the second sequence gives $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}}\left(R_{l}+R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)=k$. Finally, from the last sequence we learn that $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}-R_{l}}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)=0$. Hence,

$$
\widetilde{\beta_{j i}} \circ \widetilde{\alpha_{l j}} \neq 0
$$

Lemma 3.2.5. Let $R_{l}<R_{j}<R_{i}$. The composition

$$
\operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)
$$

is non-zero if and only if $R_{i}-R_{j}-E_{l}$ is not effective.
Proof. Let $\widetilde{\beta_{l j}} \in \operatorname{Ext}^{1}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{X}\left(R_{j}\right)\right), \widetilde{\alpha_{j i}} \in \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{j}\right), \mathcal{O}_{X}\left(R_{i}\right)\right)$ be non-zero. $\widetilde{\alpha_{j i}}$ fits into an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(R_{j}\right) \rightarrow \mathcal{O}_{X}\left(R_{i}\right) \rightarrow \mathcal{O}_{R_{i}-R_{j}}\left(R_{i}\right) \rightarrow 0
$$

Applying to it the functor $\operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right),-\right)$ we see that

$$
\widetilde{\alpha_{j i}} \circ \widetilde{\beta_{l j}} \neq 0 \Leftrightarrow \operatorname{Hom}\left(\mathcal{O}_{X}\left(R_{l}\right), \mathcal{O}_{R_{i}-R_{j}}\left(R_{i}\right)\right)=H^{0}\left(\mathcal{O}_{R_{i}-R_{j}}\left(R_{i}-R_{l}\right)\right)=0
$$

Let $\psi_{l}: X \rightarrow X_{l}$ be the composition $\psi_{l}=\pi_{l+1} \circ \ldots \circ \pi_{n}$. The functor $L \bullet \psi_{l}^{*}: D^{b}\left(X_{l}\right) \rightarrow$ $D^{b}(X)$ is fully faithful and hence the composition $\widetilde{\alpha_{j i}} \circ \widetilde{\beta_{l j}}$ is a pullback of the composition of the corresponding morphisms on X_{l}. Thus, without loss of generality, we can assume that $l=n$, i.e. $R_{l}=E_{l}$.

First, we consider the case when the divisor $R_{i}-R_{j}-R_{l}=R_{i}-R_{j}-E_{l}$ is effective. Then,
$0 \rightarrow \mathcal{O}_{E_{l}}\left(R_{j}\right) \rightarrow \mathcal{O}_{R_{i}-R_{j}}\left(R_{j}+R_{i}-R_{j}-E_{l}\right) \simeq \mathcal{O}_{R_{i}-R_{j}}\left(R_{i}-E_{l}\right) \rightarrow \mathcal{O}_{R_{i}-R_{j}-E_{l}}\left(R_{i}-E_{l}\right) \rightarrow 0$ is exact.

From the fact that $E_{l}=R_{l}$ and $R_{l} \cdot R_{j}=0$ it follows that $\mathcal{O}_{E_{l}}\left(R_{j}\right) \simeq \mathcal{O}_{E_{l}}$ which shows that $k=H^{0}\left(\mathcal{O}_{E_{l}}\left(R_{j}\right)\right) \hookrightarrow H^{0}\left(\mathcal{O}_{R_{i}-R_{j}}\left(R_{i}-R_{l}\right)\right)$.

Now, we consider the case when $R_{i}-R_{j}-R_{l}$ is not an effective divisor.
The divisor $R_{i}-R_{j}$ on X is a pullback of a divisor from X_{j} and recall that we assume that the order on the set of $\left\{R_{s}\right\}_{\{s=1, \ldots, l\}}$ is linear. It follows that for $\pi_{s}: X_{s+1} \rightarrow X_{s}$ we have $\pi_{s}{ }^{*}\left(E_{s}\right)=E_{s}+E_{s+1}$ (where $E_{s} \subset X_{s+1}$ denotes the strict transform of $E_{s} \subset X_{s}$). Hence, if the coefficient a_{s} in front of E_{s} in the presentation $R_{i}-R_{j}=\sum_{s=i}^{l} a_{s} E_{s}$ is non-zero for some $s \geq j$, so is the coefficient a_{l}. And if the coefficient a_{l} is non-zero then the divisor $R_{i}-R_{j}-E_{l}=R_{i}-R_{j}-R_{l}$ is effective.

Let us assume first that $j=i+1$. By the above observation, the condition that $R_{i}-R_{j}-E_{l}$ is not effective is equivalent to the condition that $R_{i}-R_{i+1}=E_{i}$ (because $R_{i}=E_{i}+E_{i+1}+\sum_{s=i+2}^{l} b_{s} E_{s}$ and hence the coefficient in front of E_{i} in the difference $R_{i}-R_{i+1}$ is equal to 1 and the coefficient in front of E_{i+1} is zero). In this case

$$
\mathcal{O}_{R_{i}-R_{j}}\left(R_{i}-E_{l}\right)=\mathcal{O}_{E_{i}}\left(R_{i}-E_{l}\right)
$$

From Lemma 3.1.1 we know that $E_{i} \cdot R_{i}=-1$. It remains to determine whether E_{i} intersects E_{l}.

Assume that it does. We assume that the order on the set of $\left\{R_{s}\right\}_{\{s=1, \ldots, l\}}$ is linear from which it follows that some part of the exceptional divisor of π has irreducible components intersecting in the following order

$$
E_{i}-E_{l}-E_{l-1}-\ldots-E_{i+1}
$$

It follows that $R_{i}=E_{i}+E_{i+1}+\ldots+E_{l-1}+2 E_{l}$ and $R_{j}=E_{j}+\ldots+E_{l}$ which contradicts the condition $R_{k}-R_{j}-E_{l}$ not being effective. Hence, $E_{l} E_{i}=0$.

We have thus proved that for $j=i+1$

$$
\mathcal{O}_{R_{i}-R_{j}}\left(R_{i}-E_{l}\right)=\mathcal{O}_{E_{i}}\left(R_{i}-E_{l}\right)=\mathcal{O}_{E_{i}}(-1)
$$

which has no sections.
Now, we proceed to the general case when $j>i$. The short exact sequence

$$
0 \rightarrow \mathcal{O}_{R_{i}-R_{j}-E_{i}}\left(R_{i}-E_{l}-E_{i}\right) \rightarrow \mathcal{O}_{R_{i}-R_{j}}\left(R_{i}-E_{l}\right) \rightarrow \mathcal{O}_{E_{i}}\left(R_{i}-E_{l}\right) \rightarrow 0
$$

together with the observation that $\mathcal{O}_{E_{i}}\left(R_{i}-E_{l}\right) \simeq \mathcal{O}_{E_{i}}(-1)$ gives $H^{s}\left(\mathcal{O}_{R_{i}-R_{j}}\left(R_{k}-E_{l}\right)\right)=$ $H^{s}\left(\mathcal{O}_{R_{i}-R_{j}-E_{i}}\left(R_{i}-E_{l}-E_{i}\right)\right)$. We will argue that, under the assumption that $R_{i}-R_{j}-E_{l}$ is not effective, $R_{i}-E_{i}=R_{i+1}$ and then proceed by induction.

If $R_{i}-E_{i} \neq R_{i+1}$ the intersection point of E_{i} and E_{i+1} on X_{i+1} must be blown up by one of the maps π_{s} for some $s>i+1$. We assume that the order on the set of R_{s} 's is linear and hence this point must be blown up by $\pi_{i+1}: X_{i+2} \rightarrow X_{i+1}$. In this case
$R_{i}=E_{i}+E_{i+1}+2 E_{i+2}+\sum_{s=i+3}^{l} b_{s} E_{s}$ and $b_{s} \geq 2$ for $s \geq i+3$. In particular $b_{j} \geq 2$. We know also that $R_{j}=E_{j}+\sum_{s=i+1}^{l} c_{s} E_{s}$. It follows that $R_{i}-R_{j}$ considered as a divisor on X_{j} is equal to $\left(b_{j}-1\right) E_{j} \neq 0$ and hence the coefficient in front of E_{l} of the pullback of this divisor to X_{j} is also non-zero. This contradicts our assumption.

Remark 3.2.6. From the condition that the coefficient in front of E_{j} in the difference $R_{i}-R_{j}$ is zero it does not follow that the coefficient in front of E_{l} is. In the example with irreducible components of the exceptional divisor of π intersecting as

$$
E_{1}-E_{4}-E_{3}-E_{2}
$$

we have $R_{1}=E_{1}+E_{2}+2 E_{3}+3 E_{4}, R_{2}=E_{2}+E_{3}+E_{4}$ and $R_{1}-R_{2}=E_{1}+E_{3}+2 E_{4}$.
On the other hand, under the assumption that the order of R_{i} 's in linear the condition that $R_{i}-R_{j}-E_{l}$ is effective is equivalent to the condition that $R_{i}-R_{j}-E_{j+1}$ is. In the proof of Proposition 3.2.5 we have seen one implication. In the other direction, assume that $R_{i}-R_{j}-E_{l}$ is effective and $R_{i}-R_{j}-E_{j+1}$ is not. From the second assumption it follows that in X_{j+1} the divisor E_{j+1} intersects E_{j} and possibly some E_{s} for $s<i$. The order on R_{p} 's is linear and hence $f_{j+1}: X_{j+2} \rightarrow X_{j+1}$ is a blow up of a point on $E_{j+1} \subset X_{j+1}$ and so on. In the first case, when E_{j+1} intersects only E_{j}, it follows that the coefficients in front of E_{s} 's both in R_{i} and R_{j} will agree for $s \geq j$. Then, of course, $R_{i}-R_{j}-E_{s}$ will not be effective for $s \geq j$. In the second case, when $E_{j+1} \subset X_{j}$ intersects some E_{s}, we know that on X_{j} some part of the exceptional divisor of the map $X_{j} \rightarrow X_{0}$ has irreducible components intersecting as

$$
E_{s}-E_{j+1}-E_{j}-\ldots-E_{i}-\ldots-E_{s+1} .
$$

Hence, $R_{i}=E_{i}+E_{i+1}+\ldots+E_{j+1}+\sum_{s=j+2}^{l} b_{s} E_{s}$ and again we see that coefficients b_{s} agree with the coefficients c_{s} of $R_{j}=E_{j}+E_{j+1}+\sum_{s=l+2}^{l} c_{s} E_{s}$.

Finally, we will show that it is possible to choose basis of $\operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)$ and $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)$ in such a way that no parameters appear in the composition laws.

3.2.2 The basis of $\operatorname{Hom}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)$ and $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)$

For every $i \in\{1, \ldots, n\}$ let us fix all maps in the distinguished triangle

$$
\mathcal{O}_{X} \xrightarrow{s_{i}} \mathcal{O}_{X}\left(R_{i}\right) \xrightarrow{t_{i}} \mathcal{O}_{R_{i}}\left(R_{i}\right) \xrightarrow{r_{i}} \mathcal{O}_{X}[1] .
$$

Definition 3.2.7. For any $l>j$ let $\alpha_{l j}: \mathcal{O}_{R_{l}}\left(R_{l}\right) \rightarrow \mathcal{O}_{R_{j}}\left(R_{j}\right)$ be such that the diagram

commutes.

The maps $\alpha_{l j}$ give also maps $\widetilde{\alpha_{l j}}: \mathcal{O}_{X}\left(R_{l}\right) \rightarrow \mathcal{O}_{X}\left(R_{j}\right)$ defined by the commutative diagrams

Finally, for any $l>j$ we have $\mathcal{O}_{R_{l}}\left(R_{j}\right) \simeq \mathcal{O}_{R_{l}}$. We fix explicit isomorphisms

$$
\psi_{l j}: \mathcal{O}_{R_{l}}\left(R_{l}\right) \rightarrow \mathcal{O}_{R_{l}}\left(R_{l}\right) \otimes \mathcal{O}_{X}\left(R_{j}\right)
$$

such that for all $l>j>i$ diagrams

$$
\begin{gather*}
\mathcal{O}_{R_{l}}\left(R_{l}\right) \otimes \mathcal{O}_{R_{i}}\left(R_{i}\right) \xrightarrow{\alpha_{l j} \otimes \mathrm{id}} \mathcal{O}_{R_{j}}\left(R_{j}\right) \otimes \mathcal{O}_{X}\left(R_{i}\right) \tag{3.1}\\
\psi_{l i} \uparrow \\
\mathcal{O}_{R_{l}}\left(R_{l}\right) \xrightarrow{\alpha_{j i} \uparrow}{ }^{\alpha_{l j}}
\end{gather*} \mathcal{O}_{R_{j}}\left(R_{j}\right)
$$

commute. Moreover, for triples $l>j>i$ such that some part of the exceptional divisor $E(\pi)$ of π has the form $E_{l}-\ldots-E_{j}-\ldots-E_{i}$ let also the diagrams

commute. Notice, that under this condition $Z\left(\widetilde{\alpha_{j i}}\right)=E_{j}+\ldots+E_{i-1}$ and hence all maps in diagram (3.2) are invertible.

All the above conditions on the maps $\psi_{l j}$ can be fulfilled. Indeed, the first set of diagrams tell us that fixing $\psi_{l i}$ we fix also $\psi_{(l-1) i}, \ldots, \psi_{(k+1) i}$. The second set of diagrams leads to relations between $\psi_{l j}$ and $\psi_{l i}$. However, these relations are not independent. To see it consider the diagram

Clearly, the inner and the outer squares commute. Moreover, if upper, lower and right squares commute the same is true about the left one.

Definition 3.2.8. With the above morphisms chosen we define $\beta_{i j}: \mathcal{O}_{R_{i}}\left(R_{i}\right) \rightarrow$ $\mathcal{O}_{R_{j}}\left(R_{j}\right)[1]$ as $\beta_{i j}=t_{j}[1] \circ\left(r_{i} \otimes i d\right) \circ \psi_{i j}$,

$$
\mathcal{O}_{R_{i}}\left(R_{i}\right) \xrightarrow{\psi_{i j}} \mathcal{O}_{R_{i}}\left(R_{i}\right) \otimes \mathcal{O}_{X}\left(R_{j}\right) \xrightarrow{r_{i} \otimes i d} \mathcal{O}_{X}[1] \otimes \mathcal{O}_{X}\left(R_{j}\right) \xrightarrow{t_{j}[1]} \mathcal{O}_{R_{j}}\left(R_{j}\right)[1] .
$$

Remark 3.2.9. Short exact sequences

$$
0 \rightarrow \mathcal{O}_{X}\left(R_{j}-R_{i}\right) \rightarrow \mathcal{O}_{X}\left(R_{j}\right) \rightarrow \mathcal{O}_{R_{i}} \rightarrow 0
$$

lead to identifications

$$
\begin{aligned}
& \operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \simeq H^{0}\left(\mathcal{O}_{X}\left(R_{j}\right)\right) \simeq H^{0}\left(\mathcal{O}_{X}\right), \\
& \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \simeq H^{0}\left(\mathcal{O}_{R_{i}}\right) \simeq H^{0}\left(\mathcal{O}_{X}\right)
\end{aligned}
$$

Under these identifications maps $\alpha_{i j}$ and $\beta_{i j}$ correspond to identity morphism in $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$.

3.2.3 Parameters entering the composition in the basis

Proposition 3.2.10. Let $R_{l}<R_{j}<R_{i}$. No parameters enter the composition

$$
\operatorname{Hom}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right) \otimes \operatorname{Hom}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right)
$$

Proof. This is clear from the definition of the maps $\alpha_{l j}$.
Proposition 3.2.11. Let $R_{l}<R_{j}<R_{i}$. With the above choice of basis no parameters appear in the composition

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right) \otimes \operatorname{Hom}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right)
$$

Proof. It follows the equality $r_{j} \otimes \alpha_{i j}=r_{i}$ and the fact that diagram (3.1) commutes;

Proposition 3.2.12. Let $R_{l}<R_{j}<R_{i}$ be such that the composition

$$
\operatorname{Hom}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{i}}\left(R_{i}\right)\right)
$$

is non-zero. With the above choice of basis of these spaces no parameters appear in this composition.

Proof. It follows from the fact that diagram (3.2) commutes;

3.2.4 Combinatorics of the composition

We describe a combinatorial way of determining the Ext-quiver of the collection $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$.

To the map π we can associate two graphs \mathcal{G} and \mathcal{H}. Both of them have vertices $\{1, \ldots, n\}$. Graph \mathcal{G} is the dual graph to the graph of $E(\pi)$. It is not oriented; vertices i, j are connected by an edge if irreducible components E_{i}, E_{j} of the exceptional divisor $E(\pi)$ of π intersect.

Notice that an oriented graph with vertices $\{1, \ldots, n\}$ and no cycles allows us to define an order on the set $\left\{R_{i}\right\}_{i=1, \ldots, n}$ by putting $R_{i}<R_{j}$ if there is an arrow $i \rightarrow j$ and taking the transitive closure of this relation. Let \mathcal{H} be a minimal graph such that the order on the set $\left\{R_{i}\right\}$ defined by it coincides with the partial order $R_{i} \geq R_{j}$ which was considered before.

The Ext-quiver of collection $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$ is obtained from the graph \mathcal{H} by changing a vertex i to $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ and every arrow $i \rightarrow j$ to arrows $\alpha_{i j}: \mathcal{O}_{R_{i}}\left(R_{i}\right) \rightarrow \mathcal{O}_{R_{j}}\left(R_{j}\right)$ and $\beta_{i j}: \mathcal{O}_{R_{i}}\left(R_{i}\right) \rightarrow \mathcal{O}_{R_{j}}\left(R_{j}\right)[1]$. From the previous section we know that $\beta_{j s} \circ \beta_{l j}=0$ for any $l \rightarrow j \rightarrow s$.

The path algebra of this quiver has generators in degree zero, $\alpha_{l s}$ defined as compositions of maps $\alpha_{i j}$ and generators in degree one, $\beta_{l k}$ defined as $\beta_{l s}=\beta_{i s} \circ \alpha_{l i}$ where i is the vertex of \mathcal{H} such that there exists an arrow $i \rightarrow s$ in \mathcal{H}.

We already know that

$$
\alpha_{j s} \circ \alpha_{i j}=\alpha_{i s}, \quad \beta_{j s} \circ \alpha_{i j}=\beta_{i s} .
$$

It remains to determine when $\alpha_{j s} \circ \beta_{i j}=\beta_{i s}$ and when this composition is zero. In order to do it we consider a graph $\mathcal{H}^{\text {op }}$ obtained from \mathcal{H} by reverting all the arrows. Notice, that if $E(\pi)$ is connected then $\mathcal{H}^{\text {op }}$ is a tree with the root 1 .

Now we look at a vertex $\mathcal{O}_{R_{s}}\left(R_{s}\right)$ of \mathcal{H}. In the graph $\mathcal{H}^{\text {op }}$ we can find all leaves l for which there exists a path from s to l in $\mathcal{H}^{\mathrm{op}}$. For any such leaf l let P_{l} be the set of all vertices of the path connecting s with l. Then the order on the set $\left\{R_{i}\right\}_{i \in P_{l}}$ is linear and
R_{s} is its maximal element. In the set $\left\{R_{i}\right\}_{i \in P_{l}}$ there exists an element $\mathcal{O}_{R_{j}}\left(R_{j}\right)$ such that for $t<j$ and $\forall i>t$ we have $\alpha_{t s} \circ \beta_{i t} \neq 0$ and for $t \geq j$ and $\forall i>t \alpha_{t s} \circ \beta_{i t}=0$. The index $j \in P_{l}$ is the minimal one such that on a path from s to j in the graph \mathcal{G} there exists a vertex $t \in P_{l}$ such that $t>j$. If no such index exists then we put $j=l$.

Repeating this procedure for every leaf l will give all relations of the form $\alpha_{j s} \circ \beta_{i j}=0$. If we do the same algorithm for all vertices of the Ext-quiver we get all the relations.

The algorithm for any s finds j such that $R_{s}=E_{s}+\ldots+E_{j-1}+2 E_{j}+\ldots$ Then, by Remark 3.2.6, we know that for $t<j-1$ and any $i>t$ the coefficient in front of E_{i} in $R_{s}-R_{t}$ is zero and that for $t \geq j-1$ and any $i>t$ the coefficient in front of E_{i} in $R_{s}-R_{t}$ is not zero. By Proposition 3.2.5 we can then conclude about compositions of the corresponding morphisms and elements of the first Ext-groups.

Let us consider the following example. Let the graph \mathcal{G} be

Then the graph $\mathcal{H}^{\text {op }}$ is

and the Ext-quiver of the collection $\left\langle\mathcal{O}_{R_{7}}\left(R_{7}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$ is

- For $k=1$ and $l=5$ we have $P_{5}=\{1,4,5\}, j=5$ and hence

$$
\beta_{54} \circ \alpha_{41}=\beta_{51}
$$

- For $k=1$ and $l=6$ we have $P_{6}=\{1,2,3,6\}, j=2$ and hence

$$
\beta_{32} \circ \alpha_{21}=0, \quad \beta_{62} \circ \alpha_{21}=0, \quad \beta_{63} \circ \alpha_{31}=0
$$

- If $k=1$ and $l=7$ then $P_{7}=\{1,2,7\}, j=7$ and hence

$$
\beta_{72} \circ \alpha_{21}=\beta_{71}
$$

- If $k=2$ and $l=6$ then $P_{6}=\{2,3,6\}, j=6$ and hence

$$
\beta_{63} \circ \alpha_{32}=\beta_{62}
$$

In the remaining cases (for example $k=2, l=7$) we do not learn anything new about compositions as there is not enough arrows to compose.

3.2.5 Maps from $\mathcal{O}_{R_{k}}\left(R_{k}\right)$ to $L^{*} \pi^{*} \mathcal{D}^{b}\left(X_{0}\right)$

It remains to understand what are the maps from $\mathcal{O}_{R_{s}}\left(R_{s}\right)$ to $\pi^{*} \mathcal{N}_{i}$ and the compositions between them.

As $\pi^{*} \mathcal{N}_{i}$ are torsion-free we know that $\operatorname{Hom}\left(\mathcal{O}_{R_{s}}\left(R_{s}\right), \pi^{*} \mathcal{N}_{i}\right)=0$. From the short exact sequence

$$
\begin{equation*}
0 \rightarrow \pi^{*} \mathcal{N}_{i} \rightarrow \pi^{*} \mathcal{N}_{i} \otimes \mathcal{O}_{X}\left(R_{s}\right) \rightarrow \mathcal{O}_{R_{s}}\left(R_{s}\right) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

we deduce that $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{s}}\left(R_{s}\right), \pi^{*} \mathcal{N}_{i}\right) \simeq \operatorname{Hom}\left(\mathcal{O}_{R_{s}}\left(R_{s}\right), \mathcal{O}_{R_{s}}\left(R_{s}\right)\right)=k$. Let ζ_{s}^{i} denote the non-zero element of this group.

The diagram

shows that the composition

$$
\operatorname{Hom}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{s}}\left(R_{s}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{s}}\left(R_{s}\right), \pi^{*} \mathcal{N}_{i}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \pi^{*} \mathcal{N}_{i}\right)
$$

is an isomorphism.
To understand the composition

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{s}}\left(R_{s}\right), \pi^{*} \mathcal{N}_{i}\right) \otimes \operatorname{Hom}\left(\pi^{*} \mathcal{N}_{i}, \pi^{*} \mathcal{N}_{l}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{s}}\left(R_{s}\right), \pi^{*} \mathcal{N}_{l}\right)
$$

we apply the functor $\operatorname{Hom}\left(-, \pi^{*} \mathcal{N}_{l}\right)$ to the short exact sequence (3.3). It follows that for $\phi \in \operatorname{Hom}\left(\pi^{*} \mathcal{N}_{i}, \pi^{*} \mathcal{N}_{l}\right)$ the composition $\phi \circ \zeta_{s}^{i}$ is zero if and only if ϕ factors through $\pi^{*} \mathcal{N}_{l}\left(-R_{s}\right)$.

