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Abstract

In this thesis we investigate derived categories of coherent sheaves on smooth projective
varieties and their behaviour under birational morphisms.

We give description of the bounded derived category of coherent sheaves D°(X) on a
smooth projective variety X provided it admits a full exceptional collection. We prove that
if such a collection o exists the category D°(X) is equivalent to the homotopy category
of DG modules over some finitely dimensional, directed DG category C,.

Then we address the problem of calculating the DG category C~U We propose three
methods. The first one is based on mutating the given collection ¢ to a strong one. The
second one uses the language of A, -categories and Massey products. More precisely, we
use the fact that the DG category C, can be calculated via a structure of A-algebra on the
endomorphism algebra of object of 0. We prove that higher multiplication m,,(f,, ..., f1)
in this A,-algebra is, up to a sign, given by n-tuple Massey products p,(fn,--., f1)
provided the second set is non-empty.

The third method is based on universal extensions, which originate in representation
theory of quasi-hereditary algebras. This method works for full exceptional collections
with second and higher Ext-groups between objects vanishing. It constructs from the
given exceptional collection o, a tilting object E and uses its endomorphism algebra to
calculate the DG category C~U

Comparing methods using Massey products and universal extensions we describe some
new cohomological operations, the so called relative Massey products.

Smooth rational surfaces provide a list of examples where full exceptional collections
with vanishing higher Ext-groups exist. In particular, on smooth toric surfaces we have
canonical full exceptional collections satisfying this condition. We use universal extensions
to calculate the corresponding DG categories explicitly.

We notice that most of calculations done for toric, or more generally rational, surfaces
depend on the birational morphism from the surface to its minimal model. In more general
contex we investigate the relation between D°(X) and D°(Y') for a birational morphism
f: X — Y of smooth projective surfaces. We show that in this case D(X) admits a
semi-orthogonal decomposition D*(X) = (C;,D°(Y)) and the category C; is uniquely
determined by the exceptional divisor of the map f. More precisely, all objects in Cy
are scheme-theoretically supported on the discrepancy divisor of f. Finally, the natural
abelian subcategory Coh(X) NCy is a highest weight category with duality.

Higher weight categories appear in representation theory of semisimple Lie algebras
as blocks of the BGG category O. We show that for a family of morphisms f: X — Y
of smooth projective surfaces the abelian category Coh(X)NCy is indeed equivalent to a
singular block O,, of the BGG category O for sl(n, C).
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Streszczenie

Tematem tej pracy sa kategorie pochodne snopéw koherentnych na gtadkich
rozmaitos$ciach rzutowych oraz ich zachowanie przy morfizmach biwymiernych.

W pracy opisujemy ograniczona kategorie pochodng snopéw koherentnych DP(X)
na gladkiej rozmaitosci rzutowej X, gdy na X istnieje pelna wyjatkowa kolekcja o.
Dowodzimy, ze w tym przypadku kategoria D’(X) jest réwnowazna kategorii homotopii
DG moduléw nad pewna skoniczenie wymiarows, skierowana DG kategoria C..

Nastepnie przedstawiamy trzy metody pozwalajace na obliczenie DG kategorii C,.
Pierwsza z nich bazuje na mutacji danej kolekcji do silnej czyli takiej, w ktorej wszystkie
wyzsze grupy Ext sa zerowe. Druga opiera sie na iloczynach Massey’a oraz jezyku
Aso-kategorii. Uzywa ona faktu, ze DG kategoria CNU moze byé¢ obliczona przy pomocy
struktury A.-algebry na algebrze endomorfizméw obiektow kolekeji 0. Dowodzimy, ze
warto$¢ wyzszego mnozenia my(fn, ..., f1) w tej Ax-algebrze jest, z doktadnoscia do
znaku, wyznaczona przez n-krotny iloczyn Massey’a fi,,(fn,- .., f1), jezeli tylko ten zbiér
jest niepusty.

Trzecia metoda wykorzystuje uniwersalne rozszerzenia. Metoda ta pozwala na
obliczenie DG kategorii C, dla kolekcji o, w ktérej znikaja grupy Ext=*(T;, T;). Z takiej
kolekcji 0 mozna skonstruowaé obiekt przechylajacy E (ang. tilting object). Algebra
endomorfizméw F pozwala na obliczenie kategorii a,

Poréwnujac druga i trzeciag metode znajdujemy nowa operacje kohomologiczna, ktora
nazywamy relatywnym iloczynem Massey’a.

Pelne wyjatkowe kolekcje z zerowymi grupami Ext=*(T;,Tj) istnieja na gladkich
powierzchniach wymiernych. W szczegdlnosci na gtadkich powierzchniach torycznych
mozna w kanoniczny sposob zdefiniowaé¢ pelne wyjatkowe kolekcje wigzek liniwych
spelniajace warunek EthQ(ﬁi, L;) = 0. Przy pomocy uniwersalnych rozszerzeii w jawny
sposoéb obliczamy odpowiadajace im DG kotczany.

W kolejnym rozdziale zauwazamy, ze obliczajac DG kolczan dla powierzchni torycznej,
w glowne] mierze bierzemy pod uwage morfizm z tej powierzchni do jej modelu
minimalnego. Przyjmujac bardziej ogélny punkt widzenia, rozpatrujemy wiec biwymierny
morfizm f: X — Y gladkich powierzchni rzutowych i badamy, jaka zadaje on relacje
pomiedzy kategoriami D?(X) i D°(Y). Okazuje sie, ze odwzorowanie f zadaje rozklad
polortogonalny Db(X) = (C;, D*(Y)). Kategoria C; jest jednoznacznie wyznaczona przez
dywizor wyjatkowy f. Dodatkowo, wszystkie obiekty C; maja schemato-teoretyczny
no$nik zawarty w dywizorze dyskrepancji odwzorowania f, a naturalna podkategoria
abelowa Coh(X) NCy C Cy jest kategoria najwyzszych wag.

Kategorie najwyzszych wag pojawiaja sie w teorii reprezentacji polprostych algebr
Liego jako bloki kategorii O Bernsteina - Gelfanda - Gelfanda. W ostatnim rozdziale

pokazujemy, ze dla pewnej rodziny morfizmoéow f: X — Y gladkich powierzchni rzutowych



kategoria Coh(X)NCy jest rzeczywiscie rownowazna blokowi O, kategorii O dla algebry
Liego sl(n, C).
Stowa kluczowe: kategoria pochodna, wyjatkowa kolekcja, DG kategoria, A..-
kategoria, koltczan, iloczyn Massey’a, morfizm biwymierny, algebra Liego, kategoria O.
Klasyfikacja AMS MSC 2010: 14F05, 16E45, 14E05, 14J26, 14M25, 17B10, 17B45.
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Introduction

Theory of derived categories, developed by Grothendieck and Verdier, [63], appeared
in algebraic geometry as a convenient language to formulate coherent duality theory,
[22]. They also provided the setting for higher cohomology groups of sheaves. Shortly
afterwards, other derived functors, such as higher direct images, entered the stage.
However, for many years the language of derived categories and homological algebra
remained only a formal tool applied to the study of schemes and sheaves on them.

The situation changed with the paper of Mukai [52] which presented a geometrically
motivated equivalence between derived categories of non-isomorphic abelian varieties.
Other examples of equivalences for K3 surfaces were later constructed by Orlov, [55].
These discoveries raised the question of the invariance of the derived categories of coherent
sheaves under natural operations on varieties.

In [13]| Bondal and Orlov proved that the bounded derived category of coherent sheaves,
Db(X) determines the smooth variety X if the canonical divisor Kx of X is either ample
or anti-ample. For other varieties derived categories turn out to be a less rigid but still

comprehensible invariant.

First properties of D’(X). Full exceptional collections and semi-

orthogonal decompositions

The work of Bernstein Gelfand Gelfan, [6], and Beilinson’s spectral sequence, [3| provided
the first evidence that the category D?(P") can be understood in terms of finitely many
objects and morphisms between them. More precisely, from these papers it follows that
(Opn, Opa(1),...,0pn(n)) is a full strong exceptional collection in D°(P™).

We give a precise definition of an exceptional collection in Section 1.2. For now, let
us just say that a collection o = (T7,...,T,,) is a full strong exceptional collection on a

smooth variety X if

0 for i> j,

Ext!(T;,T;) = 0 for I # 0, dim Hom(T},T}) = o
1 for 1=

and for every object E in D°(X) there exist objects 0 = E,,, E,,_1, ..., Ey = E and maps
E; — E;_; with cones of the form € T;[l;] for some I, € Z.
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Due to a theorem by Bondal, [9, Theorem 6.2|, if a variety X has a full strong
exceptional collection then D(X) is equivalent to a bounded derived category of finitely
dimensional modules over a finitely dimensional non-commutative algebra A. Moreover,
the algebra A can be presented as a path algebra of a finite quiver with relations.

Beilinson’s discovery was followed by papers of Kapranov, [32], [33], [34], in which full
exceptional collections on quadrics, Grassmannians and homogeneous spaces. Later, full
exceptional collections were also constructed on other varieties, such as Grassmannians
of isotropic lines, [42], and rational surfaces, [26].

Conjectural full exceptional collections on isotropic Grassmannians were recently
constructed by Kuznetsov and Polishchuk in [43]. What still remains to be proved is
the fact that these collections are full. This question turns out to be the most difficult
part of the theory, especially in the light of a recent discovery of existence of phantom
categories, which are triangulated categories with all numerical invariants equal to zero
(see [2], [8], [21]).

In the above examples collections are no longer strong and the above mentioned
Bondal’s theorem cannot be applied. Its generalisation, due to Bondal and Kapranov
[10, Theorem 1|, states that when X has a full exceptional collection o then all the
information about the category D°(X) is captured by a certain DG category C, with
finitely many objects. However, the spaces of morphisms in C, can a priori be infinitely
dimensional.

In Chapter 1 we prove the following theorem:

Theorem A (Theorem 1.4.2). Let X be a smooth projective variety and let o =
(&1,...,&n) be a full exceptional collection on X. Then, there exists an ordered, finite
DG category C, such that D*(X) is equivalent to D*(C,).

The fact that C, is an ordered finite DG category implies that C, can be presented as
a path algebra of a finite DG quiver with relations Q).

However, it is not at all obvious how to calculate this DG quiver ). In Chapter 2
we present three methods to determine such a quiver. The first one, described in Section
2.1, uses mutation of exceptional collections. The second one, presented in Section 2.2,
uses the language of A..-categories and Massey products. Finally, the third one, given
in Section 2.3, relies on the construction of universal extensions, which originated in the
study of representation theory of quasi-hereditary algebras.

In Chapter 2 we prove that Massey products u, can be used to calculate an A-

structure on a complex in an enhanced triangulated category.
Theorem B (Theorem 2.2.12). Let C be a pretriangulated DG category and let
80

0 1 n—1 0" ' m
™ —=T —...=T — T
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be a complex in H°(C). Assume that u,(0"',...,3°) # 0 and choose f €
pn (07710 0%, Then, there exists a minimal As-structure on H(C) such that
m, (0", ...,0% = —f and mp(0*1 .0 =0 fori € {0,...,n — 1} and k such
thati+k <n—1.

This A,-structure can be later easily translated into a DG structure. In the case
when there are not many morphisms between objects of an exceptional collection this
information can be sufficient to compute the DG quiver ().

Using of universal extensions we obtain objects ET,...,E] from an exceptional
collection (Fy, ..., E,).

Theorem C (Theorem 2.3.1). Let 0 = (F, ..., E,) be a full exceptional collection on a
smooth projective variety X such that Exti(Ej, Er) =0 fori#0,1 and any k, j. Then,
the DG quiver ) is determined by the endomorphism algebra of the tilting generator,

Homx (D, B, D E}').

The assumptions of Theorem C are satisfied by a big family of exceptional collections
on smooth toric surfaces. In Chapter 3 we explicitly calculate the corresponding DG

quivers.

Derived categories and birational geometry

Derived categories are used in the study of birational geometry of varieties. One of the
first results in this direction was a proof of existence of crepant resolutions in dimension
three purely in the language of derived categories, see [16]. Recently, in [47] Lunts
and Kuznetsov proved existence of a non-commutative crepant resolution for irregular
singularities.

In [12] Bondal and Orlov suggested that the minimal model program could be
understood as a process of minimalisation of derived category of coherent sheaves in
a given birational class. They also stated a conjecture that for a variety Y with rational
singularities and a proper birational morphism 7: X — Y the functor R'm, is simply a
quotient of D°(X) by the kernel of R'm,. Finally, the authors conjectured that for any
generalized flip X --» X there exists a fully faithful functor D*(X*+) — Db(X).

Evidence for this conjecture were provided by Kawamata, [35]. It was proved for
flops in dimension three by Bridgeland, [14]. In his paper Bridgeland constructed X*
as a moduli space of some objects in D’(X). Moreover, he speculates that for a small
contraction f: X — Y with —Kx being f-ample, the moduli space of appropriate objects
of D*(X) should be isomorphic to the flip W of X and there should be a fully faithful
functor D(W) — D(X). However, the theory of derived categories for singular spaces is

not sufficiently well developed to prove this conjecture. The first steps in the direction

11



of developing the theory for singular varieties were taken by Kawamata in [35] and
Abramovich and Chen in [1].

For a birational morphism f: X — Y of smooth projective surfaces Toda in [61]
constructed Y as a moduli space of some stable objects in D°(X). In particular, he
obtained the minimal model of X in this way.

The calculations conducted in Chapter 3 turn out to depend mostly on the birational
morphism from a smooth rational surface to its minimal model. Therefore, in Chapter 4
we focus our attention on a birational morphism f: X — Y of smooth projective surfaces.
We investigate the relation between D°(X) and Db(Y') given by the map f.

We associate with f a category C; C D¥(X). Then, we prove the following theorem:

Theorem D (Theorem 4.4.4). Let f: X — Y be a birational morphism of smooth
projective surfaces and let E = Y FE; be the exceptional divisor of f. It has a non-
reduced scheme structure E = > a;E; given by the discrepancy of f, Kx = f*Ky + E
and let v: E < X denote the closed embedding.

Let C; = {€ € D"(X) | R f.(€) = 0} be a full subcategory of D*(X). Then any object
E € Cy is of the form 1. for some € € DV(E).

Thus, the category Cy is closely related to the exceptional divisor of the map f.

We continue the study of Cy and prove in Proposition 4.5.4 that its natural abelian
subcategory Coh(X)NCy C Cy has a structure of a highest weight category with duality.

Highest weight categories appeared first in the study of representation theory of
semisimple Lie algebras. In Chapter 5 we prove that for some birational morphisms
[+ X — Y the abelian category Coh(X)NC; is indeed equivalent to a category of modules

over sl(n, k).
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In the following we work over an algebraically closed field k of characteristic zero. All the

varieties are considered as algebraic varieties in the sense of [23].
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Chapter 1

DG categories and exceptional

collections

The main result of this chapter is Theorem 1.4.2 about existence of a finite DG quiver
of any exceptional collection on a smooth projective variety X. This theorem provides
description of the bounded derived category of coherent sheaves D’(X) = D?(Coh(X)),
provided a full exceptional collection exists. In this case, D°(X) is equivalent to the
homotopy category of DG modules over a DG algebra (Z, This DG algebra is finitely
dimensional over k and can be presented as a path algebra of an ordered DG quiver. Thus
Theorem 1.4.2 generalises [9, Theorem 6.2].

Theorem 1.4.2 follows from existence of a DG enhancement of D?(X), see [10, Theorem
1], and Theorem 1.4.1. Let C be a DG category with finitely many objects and such that
H(C) is ordered and has finitely dimensional Hom-spaces. Theorem 1.4.1 allows us to
substitute C with a derived Morita-equivalent DG category C which itself is ordered and
has finitely dimensional Hom-spaces. Note that by the result of Lunts and Orlov, [48,
Theorem 9.9], the DG enhancement of D°(X) is unique.