3.2.6 DG quiver of $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right)[-1], \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)[-1], \mathcal{O}_{X}, \pi^{*} \mathcal{N}_{1}, \ldots, \pi^{*} \mathcal{N}_{t}\right\rangle$

Now, we will present calculations allowing to determine the DG quiver of the full exceptional collection on X. We will assume that the collection $\left\langle\mathcal{O}_{X_{0}}, \mathcal{N}_{1}, \ldots, \mathcal{N}_{t}\right\rangle$ on X_{0} is strong.

To calculate the DG category of the collection $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right)[-1], \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)[-1], \mathcal{O}_{X}\right.$, $\left.\mathcal{N}_{1}, \ldots, \mathcal{N}_{t}\right\rangle$ we substitute some objects with universal coextensions.

3.2.7 Tilting object

Note that if $R_{1}>R_{2}$ we have a unique non-trivial extension

$$
0 \rightarrow \mathcal{O}_{R_{1}}\left(R_{1}\right) \rightarrow \mathcal{O}_{R_{1}+R_{2}}\left(R_{1}+R_{2}\right) \rightarrow \mathcal{O}_{R_{2}}\left(R_{2}\right) \rightarrow 0 .
$$

Hence $\mathcal{O}_{R_{1}+R_{2}}\left(R_{1}+R_{2}\right)$ is the universal coextension of $\mathcal{O}_{R_{1}}\left(R_{1}\right)$ by $\mathcal{O}_{R_{2}}\left(R_{2}\right)$.
We will show that for $R_{i_{k}}<\ldots<R_{i_{1}}<R_{s}$ the universal coextension of $\mathcal{O}_{R_{i_{1}}+\ldots+R_{i l}}\left(R_{i_{1}}+\ldots+R_{i_{l}}\right)$ by $\mathcal{O}_{R_{s}}\left(R_{s}\right)$ is $\mathcal{O}_{R_{s}+R_{i_{1}}+\ldots+R_{i l}}\left(R_{s}+R_{i_{1}}+\ldots+R_{i l}\right)$.
Theorem 3.2.13. Let $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right)[-1], \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)[-1], \mathcal{O}_{X}, \pi^{*} \mathcal{N}_{1}, \ldots, \pi^{*} \mathcal{N}_{t}\right\rangle$ be an exceptional collection on X such that $\left\langle\mathcal{O}_{X_{0}}, \mathcal{N}_{1}, \ldots, \mathcal{N}_{t}\right\rangle$ is a strong exceptional collection on X_{0}. Then

$$
\mathcal{O}_{S_{n}}\left(S_{n}\right)[-1] \oplus \mathcal{O}_{S_{n-1}}\left(S_{n-1}\right)[-1] \oplus \ldots \oplus \mathcal{O}_{S_{1}}\left(S_{1}\right)[-1] \oplus \mathcal{O}_{X} \oplus \pi^{*} \mathcal{N}_{1} \oplus \ldots \oplus \pi^{*} \mathcal{N}_{t}
$$

is tilting on X, where S_{k} are defined as

$$
S_{l}=\sum_{R_{j} \leq R_{l}} R_{j} .
$$

To prove Theorem 3.2.13 we shall need the following Lemma.
Lemma 3.2.14. For $R_{i}<R_{j}<R_{l}$ we have

$$
\begin{aligned}
& \operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{l}+\ldots+R_{j}}\left(R_{l}+\ldots+R_{j}\right)\right) \simeq \\
& \operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j+1}}\left(R_{j+1}\right)\right) \otimes \operatorname{Hom}\left(\mathcal{O}_{R_{j+1}}\left(R_{j+1}\right), \mathcal{O}_{R_{l}+\ldots+R_{j}}\left(R_{l}+\ldots+R_{j}\right)\right)=k, \\
& \left.\operatorname{Ext} \mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{l}+R_{l+1}+\ldots+R_{j}}\left(R_{l}+R_{l+1}+\ldots+R_{j}\right)\right) \simeq \\
& \operatorname{Hom}^{1}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j+1}}\left(R_{j+1}\right)\right) \otimes \operatorname{Ext}^{l}\left(\mathcal{O}_{R_{j+1}}\left(R_{j+1}\right), \mathcal{O}_{R_{l}+\ldots+R_{j}}\left(R_{l}+\ldots+R_{j}\right)\right)=k,
\end{aligned}
$$

where the sum $R_{l}+\ldots+R_{j}$ is taken over all divisors R_{s} such that $j \succeq s \succeq l$.
Proof. We proceed by induction. The basis case, for $j=l$ follows from Lemma 3.2.4. The induction step follows from applying the functor $\operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right),-\right)$ to the short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{R_{l}+\ldots+R_{j-1}}\left(R_{l}+\ldots+R_{j-1}\right) \rightarrow \mathcal{O}_{R_{l}+\ldots+R_{j}}\left(R_{l}+\ldots+R_{j}\right) \rightarrow \mathcal{O}_{R_{j}}\left(R_{j}\right) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Proof of Theorem 3.2.13. From the above lemma and the short exact sequence (3.4) it follows that if $R_{i}<R_{j}<R_{l}$ the sheaf $\mathcal{O}_{R_{l}+\ldots+R_{j}}\left(R_{l}+\ldots+R_{j}\right)$ is the universal coextension of $\mathcal{O}_{R_{l}+\ldots+R_{j-1}}\left(R_{l}+\ldots+R_{j-1}\right)$ by $\mathcal{O}_{R_{i}}\left(R_{i}\right)$. Hence, by the construction of universal coextensions the object

$$
\mathcal{O}_{S_{n}}\left(S_{n}\right)[-1] \oplus \mathcal{O}_{S_{n-1}}\left(S_{n-1}\right)[-1] \oplus \ldots \oplus \mathcal{O}_{S_{1}}\left(S_{1}\right)[-1] \oplus \mathcal{O}_{X} \oplus \pi^{*} \mathcal{N}_{1} \oplus \ldots \oplus \pi^{*} \mathcal{N}_{t}
$$

is tilting on X.
We describe how to calculate the endomorphism algebra of $\bigoplus \mathcal{O}_{S_{j}}\left(S_{j}\right)$ from the intersection form on irreducible components E_{i} 's.

Lemma 3.2.15. Assume that $R_{n}<R_{n-1}<\ldots<R_{1}$. Then

$$
\operatorname{dim} \operatorname{Hom}\left(\mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right), \mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{n}\right)\right)=n-\max \{i, j\}+1
$$

Proof. First, consider the case when $i \leq j$. Because $H^{j}\left(\mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{n}\right)\right)=0$ for all j
$\operatorname{hom}\left(\mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right), \mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{n}\right)\right)=h^{0}\left(\mathcal{O}_{R_{j}+\ldots+R_{n}}\left(-R_{i}-\ldots-R_{j-1}\right)\right)$.
Because $i<j-1<j$ we have an isomorphism $\mathcal{O}_{R_{j}+\ldots+R_{n}}\left(-R_{i}-\ldots-R_{j-1}\right) \simeq \mathcal{O}_{R_{j}+\ldots+R_{n}}$. Short exact sequence

$$
0 \rightarrow \mathcal{O}_{R_{j+1}+\ldots+R_{n}}\left(-R_{j}\right) \rightarrow \mathcal{O}_{R_{j}+\ldots+R_{n}} \rightarrow \mathcal{O}_{R_{j}} \rightarrow 0
$$

together with an isomorphism $\mathcal{O}_{R_{j+1}+\ldots+R_{n}}\left(-R_{j}\right) \simeq \mathcal{O}_{R_{j+1}+\ldots+R_{n}}$ show that indeed $h^{0}\left(\mathcal{O}_{R_{j}+\ldots+R_{n}}\right)=n-j+1$.

Now, assume that $i>j$. Then as before
$\operatorname{hom}\left(\mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right), \mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{n}\right)\right)=h^{0}\left(\mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{i-1}\right)\right)$.
From the short exact sequence

$$
0 \rightarrow \mathcal{O}_{R_{i}+\ldots+R_{n}} \rightarrow \mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{i-1}\right) \rightarrow \mathcal{O}_{R_{j}+\ldots+R_{i-1}}\left(R_{j}+\ldots+R_{i-1}\right) \rightarrow 0
$$

and the fact that $R^{*} \pi_{*}\left(\mathcal{O}_{R_{j}+\ldots+R_{i-1}}\left(R_{j}+\ldots+R_{i-1}\right)\right)=0$ it follows that $h^{0}\left(\mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\right.\right.$ $\left.\left.\ldots+R_{i-1}\right)\right)=n-i+1$.

It is easy to give the basis of morphisms between $\mathcal{O}_{S_{i}}\left(S_{i}\right)$. If i is smaller or equal than j we have a map
$\gamma_{i, j}^{l}: \mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right) \rightarrow \mathcal{O}_{R_{l}+\ldots+R_{n}}\left(R_{l}+\ldots+R_{n}\right) \hookrightarrow \mathcal{O}_{R_{j}+\ldots+R_{n}}\left(R_{j}+\ldots+R_{n}\right)$
for $l=j, j+1, \ldots, n$.

If i is greater than j then the same map is defined for $l=i, i+1, \ldots, n$.
Still assuming that the partial order on R_{i} 's is linear we denote by

$$
\begin{aligned}
& \alpha_{i}: \mathcal{O}_{R_{i+1}+\ldots+R_{n}}\left(R_{i+1}+\ldots+R_{n}\right) \hookrightarrow \mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right), \\
& \beta_{i}: \mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right) \rightarrow \mathcal{O}_{R_{i+1}+\ldots+R_{n}}\left(R_{i+1}+\ldots+R_{n}\right)
\end{aligned}
$$

Proposition 3.2.16. If $R_{n}<R_{n-1}<\ldots<R_{1}$ the endomorphism algebra of $\bigoplus \mathcal{O}_{S_{i}}\left(S_{i}\right)$ is a path algebra of the quiver

$$
\mathcal{O}_{S_{n}}\left(S_{n}\right) \underset{\beta_{n-1}}{\stackrel{\alpha_{n-1}}{\rightleftarrows}} \mathcal{O}_{S_{n-1}}\left(S_{n-1}\right) \longrightarrow \nless \mathcal{O}_{S_{2}}\left(S_{2}\right) \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} \mathcal{O}_{S_{1}}\left(S_{1}\right)
$$

with

$$
\beta_{n-1} \circ \alpha_{n-1}=0, \quad \beta_{i} \circ \alpha_{i}= \begin{cases}\alpha_{i+1} \circ \ldots \circ \alpha_{i+j} \circ \beta_{i+j} \circ \ldots \circ \beta_{i+1} & i+j<n \tag{3.5}\\ 0 & i+j=n\end{cases}
$$

where j is such that $E_{i} E_{i+j}=1$.
Proof. First, notice that $\beta_{i} \alpha_{i}$ is a map
$\mathcal{O}_{R_{i+1}+\ldots+R_{n}}\left(R_{i+1}+\ldots+R_{n}\right) \hookrightarrow \mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right) \rightarrow \mathcal{O}_{R_{i+1}+\ldots+R_{n}}\left(R_{i+1}+\ldots+R_{n}\right)$.
The map β_{i} has a kernel $\mathcal{O}_{R_{i}}\left(R_{i}\right)$. Therefore the kernel of $\beta_{i} \alpha_{i}$ is $\mathcal{O}_{D}(D)$ where D is such that the positive part of $R_{i+1}+\ldots+R_{n}-R_{i}$ is equal to $R_{i+1}+\ldots+R_{n}-D$. The positive part of $R_{i+1}+\ldots+R_{n}-R_{i}$ is $R_{i+1}+\ldots+R_{n}-R_{i}+E_{i}$. By Lemma 3.1.3 $R_{i}-E_{i}=R_{i+1}+\ldots+R_{i+j}$ for $j>0$ such that $E_{i} E_{i+j}=1$. Hence, $D=R_{i+1}+\ldots+R_{i+j}$ and the map $\beta_{i} \alpha_{i}$ factors through the surjection $\mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right) \rightarrow \mathcal{O}_{R_{i+j+1}+\ldots+R_{n}}\left(R_{i+j+1}+\ldots+R_{n}\right)$.

Because there are $n-2$ relations of this form and $2 n-2$ arrows the basis elements α_{i} 's and β_{j} 's can be chosen in such a way that no parameters enter the picture.

The maps $\gamma_{i, j}^{l}$ given before are

$$
\gamma_{i, j}^{l}=\alpha_{j} \circ \ldots \circ \alpha_{l-1} \circ \beta_{l-1} \circ \ldots \circ \beta_{i} .
$$

Given relations allow to present every path in a form in which all α 's are to the left. Thus, the relations allow us to reduce any path in the quiver to a basis morphism and hence all other relations between paths follow from relations 3.5.

Remark 3.2.17. When the order on the set R_{1}, \ldots, R_{n} is not linear parameters can occur in the endomorphism algebra of $\bigoplus \mathcal{O}_{S_{i}}\left(S_{i}\right)$. For example, let us consider a surface X_{4} obtained from \mathbb{P}^{2} in the following five blow-ups of points.
$\pi_{1}: X_{1} \rightarrow \mathbb{P}^{2}$ is a blow up of a point. $\pi_{2}: X_{2} \rightarrow X_{1}$ is a blow up of a point on the exceptional divisor of $\pi_{1}, \pi_{3}: X_{3} \rightarrow X_{2}$ is a blow up of the intersection of the exceptional
divisor of π_{2} and the strict transform of the exceptional divisor of π_{1}. Finally, $\pi_{4}: X_{4} \rightarrow X_{3}$ is a blow up of two points on the exceptional divisor of π_{3}.

If we denote by E_{i} strict transform of the exceptional divisor of π_{i} for $i=1,2,3$ and by E_{4}, E_{5} irreducible components of the exceptional divisor of π_{4} then the intersection form is

$$
\begin{array}{lllll}
E_{1}^{2}=-3, & E_{1} E_{2}=0, & E_{1} E_{3}=1, & E_{1} E_{4}=0, & E_{1} E_{5}=0, \\
E_{2}^{2}=-2, & E_{2} E_{3}=1, & E_{2} E_{4}=0, & E_{2} E_{5}=0, & E_{3}^{2}=-3, \\
E 3 E_{4}=1, & E_{3} E_{5}=1, & E_{4}^{2}=-1, & E_{4} E_{5}=0, & E_{5}^{2}=-1
\end{array}
$$

The divisors R_{i} are

$$
\begin{aligned}
& R_{1}=E_{1}+E_{2}+2 E_{3}+2 E_{4}+2 E_{5} \\
& R_{2}=E_{2}+E_{3}+E_{4}+E_{5} \\
& R_{3}=E_{3}+E_{4}+E_{5} \\
& R_{4}=E_{4} \\
& R_{5}=E_{5}
\end{aligned}
$$

and the endomorphism algebra of $\mathcal{O}_{S_{i}}\left(S_{i}\right)$ is given by the following quiver

with relations

$$
\begin{array}{ll}
\alpha_{34} \alpha_{43}=0, & \alpha_{23} \alpha_{32}=a \alpha_{53} \alpha_{35}+b \alpha_{43} \alpha_{34} \\
\alpha_{15} \alpha_{53}=0, & \alpha_{12} \alpha_{21}=c \alpha_{32} \alpha_{53} \alpha_{35} \alpha_{23}+d \alpha_{32} \alpha_{43} \alpha_{34} \alpha_{23}
\end{array}
$$

for some $a, b, c, d \in \mathbb{C}^{*}$. Changing basis by

$$
\widetilde{\gamma_{53}}=a \gamma_{53}, \quad \widetilde{\gamma_{43}}=b \gamma_{43}, \quad \widetilde{\gamma_{12}}=\frac{a}{c} \gamma_{12}
$$

we obtain relations

$$
\begin{array}{ll}
\alpha_{34} \alpha_{43}=0, & \alpha_{23} \alpha_{32}=\alpha_{53} \alpha_{35}+\alpha_{43} \alpha_{34} \\
\alpha_{15} \alpha_{53}=0, & \alpha_{12} \alpha_{21}=\alpha_{32} \alpha_{53} \alpha_{35} \alpha_{23}+\lambda \alpha_{32} \alpha_{43} \alpha_{34} \alpha_{23}
\end{array}
$$

for

$$
\lambda=\frac{a d}{b c} .
$$

3.2.8 Ext ${ }^{1}$ groups between $\mathcal{O}_{S_{l}}\left(S_{l}\right)$ and $\pi^{*} \mathcal{N}_{i}$

Lemma 3.2.18. Let $R_{i_{l}}<R_{i_{l-1}}<\ldots<R_{i_{1}}$. Then

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{i_{1}}+\ldots+R_{i_{l}}}\left(R_{i_{1}}+\ldots+R_{i_{l}}\right), \pi^{*} \mathcal{N}_{i}\right)=k^{l}
$$

and the remaining Ext groups are zero.
Proof. We proceed by induction. The short exact sequence

$$
0 \rightarrow \mathcal{O}_{R_{i_{1}}+\ldots+R_{i_{l-1}}}\left(R_{i_{1}}+\ldots+R_{i_{l-1}}\right) \rightarrow \mathcal{O}_{R_{i_{1}}+\ldots+R_{i l}}\left(R_{i_{1}}+\ldots+R_{i_{l}}\right) \rightarrow \mathcal{O}_{R_{i_{l}}}\left(R_{i_{l}}\right) \rightarrow 0
$$

together with an equality

$$
\operatorname{Ext}^{i}\left(\mathcal{O}_{R_{i_{l}}}\left(R_{i_{l}}\right), \pi^{*} \mathcal{N}_{i}\right)=\operatorname{Ext}^{i}\left(\mathcal{O}_{E_{i_{l}}}\left(E_{i_{l}}\right), \pi^{*} \mathcal{N}_{i}\right)
$$

completes the proof.
If we apply the functor $\operatorname{Hom}\left(\mathcal{O}_{S_{j}}\left(S_{j}\right),-\right)$ to the short exact sequence

$$
0 \rightarrow \pi^{*} \mathcal{N}_{i} \rightarrow \pi^{*} \mathcal{N}_{i} \otimes \mathcal{O}_{X}\left(S_{l}\right) \rightarrow \mathcal{O}_{S_{l}}\left(S_{l}\right) \rightarrow 0
$$

we get an isomorphism

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(\mathcal{O}_{S_{l}}\left(S_{l}\right), \pi^{*} \mathcal{N}_{i}\right) \simeq \operatorname{Hom}\left(\mathcal{O}_{S_{l}}\left(S_{l}\right), \mathcal{O}_{S_{l}}\left(S_{l}\right)\right) \tag{3.6}
\end{equation*}
$$

The identity morphism in the latter space corresponds to an element $\zeta_{k}^{i} \in \operatorname{Ext}^{1}\left(\mathcal{O}_{S_{l}}\left(S_{l}\right), \pi^{*} \mathcal{N}_{i}\right)$.
The diagram

shows that for an inclusion $\iota: \mathcal{O}_{S_{l}}\left(S_{l}\right) \rightarrow \mathcal{O}_{S_{j}}\left(S_{j}\right)$ we have $\zeta_{j}^{i} \circ \iota=\zeta_{l}^{i}$.
The isomorphism (3.6) allows also to calculate the Yoneda composition

$$
\operatorname{Hom}\left(\pi^{*} \mathcal{N}_{i}, \pi^{*} \mathcal{N}_{k}\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{S_{l}}\left(S_{l}\right), \pi^{*} \mathcal{N}_{i}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{S_{l}}\left(S_{l}\right), \pi^{*} \mathcal{N}_{k}\right)
$$

Thus, if the collection $\left\langle\mathcal{O}_{X_{0}}, \mathcal{N}_{1}, \ldots, \mathcal{N}_{t}\right\rangle$ on X_{0} is strong we know the endomorphism algebra of the tilting object

$$
\mathcal{O}_{S_{n}}\left(S_{n}\right)[-1] \oplus \mathcal{O}_{S_{n-1}}\left(S_{n-1}\right)[-1] \oplus \ldots \oplus \mathcal{O}_{S_{1}}\left(S_{1}\right)[-1] \oplus \mathcal{O}_{X} \oplus \pi^{*} \mathcal{N}_{1} \oplus \ldots \oplus \pi^{*} \mathcal{N}_{t}
$$

Using twisted complexes one can then calculate the DG quiver of the collection $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right)[-1], \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)[-1], \quad \mathcal{O}_{X}, \pi^{*} \mathcal{N}_{1}, \ldots, \pi^{*} \mathcal{N}_{t}\right\rangle$ and of any of its mutations.

3.3 Canonical DG algebras of toric surfaces

We apply results of the previous section to full exceptional collections on smooth toric surfaces.

3.3.1 Toric surfaces

We recall some information about toric surfaces. More details can be found for example in [19, Chapter 1].

A smooth projective toric surface Y is determined by its fan, spanned by a collection of elements $\rho_{1}, \ldots, \rho_{n}$ in a lattice $N=\operatorname{Hom}\left(k^{*}, T\right) \cong \mathbb{Z}^{2}$, where $T=\left(k^{*}\right)^{2}$ is a twodimensional torus. We enumerate ρ_{i} 's clockwise and consider their indexes, i 's, to be elements of $\mathbb{Z} / n \mathbb{Z}$. Then, for every $i \in \mathbb{Z} / n \mathbb{Z}$, vectors ρ_{i} and ρ_{i+1} form an oriented basis of N. Moreover, for every such pair there is no other ρ_{k} lying in the rational polyhedral cone generated by ρ_{i} and ρ_{i+1} in $N_{\mathbb{Q}}=N \otimes \mathbb{Q}$.

There is a one-to-one correspondence between one-dimensional orbits of the T-action on Y and the rays in the fan generated by ρ_{i} 's. For every i we denote by D_{i} the closure of this orbit. Then D_{i} 's are T-invariant divisors on X. Every D_{i} is isomorphic to \mathbb{P}^{1} and the intersection form is given by

$$
D_{i} D_{j}= \begin{cases}a_{i} & \text { if } i=j \\ 1 & \text { if } j \in\{i-1, i+1\} \\ 0 & \text { otherwise }\end{cases}
$$

where $a_{i} \in \mathbb{Z}$ are such that $\rho_{i-1}+a_{i} \rho_{i}+\rho_{i+1}=0$. Conversely, the numbers $\left(a_{1}, \ldots, a_{n}\right)$ determine the toric surface Y.

Divisors D_{i} and D_{i+1} intersect transversely in a T-fixed point p_{i} corresponding to the cone spanned by vectors ρ_{i} and ρ_{i+1}.

A surface Y_{1} obtained from Y by a blow-up of a torus-fixed point p_{i} is again a toric surface. The fan of Y_{1} is determined by vectors $\rho_{1}, \ldots, \rho_{i}, \rho_{i}+\rho_{i+1}, \rho_{i+1}, \ldots, \rho_{n}$. Moreover, every toric surface different from \mathbb{P}^{2} can be obtained from some Hirzebruch surface \mathbb{F}_{a} by a finite sequence of blow-ups of T-fixed points.

A canonical divisor of a toric surface is given by $K_{Y}=-\sum_{i=1}^{n} D_{i}$. The Picard group of Y is $\operatorname{Pic}(Y)=\mathbb{Z}^{n-2}$.

3.3.2 Exceptional collections on toric surfaces

The a-th Hirzebruch surface \mathbb{F}_{a} has a fan with four vectors and we can assume that $w_{1}=(1,0), w_{2}=(0,-1), w_{3}=(-1, a)$ and $w_{4}=(0,1)$. The collection $\left\langle\mathcal{O}_{\mathbb{F}_{a}}, \mathcal{O}_{\mathbb{F}_{a}}\left(D_{1}\right), \mathcal{O}_{\mathbb{F}_{a}}\left(D_{1}+D_{2}\right), \mathcal{O}_{\mathbb{F}_{a}}\left(D_{1}+D_{2}+D_{3}\right)\right\rangle$ is a full strong exceptional collection on \mathbb{F}_{a}.