The proof of Theorem 1.4.1 uses A,.-categories and existence of a minimal model of
an A.-category. It relies on existence of the universal enveloping DG category of an
Aso-category and explicit description of this DG category by bar and cobar construction
given in [45, Section 2].

For the convenience of reader in Section 1.1 we recall all basic definitions from
homological algebra in the thesis. In Section 1.2 we define after [9] exceptional collections,
the associated quiver and description of D°(X) it gives. In Section 1.2.1 we define DG
categories and we recall the crucial result of Bondal and Kapranov (see [10, Theorem 1]).
In Section 1.3 we define after [38] and [45] A-categories and we describe the construction
of [45] of the universal DG category associated to an A.-category. Finally, in Section
1.3.2 the category of A.-modules is introduced after |38, 45]. All of the above results and

definitions are used in Section 1.4 to prove Theorems 1.4.1 and 1.4.2.
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1.1 Preliminary definitions

We recall same basic homological algebra definitions following [20], [50] and [64].
We work only with k-linear categories, i.e. with categories in which the morphism

space between any two objects has a structure of a k-vector space.
Definition 1.1.1. A category A is preadditive if

(A1) For any pair of objects Ay, Ay € Ob(A) the set Homu (A1, As) has a structure of an

abelian group, i.e. of a Z-module.
(A2) For any three objects Ay, As, A3 € Ob(A) the composition map
Homa(As, A3) @z Homa (A1, As) — Homa(Ar, As)
1s a homomorphism of abelian groups.
Definition 1.1.2. A preadditive category A is called additive if
(A3) There exists a zero object 04 € Ob(A) which is both initial and terminal in A.

(A4) For any pair of objects Ay, Ay € Ob(A) the direct sum Ay ® Ay and the direct product
Ay x As exist and they coincide, i.e. A1 @ Ay = Ay X As.

The axioms (A1) - (A4) allow us to define in any additive category finite products and
coproducts. In particular, for objects A;, A2 € Ob(A) and any map f € Hom 4(A;, As)
we define the kernel of f, Ker f, as the equaliser of f and the zero map 04, 4, €
Hom 4(A;, As). From the definition of the equaliser it follows that there is a canonical
morphism ¢: Ker f — A;. Analogously, we define the cokernel of f, Coker f, as the
coequaliser of f and the zero map 04, 4, € Hom (A, Ay). Again, it follows from the

definition that there is a canonical morphism 7: Ay — Coker f.
Definition 1.1.3. An additive category A is abelian if
(A5) For any Ay, Ay € Ob(A) and any f € Homy(Ay, As) there exists a sequence
K5 A BT54,5K
such that

(i) top=f,
(i) (K,1: X — Ay) is the kernel of f, (K',m: Ay — K') is the cokernel of f,
(111) (I,p: Ay — I) is the cokernel of v and (I,i: I — As) is the kernel of .

15



The basic example of an abelian category is the category Ab of abelian groups.

Morphisms

8n72 _ 8n71 on
X*=. S Xxnmt 2 yxnZ, .

in an abelian category A form a cochain complex if the composition 9" o 9"~ ! = 0 for all

n € Z. The n-th cohomology group of a cochain complex X* is defined as
H™(X*) = Cokera™ ! = Kerb"
where the maps a" !, b" fit into the commutative diagram

Coker 971

| e

Xn—l on-1 Xn an Xn+1

an—l T

Ker o™

A cochain complex (X*, 0°) is called exact if all its cohomology groups are zero.
An additive functor F': A — A’ between abelian categories is exact if for any short
exact sequence
0=+A—=B—-C—=0

in A the sequence
0— F(A) - F(B)— F(C)—0

is exact in A’.

Let us recall that an object I € Ob(A) is injective if the functor Homy(—, 7): A — Ab
is exact.

Finally, we say that an abelian category A has enough injectives if any object A €
Ob(A) can be embedded into an injective object of A.

0—-A—=1

An injective object I of A is an injective envelope of A if A — I is an essential extension,
i.e. any J C I such that J N A =0 is zero.
We will be mostly interested in derived categories of abelian categories. Such categories

are triangulated in the following sense:

Definition 1.1.4. A triangulated category T is an additive category equipped with an
automorphism T: T — T called a translation functor and a family of distinguished
triangles of the form

A2 B0 T(A)

satisfying the following axioms:

16



(TR1) Every morphism u: A — B can be embedded into a distinguished triangle. If A = B
and C'= 0 then the triangle

ida

A4 4% 0% 7(A)
is distinguished. If a triangle (u,v,w) is isomorphic to a distinguished triangle
(w0 W)
A——=B—"=C—"T(A)
Y A ; T Nyg T(A")

then the triangle (u,v,w) is also distinguished.

(TR2) If
AL B2 O T(A)
15 a distinguished triangle then so is

—T(u)

B 5% C 5 T(A) T(B)

(TR3) Any morphisms f: A — A’, g: B — B’ such that gou =u'o f can be completed to
a map of distinguished triangles

A—“ B O Y T(A)

RN

’ ’ /

A B o T(AY)

(TR4) Every diagram of the form

!/

&/

1] o B o

where triangles marked with x are distinguished and the ones marked with O
commute, can be completed to an octahedron diagram, i.e. there exists an object

B’ which fits into a diagram

A C
e

[ * B o«
//O 1]

C’ A




Finally, we require that the composite morphisms B — B’, through C and C',
coincide and that the composite morphisms B’ — B, through A and A’ coincide.

The value of the functor 7" on an element ¢ € T is often denoted by ¢[1]. Analogously,
tln] = T"(t) and t[—n] = (T~H"(1).

The first example of a triangulated category is the homotopy category K°(A) of
bounded complexes over an abelian category A. The category K°(A) is constructed from
an additive category Komg(A) of bounded complexes of objects of A. Objects of both
Kom)(A) and K°(A) are cochain complexes of objects of A with all but finitely many
objects equal to zero. Morphisms in the category Komg(.A) are morphisms of complexes,
i.e. collections of morphisms f*: K* — L such that 85?1 ft— f*1o: . = 0. Morphisms
in the homotopy category K®(A) are morphisms in the category Kom3(A) modulo the
homotopy equivalence. Recall that a morphism f*: K* — L' is homotopic to zero if there
exists a homotopy h': K* — Li~! such that f* = hla;,l + 3z.hi_1.

Analogously, one can consider categories Komg (A), Komg, (A) and Komg(A) of
respectively bounded from below, bounded from above and unbounded complexes of
objects of A. Dividing the spaces of morphisms in these categories by the relation of
homotopy equivalence we obtain categories K (A), K~ (A) and K(A).

A morphism f': K* — L’ in the category Kom}(A) (Komg (A), Komg (A), Komg(A)
respectively) is a quasi-isomorphism if it induces the identity morphism on the cohomology
groups H(K") ~ H'(L"). Analogously, we define quasi-isomorphism in K°(A), K*(A),
K~ (A) and K(A).

To every abelian category A we can associate its bounded derived category D°(A)
which is a triangulated category. It can be characterised by the following universal
property. There exists a functor Q: Komj(.A) — D*(A) such that Q(f) is an isomorphism
if fis a quasi-isomorphism and any functor F': Kom{(.A) — D which transforms quasi-
isomorphisms into isomorphisms can be uniquely factorised through @ : Komg(A) —
D*(A). Analogously, we define bounded from below D*(A), bounded from above D~ (A)
and unbounded D(A) derived category of A. In general, D’(A) is a localisation of K°(.A)
with respect to the class of quasi-isomorphisms, i.e. to obtain D°(A) we formally invert all
quasi-isomorphisms in K’(A). An analogous construction for K*(A), K~(A) and K(A)
gives DT (A), D~ (A) and D(A) respectively.