If Y is obtained from \mathbb{F}_{a} by a sequence of T-equivariant blow-ups then we can assume that the vectors $\rho_{1}, \ldots, \rho_{n}$ determining Y are numbered in such a way that $\rho_{n}=w_{4}=$ $(0,1)$. Then the collection $\left\langle\mathcal{O}_{Y}, \mathcal{O}_{Y}\left(D_{1}\right), \mathcal{O}_{Y}\left(D_{1}+D_{2}\right), \ldots, \mathcal{O}_{Y}\left(D_{1}+\ldots+D_{n-1}\right)\right\rangle$ on Y is also full (see [26, Proposition 5.5]). The following lemma tells us that in fact the numeration of T-invariant divisors is not important.

Lemma 3.3.1. (cf. [9, Theorem 4.1]) Let $\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\rangle$ be a full exceptional collection on a smooth projective variety Z of dimension m. Then the n-fold mutation of \mathcal{E}_{n} to the left is $L^{n} \mathcal{E}_{n}=\mathcal{E}_{n} \otimes \omega_{Z}[m-n]$, where ω_{Z} is the canonical line bundle on Z.

Let $\sigma_{1}=\left\langle\mathcal{O}_{Y}, \mathcal{O}_{Y}\left(D_{1}\right), \mathcal{O}_{Y}\left(D_{1}+D_{2}\right), \ldots, \mathcal{O}_{Y}\left(D_{1}+\ldots+D_{n-1}\right)\right\rangle$ be a full exceptional collection on Y. Then, by the above lemma

$$
L^{n} \mathcal{O}_{Y}\left(D_{1}+\ldots+D_{n-1}\right)=\mathcal{O}_{Y}\left(-D_{n}\right)[2-n]
$$

Hence, σ_{1} can be mutated to a collection

$$
\left\langle\mathcal{O}_{Y}\left(-D_{n}\right)[2-n], \mathcal{O}_{Y}, \mathcal{O}_{Y}\left(D_{1}\right), \mathcal{O}_{Y}\left(D_{1}+D_{2}\right), \ldots, \mathcal{O}_{Y}\left(D_{1}+\ldots+D_{n-2}\right)\right\rangle
$$

which, in turn, after a shift and a twist by $\mathcal{O}_{Y}\left(D_{n}\right)$ is equivalent to the collection

$$
\sigma_{n}=\left\langle\mathcal{O}_{Y}, \mathcal{O}_{Y}\left(D_{n}\right), \mathcal{O}_{Y}\left(D_{n}+D_{1}\right), \ldots, \mathcal{O}_{Y}\left(D_{n}+D_{1}+\ldots+D_{n-2}\right)\right\rangle
$$

One can repeat this operation and obtain full exceptional collections

$$
\sigma_{i}=\left\langle\mathcal{O}_{Y}, \mathcal{O}_{Y}\left(D_{i}\right), \ldots, \mathcal{O}_{Y}\left(D_{i}+\ldots+D_{i+n-2}\right)\right\rangle
$$

for any $i \in \mathbb{Z} / n$.

3.3.3 Canonical DG algebra of a toric surface

Let $Z=\operatorname{Tot} \omega_{Y}$ be the total space of the canonical bundle on Y and let $p: Z \rightarrow Y$ denote the canonical projection. As the vector bundle

$$
\mathcal{E}=\mathcal{O}_{Y} \oplus \mathcal{O}_{Y}\left(D_{1}\right) \oplus \ldots \oplus \mathcal{O}_{Y}\left(D_{1}+\ldots+D_{n-1}\right)
$$

is a generator of $D^{b}(Y)$, we know that $p^{*}(\mathcal{E})$ is a generator of $D^{b}(Z)$. Moreover,

$$
\begin{aligned}
& \operatorname{Hom}_{Z}\left(p^{*}(\mathcal{E}), p^{*}(\mathcal{E})\right)=\operatorname{Hom}_{Y}\left(\mathcal{E}, p_{*} p^{*}(\mathcal{E})\right)= \\
& =\operatorname{Hom}_{Y}\left(\mathcal{E}, \mathcal{E} \otimes p_{*}\left(\mathcal{O}_{Z}\right)\right)=\bigoplus_{n \geq 0} \operatorname{Hom}_{Y}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{O}_{Y}\left(-n K_{Y}\right)\right)
\end{aligned}
$$

On Y we can consider an infinite sequence $\left(A_{l}\right)_{l=0}^{\infty}$ of line bundles

$$
A_{s n+r}=\mathcal{O}\left(s K_{Y}+D_{1}+\ldots+D_{r}\right), \quad \text { for } 0 \leq r<n
$$

Denote by $\mathcal{A}_{Y}=\bigoplus A_{k}$ the sum of all elements in this sequence. It is proved in [59, Lemma 5.1] that the DG enhancement of $\operatorname{Hom}^{\bullet}\left(\mathcal{A}_{Y}, \mathcal{A}_{Y}\right)$ can be calculated via the Čech enhancement. It follows that the DG enhancement of $\operatorname{Hom}_{Z}\left(p^{*}(\mathcal{E}), p^{*}(\mathcal{E})\right)$ is the same as the DG enhancement of $\operatorname{Hom}_{Y}\left(\mathcal{A}_{Y}, \mathcal{A}_{Y}\right)$.

Exceptional collection $\left\langle\mathcal{O}_{Y}, \mathcal{O}_{Y}\left(D_{1}\right), \ldots, \mathcal{O}_{Y}\left(D_{1}+\ldots+D_{n-1}\right)\right\rangle$ can be mutated to a collection of the form described in Section 3.2 and hence the DG algebra of endomorphisms of $\bigoplus_{l=0}^{n-1} A_{l}$ can be calculated by universal coextensions. Lemma 3.3.1 guarantees that up to shifts the remaining elements of the sequence $\left(A_{k}\right)$ are obtained by mutations from A_{0}, \ldots, A_{n-1}. Therefore, twisted complexes allow to calculate the DG endomorphism algebra of $\operatorname{Hom}\left(\mathcal{A}_{Y}, \mathcal{A}_{Y}\right)$, the canonical $D G$ algebra of Y.

The composition provides a natural map

$$
\operatorname{Hom}\left(A_{i_{l-1}}, A_{i_{l}}\right) \otimes_{k} \ldots \otimes_{k} \operatorname{Hom}\left(A_{i_{1}}, A_{i_{2}}\right) \xrightarrow{\Psi_{i_{1}, \ldots, i_{k}}} \operatorname{Hom}\left(A_{i_{1}}, A_{i_{l}}\right)
$$

and an analogous one for elements of $\operatorname{Ext}^{1}\left(A_{i_{1}}, A_{i_{l}}\right)$. If there exists $K \in \mathbb{N}$ such that for any i, j any element of $\operatorname{Hom}\left(A_{i}, A_{j}\right)$ or $\operatorname{Ext}^{1}\left(A_{i}, A_{j}\right)$ is in the image of some $\Psi_{i_{1}, \ldots, i_{l}}$ such that $i_{s+1}-i_{s}<K$ for all $s \in\{1, \ldots, k-1\}$ then the canonical DG algebra of Y can be presented as a path algebra of a cyclic DG quiver with K vertices.

If one can choose K to be the number n of T-invariant divisors of Y then the DG quivers Q_{i} 's of exceptional collections σ_{i} can be read from the canonical DG quiver Q of Y

$$
\begin{aligned}
& \left(Q_{i}\right)_{0}=\left(Q_{Y}\right)_{0}, \\
& \left(Q_{i}\right)_{1}=\left(Q_{Y}\right)_{1} \backslash\left\{a \in\left(Q_{Y}\right)_{1} \mid t(a)>i-1>h(a)\right\}
\end{aligned}
$$

and the canonical DG quiver Q is obtained by glueing of the DG quivers Q_{i}.
Remark 3.3.2. The canonical DG algebra of \mathbb{F}_{3} cannot be presented as a path algebra of such a quiver, i.e. in this case $K>4$. If, as before, we consider the fan of \mathbb{F}_{3} with $w_{1}=(1,0), w_{2}=(0,-1), w_{3}=(-1,3)$ and $w_{4}=(0,1)$ then the map $\phi: \mathcal{O}_{\mathbb{F}_{3}}\left(D_{1}+D_{2}\right) \rightarrow$ $\mathcal{O}_{\mathbb{F}_{3}}\left(2 D_{1}+2 D_{2}+2 D_{3}+D_{4}\right)$ with zeroes along $2 D_{2}$ is not a non-trivial composition of any maps between line bundles.

3.3.4 Examples

We conclude with some examples of canonical DG quivers of toric surfaces.
The canonical DG algebra of \mathbb{F}_{1} is a path algebra of the quiver

with relations

$$
\begin{array}{lll}
c_{0} a_{1}=c_{1} a_{2}, & d_{1} c_{0}=d_{2} c_{1}, & d_{1} b a_{2}=d_{2} b a_{1}, \\
a_{1} e d_{2}=a_{2} e d_{1}, & a_{1} f=g d_{1}, & a_{2} f=g d_{2}, \\
b a_{1} e=c_{1} g, & b a_{2} e=c_{0} g, & f c_{0}=e d_{2} b, \\
f c_{1}=e d_{1} b . &
\end{array}
$$

The canonical DG algebra of \mathbb{F}_{2}, with intersection numbers $(0,2,0,-2)$, is a path algebra of the following DG quiver

with

$$
\begin{array}{llll}
\operatorname{deg}\left(a_{1}\right)=0, & \operatorname{deg}\left(a_{2}\right)=0, & \operatorname{deg}(b)=0, & \operatorname{deg}\left(c_{0}\right)=0, \\
\operatorname{deg}\left(c_{1}\right)=0, & \operatorname{deg}\left(c_{2}\right)=0, & \operatorname{deg}\left(d_{1}\right)=0, & \operatorname{deg}\left(d_{2}\right)=0, \\
\operatorname{deg}(e)=0, & \operatorname{deg}(f)=1, & \operatorname{deg}\left(g_{1}\right)=-1, & \operatorname{deg}\left(g_{2}\right)=-1, \\
\operatorname{deg}\left(h_{1}\right)=0, & \operatorname{deg}\left(h_{2}\right)=0, & \operatorname{deg}\left(j_{1}\right)=0, & \operatorname{deg}\left(j_{2}\right)=0, \\
& & \\
\partial\left(g_{1}\right)=d_{2} c_{1}-d_{1} c_{0}, & \partial\left(g_{2}\right)=d_{2} c_{2}-d_{1} c_{1}, & \partial\left(h_{1}\right)=a_{1} f, \\
\partial\left(h_{2}\right)=a_{2} f, & \partial\left(j_{1}\right)=f d_{1}, & \partial\left(j_{2}\right)=f d_{2}
\end{array}
$$

and relations

$$
\begin{array}{llll}
c_{0} a_{1}=c_{1} a_{2}, & c_{1} a_{1}=c_{2} a_{2}, & d_{1} b a_{2}=d_{2} b a_{1}, & c_{1} h_{2}=c_{0} h_{1}+b a_{2} e, \\
c_{2} h_{2}=c_{1} h_{1}+b a_{1} e, & a_{1} j_{2}=a_{2} j_{1}, & h_{1} d_{2}=h_{2} d_{1}, & a_{1} e d_{2}=a_{2} e d_{1}, \\
a_{1} f d_{2}=a_{2} f d_{1}, & f d_{1} c_{0}=f d_{2} c_{1}, & f d_{1} c_{1}=f d_{2} c_{2}, & f g_{1}=e d_{2} b, \\
f g_{2}=e d_{1} b, & j_{1} c_{0}=j_{2} c_{1}, & j_{1} c_{1}=j_{2} c_{1}, & a_{1} j_{1}=0, \\
a_{2} j_{2}=0, & h_{1} d_{1}=0, & h_{2} d_{2}=0 . &
\end{array}
$$

If we blow up \mathbb{F}_{1} in such a way that the obtained toric surface Y_{1} has intersection numbers $(-1,-1,0,0,-1)$ then the canonical algebra of Y_{1} is a path algebra of the following quiver

with relations

$$
\begin{array}{llll}
g b=e d a, & h d=f g, & h c b=f e c a, & k g=j h c, \\
k e d=j f e c, & b k=l f, & b j h=e j f e, & l h=a k e, \\
l f e=b k e, & d l=c b j, & b k=l f, & d a k=c a j f, \\
g l=e c a j . & &
\end{array}
$$

If we blow up \mathbb{F}_{1} in another point, to obtain Y_{2} with intersection numbers $(0,1,-1,-1,-2)$, then the canonical DG algebra is a path algebra of the following DG quiver:

with

$$
\begin{array}{clll}
\operatorname{deg}(a)=0, & \operatorname{deg}(b)=0, & \operatorname{deg}(c)=0, & \operatorname{deg}(d)=0, \\
\operatorname{deg}(e)=0, & \operatorname{deg}(f)=0, & \operatorname{deg}(g)=0, & \operatorname{deg}(h)=0, \\
\operatorname{deg}(i)=0, & \operatorname{deg}\left(k_{1}\right)=1, & \operatorname{deg}\left(k_{2}\right)=0, & \operatorname{deg}\left(l_{1}\right)=0, \\
\operatorname{deg}\left(l_{2}\right)=0, & \operatorname{deg}(m)=0, & \operatorname{deg}(r)=0, & \operatorname{deg}\left(s_{1}\right)=-1, \\
\operatorname{deg}\left(s_{2}\right)=-1, & & \partial(m)=k_{1} g, \\
& & \\
\partial\left(l_{1}\right)=b k_{1}, & \partial\left(l_{2}\right)=b k_{2}, & \partial\left(s_{2}\right)=h d-g f e \\
\partial(r)=k_{1} h, & \partial\left(s_{1}\right)=h e-g i,
\end{array}
$$

and relations

$$
\begin{array}{llll}
e b=d a, & i b=f e a, & g f c a=h c b, & e l_{1}=c b k_{2}+d l_{2}, \\
i l_{1}=f e l_{2}+f c a k_{2}, & l_{1} g=b m, & l_{2} g=a m, & a r=l_{2} h, \\
a m f=b r, & b k_{2} h=a k_{2} g f, & b k_{1} h=a k_{1} g f, & k_{1} s_{1}=k_{2} h c, \\
k_{1} s_{2}=k_{2} g f c . & &
\end{array}
$$

Chapter 4

Birational morphisms of surfaces and derived categories

In the first part of Chapter 3 we focused on the category

$$
\mathcal{C}_{f}=\left\{E \in \mathcal{D}^{b}(X) \mid R f_{*}(\mathcal{E})=0\right\} \subset \mathcal{D}^{b}(X)
$$

defined for a morphism $f: X \rightarrow X_{0}$ from a smooth rational surface to its minimal model. In this chapter we define two t-structures on the category \mathcal{C}_{f} and describe the relation between the category \mathcal{C}_{f} and discrepancy of f.

First, we notice that \mathcal{C}_{f} is well defined for any birational morphism of smooth projective surfaces. Thus we no longer assume that X is rational and we consider any birational morphism $f: X \rightarrow Y$ between smooth projective surfaces.

In Section 3.2 we described how the category \mathcal{C}_{f} depends on the exceptional divisor of f. Theorem 4.4.4 shows that all objects of \mathcal{C}_{f} are scheme-theoretically supported on the discrepancy divisor of f. Moreover, $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ has a structure of a highest weight category with duality (see Proposition 4.5.4).

To prove Theorem 4.4.4 we use t-structures on \mathcal{C}_{f} given by tilting generators of \mathcal{C}_{f} constructed by universal extensions and coextensions. Therefore, in Section 4.1 we recall definitions of t-structures and tilting after [4]. We also give after [56] definitions of highest weight categories.

In Section 4.2 we define \mathcal{C}_{f} and give its basic properties. Then in Section 4.3 we describe three natural t-structures on \mathcal{C}_{f}. In Section 4.4 we use one of these t-structures to prove Theorem 4.4.4. In Section 4.5 we show that two of the three t-structures on \mathcal{C}_{f} coincide. We describe simple objects in the heart of the non-standard t-structure in Section 4.5.1.

$4.1 t$-structures, tilting and highest weight categories

In this section we recall some definitions after [4].
Definition 4.1.1. A semi-orthogonal decomposition of a triangulated category \mathcal{T} is a family of full triangulated subcategories $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ of \mathcal{T} such that

- if $i>j$ then $\operatorname{Hom}_{\mathcal{T}}\left(T_{i}, T_{j}\right)=0$ for any $T_{i} \in \mathcal{T}_{i}$ and $T_{j} \in \mathcal{T}_{j}$.
- Any object $T \in \mathcal{T}$ has a filtration $0=T_{n} \rightarrow T_{n-1} \rightarrow \ldots \rightarrow T_{0}=T$ such that a cone of the map $T_{i} \rightarrow T_{i-1}$ is an element of \mathcal{T}_{i}.

Semi-orthogonal decompositions generalise the notion of full exceptional collections. Any full exceptional collection $\left\langle E_{1}, \ldots, E_{n}\right\rangle$ in \mathcal{T} gives a semi-orthogonal decomposition with $\mathcal{T}_{i}=\left\langle E_{i}\right\rangle \simeq \mathcal{D}^{b}(k)$.

Definition 4.1.2. A t-structure on a triangulated category \mathcal{T} consists of two strictly full triangulated subcategories $\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 1}$ such that

- $\mathcal{T}^{\leq 0}[1] \subset \mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 1}[-1] \subset \mathcal{T}^{\geq 1}$. We denote those categories by $\mathcal{T}^{\leq-1}=\mathcal{T}^{\leq 0}[1]$, $\mathcal{T}^{\geq 2}=\mathcal{T}^{\geq 1}[-1]$.
- $\operatorname{Hom}_{\mathcal{T}}\left(\mathcal{T}^{\geq 1}, \mathcal{T}^{\leq 0}\right)=0$.
- any object $T \in \mathcal{T}$ fits into a distinguished triangle

$$
T^{-} \rightarrow T \rightarrow T^{+} \rightarrow T^{-}[1]
$$

with $T^{+} \in \mathcal{T}^{\geq 1}$ and $T^{-} \in \mathcal{T}^{\leq 0}$.
The category $\mathcal{A}=\mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$ is an abelian category and is called a heart a the t-structure. Short exact sequences in \mathcal{A} are distinguished triangles in \mathcal{T} with all objects contained in \mathcal{A}.

For any $T \in \mathcal{T}$ objects T^{+}and T^{-}are determined uniquely. In fact, there exist functors $\tau_{\leq 0}: \mathcal{T} \rightarrow \mathcal{T}^{\leq 0}$ and $\tau_{\geq 1}: \mathcal{T} \rightarrow \mathcal{T}^{\geq 1}$ such that $\tau_{\leq 0}(T)=T^{-}$and $\tau_{\geq 1}(T)=T^{+}$. More generally, we can define functors $\tau_{\leq n}: \mathcal{T} \rightarrow \mathcal{T}^{\leq n}$ and $\tau_{\geq n}: \mathcal{T} \rightarrow \mathcal{T}^{\geq n}$. The functor $\tau_{\leq n} \tau_{\geq n}: \mathcal{T} \rightarrow \mathcal{A}[-n]$ is a cohomology functor on \mathcal{T} with respect to the given t-structure. We will denote in by $H_{\mathcal{A}}^{n}$.

A t-structure is bounded if every object $T \in \mathcal{T}$ lies in $\mathcal{T}^{\leq n} \cap \mathcal{T}^{\geq m}$ for some m, n. Recall the following [15, Lemma 3.2].

Lemma 4.1.3. An abelian subcategory $\mathcal{A} \subset \mathcal{T}$ of a triangulated category is a heart of a bounded t-structure if and only if

- $\operatorname{Hom}_{\mathcal{T}}\left(A_{1}\left[k_{1}\right], A_{2}\left[k_{2}\right]\right)=0$ for any $A_{1}, A_{2} \in \mathcal{A}$ and $k_{1}>k_{2}$.
- For any non-zero $T \in \mathcal{T}$ there exist $k_{1}>k_{2}>\ldots>k_{n}$ and maps $0=T_{0} \rightarrow T_{1} \rightarrow$ $\ldots \rightarrow T_{n-1} \rightarrow T_{n}=T$ such that a cone of $T_{i} \rightarrow T_{i-1}$ is an element of $\mathcal{A}\left[k_{i}\right]$.

The first example of a t-structure on a triangulated category \mathcal{T} occurs in the case when \mathcal{T} is the derived category of an abelian category \mathcal{A}. Then $\mathcal{D}(A)^{\leq 0}$ is the full subcategory of objects whose cohomology is concentrated in degrees less or equal to zero. Similarly, $\mathcal{D}(A)^{\geq 1}$ is the full subcategory of objects whose cohomology is concentrated in degrees greater than zero. This defines the so called, standard t-structure on $\mathcal{D}(\mathcal{A})$. Its heart is equivalent to \mathcal{A}. If \mathcal{T} is a bounded derived category of some abelian category \mathcal{A} then the standard t-structure on \mathcal{T} is also bounded.

This example allows us to construct a t-structure from an equivalence $\mathcal{T} \simeq \mathcal{D}(\mathcal{A})$ for some abelian category \mathcal{A}. In particular, if \mathscr{E} is a tilting object on a smooth projective variety X then the equivalence $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(\operatorname{Mod}-\operatorname{End}(\mathscr{E}))$) defines a new t-structure on $\mathcal{D}^{b}(X)$.

The following lemma proves to be very useful when comparing two t-structures on a triangulated category.

Lemma 4.1.4. Let \mathcal{A}, \mathcal{B} be abelian subcategories of a triangulated category \mathcal{C} such that both are hearts of bounded t-structures and $\mathcal{A} \subset \mathcal{B}$. Then $\mathcal{A}=\mathcal{B}$.

Proof. By Lemma 4.1.3 if an abelian subcategory $\mathcal{A} \subset \mathcal{C}$ is a heart of a bounded t-structure $\left(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0}\right)$ the every object $C \in \mathcal{C}$ admits a sequence of maps

$$
0=C_{0} \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{n-1} \rightarrow C_{n}=C
$$

such that the cone A_{i} of the map $C_{i-1} \rightarrow C_{i}$ lies in $\mathcal{A}\left[l_{i}\right]$ and $l_{1}>l_{2}>\ldots>l_{n}$. Moreover, such a sequence is unique. Then also $\mathcal{C}^{\leq 0}=\left\{C \mid l_{1} \leq 0\right\}$ and $\mathcal{C}^{\geq 0}=\left\{C \mid l_{n} \geq 0\right\}$.

Let $C \in \mathcal{C}$ be an object in $\mathcal{C}^{\leq \mathcal{A}^{0}}$. Then the objects $A_{i} \in \mathcal{A}\left[l_{i}\right] \subset \mathcal{B}\left[l_{i}\right]$ and $l_{1} \leq 0$. It follows that C is also an object of $\mathcal{C}^{\leq}{ }_{\mathcal{B} 0}$. A similar argument shows that $\mathcal{C}^{\geq_{\mathcal{A}}-1} \subset \mathcal{C}^{\geq_{\mathcal{B}}-1}$. Then ${ }^{\perp}\left(\mathcal{C}^{\geq_{\mathcal{B}}-1}\right)=\mathcal{C}^{\leq_{\mathcal{B}} 0} \subset \mathcal{C}^{\leq_{\mathcal{A}} 0}={ }^{\perp}\left(\mathcal{C}^{\geq_{\mathcal{A}}-1}\right)$. It follows that $\mathcal{C}^{\leq_{\mathcal{A}} 0}=\mathcal{C}^{\leq_{\mathcal{B}} 0}$ and hence the two t-structures in question are equal.

From a t-structure on \mathcal{T} and a torsion pair on its heart \mathcal{A} we can construct a new t-structure on \mathcal{T}.

Definition 4.1.5. A torsion pair on an abelian category \mathcal{A} is a pair of additive subcategories $\mathfrak{F}, \mathfrak{T} \subset \mathcal{A}$ such that

- $\operatorname{Hom}(\mathfrak{T}, \mathfrak{F})=0$.
- For any $A \in \mathcal{A}$ there exists a short exact sequence

$$
0 \rightarrow T \rightarrow A \rightarrow F \rightarrow 0
$$

in \mathcal{A} with $T \in \mathfrak{T}$ and $F \in \mathfrak{F}$.