If the category A has enough injectives then every object A has an injective resolution.
The first element in the resolution, I, is the injective object such that there exists a

monomorphism A < Iy. Element I" is constructed as the injective object into which the
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cokernel of map "2 — ["~! embeds, i.e. we have a diagram

N

Coker ¢4 Coker 0°

NN

The cochain complex 0 — I° — I' — ... has only zeroth cohomology group H°(I") =
A.
Let A be an abelian category with enough injectives and let Inj, C A be a full

0 A

subcategory with the class of objects equal to the class of injective objects in A. Then the
bounded from below derived category of A, DT (A) is the homotopy category K + (Inj ,)
of complexes of injective objects of A bounded from below. Injective resolutions of objects
of A define an additive functor A — DT (A).

Let X be a smooth projective variety defined over k. We can associate to it a k-
linear abelian category Coh(X) of coherent sheaves on X. This category does not have
injective objects. However, it is a full subcategory of the category QCoh(X) of quasi-
coherent sheaves on X. The category QCoh(X) has enough injectives and the construction
described above gives DT (QCoh(X)), the bounded from below derived category of quasi-
coherent sheaves on X. The bounded derived category of coherent sheaves on X, denoted
by D’(X) is then the full subcategory of DT (QCoh(X)) = K*(Injoeonx)) consisting of

complexes having only finitely many non-zero and coherent cohomology sheaves.

1.2 Exceptional collections

Full strong exceptional collections provide an easy description of triangulated categories.
We recall definitions and the resulting description of D?(X) after [9].

Recall, that an object T € T of a triangulated category is exceptional if
Hom(T,T) = k and Hom(T,T[i]) = 0 for ¢ # 0. An ordered collection o = (T1,...,T,)
of exceptional objects is called an exceptional collection if Homy(T;,T;[l]) = 0 for i > j
and all . An exceptional collection ¢ is strong if we also have Homy (T}, T;[l]) = 0 for
[ # 0 and all 7, j. Finally, the collection o is full if the smallest strictly full subcategory
of T containing T7,...,T, is equal to 7. Recall, that a subcategory 7' C T is strictly
full if it is full and if for any 7" € T’ and S is isomorphic to T" in T we have S € T".

If an Ext-finite triangulated category 7 has a full strong exceptional collection
o= {(Ty,...,T,) then T is equivalent to the bounded derived category of right modules
over an algebra A = Endr (€D T;). Equivalence is given by the functor

RHom( —, @ T;): T — D’(mod-A).
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The endomorphism algebra A of @ 7T; can be represented as the path algebra of a
quiver with relations ). The vertices of the quiver correspond to objects Ti,..., T, of
0. The arrows between vertices correspond to a chosen basis of the Hom spaces. Finally,
relations in the quiver are obtained from composition of homomorphisms in 7.

For a given quiver () with n vertices its path algebra W is a k-algebra with basis
consisting of all paths in the quiver @) together with paths ¢; of length zero at every
vertex. The composition of two paths is equal to the path obtained by concatenation
or zero if the head of one path does not coincide with the tail of another. If the quiver
@ has finitely many arrows and no oriented cycles (as in the case of a quiver of a full
strong exceptional collection on a smooth projective variety) then the path algebra W
is a finitely generated non-commutative algebra with orthogonal projectors ¢4, ... ¢,.

Relations in the quiver @) are elements of k[Q)] which are finite sums of paths having

the same head and tail. Relations generate an ideal S of k[@)] and the path algebra of a
quiver with relations is by definition k[Q] = k[Q]/S.

The first example of a full strong exceptional collection is (Opz, Op2(1), Op2(2)))
in Db(P?). Its quiver () has three vertices. As Homp2(Op2, Op2(1)) =~
Homps (Op2(1), Op2(2)) =~ k3 there are three arrows between adjacent vertices. Finally,

the composition map
HOIHHJZ (OPQ (1), Oﬂﬂ (2)) & HOH]IPQ (OPQ , O[pﬂ (1)) — HOIDIPQ (OPZ, OPQ (2))

is surjective and hence the quiver () has the form

a1 B1
Opz —% Op2 (1) —2> O3 (2)
as B3

Relations in this quiver are given by

Baay — Brog =0, Bz — Brag =0, Bzag — Braz = 0.

Let @ be a quiver with relations. As 1 + ...+, = 1 any right k£[@Q]-module V' can
be decomposed as a direct sum V = @ V; with V; = V - ¢;. The structure of k[Q]-module
gives also for every arrow a in @) with head h(a) and tail ¢(a) a linear map a: Vi) — Vi)
Composing these linear maps we obtain a map p: Vi) — Vj(p) for any path in the quiver.
Also, for any element p; +. ..+ p, of the ideal S generated by relations the map p1+. ..+ ps
is zero.

On the other hand, a set V;,...,V,, of k-vector spaces and linear maps a: V(o) — Vi(a)
for every arrow a in @) define a k[Q] module structure on V- = @ V; if for any p;+...+p; €
S the linear map p; + ... + p; is zero.

One can also think of the path algebra k[Q)] as of a k-linear category Ag with n objects.

The space Homy, (i, j) has a k-basis consisting of paths between corresponding vertices
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and the composition between them is given by multiplication in £[Q]. Then the category
Ao is pre-additive and right modules over k[Q)] correspond to contravariant functors from
Ag to the category Vect of k-vector spaces.

Already mentioned full strong exceptional collection (Opz, Opz(1), Op2(2)) on P?, and
more generally, (Opn,Opn(1),...,Opn(n)) on P" were the first examples of full strong
exceptional collections. The fact that they are full follows from Beilinson’s spectral
sequence, [3| and also [6]. In [54] Orlov described behaviour of derived categories of
coherent sheaves under blow ups in smooth centres. In particular, [54, Theorem 4.3]
shows that if Z C X is smooth and both Z and X have full exceptional collections then
so does Y = Bl (X). However, even if the collections on X and Z are strong the resulting
collection on Y does not need to be strong.

One of the simplest examples when such a situation occurs is that of a smooth surface
X obtained from P? by blowing up a point and then blowing up a point on the exceptional
divisor £y C X;. Let X i> X 25 P2 be the blow ups of the points, let £y C X; be the
exceptional divisor of g and Fy C X5 the exceptional divisor of f.

We have already seen that (Opz, Op2(1), Op2(2)) is a full strong exceptional collection
on P2 Orlov’s theorem says that (Og, (F1)[—1],9*Op2, g*Op2(1), g*Op2(2)) is a full
exceptional collection on X;. It is easy to check that it is also strong. By the abuse
of notation F; also denotes the strict transform of E; to X. Then, again by Orlov’s
theorem, (Op,(Es)|[—1], Og, 15, (E1 + Es)[—1], f*g*Opz, f*g*Op=(1), f*g*Op2(2)) is a full

exceptional collection on X. However, as
Homy (O, (E2)[~1, Op,+ 5, (E1+E)[~1]) = k = Exty (Op, (Es)[~1], Op, 1, (E1+E»)[-1])

the collection is not strong.

1.2.1 DG categories

In order to generalise the description of D°(X) given by a full strong exceptional collection
o to the case of an arbitrary full exceptional collection Bondal and Kapranov used in [10]

the techniques of differential graded categories.

Definition 1.2.1. A differential graded category (or a DG category) is a preadditive
category C in which Hom(A, B) are endowed with a Z-grading and a differential O of

degree one. The composition of morphisms
Hom, (B, C) ® Hom.(A, B) — Hom;(A, C)

1s a morphism of complexes and for any object C' of C the identity morphism idc is a

closed morphism of degree zero.
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For an element z in a graded vector space the grading of x is denoted by |z|. The
morphisms of degree i in C are denoted by Homl (A, B).

A DG category C is ordered if there exists a partial order < on the set of objects of C
such that Hom(A, B) = 0 for B < A. It is called finite if the set of objects of C is finite
and for any objects Cy, Cy of C the vector space Homg(Cy, Cy) is finite dimensional.