A torsion pair $(\mathfrak{T}, \mathfrak{F})$ on a heart \mathcal{A} of a bounded t-structure on \mathcal{T} allows to define a new t-structure on \mathcal{T} with a heart

$$
\mathcal{A}^{\sharp}=\left\{E \in \mathcal{T} \mid H_{\mathcal{A}}^{0}(E) \in \mathfrak{T}, H_{\mathcal{A}}^{-1}(E) \in \mathfrak{F}\right\} .
$$

Then a t-structure with heart \mathcal{A}^{\sharp} is called a tilt of t-structure with heart \mathcal{A}.
If a triangulated category \mathcal{T} has a semi-orthogonal decomposition $\mathcal{T}=\langle\mathcal{S}, \mathcal{R}\rangle$ then sometimes t-structures on \mathcal{S} and \mathcal{R} can be glued to give a t-structure on \mathcal{T}.

Definition 4.1.6. Let $\mathcal{T}, \mathcal{S}, \mathcal{R}$ be triangulated categories. The category \mathcal{T} admits recollement relative to \mathcal{S} and \mathcal{R} if there exist exact functors $i_{*}=i_{!}: \mathcal{S} \rightarrow \mathcal{T}, j^{*}=$ $j^{!}: \mathcal{T} \rightarrow \mathcal{R}, i^{*}, i^{!}: \mathcal{T} \rightarrow \mathcal{S}$ and $j_{!}, j_{*}: \mathcal{R} \rightarrow \mathcal{T}$ such that

- ($\left.i^{*} \dashv i_{*}=i_{!} \dashv i^{!}\right)$and $\left(j_{!} \dashv j^{!}=j^{*} \dashv j_{*}\right)$, where $i^{*} \dashv i_{*}$ means that i^{*} is left adjoint to i_{*}.
- The composition $i!j_{*}=0$.
- Functors $i_{*}, j_{!}, j_{*}$ are full embeddings and thus $i^{*} i_{*} \simeq i d_{\mathcal{S}} \simeq i^{!} i_{*}$ and $j^{*} j_{!} \simeq i d_{\mathcal{R}} \simeq$ $j^{*}{ }^{\text {! }}$.
- for any object $T \in \mathcal{T}$ triangles

$$
\begin{aligned}
& i_{!} i^{*} T \rightarrow T \rightarrow j_{*} j^{*} T \rightarrow i_{!} i^{*} T[1] \\
& j_{!} j^{!} T \rightarrow T \rightarrow i_{*} i^{*} T \rightarrow j_{!} j^{!} T[1]
\end{aligned}
$$

are exact.
We denote such a recollement by

$$
\mathcal{S} \leftrightarrows \mathcal{T} \rightleftarrows \mathcal{R}
$$

Proposition 4.1.7. ([4, Theorem 1.4.10]) Suppose that \mathcal{T} admits a recollement $\mathcal{S} \leftrightarrows \mathcal{T} \leftrightarrows \mathcal{R}$. Then t-structures $\left(\mathcal{S}^{\leq 0}, \mathcal{S}^{\geq 1}\right)$, $\left(\mathcal{R}^{\leq 0}, \mathcal{R}^{\geq 1}\right)$ induce a t-structure on \mathcal{T} with

$$
\begin{aligned}
& \mathcal{T}^{\leq 0}=\left\{T \in \mathcal{T} \mid j^{*}(T) \in \mathcal{R}^{\leq 0}, i^{*}(T) \in \mathcal{S}^{\leq 0}\right\}, \\
& \mathcal{T}^{\geq 1}=\left\{T \in \mathcal{T} \mid j^{!}(T) \in \mathcal{R}^{\geq 1}, i^{!}(T) \in \mathcal{S}^{\geq 1}\right\}
\end{aligned}
$$

We will also need the following definitions (see [56]).
A k-linear abelian category \mathcal{A} is locally artinian if \mathcal{A} admits arbitrary unions of subobjects and if every object in \mathcal{A} is an union of its subobjects of finite length. Moreover, we require that the category \mathcal{A} has enough injectives and $B \cap\left(\bigcup_{\alpha} A_{\alpha}\right)=\bigcup_{\alpha}\left(B \cap A_{\alpha}\right)$ for all subobjects B and all family of objects $\left\{A_{\alpha}\right\}$ of each object A.

A poset Λ is locally finite if the set $[\lambda, \mu]=\{\tau \mid \lambda \leq \tau \leq \mu\}$ are finite for any pair $\lambda, \mu \in \Lambda$.

Definition 4.1.8. A highest weight category is a locally artinian abelian category \mathcal{A} such that there exists a locally finite poset Λ (the poset of weights) satisfying the following conditions

- There is a complete collection $\{S(\lambda)\}_{\lambda \in \Lambda}$ of isomorphism classes of simple object in \mathcal{A}.
- There is a collection $\{\Delta(\lambda)\}$ of standard objects of \mathcal{A} and a surjection $\Delta(\lambda) \rightarrow S(\lambda)$ such that all composition factors $S(\mu)$ of the kernel satisfy $\mu<\lambda$.
- The projective cover $P(\lambda)$ of $S(\lambda)$ admits a surjection to $\Delta(\lambda)$. The kernel of this surjection has a filtration with quotients $\Delta(\mu)$ for $\mu>\lambda$ and such that every $\Delta(\mu)$ appears in this filtration only finitely many times.

The motivating example for considering highest weight categories is the category \mathcal{O} introduced in [5] (see also [28]). Therefore, standard modules in the above definition are sometimes called Verma modules. Another class of examples is given by categories of modules over quasi-hereditary algebras as defined in Section 2.3.2.

Following [29, Section 2] we say that a highest weight category \mathcal{A} has a duality if there exists an antiequivalence \mathcal{D} of \mathcal{A} such that \mathcal{D}^{2} is equivalent to $\operatorname{id}_{\mathcal{A}}$ and $\mathcal{D}(S(\lambda)) \simeq S(\lambda)$ for any $\lambda \in \Lambda$.

4.2 Category \mathcal{C}_{f}

Section 3 focuses on smooth rational surfaces. However, Sections 3.2.1-3.2.4 deal only an arbitrary birational morphism between smooth surfaces.

Let $f: X \rightarrow Y$ be such a morphism. f can be decomposed into a sequence of blow-ups of single points

$$
X=X_{n} \xrightarrow{f_{n}} X_{n-1} \rightarrow \ldots \rightarrow X_{1} \xrightarrow{f_{1}} X_{0}=Y .
$$

For simplicity, we denote by π_{j} the composition $f_{j+1} \circ \ldots \circ f_{n}: X \rightarrow X_{j}$.
In this case $R^{\bullet} f_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$ and by the projection formula the functor $L^{\cdot} f^{*}: \mathcal{D}^{b}(Y) \rightarrow$ $\mathcal{D}^{b}(X)$ is fully faithful,

$$
\begin{aligned}
& \operatorname{Hom}_{X}\left(L^{\bullet} f^{*} \mathcal{E}, L^{*} f^{*} \mathcal{F}\right)=\operatorname{Hom}_{Y}\left(\mathcal{E}, R^{\bullet} f_{*}\left(L^{*} f^{*}(\mathcal{F})\right)\right)= \\
& =\operatorname{Hom}_{Y}\left(\mathcal{E}, R^{\bullet} f_{*}\left(\mathcal{O}_{X}\right) \otimes^{L} \mathcal{F}\right)=\operatorname{Hom}_{Y}(\mathcal{E}, \mathcal{F})
\end{aligned}
$$

Therefore we have semi-orthogonal decompositions

$$
\mathcal{D}^{b}(X)=\left\langle\mathcal{C}_{f}, \mathcal{D}^{b}(Y)\right\rangle, \quad \mathcal{D}^{b}(X)=\left\langle\mathcal{D}^{b}(Y), \mathcal{D}_{f}\right\rangle
$$

where

$$
\mathcal{C}_{f}=\left\{\mathcal{E} \in \mathcal{D}^{b}(X) \mid \operatorname{Hom}\left(L^{\cdot} f^{*} \mathcal{F}, \mathcal{E}\right)=0 \forall \mathcal{F} \in \mathcal{D}^{b}(Y)\right\}=\left\{\mathcal{E} \in \mathcal{D}^{b}(X) \mid R^{\cdot} f_{*}(\mathcal{E})=0\right\}
$$

and

$$
\mathcal{D}_{f}=\left\{\mathcal{E} \in \mathcal{D}^{b}(X) \mid \operatorname{Hom}\left(\mathcal{E}, L^{\bullet} f^{*} \mathcal{F}\right)=0 \forall \mathcal{F} \in \mathcal{D}^{b}(Y)\right\}
$$

With the notation from Section $3,\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$ is a full exceptional collection in \mathcal{C}_{f}. Its Ext-quiver is described in Section 3.2.1.

Remark 4.2.1. A_{∞}-structure on this Ext-quiver does not have to be trivial. The first example when a non-zero higher multiplication appears is in the case when the exceptional divisor of f has four irreducible components intersecting as

$$
E_{1}-E_{3}-E_{4}-E_{2} .
$$

In this case

$$
\begin{array}{ll}
R_{1}=E_{1}+E_{2}+2 E_{3}+3 E_{4}, & R_{3}=E_{3}+E_{4} \\
R_{2}=E_{2}+E_{3}+2 E_{4}, & R_{4}=E_{4},
\end{array}
$$

and the operation

$$
\begin{aligned}
& m_{3}: \operatorname{Hom}\left(\mathcal{O}_{R_{2}}\left(R_{2}\right), \mathcal{O}_{R_{1}}\left(R_{1}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{3}}\left(R_{3}\right), \mathcal{O}_{R_{2}}\left(R_{2}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{4}}\left(R_{4}\right), \mathcal{O}_{R_{3}}\left(R_{3}\right)\right) \rightarrow \\
& \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{4}}\left(R_{4}\right), \mathcal{O}_{R_{1}}\left(R_{1}\right)\right)
\end{aligned}
$$

is non-zero in any A_{∞}-category A_{∞}-quasi-isomorphic to the Ext-algebra of this collection.
The category \mathcal{D}_{f} is obtained from \mathcal{C}_{f} by mutation over $L^{\cdot} f^{*} \mathcal{D}^{b}(Y)$. Direct calculations show that the equivalence functor $\varphi: \mathcal{C}_{f} \rightarrow \mathcal{D}_{f}$ is given by $\varphi(\mathcal{E})=\mathcal{E} \otimes \omega_{X / Y}$, where $\omega_{X / Y}=\mathcal{O}\left(\sum R_{i}\right)$ is the relative canonical class.

$4.3 \quad t$-structures on \mathcal{C}_{f}

Results of Section 2.3.1 allow us to find two tilting objects in the category \mathcal{C}_{f}. Thus we have two hearts. By \mathcal{A}_{e} we denote the heart corresponding to a tilting generator obtained from $\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle$ by universal extensions. By $\mathcal{A}_{\text {coe }}$ we denote the heart given by the tilting object constructed from the above collection by universal coextensions.

By construction the tilting object obtained by universal extensions decomposes as a direct sum of n objects. Let us denote it by $\bigoplus_{i=1}^{n} \mathcal{P}_{i}$. Here, \mathcal{P}_{i} is obtained from $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ by universal extension by $\mathcal{O}_{R_{i-1}}\left(R_{i-1}\right), \mathcal{O}_{R_{i-2}}\left(R_{i-2}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)$. In particular,
$\mathcal{P}_{1}=\mathcal{O}_{R_{1}}\left(R_{1}\right)$. Thus \mathcal{P}_{i} are indecomposable projective objects in the abelian category \mathcal{A}_{e}.

In Section 3.2.7 we have seen that projective objects in $\mathcal{A}_{\text {coe }}$ are sheaves $\mathscr{D}_{l}=\mathcal{O}_{S_{l}}\left(S_{l}\right)$ for $S_{l}=\sum_{R_{i} \leq R_{l}} R_{i}$. Let us note that the decomposition of f into $X \xrightarrow{\pi_{l}} X_{l} \xrightarrow{h} Y$ shows that S_{k} is the relative canonical divisor for the map π_{l}.

Proposition 4.3.1. The category \mathcal{C}_{f} has two natural t-structures. The first t-structure is obtained from the exceptional collection by means of universal extensions and $\bigoplus \mathcal{P}_{i}$ is the projective object in its heart, \mathcal{A}_{e}. The second t-structure is obtained from this collection by universal coextensions and $\bigoplus \mathscr{D}_{i}$ is the projective object in its heart, $\mathcal{A}_{\text {coe }}$. The endomorphism algebras of $\bigoplus \mathcal{P}_{i}$ and $\bigoplus \mathscr{D}_{i}$ are Ringel dual quasi-hereditary algebras. Moreover, both t-structures are bounded.

Proof. We only need to check that the described t-structures are bounded. As the category \mathcal{C}_{f} is a subcategory of $\mathcal{D}^{b}(X)$, it is Ext-finite. It follows that for any $\mathcal{F} \in \mathcal{C}_{f}$ only finitely many of $\operatorname{Ext}^{i}\left(\bigoplus \mathcal{P}_{i}, \mathcal{F}\right)\left(\operatorname{or~}_{\operatorname{Ext}}{ }^{i}\left(\bigoplus \mathscr{D}_{i}, \mathcal{F}\right)\right)$ are non-zero and hence the induced t-structure is bounded.

Also by [14, Lemma 3.1] the standard t-structure on $\mathcal{D}^{b}(X)$ induces a t-structure on \mathcal{C}_{f}. We call it a standard t-structure and denote its heart by $\mathcal{A}_{\text {st }}=\operatorname{Coh}(X) \cap \mathcal{C}_{f}$.

4.4 Support of objects in the category \mathcal{C}_{f}

We show by induction that every object of $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is supported on a subscheme of the relative canonical divisor $K_{X / Y}=R_{1}+\ldots+R_{n}$.

Lemma 4.4.1. Let $f: X \rightarrow Y$ be a birational morphism of smooth surfaces and let $X \xrightarrow{h} Z \xrightarrow{g} Y$ be its factorization with $g: Z \rightarrow Y$ a blow up of a single point. Then there is a recollement of the form

$$
\mathcal{C}_{h} \rightarrow \mathcal{C}_{f} \xrightarrow{R h_{*}} \mathcal{C}_{g}
$$

and the t-structure with heart \mathcal{A}_{e} is glued from the corresponding t-structures on \mathcal{C}_{h} and \mathcal{C}_{g}.

Proof. The t-structure on \mathcal{C}_{f} glued from $\operatorname{Coh}(X) \cap \mathcal{C}_{h}$ and $\operatorname{Coh}(Z) \cap \mathcal{C}_{g}$ is bounded and given by

$$
\begin{aligned}
& \mathcal{C}_{f}^{\leq 0}=\left\{E \in \mathcal{C}_{f} \mid R h_{*}(E) \in \mathcal{C}_{g}^{\leq 0}, \operatorname{Hom}\left(E, \mathcal{C}_{h}^{\geq 1}\right)=0\right\}, \\
& \mathcal{C}_{f}^{\geq 0}=\left\{E \in \mathcal{C}_{f} \mid R h_{*}(E) \in \mathcal{C}_{g}^{\geq 0}, \operatorname{Hom}\left(\mathcal{C}_{h}^{\geq-1}, E\right)=0\right\} .
\end{aligned}
$$

Let us denote, temporarily, the heart of this t-structure by \mathcal{C}_{f}^{0}. Then $\operatorname{Coh}(X) \cap \mathcal{C}_{h} \subset \mathcal{C}_{f}^{0}$. Also we have $\mathcal{O}_{R_{1}}\left(R_{1}\right)=L h^{*}\left(\mathcal{O}_{E_{1}}\left(E_{1}\right)\right) \in \mathcal{C}_{f}^{0}$. The first condition, $R h_{*}\left(\mathcal{O}_{R_{1}}\left(R_{1}\right)\right) \in$
$\operatorname{Coh}(Z)$, is satisfied because of the projection formula. The necessary Hom's vanish because $\mathcal{O}_{R_{1}}\left(R_{1}\right)$ is a sheaf on X. Hence, $\mathcal{O}_{R_{1}}\left(R_{1}\right) \in \mathcal{C}_{f}^{0}$.

The simple objects $\mathcal{O}_{E_{2}}\left(R_{2}\right), \ldots, \mathcal{O}_{E_{n}}\left(R_{n}\right) \in \operatorname{Coh}(X) \cap \mathcal{C}_{h} \subset \mathcal{C}_{f}^{0}$ by the induction assumption. By Lemma 3.1.3 we have a short exact sequence

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{O}_{R_{1}}\left(R_{1}\right) \rightarrow \mathcal{O}_{E_{1}}\left(R_{1}\right) \rightarrow 0
$$

with $\mathcal{K} \in \mathcal{C}_{h}$ and hence $R h_{*}\left(\mathcal{O}_{E_{1}}\left(R_{1}\right)\right)=\mathcal{O}_{E_{1}}\left(E_{1}\right)$. Also, $\mathcal{O}_{E_{1}}\left(E_{1}\right)$ is a sheaf on X which makes all the Hom's spaces in the definition of the heart \mathcal{C}_{f}^{0} vanish. It proves that $\mathcal{O}_{E_{1}}\left(R_{1}\right) \in \mathcal{C}_{f}^{0}$.

Thus objects $\mathcal{O}_{E_{1}}\left(R_{1}\right), \ldots, \mathcal{O}_{E_{n}}\left(R_{n}\right) \in \mathcal{C}_{f}^{0}$ and it follows that $\operatorname{Coh}(X) \cap \mathcal{C}_{f} \subset \mathcal{C}_{f}^{0}$. As both are hearts of bounded t-structures we conclude by Lemma 4.1.4.

Recall that a scheme theoretic support of a coherent sheaf F on X is the smallest closed subscheme $i: Z \rightarrow X$ such that there exists a coherent sheaf G on Z with $i_{*}(G)=F$. If X is affine then Z is the zero locus of $\operatorname{Ann}(M)$ where $F=M^{\sim}$ (see [60, Lemma 28.5.4]).

Proposition 4.4.2. Let $E \in \operatorname{Coh}(X) \cap \mathcal{C}_{f}$. Then the scheme theoretic support of E is a subscheme of $K_{X / Y}=R_{1}+\ldots+R_{n}$.

Proof. First, we notice that if E is a sheaf in \mathcal{C}_{f} then the support of E is of pure dimension one (because a direct image of a non-zero sheaf supported on a point is a non-zero sheaf supported on a point). Hence, the annihilator of E is of the form $\mathcal{O}(-D)$.

Now we proceed by induction. If f is a blow up of a single point then $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ consists of direct sums of $\mathcal{O}_{E_{1}}\left(E_{1}\right)$ and the support of every object is equal to $E_{1}=K_{X / Y}$.

For $f: X \rightarrow Y$ let $f: X \xrightarrow{h} Z \xrightarrow{g} Y$ be a factorization with $g: Z \rightarrow Y$ a blow up at a single point. Let us take $\mathcal{E} \in \operatorname{Coh}(X) \cap \mathcal{C}_{f}$. By the previous lemma there exists a distinguished triangle in \mathcal{C}_{f}

$$
L h^{*} R h_{*}(\mathcal{E}) \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow L h_{*} R h^{*}(\mathcal{E})[1],
$$

where $\mathcal{F} \in \mathcal{C}_{h}$ and $R h_{*}(\mathcal{E})$ is a direct sum of copies of $\mathcal{O}_{E_{1}}\left(E_{1}\right)$. The last observation follows from the fact that \mathcal{E} is an object of the glued heart. Hence $L h^{*}\left(\mathcal{O}_{E_{1}}\left(E_{1}\right)\right)=$ $h^{*}\left(\mathcal{O}_{E_{1}}\left(E_{1}\right)\right)=\mathcal{O}_{R_{1}}\left(R_{1}\right)$ and $L h^{*} R h_{*}(\mathcal{E})=h^{*} h_{*}(\mathcal{E})$. Taking cohomology sheaves of the above triangle we get an exact sequence of sheaves on X :

$$
0 \rightarrow \mathcal{H}^{-1}(\mathcal{F}) \rightarrow h^{*} h_{*}(\mathcal{E}) \rightarrow \mathcal{E} \rightarrow \mathcal{H}^{0}(\mathcal{F}) \rightarrow 0
$$

Both $\mathcal{H}^{-1}(\mathcal{F}), \mathcal{H}^{0}(\mathcal{F})$ are elements of $\operatorname{Coh}(X) \cap \mathcal{C}_{h}$ (because $\operatorname{Coh}(X) \cap \mathcal{C}_{h} \subset \operatorname{Coh}(X) \cap \mathcal{C}_{f}$ and the cohomology functors with respect to these two hearts coincide for objects in \mathcal{C}_{h}). Hence, by the induction assumption, the scheme theoretic support of $\mathcal{H}^{-1}(\mathcal{F})$ and $\mathcal{H}^{0}(\mathcal{F})$ is contained in $K_{X / Z}=R_{2}+\ldots+R_{n}$ and the scheme theoretic support of $h^{*} h_{*}(\mathcal{E})$ is equal to R_{1} (if $h_{*}(\mathcal{E})=0$ then $\mathcal{E} \in \mathcal{C}_{h}$ and there is nothing to prove).

Clearly, if

$$
M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is an exact sequence of A-modules then $\operatorname{Ann}\left(M_{1}\right) \cdot \operatorname{Ann}\left(M_{3}\right) \subset \operatorname{Ann}\left(M_{2}\right)$.
In our case $\operatorname{Ann}\left(h^{*} h_{*}(\mathcal{E})\right)=\mathcal{O}\left(-R_{1}\right), \operatorname{Ann}\left(\mathcal{H}^{0}(\mathcal{F})\right)=\mathcal{O}\left(-R_{2}-\ldots-R_{n}\right)$ and $\operatorname{Ann}(\mathcal{E})=$ $\mathcal{O}(-D)$ for some divisor D. For effective divisors D_{1} and D_{2} we have an equality $\mathcal{O}\left(-D_{1}\right)$. $\mathcal{O}\left(-D_{2}\right)=\mathcal{O}\left(-D_{1}\right) \otimes \mathcal{O}\left(-D_{2}\right)$ so from the fact that $\mathcal{O}\left(-R_{1}\right) \otimes \mathcal{O}\left(-R_{2}-\ldots-R_{n}\right) \subset$ $\mathcal{O}(-D)$ we conclude that $D \leq R_{1}+\ldots+R_{n}$.

Let $\iota: E_{f} \rightarrow X$ denote the inclusion of the non-reduced discrepancy divisor of f. By Proposition 4.4.2 for every object $F \in \operatorname{Coh}(X) \cap \mathcal{C}_{f}$ there exists $\mathcal{F} \in \operatorname{Coh}\left(E_{f}\right)$ such that $F=\iota_{*} \mathcal{F}$. Thus the functor $\iota^{*}: \operatorname{Coh}(X) \cap \mathcal{C}_{f} \rightarrow \operatorname{Coh}\left(E_{f}\right)$ gives a commutative diagram

Indeed, if $F \in \operatorname{Coh}(X) \cap \mathcal{C}_{f}$ then $\iota_{*} \iota^{*}(F)=\iota_{*} \iota^{*} \iota_{*}(\mathcal{F})=\iota_{*}(\mathcal{F})=F$ as $\iota^{*} \iota_{*}=\mathrm{id}$.
Proposition 4.4.3. Let \mathcal{E} be any element of \mathcal{C}_{f}. Then there exists $\widetilde{\mathcal{E}} \in \mathcal{D}^{b}\left(E_{f}\right)$ such that $\mathcal{E}=\iota_{*}(\widetilde{\mathcal{E}})$.