We associate to a DG category C the following categories. The graded category
C® has the same objects as the category C while for any pair of objects Cp, Cs
the space Homee (Cy,Cy) is a graded vector space obtained from Home(Ch,Cs) by
forgetting the differential. The homotopy category H(C) also has the same objects as
C and a space morphisms between any pair Hompc)(Ch, Cs) is the graded vector space
H'(Home(Cy,Cy)). Finally, H°(C) is a preadditive category with the same objects as C
and Hom o ey (C1, Cy) = H°(Home(Ch, Cs)) for any pair of objects C1, Cs.

A morphism s: C — C" in C is a homotopy equivalence if the induced map on
cohomology H(s) is an equivalence. Then we say that C' and C’ are homotopy equivalent.

A DG functor F: C; — Cs between two DG categories is an additive functor
such that for any pair of objects Cp,Cy of C; the induced map Homg, (Cy,Cy) —
Homg, (F/(C1), F(C3)) is a morphism of complexes. Such a functor F' induces functors
Fe: CY — CS', H(F): H(Cy) — H(Cy) and HY(F): H(Cy) — H°(Cy).

We construct the DG category DG-Fun(Cy, Cy) of DG functors in the following way.
Objects of this category are covariant DG functors F, G: C; — Cy and we define morphism
Hom’BG_Fun(ChCQ)(F ,G) as the set of natural transformations ¢: F& — G®[k] (i.e. for C €
C1 we have tc € C5(F(C),G(C))). The differential 9 is defined pointwise; for to: F(C) —
G[K](C) we have (0(t))c = 0(tc): F(C) — G[k —1](C).

The category of contravariant DG functors is denoted by DG-Fun®(C,C’). A
DG functor F: C — (' is called a quasi-equivalence if for any Cp,Cy € ObC
the map Hom;(C4,Cy) — Hom, (F(C), F(Cy)) is a quasi-isomorphism and the map
H(F): H(C) — H(C') is an equivalence of categories. A quasi-equivalence inducing a
bijection on the set of objects of C and C’ is a quasi-isomorphism.

The category DGVect, of complexes of vector spaces with morphisms f*: V° — W~
for which there exists | € Z, such that f* (V) € W and a differential

O(f) = ow ™ — (=)' f* oy

is a DG category.

In general, if A is an abelian category then the category Kom™(A) of cochain complexes
of objects of A is a DG category with morphisms and differentials defined as in the
category DGVecty. If the category A has enough injectives then one can also consider the
DG category Kom™ (Inj 4) of bounded from below cochain complexes of injective objects

in A. Its homotopy category is the category Kt (Inj,) defined before. Hence, if an
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abelian category A has enough injectives we have Dt (A) ~ H°(Kom™(Inj4)). It turns
out that the DG category Kom™(Inj 4) has more structure, i.e. it is pretriangulated and
the equivalence DT (A) ~ H°(Kom™ (Inj4)) is the first example of a DG enhancement of
a triangulated category.

In order to define a DG enhancement of a triangulated category in full generality we
need to introduce twisted complexes.

Analogously to modules over a quiver, we define a right DG module M over a DG
category C' to be an element of DG-Fun®(C, DGVecty). For simplicity we denote this
category by Mod-C. Following [36, Section 4| we define a derived category D(C) as a
localization of H°(Mod-C) with respect to the class of quasi-equivalences.

Recall after [47| that an object A of an additive category A is compact if Hom 4 (A, —)
commutes with arbitrary direct sums. Let us denote by D’(A) the subcategory of
D(A) consisting of compact objects. Then the Yoneda embedding gives a functor
h: C — Mod-C which assigns to every C' € C a module he = Home(—, C). If a module
M is quasi-isomorphic to h¢ for some C' € C then it is quasi-representable.

A quasi-functor between DG categories C and C’ is a functor F': C — Mod-C’ whose
essential image consists of quasi-representable functors, (see [48, Section 1]). Because the
homotopy category of quasi-representable functors over C’ is equivalent to the homotopy
category of C’, a quasi-functor F' gives a functor H°(F): H°(C) — H°(C').

For a DG category C we define the category C of formal shifts. The ob jects of C are C [n]
where C' € C and n € N. For elements C}[m| and Cy[n| of C we put Hom%(Cl [m], Ca[n|) =
Homb™~™(C4, Cy). For appropriate sign convention see [11, Section 3].

Let B, C be objects of a DG category C and let f € Hom¢(B, C') be a closed morphism.
Assume that B[1] is also an object of C, i.e., there exists an object B" and closed morphisms
t: B— B, t': B — B of degree 1 and -1 respectively such that t't = idg and ¢t = idp.

An object Dof C is called a cone of f if there exist morphisms
B —i-D-2.p, c—21-pD—-C,
such that
pit =idpg, sj=1ide, si=0, pj=0, p+7js=idp.

[11, Lemma 3.8 says that a cone of closed degree zero morphism is uniquely defined up
to a DG isomorphism.
To every DG category C one can formally add cones of closed morphisms by considering

the category CP*" of one-sided twisted complexes over C.

Definition 1.2.2. A one-sided twisted complex over a DG category C is a collection
{(Cy), ¢ij: Ci = C;} where C;’s are objects of C, zero for all but finitely many i, and
gij € Homé_jH(C’i, C;) satisfy q;; = 0 for i > j and (—1)70q;; + Z{;ffl Qi+1,j%ii+1 = 0.
For brevity, a twisted complex will be denoted by (C;, qi ;).
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One-sided twisted complezes over C form a DG category CP™ " with morphism spaces
equal to
Homgpre—tr((ci? Qi,j)> (D’M rl,])) = @ Homg<CS7 Dl)
l—s=p—q

and differential

301%-”(%,!) = (—1)lac(%,l) + Z Tim © Vsl — (—1)p%,l O Qn,s

for vs; € Hom{(Cs, Dy).
The zeroth homotopy category of CP™' is denoted C'.

Let C' = (C}, ¢ij) be an object of CP***. The shift of C' is defined as C[1] = (D;, ),
where D; = Cy1 and r;; = —gi41441. Clearly, the category CP** is closed under shifts.

Let f: (Ci,qij) — (Ds,ri;) be a closed morphism of degree zero in CP™*. Assume
that C; =0 for ¢ < igori > 1, and D; =0 for ¢ < jg or ¢ > j;. The cone of f is a twisted
complex Cone(f) = (E;, s; ;), where

E:{Di fori € {jo,..., Ji}

' Citins1—joljo — in] fori € {jo —in +io—1,...,j0 — 1}
Tij fori,j > jo,

Si; =14 (=1)m—dotly . fori,j < jo,

(_]')(in+j0)(i+in)fi—&—in-i—l—joﬂ‘ fori < jp < 7.

The convolution functor Tot: (CPre™)Pretr — CPre™ egtablishes a quasi-equivalence
between (CPret)Pretr and CP**. The cone described above is the first example of a
convolution.

The DG category C is pretriangulated if the embedding H°(C) — C' is an equivalence.
The category H°(C) for a pretriangulated category is triangulated.

A triangulated category 7T is enhanced if it has an enhancement — a pretriangulated
DG category C such that 7T is equivalent to H°(C).

Recall that a preadditive category A is Karoubian if every idempotent morphism
p: A — A (i.e. such that p? = p) has a kernel. Note that then every idempotent admits
an image and p splits, that is A = Kerp ® Im p.

The category C*™ needs not to be Karoubian. As showed in [11, Section 3.4] the
category D°(C) is the Karoubisation of C'.

As it has already been mentioned, a standard example of an enhanced triangulated
category is the derived category DT (A) of an abelian category A with enough injectives.
Its enhancement is the category of complexes of injective sheaves Kom(Inj ).

With the above definitions we are ready to state the following theorem.

24



Theorem 1.2.3. ([10, Theorem 1]) Let C be a pretriangulated category, Er,...,E,
objects of C and let C C C be the full DG subcategory on the objects F;. Then the
smallest triangulated subcategory of H° (5) containing Ey, . .., E, is equivalent to C' as a

triangulated category.

Therefore a full exceptional collection o = (T1,...,7,) in an enhanced Ext-finite
triangulated category T leads to an equivalence of T with C for some DG category
Cy. The category C, is a subcategory of the DG enhancement of 7 and thus
H'(Hom¢ (T},T))) = Homy (T, Th[i]) for all j,1 € {1,...,n}.

Remark 1.2.4. If an enhanced triangulated category 7T is Karoubian then a full

exceptional collection o in T leads to an equivalence of T and D*(C,).

For a smooth projective variety X the category D°(X) is an enhanced triangulated
category. Its DG enhancement is the full DG subcategory of Kom(Injgcon(x)) consisting
of complexes having only finitely many non-zero and coherent cohomology sheaves. Lunts
and Orlov in |48, Theorem 9.9] show that in this case the DG enhancement of D(X) is
strongly unique, i.e. for any two DG categories B and B’ and equivalences ¢: H°(B) —
Db(X), €': H(B') — D°(X) there exists a quasi-functor F': B — Mod — B’ such that
g’ o H°(F) and ¢ are isomorphic.

Let o0 = (&1,...,&,) be a full exceptional collection of coherent sheaves on X. By
Theorem 1.2.3 there exists a DG category C, with objects &y, ...,&, such that D’(X)
is equivalent to C*. The category D’(X) is Karoubian and so D°(X) and D*(C,) are
equivalent. Also, as ¢ is an exceptional collection the category H(C,) is ordered and
finite.

Remark 1.2.5. If a DG category C has only zeroth cohomology then it is quasi-equivalent
to H(C) = H%(C). Indeed, for Cy, Cy € obC let Homg(Cy, Cs) = @,,., Homg (C1, Cs) with
differential

O, ¢, - Homg(C1, Cy) — Homg ! (Cy, Cy)

and let C; be a DG category with the same objects as C and morphisms defined by

Homg (Cy,Cs) = @ Homg (Ch, Cs) & Ker@%lﬁcg.

n<0

Then the natural inclusion functor C; — C is a quasi-equivalence. Let us also set

‘]C1,C'2 Im 801102 @C Cl, Cg

n<0

for any objects C'; and Cy of C and consider the category C;/; with ob C;/; = ob C and
HOIH&I/J (Cl, CQ) = HOHléI (Cl, CQ)/JCI’C2.
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Then Cy,; is isomorphic to H(C) and the natural functor C; — Cy/; is a quasi-equivalence.
In particular, if o is a strong exceptional collection then the DG category C, is quasi-

equivalent to an ordinary category.

1.3 A, -categories

The category D°(X) has a strongly unique DG enhancement given by the full DG
subcategory of Kom(IanCOh( X)) and hence, a priori, calculating the category C, from
Theorem 1.2.3 requires taking injective resolutions. This suggest that the category C, can
have infinitely dimensional morphisms spaces. Using the techniques of A..-categories we
will show that C, is quasi-isomorphic to a finite and ordered DG category. First, we recall
definitions and properties of A..-categories following Keller’s survey papers [37], [38] and

Lefévre-Hasegawa unpublished thesis [45].
Definition 1.3.1. (/37, Definition 7.2]) An A-category G over k consists of
e a set of objects 0b(G),
e for any two G1,G5 € 0b(G) a Z - graded k-vector space Homg(G1, Ga),
e for anyn > 1 and a sequence Gy, G, ...,G, € 0b(G) a graded k-linear map:
my,: Homg(Gro1, Gy) @y . .. @ Homg (Go, G1) — Homg (Go, G)

of degree 2 — n such that for any n > 0 and all (n + 1)-tuples of objects Gy, ..., G,
we have the identity

> (=1 myp144(id”" @ my @ id™') = 0
{r+s+t=n,s>1,rt>0}

of maps

Homé(Gn,l, Gn) R ... Qp HOm.g(Go, Gl) — Hom’Q(GU, Gn)

When these formulae are applied to elements additional signs appear because of the

Koszul sign rule:
(f@g)z@y) = (-1 () g(y).

An A.-algebra is an A.-category with one object.

An A,-category G is ordered if there exists a partial order < on the set ob(G) such
that Homg(G,G") = 0 for G’ X G. It is finite if ob(G) is a finite set and Homg (G, G’) is
finite-dimensional for any G and G'.
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An A.-category G is strictly unital if for any object G of G there exists a morphism
l¢ € Homg(G, G) of degree 0 such that for any object G’ of G and any morphisms ¢ €
Homg (G, G'), v € Homg(G', G) we have my(¢, 1g) = ¢ and ma(lg, 1) = ¢. Moreover,
for n # 2 the operation m,, equals 0 if any of its arguments is equal to 1.

An A,-category G is homologically unital if there exist units for the homotopy category
H(G).

The operation m, gives for any pair of objects G, G’ of G a structure of a complex
on Homg(G,G'). Using m4, analogously as for DG categories, we can associate to a
homologically unital A..-category a graded homology category H(G).

An A,.-category is called minimal if the operation m; is trivial.

Remark 1.3.2. Any DG category C is an A,.-category. Indeed, if 0 is the differential
on the spaces of morphisms of C and p is the composition of morphisms then putting

my = 0, my = and m; = 0 for ¢+ > 3 we obtain an A..-category.

Remark 1.3.3. Lefévre-Hasegawa in [45, Section 1.1] considers a k-linear abelian semi-
simple, cocomplete category C with filtered exact limits. Recall that an abelian category
C is semi-simple if every subobject is a direct summand and C is cocomplete if it has all
colimits.

Then, Lefévre-Hasegawa defines in [45, Section 1.2| an A..-algebra A as a graded
module over C together with a family of graded maps m;: A®" — A satisfying

> (=1)"**'my 4 (id®" @ my ® id®Y) = 0.
{r+s+t=n,s>1,7,t>0}

In order to define A..-categories he introduces in [45, Section 5.1] a a k-linear abelian,
semi-simple, cocomplete category C(®,®) with filtered exact limits for any set &. Then,
he defines an A.-category G with the set of objects & as an A..-algebra over the monoidal
category C(®,®). In [45, Remarque 5.1.2.2] he proves that this definition agrees with
Definition 1.3.1 given above.

Therefore, all the claims proved in [45] for A.-algebras remain valid for A..-categories.

For any set S there exists an A,.-category k.S. The objects of kS are elements of S

and
k if S1 = So,

0 otherwise.

HOI’H];S(Sl, SQ) = {

All operations m,, in k£ S are trivial.

In particular, for any set S the category k.S is strictly unital.

Definition 1.3.4. A functor of A-categories F': G — G’ is a map Fy: ob(G) — 0b(G')
and a family of graded maps

Fni HOHfg(Gn,l, Gn) R ... Qp HOHfg(Go, Gl) — Hom.g/(Fo(Go), F()(Gn))
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of degree 1 —n such that

Y ()T a(id® @m, @ id) = Y (1)Pme(F, ® ... ® F,),

r4+s+t=n i1+...+ir=n

Composition of functors is given by

(FoGl= ) F.o(G,®..0G,).

11+...+is=n

A functor ' : G — G’ is called an A -quasi-equivalence if F induces an equivalence

between homotopy categories H(G) and H(G').

Theorem 1.3.5. (/45, Theorem 3.2.1.1]) Minimal homologically unital A -category is

Ao -quasi-equivalent to a minimal strictly unital As-category.

Remark 1.3.6. A minimal A.-category is equal to its homology category. Hence, an

Aso-quasi-isomorphism F' given by the above proposition satisfies F| = id.

An A_-category G is augmented if there exists a strict unit preserving functor
€: kob(G) — G. Then G decomposes as G = k ob(G) ®Gq.
Any A.-category G is A,.-quasi-equivalent to its homotopy category H(G).