Proof. We know that \mathcal{C}_{f} is equivalent to a bounded derived category of $\mathcal{A}_{\text {coe }}$. This category has enough projectives and thus every object in \mathcal{C}_{f} can be represented by a complex of projective objects in $\mathcal{A}_{\text {coe }}$,

$$
\mathcal{E} \simeq\left\{0 \rightarrow P_{-n} \rightarrow \ldots \rightarrow P_{m} \rightarrow 0\right\} .
$$

Moreover, by Proposition 4.3.1 all projective objects in $\mathcal{A}_{\text {coe }}$ are supported on E_{f}, i.e. $P_{l}=\iota_{*} \widetilde{P}_{l}$ for some sheaf $\widetilde{P}_{l} \in \operatorname{Coh}\left(E_{f}\right)$. Therefore

$$
\operatorname{Hom}_{X}\left(\iota_{*} \widetilde{P}_{l}, \iota_{*} \widetilde{P}_{j}\right)=\operatorname{Hom}_{Z}\left(\widetilde{P}_{l}, \iota^{*} \iota_{*} \widetilde{P}_{j}\right)=\operatorname{Hom}_{Z}\left(\widetilde{P}_{l}, \widetilde{P}_{j}\right)
$$

Hence the homomorphisms between $\iota_{*} \widetilde{P}_{l}$'s have a unique lift to homomorphisms between \widetilde{P}_{l} 's. Thus a complex on X lifts to a complex on E_{f}.

If we define $\widetilde{\mathcal{E}}$ by a complex

$$
\left\{0 \rightarrow \widetilde{P}_{-n} \rightarrow \ldots \rightarrow \widetilde{P}_{m} \rightarrow 0\right\}
$$

then $\mathcal{E}=\iota_{*}(\widetilde{\mathcal{E}})$.
Theorem 4.4.4. Let $f: X \rightarrow Y$ be a birational morphism of smooth projective surfaces and let $E=\sum E_{i}$ be the exceptional divisor of f. It has a non-reduced scheme structure $\widetilde{E}=\sum a_{i} E_{i}$ given by the discrepancy of $f, K_{X}=f^{*} K_{Y}+\widetilde{E}$.

Let $\mathcal{C}_{f}=\left\{\mathcal{E} \in \mathcal{D}^{b}(X) \mid R^{*} f_{*}(\mathcal{E})=0\right\}$ be a full subcategory of $\mathcal{D}^{b}(X)$. Then $\mathcal{D}^{b}(X)$ has a semi-orthogonal decomposition, $\mathcal{D}^{b}(X)=\left\langle\mathcal{C}_{f}, L^{*} f^{*} \mathcal{D}^{b}(Y)\right\rangle$ and any object $\mathcal{E} \in \mathcal{C}_{f}$ is of the form $\iota_{*} \widetilde{\mathcal{E}}$ for some $\widetilde{\mathcal{E}} \in \mathcal{D}^{b}(\widetilde{E})$, where $\iota: \widetilde{E} \rightarrow X$ is the closed embedding.

Proof. In Section 4.2 we have proved that the functor $L^{\cdot} f^{*}: \mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ is fully faithful and gives the requested semi-orthogonal decomposition of $\mathcal{D}^{b}(X)$.

In Section 4.3 we constructed a titling object $\bigoplus \mathscr{D}_{i}$ in \mathcal{C}_{f}. By Proposition 4.3.1 \mathcal{C}_{f} is equivalent to the bounded derived category of $\mathcal{A}_{\text {coe }}$. Moreover, $\mathcal{A}_{\text {coe }}$ is equivalent to the category of finite dimensional modules over the endomorphism algebra of $\bigoplus \mathscr{D}_{i}$.

Finally, Proposition 4.4 .3 proves that every object in \mathcal{C}_{f} is supported on the discrepancy divisor of f.

4.5 Comparing the t-structures

Proposition 4.5.1. The t-structures with hearts $\mathcal{A}_{\text {st }}$ and $\mathcal{A}_{\text {coe }}$ are different.
Proof. Let us consider the case when $f: X \rightarrow Y$ is a composition of two blow ups. In Section 4.5.1 we shall see that in this case simple objects in $\mathcal{A}_{\text {coe }}$ are $\mathcal{O}_{E_{1}}\left(E_{1}+E_{2}\right)[1]$ and $\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+2 E_{2}\right)$.

In order to show that $\mathcal{A}_{e}=\mathcal{A}_{\text {st }}$ we use properties of perverse coherent sheaves introduced by Bridgeland in [14]. Let us recall after [14, Section 3] that for a morphism $f: X \rightarrow Y$ with fibers of dimensions at most one and such that $R^{*} f_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$ one can define a t-structure on $\mathcal{D}^{b}(X)$ which is glued from the standard t-structure on $\mathcal{D}^{b}(Y)$ and a t-structure on \mathcal{C}_{f} with heart $\mathcal{A}_{\text {st }}[p]$ for any $p \in \mathbb{Z}$. The heart of the new t-structure on $\mathcal{D}^{b}(X)$ is denoted by ${ }^{p} \operatorname{Per}(X / Y)$.

Let $Y=\operatorname{Spec}(R)$ with R a noetherian complete local ring with maximal ideal \mathfrak{m} such that $k=R / \mathfrak{m}$ is algebraically closed and $k \subset R$. By [62, Proposition 3.5.7] in this case simple objects in ${ }^{-1} \operatorname{Per}(X / Y)$ are $\mathcal{O}_{R_{1}}$ and $\mathcal{O}_{E_{i}}(-1)[-1]$. It follows that simple objects in $\mathcal{A}_{\text {st }}$ are of the form $\mathcal{O}_{E_{i}}(-1) \simeq \mathcal{O}_{E_{i}}\left(R_{i}\right)$.

Lemma 4.5.2. For any i the sheaf $\mathcal{O}_{E_{i}}\left(R_{i}\right)$ is an element of \mathcal{A}_{e}.
Proof. According to Lemma 3.1.1 we have $E_{i} R_{i}=-1$ so $\mathcal{O}_{E_{i}}\left(R_{i}\right) \simeq \mathcal{O}_{E_{i}}(-1)$.
Let us recall that for any effective divisors D_{1}, D_{2} on a surface we have a short exact sequence

$$
0 \rightarrow \mathcal{O}_{D_{2}}\left(D_{2}\right) \rightarrow \mathcal{O}_{D}(D) \rightarrow \mathcal{O}_{D_{1}}(D) \rightarrow 0
$$

where $D=D_{1}+D_{2}$. We apply this to the equality $R_{i}-E_{i}=\sum_{j=1}^{s} R_{i+j}$ for some $s>0$ (which follows from Lemma 3.1.3). Hence we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{R_{i+1}+\ldots+R_{i+s}}\left(R_{i+1}+\ldots+R_{i+s}\right) \rightarrow \mathcal{O}_{R_{i}}\left(R_{i}\right) \rightarrow \mathcal{O}_{E_{i}}(-1) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Short exact sequences of the form

$$
\begin{aligned}
0 \rightarrow \mathcal{O}_{R_{i+1}+\ldots+R_{i+l}}\left(R_{i+1}+\ldots+R_{i+l}\right) & \rightarrow \mathcal{O}_{R_{i+1}+\ldots+R_{i+l+1}}\left(R_{i+1}+\ldots+R_{i+l+1}\right) \\
& \rightarrow \mathcal{O}_{R_{i+l+1}}\left(R_{i+l+1}\right) \rightarrow 0
\end{aligned}
$$

show that the kernel of the canonical map $\mathcal{O}_{R_{i}}\left(R_{i}\right) \rightarrow \mathcal{O}_{E_{i}}(-1)$ has filtration with quotients $\mathcal{O}_{R_{j}}\left(R_{j}\right)$ for $j>i$.

By [18, Theorem 2] we have $\operatorname{Ext}^{k}\left(\mathcal{P}_{i}, \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)=0$ for $k \neq 0$ and any i, j, where \mathcal{P}_{i} denotes the tilting generator constructed from $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ by universal extensions Hence, the sheaves $\mathcal{O}_{R_{j}}\left(R_{j}\right)$ lie in the heart of t-structure given by $\bigoplus \mathcal{P}_{i}$. It also follows that $\mathcal{O}_{R_{i+1}+\ldots+R_{i+l}}\left(R_{i+1}+\ldots+R_{i+l}\right)$ lie in \mathcal{A}_{e}.

Finally, (4.1) implies that $\mathcal{O}_{E_{i}}\left(R_{i}\right) \in \mathcal{A}_{e}$.
Proposition 4.5.3. t-structures on \mathcal{C}_{f} with heart \mathcal{A}_{e} and $\mathcal{A}_{\text {st }}$ are equal.
Proof. By Lemma 4.5.2 we know that all simple objects in $\mathcal{A}_{\text {st }}$ are elements of \mathcal{A}_{e}. It follows that $\mathcal{A}_{\mathrm{st}} \subset \mathcal{A}_{e}$. As both t-structures are bounded we can apply Lemma 4.1.4 to finish the proof.

Thus the category $\mathcal{A}_{\text {st }}=\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is a highest weight category. The order on the set of standard modules $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ is induced from the order on R_{i} that we considered before.

Proposition 4.5.4. The category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is a highest weight category with a duality.
Proof. By Proposition 4.5.3 the heart $\mathcal{A}_{\text {st }}=\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ of the standard t-structure on \mathcal{C}_{f} coincides with \mathcal{A}_{e}. The endomorphism algebra of the projective generator $\bigoplus \mathcal{P}_{i}$ of \mathcal{A}_{e} is quasi-hereditary and hence the category of modules over it, equivalent to the category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$, is a highest weight category.

The standard modules are $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ and the simple modules are $\mathcal{O}_{E_{i}}\left(R_{i}\right)=\mathcal{O}_{E_{i}}(-1)$. Let us denote by \widetilde{P}_{i} the indecomposable projective objects in $\mathcal{C}_{f} \cap \operatorname{Coh}(X)$.

There is an exact functor $D_{f}: \mathcal{D}^{b}(X) \rightarrow \mathcal{D}^{b}(X)$ given by

$$
D_{f}(\mathcal{F})=R \mathcal{H} o m_{X}\left(\mathcal{F}, f^{!}\left(\mathcal{O}_{Y}\right)\right)
$$

which maps \mathcal{C}_{f} into itself.
Knowing that $f^{!}\left(\mathcal{O}_{Y}\right)=\mathcal{O}_{X}\left(R_{1}+\ldots+R_{n}\right)$ we can calculate

$$
\begin{aligned}
& D_{f}\left(\mathcal{O}_{E_{i}}\left(R_{i}\right)\right)=R \mathcal{H o m}\left(\mathcal{O}_{E_{i}}\left(R_{i}\right), f^{!} \mathcal{O}_{Y}\right) \simeq \\
& \left.\simeq R \mathcal{H o m}\left(\left[\mathcal{O}\left(R_{i}-E_{i}\right)\right) \rightarrow \mathcal{O}\left(R_{i}\right)\right], \mathcal{O}\left(R_{1}+\ldots+R_{n}\right)\right)= \\
& =\left[\operatorname{RHom}\left(\mathcal{O}\left(R_{i}\right), \mathcal{O}\left(R_{1}+\ldots+R_{n}\right)\right) \rightarrow R \mathcal{H o m}\left(\mathcal{O}\left(R_{i}-E_{i}\right), \mathcal{O}\left(R_{1}+\ldots+R_{n}\right)\right)\right]= \\
& =\left[\mathcal{O}\left(R_{1}+\ldots+R_{i-1}+R_{i+1}+\ldots+R_{n}\right) \rightarrow \mathcal{O}\left(E_{i}+R_{1}+\ldots+R_{i-1}+R_{i+1}+\ldots+R_{n}\right)\right]= \\
& =\mathcal{O}_{E_{i}}\left(E_{i}+R_{1}+\ldots+R_{i-1}+R_{i+1}+\ldots+R_{n}\right)[1] \simeq \mathcal{O}_{E_{i}}(-1)[1] .
\end{aligned}
$$

Hence, up to a shift, the functor D_{f} preserves simple objects in $\mathcal{A}_{\text {st }}$.
As the functor $D_{f}: \mathcal{D}^{b}(X) \rightarrow \mathcal{D}^{b}(X)$ is exact, if $0 \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C} \rightarrow 0$ is a short exact sequence of sheaves such that $D_{f}(\mathcal{A})$ and $D_{f}(\mathcal{C})$ are complexes concentrated in only one degree, the same is true about $D_{f}(\mathcal{B})$. As every object of $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is an iterated extension of sheaves of the form $\mathcal{O}_{E_{i}}(-1)$ we know that D_{f} is a contravariant exact functor which maps $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ to $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ and preserves simple sheaves in this category.

Remark 4.5.5. The functor $D_{f}=R \mathcal{H} \operatorname{Hom}_{X}\left(-, f^{!}\left(\mathcal{O}_{Y}\right)\right)$ is not a duality on $\mathcal{A}_{\text {coe }}$. Already when f is a composition of two blowups, the projective objects in $\mathcal{A}_{\text {coe }}$ are $\mathscr{D}_{1}=$ $\mathcal{O}_{E_{1}+2 E_{2}}\left(E_{1}+2 E_{2}\right), \mathscr{D}_{2}=\mathcal{O}_{E_{2}}\left(E_{2}\right)$ and the simple objects are $S_{1}=\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+2 E_{2}\right)[1]$ and $S_{2}=\mathcal{O}_{E_{1}+2 E_{2}}\left(E_{1}+2 E_{2}\right)$. The functor D_{f} maps S_{2} to S_{2} but

$$
\begin{gathered}
D_{f}\left(\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+2 E_{2}\right)\right)=\mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right) \notin \mathcal{A}_{\text {coe }} \\
\text { as } \operatorname{Hom}\left(\mathcal{O}_{E_{2}}\left(E_{2}\right), \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)\right)=k=\operatorname{Ext}^{1}\left(\mathcal{O}_{E_{2}}\left(E_{2}\right), \mathcal{O}_{E_{1}+E_{2}}\left(E_{1}+E_{2}\right)\right) .
\end{gathered}
$$

4.5.1 \quad Simple objects in $\mathcal{A}_{\text {coe }}$

In [61] Toda constructed a bounded t-structure on the category \mathcal{D}_{f} defined in Section 4.2 by specifying simple objects in its heart. We show that the t-structure he considers on \mathcal{D}_{f} corresponds to the t-structure with heart $\mathcal{A}_{\text {coe }}$ on \mathcal{C}_{f} under the equivalence $\varphi: \mathcal{C}_{f} \rightarrow \mathcal{D}_{f}$ defined in Section 4.2.

Toda's t-structure is constructed by induction. If a map $f: X \rightarrow Y$ factors as n blow-ups of single points then the heart $\mathcal{D}_{f}^{0}=\left|S_{1}, \ldots, S_{n}\right|$, where $\left|S_{1}, \ldots, S_{n}\right|$ denotes the smallest abelian subcategory of $\operatorname{Coh}(X)$ closed under extensions and containing objects S_{1}, \ldots, S_{n}. These objects are constructed in the following way.

Let $X \xrightarrow{h} X^{\prime} \xrightarrow{g} Y$ be a decomposition of f with $g: X^{\prime} \rightarrow Y$ a blow up of a single point. Then $\mathcal{D}_{h}^{0}=\left|S_{2}^{\prime}, \ldots, S_{n}^{\prime}\right|$. We first consider a t-structure on \mathcal{D}_{f} glued from the t-structure on \mathcal{D}_{h} and a standard t-structure on \mathcal{D}_{g} (there, the heart is $\left\langle\mathcal{O}_{E_{1}}\right\rangle$). Then

$$
\widetilde{D_{f}^{0}}=\left|\mathcal{D}_{h}^{0}, \mathcal{O}_{R_{1}}\right|
$$

and $\left(\mathcal{D}_{h}^{0},\left|\mathcal{O}_{R_{1}}\right|\right)$ is a torsion pair in $\widetilde{D_{0}^{f}}$. Also, $\left(\left\langle\mathcal{O}_{R_{1}}\right\rangle, \mathcal{O}_{R_{1}}^{\perp}\right)$ is a torsion pair in $\widetilde{D_{f}^{0}}$ and \mathcal{D}_{f} is defined as a tilt with respect to this torsion pair, i.e.

$$
\mathcal{D}_{f}=\left|\mathcal{O}_{R_{1}}^{\perp}, \mathcal{O}_{R_{1}}[-1]\right| .
$$

Then

$$
\mathcal{D}_{f}=\left|S_{1}, \ldots, S_{n}\right|
$$

where $S_{1}=\mathcal{O}_{R_{1}}[-1]$ and S_{i} are determined by the following universal extensions

$$
0 \rightarrow S_{i}^{\prime} \rightarrow S_{i} \rightarrow \mathcal{O}_{R_{1}} \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{1}}, S_{i}^{\prime}\right) \rightarrow 0
$$

The simple objects S_{i} can be also constructed explicitly. Recall that f has a decomposition $X_{n} \xrightarrow{f_{n}} X_{n-1} \rightarrow \ldots \rightarrow X_{1} \xrightarrow{f_{1}} X_{0}$. We put $\pi_{i}=f_{i+1} \circ \ldots \circ f_{n}: X_{n} \rightarrow X_{i}$ and $g_{i j}=$ $f_{j+1} \circ \ldots \circ f_{i}: X_{i} \rightarrow X_{j}$.

Simple objects S_{i} correspond to irreducible components E_{i} of the exceptional divisor of f. If E_{i} is such a curve that the point $f_{i}\left(E_{i}\right)$ does not lie on any E_{j} for $j<i$ then the corresponding simple object is $S_{i}=\mathcal{O}_{R_{i}}[-1]$. If this is not the case, let us set

$$
\kappa(i)=\max \left\{j \mid f_{i}\left(E_{i}\right) \in E_{j}\right\}
$$

Then on X_{i} we have a short exact sequence

$$
0 \rightarrow \bar{S}_{i} \rightarrow g_{i, \kappa(i)}^{*}\left(\mathcal{O}_{E_{\kappa(i)}}\right) \rightarrow \mathcal{O}_{E_{i}} \rightarrow 0
$$

and

$$
S_{i}=\pi_{i}^{*}\left(\bar{S}_{i}\right)
$$

The t-structure with heart $\mathcal{A}_{\text {coe }}$ on \mathcal{C}_{f} has projective objects

$$
\mathscr{D}_{i}=\mathcal{O}_{\sum_{R_{j} \leq R_{i}} R_{j}}\left(\sum_{R_{j} \leq R_{i}} R_{j}\right) .
$$

Therefore the corresponding t-structure on \mathcal{D}_{f} has projective objects $\mathcal{R}_{i}=\mathcal{O}_{\sum_{R_{j} \leq R_{i}} R_{j}}$. This follows from the fact that the equivalence $\phi: \mathcal{C}_{f} \rightarrow \mathcal{D}_{f}$ of Section 4.2 is given by tensor product with $\mathcal{O}_{X}\left(-R_{1}-\ldots-R_{n}\right)$ and from the isomorphism $\mathcal{O}_{R_{i}}\left(R_{k}\right) \simeq \mathcal{O}_{R_{i}}$ for $R_{i}<R_{k}$. We will show that the objects $S_{i}[1]$ lie in the heart of this t-structure. More precisely, we have the following lemma

Lemma 4.5.6. Let S_{i}, \mathcal{R}_{i} be as above. Then

$$
\operatorname{hom}\left(\mathcal{R}_{i}, S_{j}[1]\right)=\delta_{i}^{j}
$$

Proof. The t-structure with simple objects S_{j} is defined inductively, so we proceed by induction on the rank of $\operatorname{Pic}(X / Y)$. We also assume that $f(E(f))$ is a single point. If it is not the case the morphism f decomposes as $f=h_{1} \circ \ldots \circ h_{j}$ such that h_{1}, \ldots, h_{j} have connected and mutually disjoint exceptional divisors. Then the category \mathcal{D}_{f} equals $\mathcal{D}_{h_{1}} \oplus \ldots \oplus \mathcal{D}_{h_{l}}$ and for each $\mathcal{D}_{h_{l}}$ this assumption is satisfied.

If the rank of $\operatorname{Pic}(X / Y)$ is one then $S_{1}=\mathcal{O}_{E_{1}}[-1]$ and $\mathcal{R}_{1}=\mathcal{O}_{E_{1}}$. If the rank equals n then f factors as $X \xrightarrow{h} X^{\prime} \xrightarrow{g} Y$, where $\operatorname{Pic}\left(X^{\prime} / Y\right)=\mathbb{Z}, \mathcal{D}_{h}=\left\langle S_{2}^{\prime}, \ldots, S_{n}^{\prime}\right\rangle$ and $\operatorname{hom}\left(\mathcal{R}_{i}, S_{j}^{\prime}[1]\right)=\delta_{i}^{j}$ for $i, j \geq 2$. Then the projective object \mathcal{R}_{1} equals $\mathcal{O}_{R_{1}+\ldots+R_{n}}$ and the simple object S_{1} is equal to $\mathcal{O}_{R_{1}}[-1]$.

Then for $i \geq 2$,

$$
\begin{aligned}
& \operatorname{Hom}^{\bullet}\left(\mathcal{R}_{i}, S_{1}[1]\right)=\operatorname{Hom}^{\bullet}\left(\mathcal{O}_{R_{1}}, \mathcal{O}_{\sum_{R_{j} \leq R_{i}} R_{j}}\left(\sum_{R_{j} \leq R_{i}} R_{j}\right)\right)^{\vee}= \\
& =\operatorname{Hom}^{\bullet}\left(\mathcal{O}_{R_{1}}\left(R_{1}\right), \mathcal{O}_{\sum_{R_{j} \leq R_{i}} R_{j}}\left(\sum_{R_{j} \leq R_{i}} R_{j}\right)\right)^{\vee}=0
\end{aligned}
$$

because

$$
\mathcal{O}_{\sum_{R_{j} \leq R_{i}} R_{j}}\left(\sum_{R_{j} \leq R_{i}} R_{j}\right) \in\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{2}}\left(R_{2}\right)\right\rangle
$$

and

$$
\left\langle\left\langle\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{2}}\left(R_{2}\right)\right\rangle, \mathcal{O}_{R_{1}}\left(R_{1}\right)\right\rangle
$$

is a semi-orthogonal decomposition of \mathcal{C}_{f}.
From the definition of the objects S_{i} as universal extensions of $S_{1}[1]$ by S_{i}^{\prime} is also follows that $\operatorname{hom}\left(\mathcal{R}_{i}, S_{j}[1]\right)=\delta_{i}^{j}$ for $i \geq 2$ and $j \geq 1$.

In order to calculate $\operatorname{hom}\left(\mathcal{R}_{1}, S_{1}[1]\right)$ we use the short exact sequence

$$
0 \rightarrow \mathcal{O}\left(-R_{1}\right) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{R_{1}} \rightarrow 0
$$

Applying the functor $\operatorname{Ext}^{\bullet}\left(-, \mathcal{O}_{R_{1}+\ldots+R_{n}}\left(R_{1}+\ldots+R_{n}\right)\right)$ we see that

$$
\begin{aligned}
& \operatorname{Ext}^{i+1}\left(\mathcal{O}_{R_{1}}, \mathcal{O}_{R_{1}+\ldots+R_{n}}\left(R_{1}+\ldots+R_{n}\right)\right) \simeq \\
& \simeq \operatorname{Ext}^{i}\left(\mathcal{O}, \mathcal{O}_{R_{1}+\ldots+R_{n}}\left(2 R_{1}+R_{2}+\ldots+R_{n}\right)= \begin{cases}k & \text { if } i=1 \\
0 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

The last equality follows from the sequence

$$
0 \rightarrow \mathcal{O}_{R_{1}}\left(2 R_{1}\right) \rightarrow \mathcal{O}_{R_{1}+\ldots+R_{n}}\left(2 R_{1}+R_{2}+\ldots+R_{n}\right) \rightarrow \mathcal{O}_{R_{2}+\ldots+R_{n}}\left(R_{2}+\ldots+R_{n}\right) \rightarrow 0
$$

Thus we know that the only non-zero Ext group between $\mathcal{O}_{R_{1}}$ and $\mathcal{O}_{R_{1}+\ldots+R_{n}}\left(R_{1}+\ldots+R_{n}\right)$ is Ext ${ }^{2}$ which by Serre duality proves that $\operatorname{Hom}\left(\mathcal{R}_{1}, S_{1}[1]\right)=k$ and other Ext-groups vanish.

It remains to show that $\operatorname{Hom}^{\bullet}\left(\mathcal{R}_{i}, S_{1}\right)=0$ for $i \neq 1$. In order to prove this we first check when the group $\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{1}}, S_{i}^{\prime}\right)$ vanishes.

Let us choose some i. First, let us assume that $\kappa(i)=1$. Then $S_{i}^{\prime}=\mathcal{O}_{R_{i}}[-1]$ and applying $\operatorname{Hom}\left(-, S_{i}^{\prime}[1]\right)$ to the exact sequence $0 \rightarrow \mathcal{O}\left(-R_{1}\right) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{R_{1}} \rightarrow 0$ we get

$$
\operatorname{Hom}\left(\mathcal{O}_{R_{1}}, S_{i}^{\prime}[1]\right)=k, \quad \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{1}}, S_{i}^{\prime}[1]\right)=k,
$$

i.e. Ext ${ }^{1}$ and Ext ${ }^{2}$ groups between $\mathcal{O}_{R_{1}}$ and S_{i}^{\prime} do not vanish. From the definition of S_{i} as the universal extension we immediately obtain that

$$
\operatorname{Ext}^{2}\left(\mathcal{O}_{R_{1}}, S_{i}\right)=k, \quad \operatorname{Ext}^{j}\left(\mathcal{O}_{R_{1}}, S_{i}\right)=0 \text { for } j \neq 2
$$

On the other hand, if $\kappa(i)>1$ then

$$
0 \rightarrow \bar{S}_{i} \rightarrow g_{i, k i}^{*}\left(\mathcal{O}_{E_{\kappa(i)}}\right) \rightarrow \mathcal{O}_{E_{i}} \rightarrow 0,
$$

from which it follows that $g_{i, \kappa(i)_{*}}\left(\bar{S}_{i}\right)=\mathcal{O}_{E_{\kappa(i)}}(-1)$ and hence

$$
f_{*} S_{i}=g_{i, 1_{*}}\left(\bar{S}_{i}\right)=g_{\kappa(i), 1_{*}}\left(\mathcal{O}_{E_{\kappa(i)}}(-1)\right)=0
$$

Then, by adjunction $\operatorname{Hom}\left(\mathcal{O}_{R_{1}}, S_{i}\right)=\operatorname{Hom}\left(\mathcal{O}_{E_{1}}, f_{*}\left(S_{i}\right)\right)=0$.
Finally, we notice that \mathcal{R}_{1} fits into a short exact sequence

$$
0 \rightarrow \bigoplus_{\{j \mid \kappa(j)=1\}} \mathcal{R}_{j} \rightarrow \mathcal{R}_{1} \rightarrow \mathcal{O}_{R_{1}} \rightarrow 0
$$

Applying $\operatorname{Hom}\left(-, S_{i}\right)$ to this sequence we get that $\operatorname{Hom}^{\bullet}\left(\mathcal{R}_{1}, S_{i}\right)=0$, which finishes the proof.

Proposition 4.5.7. Let S_{i} be as above. Then $S_{i} \otimes \mathcal{O}\left(\sum R_{j}\right)$ are, up to isomorphsism, all simple objects in $\mathcal{A}_{\text {coe }}$.

Proof. The category $\mathcal{A}_{\text {coe }}$ is equivalent to the category of modules over the endomorphism algebra of $\bigoplus_{i=1}^{n} \mathscr{D}_{i}$. Hence it has n simple objects and every object in $\mathcal{A}_{\text {coe }}$ admits a filtration by those simple modules. In particular, a simple object S_{i} appears in a filtration of M exactly $\operatorname{dim}_{k} \operatorname{Hom}\left(\mathscr{D}_{i}, M\right)$ times. The proposition follows from Lemma 4.5.6.

Chapter 5

Birational morphisms of surfaces and representation theory of simple Lie algebras

In this chapter we show that for some smooth morphisms $f: X \rightarrow Y$ the highest weight category $\mathcal{C}_{f} \cap \operatorname{Coh}(X)$ described in Chapter 4 appears also in representation theory of semisimple Lie algebras. More precisely, this happens if f is a composition of n blow-ups of points such that the $(i+1)$ 'st map blows up a point on the exceptional divisor of the i^{\prime} th map. Equivalently, the exceptional divisor of f is a chain of $n-1$ rational curves of self-intersection -2 and one curve of self-intersection -1 . In Theorem 5.3.12 we prove that for such an f the category $\mathcal{C}_{f} \cap \operatorname{Coh}(X)$ is equivalent to a certain block $\mathcal{O}_{\omega_{1}}$ of the Bernstein-Gelfand-Gelfand category \mathcal{O} for $\operatorname{sl}(n, k)$.

The proof of Theorem 5.3 .12 is based on comparing endomorphism algebras of projective generators of $\mathcal{C}_{f} \cap \operatorname{Coh}(X)$ and $\mathcal{O}_{\omega_{1}}$. In fact, those endomorphism algebras are uniquely determined by Ext-algebras of standard objects $\mathcal{O}_{R_{i}}\left(R_{i}\right)$ in $\mathcal{C}_{f} \cap \operatorname{Coh}(X)$ and Verma modules $M\left(\lambda_{i}\right)$ in $\mathcal{O}_{\omega_{1}}$. In Chapter 3 we calculated the first Ext-algebra. In this chapter we calculate the Ext-algebra of Verma modules in $\mathcal{O}_{\omega_{1}}$ and prove that it is isomorphic to the Ext-algebra of $\mathcal{O}_{R_{i}}\left(R_{i}\right)$.

We begin with Section 5.1 is which we recall after [27] and [28] all definitions and facts about Lie algebras that we will use. We also compute the linkage class of weight $\lambda_{1}=\omega_{1}-\rho$ that determines the block $\mathcal{O}_{\omega_{1}}$ (see Lemma 5.1.2).

Then in Sections 5.2.1 and 5.2.2 we define the category \mathcal{O} and give, following [28], all of its properties that we use in our calculations in Section 5.3. We particularly focus on constructing projective covers $P(\lambda)$ of Verma modules $M(\lambda)$. The detailed description of these modules is the most important part of Section 5.3.

5.1 Review of simple Lie algebras

Let \mathfrak{g} be a simple Lie algebra. Let \mathfrak{h} be its Cartan subalgebra. For a character α of \mathfrak{h} let

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \text { for all } h \in \mathfrak{h}\}
$$

denote a root space. The algebra \mathfrak{g} has a decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

where $\Phi \subset \mathfrak{h}^{*}$ is a root system, i.e. the set of all characters such that \mathfrak{g}_{α} in non-zero. For any $\alpha \in \Phi$ the dimension on \mathfrak{g}_{α} is one. A hyperplane in \mathfrak{h}^{*} which does not contain any root gives a decomposition of Φ into a set of positive, and negative roots denoted by Φ^{+}and Φ^{-}respectively. Simple roots $\Delta \subset \Phi^{+}$are such roots that any positive root is a \mathbb{Z}-linear combination of simple roots with non-negative coefficients.

We are mostly interested in the case $\mathfrak{g}=\operatorname{sl}(n, k)$. The Cartan subalgebra $\mathfrak{h} \subset \operatorname{sl}(n, k)$ consists of diagonal matrices. Let $e_{i, j}$ denote the basis matrix with 1 in the i-th row and j-th column. Let us denote by $e^{i, j}$ the dual basis. If $i<j$ the algebra of diagonal matrices acts on $e_{i, j}$ via the character $e^{i, i}-e^{j, j}$. Thus, the root system of $\operatorname{sl}(n, k)$ consists of elements $e^{i, i}-e^{j, j}$. If we denote $\alpha_{i}=e^{i, i}-e^{i+1, i+1}$ then $\alpha_{1}, \ldots, \alpha_{n-1}$ are simple roots and

$$
\Phi^{+}=\left\{\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{l}\right\}_{\{1 \leq i \leq l<n\}} .
$$

With such a choice the subalgebra $\mathfrak{n}^{+} \subset \mathfrak{g}$ generated by $x \in \mathfrak{g}_{\alpha}$ for $\alpha \in \Phi^{+}$, is the algebra of upper triangular matrices and the algebra $\mathfrak{n}^{-} \subset \mathfrak{g}$ generated by $y \in \mathfrak{g}_{-\alpha}, \alpha \in \Phi^{+}$is the algebra of lower triangular matrices.

The Killing form

$$
\kappa(x, y)=\operatorname{tr}(\operatorname{ad} x \circ \operatorname{ad} y)
$$

is a non-degenerate bilinear form on \mathfrak{g}. If $\mathfrak{g}=\operatorname{sl}(n, k)$ then $\kappa(x, y)=2 n \operatorname{tr}(x y)$.
The root system spans a \mathbb{Q}-subspace E of \mathfrak{h}^{*} on which the Killing form in nondegenerate. Thus E is an euclidean space with inner product (λ, μ).

For any $\alpha \in \Phi$ we define a coroot $\alpha^{\vee} \in E^{*}$. The element α^{\vee} is uniquely determined by the equality

$$
\left\langle\beta, \alpha^{\vee}\right\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha)}
$$

where $\langle\rangle:, E^{*} \times E \rightarrow k$ is the canonical pairing of a vector space and its dual.
We have already seen that for $\mathfrak{g}=\operatorname{sl}(n, k)$ there are $n-1$ simple roots. We can order them in such a way that

$$
\left\langle\alpha_{i}, \alpha_{i}^{\vee}\right\rangle=2, \quad\left\langle\alpha_{i}, \alpha_{i+1}^{\vee}\right\rangle=-1, \quad\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=0 \text { for }|i-j|>1
$$

The Weyl group W is the group of all automorphisms of \mathfrak{h}^{*} which preserve the root system Φ. For any $\alpha \in \Phi$ the group W contains a reflection in a hyperplane orthogonal to α. This reflection is given by

$$
s_{\alpha}(\lambda)=\lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha .
$$

Moreover, the Weyl group is generated by s_{α} for $\alpha \in \Delta$.
For $\operatorname{sl}(n, k)$ every simple root has the form $\alpha_{i}=e^{i, i}-e^{i+1, i+1}$ and so $s_{\alpha_{i}}$ acts on $\mathfrak{h}^{*} \simeq k^{n}$ as a transposition of i-th and $(i+1)$-st coordinates. It shows that the Weyl group for $\operatorname{sl}(n, k)$ is a symmetric group Σ_{n}. A root $\alpha=\alpha_{i}+\ldots+\alpha_{l} \in \Phi^{+}$acts by transposition of i-th and l-th element. Hence,

$$
s_{\alpha}=s_{\alpha_{i}} \circ s_{\alpha_{i+1}} \circ \ldots \circ s_{\alpha_{l-1}} \circ s_{\alpha_{l}} \circ s_{\alpha_{l-1}} \circ \ldots \circ s_{\alpha_{i+1}} \circ s_{\alpha_{i}} .
$$

Next we consider the universal enveloping algebra $U(\mathfrak{g})$, i.e. an associative unital k algebra with a morphism $\varphi: \mathfrak{g} \rightarrow U(\mathfrak{g})$ such that any morphism from \mathfrak{g} to an associative unital k-algebra factors through $U(\mathfrak{g})$. The Poincaré-Bikhoff-Witt theorem gives a basis of $U(\mathfrak{g})$ (see [39, Theorem 5.11]).

Theorem 5.1.1 (Poincaré-Birkhoff-Witt). Let x_{1}, \ldots, x_{r} be an ordered basis of \mathfrak{g}. Then the monomials $x_{1}^{t_{1}} \ldots x_{r}^{t_{t}}$ form a basis of $U(\mathfrak{g})$.

For $\operatorname{sl}(n, k)$ we denote by $x_{i}=e_{i, i+1}, y_{i}=e_{i+1, i}$ elements corresponding to a simple root α_{i} and by $x_{i, k} \in \mathfrak{n}^{+}, y_{i, k} \in \mathfrak{n}^{-}$elements corresponding to a root $\alpha_{i}+\ldots+\alpha_{k}$, for $i<k$. Representing x and y as matrices gives the commutation laws in $U(\mathrm{sl}(n, k))$.

We fix a lexicographic order on Φ^{+}. This establishes an order on the bases of $\mathfrak{n}^{-}, \mathfrak{h}$ and \mathfrak{n}^{+}. Finally, we order the basis of $\operatorname{sl}(n, k)$ by saying that vectors of \mathfrak{n}^{-}are smaller than vectors of \mathfrak{h} and \mathfrak{n}^{+}while vectors of \mathfrak{h} are smaller than vectors of \mathfrak{n}^{+}. According to Theorem 5.1.1 the order on the basis of $\operatorname{sl}(n, k)$ establishes a basis of $U(\mathrm{sl}(n, k))$.

Inside E we have the root lattice Λ_{r} spanned by Φ. We also consider a lattice

$$
\Lambda=\left\{\lambda \in E \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z} \forall \alpha \in \Delta\right\}
$$

spanned by fundamental weights ω_{i}, i.e. elements of E determined by the condition

$$
\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}
$$

Finally, we denote by $\Gamma \subset \Lambda$ the set of linear combinations of simple roots with coefficients in \mathbb{Z}^{+}which gives us a partial order on Λ

$$
\mu \leq \lambda \Leftrightarrow \lambda-\mu \in \Gamma
$$

The Weyl group W can also act on \mathfrak{h}^{*} by the dot action,

$$
w \cdot \lambda=w(\lambda+\rho)-\rho,
$$

where

$$
\rho=\omega_{1}+\ldots+\omega_{l}
$$

is a sum of fundamental weights. Equivalently, we can define ρ as

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha
$$

The orbit $W \cdot \lambda=\{w \cdot \lambda \mid w \in W\}$ is called the linkage class of λ.
We say that a weight λ is regular if $|W \cdot \lambda|=|W|$. Otherwise, λ is called singular. One can see that λ is regular if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \neq 0$ for all $\alpha \in \Phi$.

We say that a weight $\lambda \in \Lambda$ is dominant if $s_{\alpha} \cdot \lambda \leq \lambda$ for all $\alpha \in \Phi^{+}$. Analogously, $\lambda \in \Lambda$ is antidominant if $s_{\alpha} \cdot \lambda \geq \lambda$ for all $\alpha \in \Phi^{+}$. More generally, a weight $\lambda \in \mathfrak{h}^{*}$ is dominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{<0}$ for all $\alpha \in \Phi^{+}$and it is antidominant if $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}^{>0}$ for all $\alpha \in \Phi^{+}$.

For weights $\lambda, \mu \in \mathfrak{h}^{*}$ we write $\mu \uparrow \lambda$ if $\mu=\lambda$ or there is a root $\alpha \in \Phi^{+}$such that $\mu=s_{\alpha} \cdot \lambda<\lambda$; in other words $\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{Z}^{>0}$. More generally, we say that μ is strongly linked to λ if $\mu=\lambda$ or there exist $\alpha_{1}, \ldots, \alpha_{r} \in \Phi^{+}$such that $\mu=\left(s_{\alpha_{1}} \ldots s_{\alpha_{r}}\right) \cdot \lambda \uparrow$ $\left(s_{\alpha_{2}} \ldots s_{\alpha_{r}}\right) \cdot \lambda \uparrow \ldots \uparrow s_{\alpha_{r}} \cdot \lambda \uparrow \lambda$.

For $\lambda \in \Lambda$ the set of positive roots α such that $s_{\alpha} \cdot \lambda<\lambda$ is

$$
\Phi^{+}(\lambda)=\left\{\alpha \in \Phi^{+} \mid\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle \in \mathbb{N} \backslash 0\right\} .
$$

Thus, $\mu \uparrow \lambda$ if and only if $\mu=s_{\alpha} \cdot \lambda$ and $\alpha \in \Phi^{+}(\lambda)$.
Lemma 5.1.2. Let $\mathfrak{g}=\operatorname{sl}(n, k)$ with simple roots $\alpha_{1}, \ldots, \alpha_{n-1}$. Then the linkage class of $\lambda_{1}=\omega_{1}-\rho$ is equal to

$$
W \cdot \lambda_{1}=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} ; \quad \lambda_{i}=\lambda_{1}-\sum_{l=1}^{i-1} \alpha_{l} .
$$

Moreover, for $i>j$ the weight λ_{i} is strongly linked to λ_{j} and $\left|\Phi^{+}\left(\lambda_{i}\right)\right|=n-i$.
Proof. First, we notice that for $n-1>i>1$ we have

$$
\left\langle\alpha_{i-1}+\alpha_{i}+\alpha_{i+1}, \alpha_{i}^{\vee}\right\rangle=-1+2-1=0
$$

For $i=1$ we have

$$
\left\langle\omega_{1}-\alpha_{1}+\alpha_{2}, \alpha_{1}^{\vee}\right\rangle=1-2+1=0
$$

Thus,

$$
\left\langle\omega_{1}-\sum_{k=1}^{i-1} \alpha_{k}, \alpha_{j}\right\rangle=0
$$

if $j \neq i-1, i$. Also

$$
\left\langle\omega_{1}-\sum_{k=1}^{i-1} \alpha_{k}, \alpha_{i-1}\right\rangle=-1, \quad\left\langle\omega_{1}-\sum_{k=1}^{i-1} \alpha_{k}, \alpha_{i}\right\rangle=1
$$

Hence

$$
s_{\alpha_{i}} \cdot \lambda_{j}=\left\{\begin{array}{cl}
\lambda_{j} & \text { if } i \neq j-1, j \\
\lambda_{j-1} & \text { if } i=j-1 \\
\lambda_{j+1} & \text { if } i=j
\end{array}\right.
$$

As $s_{\alpha_{i}}$ are generators of the Weyl group W, the linkage class of λ_{1} consists of $\lambda_{1}, \ldots, \lambda_{n}$. We have also seen that for a positive root $\alpha=\alpha_{i}+\ldots+\alpha_{l}$ we have $s_{\alpha}=s_{\alpha_{i}} \circ \ldots s_{\alpha_{l}} \circ \ldots \circ s_{\alpha_{i}}$. Hence,

$$
s_{\alpha_{i}+\ldots+\alpha_{l}} \cdot \lambda_{i}=\lambda_{l+1} \quad s_{\alpha_{i}+\ldots+\alpha_{l}} \cdot \lambda_{l+1}=\lambda_{i}
$$

and the remaining positive roots fix λ_{i}. It proves that for $l \geq i$ we have $\lambda_{l+1} \uparrow \lambda_{i}$ and

$$
\left|\Phi^{+}\left(\lambda_{i}\right)\right|=\left|\left\{\alpha_{i}, \alpha_{i}+\alpha_{i+1}, \ldots, \alpha_{i}+\ldots+\alpha_{n-1}\right\}\right|=n-i
$$

5.2 The Bernstein Gelfand Gelfand category \mathcal{O}

5.2.1 Definition

For a module M over \mathfrak{g} we define

$$
M_{\lambda}=\{v \in M \mid h(v)=\lambda(h) v \forall h \in \mathfrak{h}\} \quad \Pi(M)=\left\{\lambda \in E \mid M_{\lambda} \neq\{0\}\right\} .
$$

Following [28, Definition 1.1] we define the category \mathcal{O} as a full subcategory of $\operatorname{Mod}-U(\mathfrak{g})$ whose objects are $U(\mathfrak{g})$-modules M such that
$(\mathcal{O} 1) M$ is a finitely generated $U(\mathfrak{g})$-module.
$(\mathcal{O} 2) M$ is \mathfrak{h}-semisimple, i.e. M is a weight module, $M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}$.
$(\mathcal{O} 3) M$ is locally \mathfrak{n}-finite; for each $v \in M$ the subspace $U(\mathfrak{n}) v$ of M is finite dimensional.
$(\mathcal{O} 4)$ All weight spaces of M are finite dimensional.
$(\mathcal{O} 5)$ The set $\Pi(M)$ of all weights is contained in the union of finitely many sets of the form $\lambda-\Gamma$, where $\lambda \in \mathfrak{h}^{*}$ and Γ is the semigroup in Λ_{r} generated by Φ^{+}.

In fact, the last two conditions follow from the first three (see [28, Proposition 1.1]).
Let M be a module in the category \mathcal{O}. A non-zero vector $v^{+} \in M$ is a maximal vector of weight λ if $v^{+} \in M_{\lambda}$ and $\mathfrak{n} \cdot v^{+}=0$. Every non-zero module in \mathcal{O} has at least one maximal vector.

A module M is a highest weight module of weight λ if there exists a maximal vector $v^{+} \in M_{\lambda}$ such that $M=U(\mathfrak{g}) v^{+}$. By the PBW decomposition such an M has the form $M=U\left(\mathfrak{n}^{-}\right) v^{+}$.

Theorem 5.2.1. ([28, Theorem 1.2]) Let M be the highest weight module of weight $\lambda \in \mathfrak{h}^{*}$ generated by a maximal vector v^{+}. Fix an ordering of positive roots $\alpha_{1}, \ldots, \alpha_{m}$ and choose corresponding root vectors y_{i} in $\mathfrak{g}_{-\alpha_{i}}$. Then

- M is spanned by vectors $y_{1}^{i_{1}} \ldots y_{m}^{i_{m}} v^{+}$with $i_{j} \in \mathbb{Z}^{+}$having respective weights $\lambda-\sum i_{j} \alpha_{j}$. Thus M is a semisimple \mathfrak{h}-module.
- All weights μ of M satisfy $\mu \leq \lambda$, i.e. $\mu=\lambda-$ (sum of positive roots).
- For all weights μ of M we have $\operatorname{dim} M_{\mu}<\infty$ while $\operatorname{dim} M_{\lambda}=1$. Thus M is a weight module, locally finite as an \mathfrak{n}-module and $M \in \mathcal{O}$.
- Each non-zero quotient of M is again a highest weight module of weight λ.
- Each submodule of M is a weight module. A submodule generated by a maximal vector of weight $\mu<\lambda$ is proper; in particular, if M is simple its maximal vectors are all multiples of v^{+}.
- M has a unique maximal submodule and a unique simple quotient. In particular, M is indecomposable.
- All simple highest weight modules of weight λ are isomorphic.

Verma modules are the first examples of highest weight modules. In order to construct them we choose a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ which has an abelian quotient algebra $\mathfrak{b} / \mathfrak{n} \simeq \mathfrak{h}$. For any $\lambda \in \mathfrak{h}^{*}$ we consider a one-dimensional module k_{λ} on which \mathfrak{h} acts via the character. k_{λ} can be also considered as a \mathfrak{b} module with a trivial \mathfrak{n} action. We set

$$
M(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} k_{\lambda}, \quad M(\lambda) \simeq U\left(\mathfrak{n}^{-}\right) \otimes k_{\lambda} \text { as left } U\left(\mathfrak{n}^{-}\right) \text {-module }
$$

As $M(\lambda)$ is generated by one vector v^{+}on which \mathfrak{n} acts trivially and \mathfrak{h} acts via λ we get another description, namely $M(\lambda)=U(\mathfrak{g}) / I$ where I is an ideal generated by \mathfrak{n} and $(h-\lambda(h) 1)$ for $h \in \mathfrak{h}$.

We will denote by $L(\lambda)$ the unique simple quotient of $M(\lambda)$.

Let $Z(\mathfrak{g})$ be the centre of $U(\mathfrak{g})$ and let $M \in \mathcal{O}$ be a highest weight module generated by a maximal vector v^{+}of weight λ. Then, for $z \in Z(\mathfrak{g})$ and $h \in \mathfrak{h}$ we have

$$
h \cdot\left(z \cdot v^{+}\right)=z \cdot\left(h \cdot v^{+}\right)=z \cdot\left(\lambda(h) v^{+}\right)=\lambda(h) z \cdot v^{+} .
$$

Because $\operatorname{dim} M_{\lambda}=1$ above equality forces $z \cdot v^{+}=\chi_{\lambda}(z) v^{+}$for some scalar $\chi_{\lambda}(z) \in k$. The element z acts by this scalar on all vectors of M because M is spanned $U(\mathfrak{n}) \cdot v^{+}$and z lies in the centre of $U(\mathfrak{g})$.