Theorem 1.3.7. ([31, Theorem 1], see also [44, Theorem 4.3]) If G is an A -category,
then H(G) admits an As-category structure such that

1. my =0 and my is induced from mg and

2. there is an As-quasi-equivalence G — H(G).
Moreover, this structure is unique up to a non unique A -equivalence.

The A,-category H(G) is called the minimal model of G.
Remark 1.3.8. Let C be a DG category. Its minimal model H(C) is A-quasi-equivalent
to a strictly unital A.-category. Indeed, the category C is strictly unital and hence
homologically unital. Its homotopy category is also homologically unital and Theorem

1.3.5 guarantees that there exists a strictly unital minimal category A.,-quasi-equivalent
to H(C).
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1.3.1 The universal DG category of an A, -category

For any augmented A.,.-category G there exists a DG category U(G) and an A,-quasi-
isomorphism G — U(G). To define the category U(G) we need the following definitions
taken from [45, Section 1.2], see also [49, Section 2.

Definition 1.3.9. A DG cocategory B consists of
e the set of objects ob(B),

e for any pair of objects B;, B; € ob(B) a complex of k-vector spaces Hompg(B;, B;)

with a differential d¥ of degree one, and
e a coassociative cocomposition, that is a family of linear maps

A: Homy(B;, B;) = Y Homy(By, B;) ®; Homy(B;, By).
Br€ob(B)

These data have to satisfy the condition
Aod=(d®id+id® d) o A.

For any set S the A, -category k.S is also a DG cocategory.
A functor ® between DG cocategories B and B’ preserves the grading and differentials

on morphisms and satisfies the condition
Aod = (d®P)oA.

A DG cocategory B is counital if it admits a counit, a functor n: B — kob(B).
The category B is coaugmented if it is counital and admits a coaugmentation functor
e: kob(B) — B such that the composition 7e is the identity on kob(B).

Let B be a coaugmented DG cocategory. Denote by B a cocategory with the same
objects as B and morphisms Homz(B;, B;j) = ker €.

For an augmented A..-category G one can define its bar DG cocategory By (G). Recall
that as an augmented category G can be written as G @ kob(G). Then B (G) = T¢(SG)
is a tensor cocategory of the suspension of G. Here SG denotes the category G with a
shift in a morphisms spaces Homgs (G, G') = Hom%“(G, G"). Note that SG is not an A-
category. However, the operations m, in G define the following graded maps of degree 1

in SG:

by, : Hom:gg(Gn_l,Gn)@) . @ Homg (GO,Gl) — Homg (GO,G ),

bn:—somnow®
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where s: V' — SV is a suspension of a graded vector space V and w = s~!. That

is, (SV)" ~ V! and s: V — SV is the map of degree one induced by the identity
morphism of V.

The cocategory B, (G) has the same objects as G and the morphisms in this category
are defined by

Homéo@(g)(GaG/) ::Hom @ Hom Gl,G)®kHom (G G1)
G1€0b(G)
& P Homy(Gs, G) @ Homyg (G, Ga) ® Homy (G, Gh) &
G1,G2€0b(G)

for G # G'. In the case G = G’ we have to add to the above sum one copy of the base
filed k in degree O corresponding to the identity morphism 1.
To simplify the notation we shall write (c,,...,a;) for a,, ® ... ® ;. The differential

in B (G) is given by

Ao, ...,a1) =
n n—s+1

z : § : a1 |+...+a
| 1-1l | ll(O[n,...O{l_t,_g,bs(al-i-s—la'°'7al)aal—1a"’a1>’
s=1 =1

for (o, ..., oq) € Homp_(g)(G,G"). The cocomposition is given by
Aoy, ...,a1) =
lg @ (ny oo yoq) + (g, . o ®1G—|—Z (s 1) @ (ag, ...y aq).

With these definitions B, (G) is an augmented DG cocategory.

Remark 1.3.10. Let G be an ordered and finite A-category such that Homg(G,G) =0
for any object G € obG. Then the DG cocategory B, (G) also satisfies these conditions;
L.e. it is ordered, finite and Homyz— = (G G) = 0 for any object G.

Analogously, via a cobar construction one can assign to an augmented DG cocategory
B a DG category Q(B). Let B be a DG cocategory with a differential d and cocomposition
A. Tts cobar DG category is equal to T(S7'B). Here S™'B denotes the shift of the
cocategory B and T(S7'B) is the tensor DG category of it. As before the morphisms
spaces in T(S™'B) are given by

HOHI;)(B)(B»B/) = Homg_,%(B @ Hom_,%(By, B') ®; Homyg_,5(B, By)
Bleob B)
&) @ Homy_,5(B2, B') ®; Homy_,5(B1, Bs) ®, Homg ,5(B,B1) @ ...
Bl,BQEOb(B)
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for B # B’. Again, for B = B’ one has to add one copy of the base filed k£ in degree zero,
corresponding to the identity morphism, 1g.
The composition in 2(B) is defined by concatenation and the differential 0 on the

morphisms spaces is given by
0= 18..910[d+A)e1le...0L

Remark 1.3.11. If an ordered and finite DG cocategory B satisfies the condition

Homg(B, B) = 0, then the category Q(B) is also finite, ordered and Homs')(—B)(B, B)=0.

For an augmented A..-category G its universal DG category U(G) is defined as
Q(Bx(G)). There is a natural map G — U(G). [45, Lemma 1.3.2.3] proves that
this map extends to a functor and it is an A.-quasi-equivalence. Moreover, for an

A-quasi-equivalence ¢ the functor U(¢) is a quasi-equivalence of DG categories.

1.3.2 A.-modules

Definition 1.3.12. An A, -module over an Ay -category G is an As-functor
M: G — DGVect,,. A morphism of modules F': M — N is given by a family
{Fg: My(G) = No(G)}geovg of morphisms in DG Vecty, such that the diagrams

Mn(an,1®.‘.®a0)

My (Go) My(Gy)
o -
NO(GO) Np(an—1®...0a0) NO(Gn)

commute for any n € N, G; € 0bG and o; € Homg(G;, Giyq).

The category of A,-modules over an A,.-category G will be denoted as Mod..-G.

The morphism F': M — N of modules is an A, -quasi-isomorphism if Fg is a quasi-
isomorphism of complexes for any G € ob G.

The derived category Dy (G) of an A.-category G is defined as a localization of the
category Mod.-G with respect to the class of A, -quasi-isomorphisms. For A..-quasi-

equivalent A, -categories their derived categories are equivalent.

Remark 1.3.13. ([45, Lemme 2.4.3.2]) For a DG category C the derived categories D°(C)
and D4, (C) are equivalent. Hence, for any augmented A..-category G the category D (G)
is equivalent to D(U(G)).

1.4 Existence of DG quivers

Theorem 1.4.1. Let C be a DG category with finitely many objects. Assume that H(C)
1s an ordered and finite graded category such that Hom}{(c)(C, C) =k for any object C' of
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C. Then there exists an ordered and finite DG category C such that D(C) is equivalent to
D(C).

Proof. Theorem 1.3.7 guarantees existence of the minimal model of C given by the
homology A..-category H(C). By Remark 1.3.8 we can assume that H(C) is strictly
unital. As Homp ) (C,C) =k for any C the category H(C) is an augmented ordered
Aso-category. We have

Remarks 1.3.10 and 1.3.11 show that the category U(H(C,)) is ordered and finite. O

As a corollary we get

Theorem 1.4.2. Let X be a smooth projective variety and let o = (&1, ...,E,) be a full

exceptional collection on X. Then there exists an ordered, finite DG category é:, such that

DY(X) is equivalent to D*(C,).

Proof. By Theorem 1.2.3 there exists a DG category C, such that D°(X) = D°(C,).
Since the sheaves &i,...,&, are exceptional and the category D°(X) is Ext-finite, by
construction the category C, satisfies conditions of Theorem 1.4.1. Hence there exists a
DG category C, such that the categories D(C,) and D(C:) are equivalent. It follows that

D (C,) ~ D°(X). O
The category C, is Aso-quasi-equivalent to the category C, and hence Homiq @) (&, &) =
EthX (81, g])
To graphically present the DG category C, we introduce the following definition.
A DG quiver is a quiver () endowed with a Z-grading on the set of arrows )7 and a

structure of a DG algebra on the path algebra k[Q] such that the following conditions are
satisfied:

e The Z-grading of k[Q)] is compatible with the grading of Q.

e For any path p € k[Q)] the differential d(p) is a combination of paths with the same
head and tail as p.

e For any vertex ¢ of @) the trivial path ¢; € k[Q] is closed of degree 0.