Thus, a fixed λ gives a character $\chi_{\lambda}: Z(\mathfrak{g}) \rightarrow k$. It turns out that $\chi_{\lambda}=\chi_{\mu}$ if μ is linked to λ (see [28, Proposition 1.8]). Moreover, every character $\chi: Z(\mathfrak{g}) \rightarrow k$ is of the form χ_{λ} for some $\lambda \in E$ (see [28, Theorem 1.10]).

For any $M \in \mathcal{O}$ and a character χ of $Z(\mathfrak{g})$ we define

$$
M^{\chi}=\left\{v \in M \mid \forall z \in Z(\mathfrak{g})(z-\chi(z))^{n} v=0 \text { for some } n>0 \text { depending on } z\right\} .
$$

We denote by \mathcal{O}_{χ} the full subcategory of \mathcal{O} containing modules M such that $M=M^{\chi}$. Then the category \mathcal{O} is a direct sum of categories \mathcal{O}_{χ} as χ ranges over the characters of $Z(\mathfrak{g})$ (see [28, Proposition 1.12]). Moreover, we have the following proposition

Proposition 5.2.2. ([28, Proposition 1.13]) If $\lambda \in \Lambda$ the subcategory $\mathcal{O}_{\chi_{\lambda}}$ is a block of \mathcal{O}.

Let us recall that a full subcategory \mathcal{A} of an abelian category $\overline{\mathcal{A}}$ is called a block if \mathcal{A} is closed under extensions and it is minimal with this property.

It turns out that for $\lambda \notin \Lambda$ the category $\mathcal{O}_{\chi_{\lambda}}$ can be further decomposed into blocks.

5.2.2 Properties of the category \mathcal{O}

By [28, Theorem 1.11] each module $M \in \mathcal{O}$ is both artinian and noetherian. Moreover, each M possesses a composition series with simple quotients $L(\lambda)$ (recall that $L(\lambda)$ is the unique simple quotient of $M(\lambda)$). The multiplicity of $L(\lambda)$ is independent of the composition series and is denoted by $[M: L(\lambda)]$. It is called Jordan-Höelder multiplicity. Thus the Grothendieck group of \mathcal{O} is generated by classes of simple modules $[L(\lambda)]$.

Furthermore, thanks to [28, Proposition 1.15 and 6.14] we have
Proposition 5.2.3. For any $N \in \mathcal{O}$ we have

$$
[N]=\sum_{\mu} \mathcal{X}\left(\operatorname{Ext}_{\mathcal{O}}^{\bullet}(M(\mu), N)\right)[M(\mu)]
$$

where $\mathcal{X}\left(\operatorname{Ext}_{\mathcal{O}}^{\bullet}(M(\mu), N)\right)=\sum(-1)^{i} \operatorname{dim}_{\operatorname{Ext}_{\mathcal{O}}^{i}}(M(\mu), N)$ is the Euler characteristic.
It turns out that the weights $\lambda \in \mathfrak{h}$ give a lot of information about the corresponding Verma modules $M(\lambda)$ and relations between them.

Theorem 5.2.4. ([28, Theorem 4.8]) Let $\lambda \in \mathfrak{h}^{*}$. Then $M(\lambda)=L(\lambda)$ if and only if λ is antidominant.

Proposition 5.2.5. ([28, Proposition 3.8]) If $\lambda \in \mathfrak{h}^{*}$ is dominant then $M(\lambda)$ is projective in \mathcal{O}. Moreover, if P is projective and L is finite-dimensional then $P \otimes L$ is also projective.

Following [28, Section 3.6] we describe a module $T=M(\lambda) \otimes_{k} L$ for a finite-dimensional module L. If $\operatorname{dim} L=l$ then the module T admits a filtration $0=T_{0} \subset T_{1} \subset \ldots \subset T_{l}=T$ with quotients $M(\lambda+\mu)$, where μ ranges over the weights of L (see [28, Theorem 3.6]). To construct the filtration we choose a basis v_{1}, \ldots, v_{l} of L. We assume that v_{i} has weight μ_{i} and that from the fact that $\mu_{i}<\mu_{j}$ it follows that $i>j$. If we denote by v^{+}the maximal vector of $M(\lambda)$ of weight λ then vectors $t_{1}=v^{+} \otimes v_{1}, \ldots t_{l}=v^{+} \otimes v_{l}$ generate T as a $U(\mathfrak{g})$-module. The filtration $T_{\mathbf{\bullet}}$ is obtained by taking T_{i} to be the submodule of T generated by t_{1}, \ldots, t_{i}. Direct calculations show that the image of t_{i} under the quotient map $T_{i} \rightarrow T_{i} / T_{i-1}$ is the maximal vector of weight $\lambda+\mu_{i}$ of the module $M\left(\lambda+\mu_{i}\right) \simeq T_{i} / T_{i-1}$ (see [28, Section 3.6]).

In general, we say that a module $M \in \mathcal{O}$ has a standard filtration if it admits a filtration with quotients $M(\lambda)$ for $\lambda \in \mathfrak{h}^{*}$. The multiplicity of $M(\lambda)$ in this filtration is denoted by $(M: M(\lambda))$. In the above example $T=M(\lambda) \otimes_{k} L$ has a standard filtration and $(T: M(\lambda+\mu))=\operatorname{dim} L_{\mu}$.

The above description allows us to find for any simple module $L(\lambda)$ a projective module P and an epimorphism $P \rightarrow L(\lambda)$. In fact, instead of dealing with $L(\lambda)$, itself we shall construct a map $P \rightarrow M(\lambda)$ and then compose it with the projection $M(\lambda) \rightarrow L(\lambda)$. For any λ there exists $l \in \mathbb{N}$ such that $\lambda+l \rho$ is dominant. Then, thanks to Proposition 5.2 .5 , the module $M(\lambda+l \rho)$ is projective and so are all the modules obtained by tensoring $M(\lambda+l \rho)$ by a finitely-dimensional module. Finally, module $L(l \rho)$ is finitely-dimensional (see [28, Theorem 1.6]) and its minimal weight is $-l \rho$. Thus, the filtration of $M(\lambda+l \rho) \otimes_{k}$ $L(l \rho)$ described above gives an epimorphism $M(\lambda+l \rho) \otimes_{k} L(l \rho) \rightarrow M(\lambda)$.

We denote the projective cover of $L(\lambda)$ by $P(\lambda)$. From the above discussion it follows that $P(\lambda)$ is a direct summand of $M(\lambda+k \rho) \otimes_{k} L(k \rho)$ for any $k \in \mathbb{N}$ such that $\lambda+k \rho$ is dominant.

Theorem 5.2.6. ([28, Theorem 3.9]) The modules $P(\lambda)$ with $\lambda \in \mathfrak{h}^{*}$ satisfy the following property:

- Every indecomposable projective module in category \mathcal{O} is isomorphic to some projective cover $P(\lambda)$.
- When a projective module $P \in \mathcal{O}$ is written as a direct sum of indecomposables modules then the number of direct summands isomorphic to $P(\lambda)$ is equal to $\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}(P, L(\lambda))$.
- For all $M \in \mathcal{O}$

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}(P(\lambda), M)=[M: L(\lambda)]
$$

In particular, $\operatorname{dim} E n d_{\mathcal{O}} P(\lambda)=[P(\lambda): L(\lambda)]$.
We obtained the module $P(\lambda)$ as a submodule of $M(\lambda+l \rho) \otimes_{k} L(l \rho)$. The module $P(\lambda)$ also has a standard filtration. Moreover, there are restrictions on which $M(\mu)$ can appear as quotients of this filtration.

Theorem 5.2.7. ([28, Theorem 3.10]) Each projective module in \mathcal{O} has a standard filtration. In a standard filtration of $P(\lambda),(P(\lambda): M(\lambda))=1$ and the multiplicity $(P(\lambda): M(\mu))$ is non-zero only if $\mu \geq \lambda$.

It turns out that there exists a relation between multiplicities of $L(\lambda)$ in a composition series and $M(\mu)$ in a standard filtration.

Theorem 5.2.8. (BGG reciprocity, [28, Theorem 3.11]) Let $\lambda, \mu \in \mathfrak{h}^{*}$. Then

$$
(P(\lambda): M(\mu))=[M(\mu): L(\lambda)]
$$

Moreover, there cannot be many maps between Verma modules, i.e. we have the following:

Theorem 5.2.9. ([28, Theorem 4.2]) Let $\lambda, \mu \in \mathfrak{h}^{*}$.

- Any non-zero homomorphism $\phi: M(\mu) \rightarrow M(\lambda)$ is injective.
- In all cases, $\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}(M(\mu), M(\lambda)) \leq 1$.

Furthermore, we have
Theorem 5.2.10. ([28, Theorem 5.1]) Let $\lambda, \mu \in \mathfrak{h}^{*}$. If μ is strongly linked to λ then $M(\mu) \hookrightarrow M(\lambda)$. In particular $[M(\lambda): L(\mu)] \neq 0$. Moreover, if $[M(\lambda): L(\mu)] \neq 0$ then μ is strongly linked to λ.

5.3 Singular block of the category \mathcal{O} and the category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$

Let $\mathfrak{g}=\operatorname{sl}(n, k)$. The aim of this section is to show that the singular block of the category \mathcal{O} associated with the linkage class of $\lambda_{1}=\omega_{1}-\rho$ is equivalent to the category $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ for a birational morphism $f: X \rightarrow Y$ of smooth surfaces such that the exceptional divisor of f is a chain of $n-1$ curves of self-intersection (-2) and one curve of self-intersection (-1).

We have seen in Section 4.5 that in this case $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is a highest weight category with n standard objects $\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)$ such that

$$
\operatorname{Hom}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)= \begin{cases}k & \text { if } i \geq j \\ 0 & \text { otherwise }\end{cases}
$$

Moreover,

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{R_{i}}\left(R_{i}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right)= \begin{cases}k & \text { if } i>j \\ 0 & \text { otherwise }\end{cases}
$$

and the compositions

$$
\begin{aligned}
& \operatorname{Hom}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{k}}\left(R_{k}\right)\right) \otimes \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{k}}\left(R_{k}\right)\right), \\
& \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{j}}\left(R_{j}\right), \mathcal{O}_{R_{k}}\left(R_{k}\right)\right) \otimes \operatorname{Hom}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{j}}\left(R_{j}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{R_{l}}\left(R_{l}\right), \mathcal{O}_{R_{k}}\left(R_{k}\right)\right),
\end{aligned}
$$

are non-zero whenever the domain is non-zero.
Remark 5.3.1. For a map f as above calculating the projective generator of $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ via universal extensions can be done explicitly; we have $\mathcal{P}_{i}=\mathcal{O}_{R_{i}+\ldots+R_{n}}\left(R_{i}+\ldots+R_{n}\right)$ and the endomorphism algebra of $\bigoplus \mathcal{P}_{i}$ is a path algebra of the following quiver

$$
\mathcal{P}_{n} \underset{\beta_{n-1}}{\stackrel{\alpha_{n}}{\longleftrightarrow}} \mathcal{P}_{n-1} \stackrel{\alpha_{n-1}}{\underset{\beta_{n-2}}{\leftrightarrows}} \cdots \stackrel{\alpha_{3}}{\rightleftarrows} \mathcal{P}_{2} \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} \mathcal{P}_{1}
$$

with relations

$$
\alpha_{2} \beta_{1}=0, \quad \alpha_{i+1} \beta_{i}=\beta_{i-1} \alpha_{i}, \quad i=2, \ldots, n-1
$$

Thus, in this case the endomorphism algebra of the projective generator of $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is uniquely determined by the Ext-algebra of standard objects.

Jordan-Hölder multiplicities in the singular block

Thanks to Theorem 5.2.10 we know that $\left[M\left(\lambda_{i}\right): L\left(\lambda_{j}\right)\right]=0$ for $i>j$. Now, we will prove

Proposition 5.3.2. For $i \leq j$ we have

$$
\left[M\left(\lambda_{i}\right): L\left(\lambda_{j}\right)\right]=1
$$

In order to do this we use the following
Theorem 5.3.3. ([30, Theorem 5.20]) Let $\lambda, \mu \in \mathfrak{h}^{*}$ with $\mu \uparrow \lambda$. Then, the following are equivalent

- $[M(\lambda): L(\mu)]=1$,
- For all $\mu^{\prime} \in \mathfrak{h}^{*}$ such that $\mu^{\prime} \neq \lambda$ and $\mu \uparrow \mu^{\prime} \uparrow \lambda$ we have $\left[M\left(\mu^{\prime}\right): L(\mu)\right]=1$ and

$$
\left|\Phi^{+}(\lambda)\right|-\left|\Phi^{+}(\mu)\right|=\left|\left\{\alpha \in \Phi^{+}(\lambda) \mid \mu \uparrow s_{\alpha} \cdot \lambda\right\}\right| .
$$

Proof of Proposition 5.3.2. .
From Theorem 5.2.4 it follows that $M\left(\lambda_{n}\right)=L\left(\lambda_{n}\right)$. For λ_{i} with $i>n$ we proceed by induction.

Assume that $\left[M\left(\lambda_{i}\right): L\left(\lambda_{j}\right)\right]=1$ for all $i<l$ and $j \leq i$. From the BGG reciprocity (5.2.8) and Theorem 5.2 .7 it follows that $\left[M\left(\lambda_{l}\right): L\left(\lambda_{l}\right)\right]=1$ and $\left[M\left(\lambda_{l}\right): L\left(\lambda_{j}\right)\right]=0$ for $j<l$. If $j>l$ then by Lemma 5.1.2 if $\mu \neq \lambda_{l}$ and $\lambda_{j} \uparrow \mu \uparrow \lambda_{l}$ then $\mu \in\left\{\lambda_{j}, \lambda_{j-1}, \ldots, \lambda_{l+1}\right\}$. By the induction hypothesis for all such μ we have $\left[M(\mu): L\left(\lambda_{j}\right)\right]=1$. Moreover, thanks to Lemma 5.1.2 $\left|\Phi^{+}\left(\lambda_{l}\right)\right|=n-l,\left|\Phi^{+}\left(\lambda_{j}\right)\right|=n-j$ and

$$
\left\{\alpha \in \Phi^{+}\left(\lambda_{l}\right) \mid \lambda_{j} \uparrow s_{\alpha} \cdot \lambda_{l}\right\},=\left\{\alpha_{l}, \alpha_{l}+\alpha_{l+1}, \ldots, \alpha_{l}+\ldots+\alpha_{j-1}\right\}
$$

Hence $\left[M\left(\lambda_{l}\right): L\left(\lambda_{j}\right)\right]=1$ by Theorem 5.3.3.
By the BGG reciprocity we immediately get

$$
\left(P\left(\lambda_{j}\right): M\left(\lambda_{i}\right)\right)=\left\{\begin{array}{cc}
1 & i \geq j \tag{5.1}\\
0 & \text { otherwise }
\end{array}\right.
$$

By Theorem 5.2.9 every map of Verma modules is injective and hence, by looking at the class in the Grothendieck group, we get short exact sequences

$$
0 \rightarrow M\left(\lambda_{i+1}\right) \rightarrow M\left(\lambda_{i}\right) \rightarrow L\left(\lambda_{i}\right) \rightarrow 0
$$

Projective resolutions of Verma modules

By Proposition 5.2.5

$$
P\left(\lambda_{1}\right)=M\left(\lambda_{1}\right)
$$

because λ_{1} is dominant. In order to find projective covers of the remaining simple modules we use the algorithm described in Section 5.2.2.

First, we notice that for any $i \in 2, \ldots, n$ the weight $\lambda_{i}+\rho$ is dominant and hence $M\left(\lambda_{i}+\rho\right) \otimes_{k} L(\rho)$ is a projective module with a map to $M\left(\lambda_{i}\right)$. Thus, $P\left(\lambda_{i}\right)$ is a submodule of $M\left(\lambda_{i}+\rho\right) \otimes_{k} L(\rho)$.

In order to better understand the structure of $P\left(\lambda_{i}\right)$ we shall use some properties of the module $L(\rho)$. [28, Theorem 1.6] guarantees that $\operatorname{dim} L(\rho)_{-\rho}=1$. We fix a non-zero vector $v \in L(\rho)_{-\rho}$. As $-\rho$ is the minimal weight of $L(\rho)$, for any $y \in U\left(\mathfrak{n}^{-}\right)$we have $y \cdot v=0$.

On the other hand, for any $i \in\{1, \ldots, n-1\}$ we have $x_{i} v \neq 0$ as

$$
y_{i} x_{i} v=x_{i} y_{i} v-h_{i} v=-\rho\left(h_{i}\right) v=v .
$$

Analogous argument shows that $x_{k} x_{k+1} \ldots x_{i} v \neq 0$ for any $1 \leq k \leq i<n$.

Lemma 5.3.4. Let $\lambda \in \Lambda$ and $\alpha \in \Delta$ be such that $\left\langle\lambda, \alpha^{\vee}\right\rangle=0$. Consider a short exact sequence

$$
0 \rightarrow M(\lambda) \xrightarrow{\iota} P \xrightarrow{\pi} M(\lambda-\alpha) \rightarrow 0
$$

with P generated by a vector w such that $\pi(w)$ is the generating vector of $M(\lambda-\alpha)$ and $x_{\alpha} w=\iota(v)$, where v is the generating vector of $M(\lambda)$. Then the sequence does not split.

Proof. The subspace of weight $\lambda-\alpha$ of $P, P_{\lambda-\alpha}$ is spanned by w and $y_{\alpha} x_{\alpha} w$. Because $\left\langle\lambda, \alpha^{\vee}\right\rangle=0$, the vector $y_{\alpha} x_{\alpha} w$ is a maximal vector of weight $\lambda-\alpha$ in P, i.e. $U\left(\mathfrak{n}^{+}\right) \cdot y_{\alpha} x_{\alpha}$. $w=0$.

Let $\bar{w}=\pi(w)$ be the generating vector of $M(\lambda-\alpha)$. A morphism $s: M(\lambda-\alpha) \rightarrow P$ lifting π must satisfy $s(\bar{w})=w+c y_{\alpha} x_{\alpha} w$ for some $c \in k$. On the other hand $s\left(x_{\alpha} \bar{w}\right)=$ $x_{\alpha} s(\bar{w})=0$ while $x_{\alpha}\left(w+c y_{\alpha} x_{\alpha} w\right)=x_{\alpha} w \neq 0$. So s is not a map of $U(\mathfrak{g})$-modules.

If $\mathfrak{g}=\operatorname{sl}(n, k)$ we can generalise the above construction of the module P for a sequence of simple roots $\alpha_{i}, \alpha_{i+1}, \ldots \alpha_{l} \in \Delta$. For $\lambda \in \mathfrak{h}^{*}$ we define $\lambda_{i}=\lambda$ and $\lambda_{j+1}=s_{\alpha_{j}} \cdot \lambda_{j}$ for $j=i, \ldots, l$. We assume that $\lambda \in \mathfrak{h}^{*}$ was chosen in such a way that $\left\langle\lambda_{j}, \alpha_{j}^{\vee}\right\rangle=0$ for $j=i, \ldots, l$. Then, $\lambda_{j+1}=\lambda-\sum_{l=i}^{j} \alpha_{l}$.

We consider a module $P_{i, l+1} \in M$ generated by a vector w_{l+1} of weight λ_{l+1} with the following $U(\mathfrak{g})$-action. We define $w_{j}=x_{j} w_{j+1}$ and assume that $w_{l} \neq 0, w_{l-2} \neq 0, \ldots, w_{i} \neq$ 0 and $w_{i-1}=x_{i-1} w_{i}=0$. Furthermore, $x_{s} w_{j}=0$ for $s \neq j-1$ and $U\left(\mathfrak{n}^{-}\right)$acts freely on each w_{j}. It follows that w_{i} is a maximal vector in $P_{i, l+1}$ of weight $\lambda_{i}=\lambda$.

If the simple root α considered in Lemma 5.3.4 is the i-th simple root then the module P of this lemma becomes in the new notation $P_{i, i+1}$.

Lemma 5.3.5. Let $\mathfrak{g}=\operatorname{sl}(n, k), \alpha_{i}, \ldots \alpha_{l} \in \Delta, \lambda \in \mathfrak{h}^{*}$ and a module $P_{i, l}$ be as above. The natural inclusion $P_{i, l} \subset P_{i, l+1}$ leads to a short exact sequence

$$
0 \rightarrow P_{i, l} \rightarrow P_{i, l+1} \rightarrow M\left(\lambda_{l}\right) \rightarrow 0
$$

which does not split.
Proof. The argument is the same as in the proof of Lemma 5.3.4. Namely, if \bar{w} is the generating vector of $M\left(\lambda_{l}\right)$ then the splitting homomorphism $s: M\left(\lambda_{l}\right) \rightarrow P_{i, l+1}$ would map \bar{w} to a vector of weight λ_{l} of the form $\widetilde{v}=w_{l+1}+\sum c_{i} v_{i}$, for some $v_{i} \in\left(P_{i, l+1}\right)_{\lambda_{l}}$, $v_{i} \neq w_{l+1}$. Moreover, as s is a homomorphism of $U(\mathfrak{g})$ modules, $U\left(\mathfrak{n}^{+}\right) \widetilde{v}=0$. We will show that such a vector v does not exist.

As $U\left(\mathfrak{n}^{+}\right) \widetilde{v}=0$ we have $x_{l} \widetilde{v}=0$. On the other hand, by assumption $x_{l} w_{l+1}=$ $w_{l} \neq 0$. The only vector of weight λ_{l} in the $U\left(\mathfrak{n}^{-}\right)$-submodule spanned by w_{l} is $y_{l} w_{l}$. As $\left\langle\lambda_{l-1}, \alpha_{l}^{\vee}\right\rangle=0$, we have $x_{l} y_{l} w_{l}=0$. Relations between w_{j} guarantee that vectors of weight λ_{l} in $U\left(\mathfrak{n}^{-}\right)$-submodules of $P_{i, l+1}$ generated by w_{l-1}, \ldots, w_{i} would not give w_{l} while multiplied by x_{l}. Finally, any vector of $P_{i, l+1}$ lies in a $U\left(\mathfrak{n}^{-}\right)$-submodule generated by w_{j} for some j. Hence, a sought for vector \widetilde{v} does not exist.

Now, we are ready to describe $P\left(\lambda_{i}\right)$.

Proposition 5.3.6. For $\lambda_{i}, i \neq 1$ the projective cover of $M\left(\lambda_{i}\right)$ is isomorphic to the module $P_{1, i}$.

Proof. From Section 5.2.2 we know that $P\left(\lambda_{i}\right)$ is a direct summand of

$$
T^{i}=M\left(\lambda_{i}+\rho\right) \otimes_{k} L(\rho) .
$$

The module T^{i} admits a filtration with quotients $M\left(\lambda_{i}+\rho+\mu\right)$ for μ such that $L(\rho)_{\mu} \neq 0$. We order the basis of $L(\rho), v_{1}, \ldots, v_{s}$ in such a way that $v=v_{s}$ is the only vector of weight $-\rho$. We assume that the weight of v_{i} is ν_{i}. On the other hand, vectors $v_{i_{\mu}}, v_{i_{\mu}+1}, \ldots, v_{j_{\mu}}$ are all the basis elements with weight μ.

The only weights of the form $\lambda_{i}+\rho+\mu$, for μ as above, linked to λ_{i} are $\lambda_{1}, \ldots, \lambda_{i}$. Putting $\mu_{l}=-\rho+\sum_{j=l}^{i-1} \alpha_{j}$ we have $\lambda_{i}+\rho+\mu_{l}=\lambda_{l}$. Then $L(\rho)_{\mu_{l}} \neq 0$ because $x_{l} \ldots x_{i-1} v \neq$ 0 .

We can also assume that the basis of $L(\rho)$ is ordered in such a way that $v_{i_{\mu_{l}}}=$ $x_{l} \ldots x_{i-1} v$.

The standard filtration of T^{i} is obtained by considering submodules $T_{l}^{i} \subset T^{i}$ generated by t_{1}, \ldots, t_{l}, where $t_{l}=v^{+} \otimes v_{l}$ and $v^{+} \in M\left(\lambda_{i}+\rho\right)$ is the maximal vector of weight $\lambda_{i}+\rho$.

For $l<i_{\mu_{\mu_{1}}}$ the weight λ_{1} is not linked to any $\lambda_{i}+\rho+\nu_{l}$ and hence

$$
T_{i_{\mu_{2}-1}}^{i}=T_{i_{\mu_{1}}-1}^{i} \oplus M\left(\lambda_{1}\right)^{\oplus \operatorname{dim} L(\rho)_{\mu_{1}}} .
$$

From Lemma 5.3.4 we deduce that $T_{i_{\mu_{2}}}^{i}$ has as a direct summand a module P containing $P_{1,2}$.

Analogously, using Lemma 5.3 .5 we see that the submodule $T_{i_{\mu_{l}}}^{i}$ has as a direct summand a module \widetilde{P} containing $P_{i, l}$.

Finally, the submodule of T^{i} containing t_{s} contains also $P_{1, i}$.
This finishes the proof. We know that both $P_{1, i}$ and $P\left(\lambda_{i}\right)$ have standard filtrations. By (5.1) we know that $\left(P\left(\lambda_{i}\right): M\left(\lambda_{l}\right)\right)=1$ for $l \leq i$. On the other hand, by construction $\left(P_{1, i}: M\left(\lambda_{l}\right)\right)=1$ for $l \leq i$ and $P_{1, i} \subset P\left(\lambda_{i}\right)$.

Using Lemma 5.3.5 and the above proposition we obtain
Corollary 5.3.7. Let $i \in\{2, \ldots, n\}$. Then

$$
0 \rightarrow P\left(\lambda_{i-1}\right) \rightarrow P\left(\lambda_{i}\right) \rightarrow M\left(\lambda_{i}\right) \rightarrow 0
$$

is a projective resolution of the Verma module $M\left(\lambda_{i}\right)$.

Ext-algebra of Verma modules

Theorem 5.2.10 implies that

$$
\operatorname{Hom}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right)= \begin{cases}k & \text { if } i \geq j \\ 0 & \text { otherwise }\end{cases}
$$

On the other hand, using Proposition 5.2.3 we know that

$$
\chi\left(\operatorname{Ext}^{\bullet}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right)=0 \quad \text { for } i \neq j\right.
$$

Finally, Corollary 5.3.7 implies that $\operatorname{Ext}^{>1}\left(M\left(\lambda_{i}\right), M\right)=0$ for any module $M \in \mathcal{O}$. Thus

$$
\operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right)=\left\{\begin{array}{cc}
k & \text { if } i>j \\
0 & \text { otherwise }
\end{array}\right.
$$

and the remaining Ext-groups vanish.
From Theorem 5.2.9 we know that a non-zero map $M\left(\lambda_{i}\right) \rightarrow M\left(\lambda_{j}\right)$ is injective and hence the composition

$$
\operatorname{Hom}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right) \otimes \operatorname{Hom}\left(M\left(\lambda_{l}\right), M\left(\lambda_{i}\right)\right) \rightarrow \operatorname{Hom}\left(M\left(\lambda_{l}\right), M\left(\lambda_{j}\right)\right)
$$

is non-zero for any triple $l>i>j$.
Lemma 5.3.8. For $j<i$ the composition

$$
\operatorname{Hom}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right) \otimes \operatorname{Ext}^{1}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{j}\right)\right)
$$

is non-zero.
Proof. Let $\beta \in \operatorname{Ext}^{1}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right), \gamma \in \operatorname{Hom}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right)$ be non-zero. Assume that $\gamma \circ \beta=0$. Then, applying the functor $\operatorname{Hom}\left(-, M\left(\lambda_{j}\right)\right)$ to the short exact sequence

$$
0 \rightarrow M\left(\lambda_{i}\right) \rightarrow P_{i, i+1} \rightarrow M\left(\lambda_{i+1}\right) \rightarrow 0
$$

we get that

$$
\operatorname{Hom}\left(P_{i, i+1}, M\left(\lambda_{j}\right)\right)=k^{2}
$$

As $P\left(\lambda_{i+1}\right)$ can be constructed as an iterated universal extension of Verma modules $M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right), \ldots M\left(\lambda_{1}\right)$ we have an epimorphism $P\left(\lambda_{i+1}\right) \rightarrow P_{i, i+1}$. Hence, $\operatorname{Hom}\left(P_{i, i+1}, M\left(\lambda_{j}\right)\right) \subset \operatorname{Hom}\left(P\left(\lambda_{i+1}\right), M\left(\lambda_{j}\right)\right)$. Thus, $\operatorname{dim} \operatorname{Hom}\left(P\left(\lambda_{i+1}\right), M\left(\lambda_{j}\right)\right) \geq 2$. This contradicts the fact that $\operatorname{dim} \operatorname{Hom}\left(P\left(\lambda_{i+1}\right), M\left(\lambda_{j}\right)\right)=\left[M\left(\lambda_{j}\right): L\left(\lambda_{i+1}\right)\right]=1$ (see Theorem 5.2.6 and 5.2.10).

Proposition 5.3.9. For any triple i, k, l such that $l>i>j$ the composition

$$
\operatorname{Hom}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right) \otimes \operatorname{Ext}^{1}\left(M\left(\lambda_{l}\right), M\left(\lambda_{i}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(M\left(\lambda_{l}\right), M\left(\lambda_{j}\right)\right)
$$

is non-zero.

Proof. Let $\beta \in \operatorname{Ext}^{1}\left(M\left(\lambda_{l}\right), M\left(\lambda_{i}\right)\right), \gamma \in \operatorname{Hom}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right)$ be non-zero elements. We know that $\operatorname{Ext}^{1}\left(M\left(\lambda_{l}\right), M\left(\lambda_{i}\right)\right)=k$ and hence by Lemma 5.3.8 $\beta=\gamma_{1} \circ \beta_{1}$ for $\beta_{1} \in \operatorname{Ext}^{1}\left(M\left(\lambda_{l}\right), M\left(\lambda_{l-1}\right)\right), \gamma_{1} \in \operatorname{Hom}\left(M\left(\lambda_{l-1}\right), M\left(\lambda_{i}\right)\right)$. Then

$$
\gamma \circ \beta=\left(\gamma \circ \gamma_{1}\right) \circ \beta_{1} \neq 0
$$

again by Lemma 5.3.8 and remark before Lemma 5.3.8.
Lemma 5.3.10. The composition

$$
\operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{i-1}\right)\right) \otimes \operatorname{Hom}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i-1}\right)\right)
$$

is non-zero.
Proof. Let $\gamma \in \operatorname{Hom}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right), \beta \in \operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{i-1}\right)\right)$ be non-zero elements. We already know that β corresponds to a short exact sequence

$$
0 \rightarrow M\left(\lambda_{i-1}\right) \rightarrow P_{i-1, i} \rightarrow M\left(\lambda_{i}\right) \rightarrow 0
$$

Applying to this sequence $\operatorname{Hom}\left(M\left(\lambda_{i+1}\right),-\right)$ we get that

$$
\beta \circ \gamma \neq 0 \Leftrightarrow \operatorname{dim} \operatorname{Hom}\left(M\left(\lambda_{i+1}\right), P_{i-1, i}\right)=1 .
$$

As the Verma module $M\left(\lambda_{i+1}\right)$ is generated by a maximal vector of weight λ_{i+1}, the dimension of the space of homomorphisms from $M\left(\lambda_{i+1}\right)$ to $P_{i-1, i}$ equals to the dimension of the subspace of $\left(P_{i-1, i}\right)_{\lambda_{i+1}}$ spanned by the maximal vectors, that is by vectors on which $U\left(\mathfrak{n}^{+}\right)$acts by zero.

From the construction of $P_{i-1, i}$ it follows that the space of vectors of weight λ_{i+1} is three dimensional with basis

$$
y_{i} w_{i}, y_{i-1} y_{i} w_{i-1}, y_{i-1, i} w_{i-1},
$$

where $w_{i-1}=x_{i-1} w_{i}$.
Direct calculations show that

$$
\begin{array}{lll}
x_{i-1} y_{i} w_{i}=y_{i} w_{i-1}, & x_{i-1} y_{i-1} y_{i} w_{i-1}=y_{i} w_{i-1}, & x_{i-1} y_{i-1, i} w_{i-1}=-y_{i} w_{i-1} \\
x_{i} y_{i} w_{i}=0, & x_{i} y_{i-1} y_{i} w_{i-1}=-y_{i-1} w_{i-1}, & x_{i} y_{i-1, i} w_{i-1}=y_{i-1} w_{i-1} \\
x_{i-1, i} y_{i} w_{i}=w_{i-1}, & x_{i-1, i} y_{i-1} y_{i} w_{i-1}=w_{i-1}, & x_{i-1, i} y_{i-1, i} w_{i-1}=-w_{i-1}
\end{array}
$$

and all other elements of $U\left(\mathfrak{n}^{-}\right)$act on the above elements by zero. Hence, up to scalar there is only one maximal vector of weight λ_{i+1} in $P_{i-1, i}$ which proves that $\operatorname{dim} \operatorname{Hom}\left(M\left(\lambda_{i+1}\right), P_{i-1, i}\right)=1$.

Proposition 5.3.11. For any triple $l>i>j$ the composition

$$
\operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right) \otimes \operatorname{Hom}\left(M\left(\lambda_{l}\right), M\left(\lambda_{i}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(M\left(\lambda_{l}\right), M\left(\lambda_{j}\right)\right)
$$

is non-zero.
Proof. Let $\beta_{i, j} \in \operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{j}\right)\right)$ and $\gamma_{l, i} \in \operatorname{Hom}\left(M\left(\lambda_{l}\right), M\left(\lambda_{i}\right)\right)$ be non-zero. Then by Lemma 5.3.8 $\beta_{i, j}=\gamma_{i-1, j} \circ \beta_{i, i-1}$ for some $\beta_{i, i-1} \in \operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{i-1}\right)\right)$ and $\gamma_{i-1, j} \in \operatorname{Hom}\left(M\left(\lambda_{i-1}\right), M\left(\lambda_{j}\right)\right)$. Moreover, $\gamma_{l, i}=\gamma_{i+1, i} \circ \ldots \gamma_{l, l-1}$ for some $\gamma_{s, s-1} \in \operatorname{Hom}\left(M\left(\lambda_{s}\right), M\left(\lambda_{s-1}\right)\right)$.

By Lemmas 5.3.10, 5.3 .8 and the fact that $\operatorname{Ext}^{1}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i-1}\right)\right)=k$ we know that for any non-zero element $\gamma_{i+1, i} \in \operatorname{Hom}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right)$ and $\beta_{i, i-1} \in$ $\operatorname{Ext}^{1}\left(M\left(\lambda_{i}\right), M\left(\lambda_{i-1}\right)\right)$ there exist non-zero $\beta_{i+1, i} \in \operatorname{Ext}^{1}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right)$ and $\gamma_{i, i-1} \in$ $\operatorname{Hom}\left(M\left(\lambda_{i+1}\right), M\left(\lambda_{i}\right)\right)$ such that

$$
\beta_{i, i-1} \circ \gamma_{i+1, i}=\gamma_{i, i-1} \circ \beta_{i+1, i} .
$$

Hence

$$
\begin{aligned}
& \beta_{i, k} \circ \gamma_{l, i}=\gamma_{i-1, k} \circ \beta_{i, i-1} \circ \gamma_{i+1, i} \circ \ldots \gamma_{l, l-1}=\gamma_{i-1, k} \circ \gamma_{i, i-1} \circ \beta_{i+1, i} \circ \gamma_{i+2, i+1} \circ \ldots \circ \gamma_{l, l-1}= \\
& =\ldots=\gamma_{i-1, k} \circ \gamma_{i, i-1} \circ \ldots \circ \gamma_{l-1, l-2} \circ \beta_{l, l-1} \neq 0
\end{aligned}
$$

by Proposition 5.3.9.
Theorem 5.3.12. Let $f: X \rightarrow Y$ be a birational morphism of smooth surfaces such that the exceptional divisor of f is a chain of $(n-1)$ curves of self-intersection (-2) and one curve of self-intersection (-1). Let \mathcal{C}_{f} be the full subcategory of $\mathcal{D}^{b}(X)$ with objects $\mathcal{F} \in \mathcal{D}^{b}(X)$ such that $R^{*} f_{*}(\mathcal{F})=0$.

Then, the category $\mathcal{C}_{f} \cap \operatorname{Coh}(X)$ is equivalent to a block $\mathcal{O}_{\omega_{1}}$ of category \mathcal{O} for the Lie algebra $\operatorname{sl}(n, k)$ determined by the (dominant) weight $\lambda=\omega_{1}-\rho$.

Proof. We use notation of Chapter 3.
From Proposition 4.5.4 we know that $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ is a highest weight category with standard objects $\mathcal{O}_{R_{n}}\left(R_{n}\right), \ldots, \mathcal{O}_{R_{1}}\left(R_{1}\right)$. Moreover, we calculated in Section 3.2.1 the Ext-algebra of these standard objects.

With Lemma 5.1.2 we proved that the block of the category \mathcal{O} determined by weight λ has n Verma modules, $M\left(\lambda_{n}\right), \ldots, M\left(\lambda_{1}\right)$.

Proposition 5.3.9 and 5.3 .11 show that the Ext-algebras of $\bigoplus \mathcal{O}_{R_{i}}\left(R_{i}\right)$ and $\bigoplus M\left(\lambda_{i}\right)$ are isomorphic.

Finally, from Remark 5.3.1 we conclude that endomorphism algebras of projective generators of both $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ and $\mathcal{O}_{\omega_{1}}$ are uniquely determined by Ext-algebras of standard objects and Verma modules respectively.

Remark 5.3.13. We could also start with a dominant weight $\mu=\omega_{2}-\rho$. Then, for $\operatorname{sl}(n, k)$ with $n \geq 4$ the linkage class of μ is

$$
\left\{\mu, \mu-\alpha_{2}, \mu-\alpha_{1}-\alpha_{2}, \mu-\alpha_{2}-\alpha_{3}, \mu-\alpha_{1}-\alpha_{2}-\alpha_{3}, \mu-\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}, \ldots\right\}
$$

If we put

$$
\begin{aligned}
& \mu_{2}=s_{\alpha_{2}} \cdot \mu=\mu-\alpha_{2} \\
& \mu_{1}=s_{\alpha_{1}} \cdot \mu_{2}=\mu-\alpha_{1}-\alpha_{2} \\
& \mu_{3}=s_{\alpha_{3}} \cdot \mu_{2}=\mu-\alpha_{2}-\alpha_{3} \\
& \mu_{13}=s_{\alpha_{3}} \cdot \alpha_{1}=s_{\alpha_{1}} \cdot \alpha_{3}=\mu-\alpha_{1}-\alpha_{2}-\alpha_{3} \\
& \mu_{4}=s_{\alpha_{4}} \cdot \mu_{13}=\mu-\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4} \\
& \mu_{5}=\ldots
\end{aligned}
$$

then homomorphisms between Verma modules are

A category with the above morphisms between standard objects cannot be of the form $\operatorname{Coh}(X) \cap \mathcal{C}_{f}$ for a birational morphism between smooth projective surfaces because of the non-zero maps from $M\left(\mu_{13}\right)$ to two incomparable objects $M\left(\mu_{1}\right)$ and $M\left(\mu_{3}\right)$.

Bibliography

[1] Dan Abramovich and Jiun-Cheng Chen. Flops, flips and perverse point sheaves on threefold stacks. J. Algebra, 290(2):372-407, 2005.
[2] V. Alexeev and D. Orlov. Derived categories of Burniat surfaces and exceptional collections. Math. Ann., 357(2):743-759, 2013.
[3] A. A. Bel̆linson. Coherent sheaves on \mathbf{P}^{n} and problems in linear algebra. Funktsional. Anal. i Prilozhen., 12(3):68-69, 1978.
[4] A. A. Beĭlinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5-171. Soc. Math. France, Paris, 1982.
[5] I. N. Bernštĕ̆n, I. M. Gel'fand, and S. I. Gel'fand. A certain category of \mathfrak{g}-modules. Funkcional. Anal. i Priložen., 10(2):1-8, 1976.
[6] I. N. Bernšteйn, I. M. Gel'fand, and S. I. Gel'fand. Algebraic vector bundles on \mathbf{P}^{n} and problems of linear algebra. Funktsional. Anal. i Prilozhen., 12(3):66-67, 1978.
[7] A. Bodzenta. DG categories and exceptional collections. arXiv:1205.6148 [math.AG], to appear in Proc. of the AMS, 2012.
[8] C. Böhning, H.-C. Graf von Bothmer, and P. Sosna. On the derived category of the classical Godeaux surface. Adv. Math., 243:203-231, 2013.
[9] A. I. Bondal. Representations of associative algebras and coherent sheaves. Izv. Akad. Nauk SSSR Ser. Mat., 53(1):25-44, 1989.
[10] A. I. Bondal and M. M. Kapranov. Framed triangulated categories. Mat. Sb., 181(5):669-683, 1990.
[11] A. I. Bondal, M. Larsen, and V. A. Lunts. Grothendieck ring of pretriangulated categories. Int. Math. Res. Not., (29):1461-1495, 2004.
[12] A. I. Bondal and D. O. Orlov. Derived categories of coherent sheaves. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 4756, Beijing, 2002. Higher Ed. Press.
[13] A.I. Bondal and D.O. Orlov. Semiorthogonal decompositions for algebraic varieties. arXiv:alg-geom/9506012, 1995.
[14] T. Bridgeland. Flops and derived categories. Invent. Math., 147(3):613-632, 2002.
[15] T. Bridgeland. Stability conditions on triangulated categories. Ann. of Math. (2), 166(2):317-345, 2007.
[16] T. Bridgeland, A. King, and M. Reid. The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc., 14(3):535-554 (electronic), 2001.
[17] E. Cline, B. Parshall, and L. Scott. Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math., 391:85-99, 1988.
[18] V. Dlab and C. M. Ringel. The module theoretical approach to quasi-hereditary algebras. In Representations of algebras and related topics (Kyoto, 1990), volume 168 of London Math. Soc. Lecture Note Ser., pages 200-224. Cambridge Univ. Press, Cambridge, 1992.
[19] William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[20] S. I. Gelfand and Y. I. Manin. Methods of homological algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003.
[21] S. Gorchinskiy and D. O Orlov. Geometric phantom categories. Publ. Math. Inst. Hautes Etudes Sci., 117:329-349, 2013.
[22] A. Grothendieck. Théorèmes de dualité pour les faisceaux algébriques cohérents. In Séminaire Bourbaki, Vol. 4, pages Exp. No. 149, 169-193. Soc. Math. France, Paris, 1995.
[23] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[24] R. Hartshorne. Stable reflexive sheaves. Math. Ann., 254(2):121-176, 1980.
[25] L. Hille and M. Perling. Tilting bundles on rational surfaces and quasi-hereditary algebras. arXiv:1110.5843 [math.AG], 2011.
[26] Lutz Hille and Markus Perling. Exceptional sequences of invertible sheaves on rational surfaces. Compos. Math., 147(4):1230-1280, 2011.
[27] J. E. Humphreys. Introduction to Lie algebras and representation theory, volume 9 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1978. Second printing, revised.
[28] J. E. Humphreys. Representations of semisimple Lie algebras in the BGG category \mathcal{O}, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[29] R. S. Irving. BGG algebras and the BGG reciprocity principle. J. Algebra, 135(2):363-380, 1990.
[30] J. C. Jantzen. Moduln mit einem höchsten Gewicht, volume 750 of Lecture Notes in Mathematics. Springer, Berlin, 1979.
[31] T. V. Kadeishvili. The algebraic structure in the homology of an $A(\infty)$-algebra. Soobshch. Akad. Nauk Gruzin. SSR, 108(2):249-252 (1983), 1982.
[32] M. M. Kapranov. Derived category of coherent sheaves on Grassmann manifolds. Izv. Akad. Nauk SSSR Ser. Mat., 48(1):192-202, 1984.
[33] M. M. Kapranov. Derived category of coherent bundles on a quadric. Funktsional. Anal. i Prilozhen., 20(2):67, 1986.
[34] M. M. Kapranov. On the derived categories of coherent sheaves on some homogeneous spaces. Invent. Math., 92(3):479-508, 1988.
[35] Y. Kawamata. Derived categories and birational geometry. In Algebraic geometrySeattle 2005. Part 2, volume 80 of Proc. Sympos. Pure Math., pages 655-665. Amer. Math. Soc., Providence, RI, 2009.
[36] B. Keller. Deriving DG categories. Ann. Sci. École Norm. Sup. (4), 27(1):63-102, 1994.
[37] B. Keller. Introduction to A-infinity algebras and modules. Homology Homotopy Appl., 3(1):1-35, 2001.
[38] B. Keller. A-infinity algebras, modules and functor categories. In Trends in representation theory of algebras and related topics, volume 406 of Contemp. Math., pages 67-93. Amer. Math. Soc., Providence, RI, 2006.
[39] A. Kirillov, Jr. An introduction to Lie groups and Lie algebras, volume 113 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2008.
[40] M. Klucznik and S. König. Characteristic tilting modules over quasi-hereditary algebras. Preprint-Server of the SFB 343 E99-004, Universität Bielfeld, 2000.
[41] D. Kraines. Higher products. Bull. Amer. Math. Soc., 72:128-131, 1966.
[42] A. Kuznetsov. Exceptional collections for Grassmannians of isotropic lines. Proc. Lond. Math. Soc. (3), 97(1):155-182, 2008.
[43] A. Kuznetsov and A. Polishchuk. Exceptional collections on isotropic Grassmannians. arXiv:1110.5607 [math.AG], 2011.
[44] Külshammer J. König, S. and Ovsienko S. Quasi-hereditary algebras, exact Borel subalgebras, a_{∞}-categories and boxes. arXiv:1305.2315 [math.RT], 2013.
[45] K. Lefevre-Hasegawa. Sur les a-infini catégories. arXiv preprint math/0310337, 2003.
[46] D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang. A-infinity structure on Extalgebras. J. Pure Appl. Algebra, 213(11):2017-2037, 2009.
[47] V. A. Lunts and A. Kuznetsov. Categorical resolutions of irrational singularities. arXiv preprint arXiv:1212.6170 [math.AG], 2012.
[48] V. A. Lunts and D. O. Orlov. Uniqueness of enhancement for triangulated categories. J. Amer. Math. Soc., 23(3):853-908, 2010.
[49] V. Lyubashenko. Category of A_{∞}-categories. Homology Homotopy Appl., 5(1):1-48, 2003.
[50] S. Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition.
[51] S. A. Merkulov. Strong homotopy algebras of a Kähler manifold. Internat. Math. Res. Notices, (3):153-164, 1999.
[52] S. Mukai. Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves. Nagoya Math. J., 81:153-175, 1981.
[53] E. J. O'Neill. On Massey products. Pacific J. Math., 76(1):123-127, 1978.
[54] D. O. Orlov. Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat., 56(4):852-862, 1992.
[55] D. O. Orlov. Equivalences of derived categories and K3 surfaces. J. Math. Sci. (New York), 84(5):1361-1381, 1997. Algebraic geometry, 7.
[56] B. Parshall and L. Scott. Derived categories, quasi-hereditary algebras and algebraic groups. Proc. Ottawa-Moosonee Workshop, LN 3:1-105, 1988
[57] A. Polishchuk. A_{∞}-structures on an elliptic curve. Comm. Math. Phys., 247(3):527551, 2004.
[58] C. M. Ringel. The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z., 208(2):209-223, 1991.
[59] T. Seidel. Homological mirror symmetry for the quartic surface. arXiv:math/0310414, 2003.
[60] The Stacks Project Authors. Stacks project, 2013.
[61] Y. Toda. Stability conditions and birational geometry of projective surfaces. arXiv:1205.3602 [math.AG], 2012.
[62] M. Van den Bergh. Three-dimensional flops and noncommutative rings. Duke Math. J., 122(3):423-455, 2004.
[63] J.-L. Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, (239):xii +253 pp. (1997), 1996. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.
[64] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