The DG category CNU has finitely dimensional space of morphisms and so one can
associate to it a DG quiver @),. If the collection o is strong it follows from Remark 1.2.5

that the DG quiver coincides with the quiver introduced in [9].
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Remark 1.4.3. The DG quiver, or the DG category é:,, is determined only up to a
quasi-isomorphism. Therefore, we can always modify it by finding a quasi-isomorphic DG
subcategory or a quasi-isomorphic quotient.

For example, let S be a subspace of the space of morphisms in C, which has a basis
consisting of pairs a, d(«). Clearly, if S is an ideal then the quotient DG category a,/ is
quasi-isomorphic to C,. On the other hand, if there is no morphism in S which is a non-
trivial composition of two morphisms not in S then the subcategory CNU” of CNJ obtained

by removing all the morphisms in S is quasi-isomorphic to é:,
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Chapter 2
Calculating DG quivers

In this chapter we describe how to calculate DG quivers given by Theorem 1.4.2. We give
three algorithms depending on available data.

In Section 2.1 we define after Bondal and Kapranov, [10] mutations of DG categories.
They allow us to calculate a DG quiver of an exceptional collection, provided we know the
DG quiver of one of its mutations. In particular, they allow us to calculate a DG quiver
of a collection that can be mutated to a strong one. In Section 2.1.1 we show how to use
this method to find a DG quiver of a full exceptional collection on a surface X obtained
from P? by blowing up a point and then blowing up a point on the exceptional divisor.

In Section 2.2 we show how to calculate the DG quiver from the A..-quiver of
an exceptional collection. The A..-quiver can be in some cases computed using some
homological operations called Massey products are. Results of Sections 2.2.2 - 2.2.6 lead
to Theorem 2.2.12 which proves that a non-empty n-tuple Massey product in a uniquely
enhanced triangulated category T provides important information about the structure of
Aso-category.

In Section 2.2.2 we recall definition of Massey products in a triangulated category.
This definition uses Postnikov systems and convolutions of complexes. In Sections 2.2.3
and 2.2.4 we provide explicit calculations of triple and quadruple Massey products.
Observations made in these sections are generalized to n-tuple Massey products in Section
2.2.5. Proposition 2.2.8 of this section describes how Massey products are connected with
Postnikov systems and existence of convolutions. Then, we introduce after [41] defining
systems which are Massey products in homotopy category of a DG category. Lemma 2.2.10
proves that in the case when 7 is an enhanced triangulated category both definitions agree
up to a sign.

In Section 2.2.6 we use these results, together with Merkulov’s description of a minimal
Aso-model recalled in 2.2.1, Theorem 2.2.12 relating Massey products with the minimal
A -structure.

These techniques are then used in Section 2.2.7 to calculate the A, -structure of a DG

34



quiver of an exceptional collection on the surface X considered before, that is the surface
obtained from P? by blowing up a point and then blowing up a point on the exceptional
divisor. In this section we also explain why Massey products are not sufficient to find
the A,-structure on the full collection. We also briefly recall that Polishchuk used the
same methods in [57] in order to calculate A -structure on the category of line bundles

on elliptic curves.

In Section 2.3 we describe how to find DG quivers of exceptional collections o =
(E\, ..., E,) such that Ext'(E;, F;) = 0 for i # 0, 1 and all pairs j, [. The method relies on
universal extensions and coextensions defined after Hille and Perling, [25] in Section 2.3.1.
Both constructions systematically make the first Ext groups between objects vanish and
allow us to construct a tilting object in the category D°(X) from an exceptional collection
with vanishing higher Ext-groups. Theorem 2.3.1 states that the endomorphism algebra
of this tilting object determines the DG quiver of o.

Universal extensions and coextensions first appeared in representation theory of quasi-
hereditary algebras (see [17]). In Section 2.3.2 we recall definitions of quasi-hereditary
algebras. We also prove in that endomorphism algebras of tilting generators obtained
from o by universal extensions and coextensions are so called Ringel dual quasi-hereditary
algebras (see Proposition 2.3.3).

In Section 2.3.3 we come back to the example of an exceptional collection on the
surface X obtained from P? as a two-step blow-up. We calculate the DG quiver using

universal extensions.

In Section 2.2.7 we showed that this DG quiver could not be calculated by Massey
products only. Therefore, in Section 2.4 we investigate what additional information is
provided by the endomorphism algebra of the tilting object given by universal extensions.
We describe a cohomological operation, a relative triple Massey product. We also conclude
that triple Massey products and relative triple Massey products are sufficient to calculate

the DG quiver of the exceptional collection on X.

In Section 2.4.1 we show that there are many equivalent ways to calculate n-tuple
Massey products in enhanced triangulated categories. This observation explains the name

“relative triple Massey product”.

2.1 Action of the braid group

First, let us recall after [9, Section 2| action of the braid group on the set of exceptional

collections in a triangulated category T .
Let (E,F) be an exceptional pair in 7. Then (LgF, E) and (F,RpE) are also
exceptional pairs for LgF' and RpFE defined by means of distinguished triangles in 7.
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LpF — Hom (E,F)® E — F — LpF[1],
E — Hom (E,F)* @ F — RpE — E[1].

Here, Hom>(E, F) = €, Homs(E, F[l]) denotes a complex of k-vector spaces with
trivial differential. For an element E' € T and a complex V" the tensor product is defined
by E@ V' =@, D" El-1.

For an exceptional collection o = (Ey,. .., E,) the i-th left mutation L;o and the i-th
right mutation R;o are defined by

LZ'O' = <E1, e 7E7;717LE2»E7;+1,E7:,EZ'+27 e 7En>7
RiO = <E1,...,EZ’_1,E¢+1,RE EiaEi-i-Qa"')En)'

41

Clearly, if the collection o is full then the same is true about L;oc and R;o.

The action of the braid group on the set of full exceptional collections can be lifted to
associated DG categories (see also |10, Section 5|).

Twisted complexes provide description of the categories C/;, and C/}\g;, by means of é:,
To see it we need to define tensor product of a twisted complex with a complex of vector
spaces.

Let C be a finite DG category, let C' € ob CP™™ be a twisted complex and let V™ be
a finite dimensional complex of vector spaces with differential 0': V¢ — Vit C® V is
defined as (v z0y C [—d] BV g, ) € (CPretr)Prett - The morphisms ¢, are induced
by the differential 0" tensored with the identity on C' and ¢; ; = 0 for j # i + 1.

Now let C, D € CP™™ be twisted complexes. There exist closed morphisms of degree
¢: C ® Hom(}preftr(C, D) _> D,

where ¢; : C[—i]®dm Hom'(C.D) _y D ig given by morphisms of degree i between C' and D.

The morphism
Y: C — Hompper (C, D)* & D.

is defined analogously.

Now we define new twisted complexes over C

LoD = Tot(Cone(o)[—1]),
RpC = Tot(Cone(v))).
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Let ¢ = (&,...,&,) be a full exceptional collection on a smooth projective
variety X and let C, be the category described in Theorem 1.4.1. Let Fy,...,E,
denote the objects of (Z, We define two full subcategories of C:z re_tr; category
CLi with objects Ey,...,Ei1,Lg FEiy1, B, Eito, ... E, and category CE with objects
E,....E; ,E;\1,Rg,,.  FE;i,Ei\o, ..., E,.

141

Proposition 2.1.1. Let 0 = (&1, ...,&,) be a full exceptional collection on X and let C,
be a finite DG category with objects Ey, . .., E, with H'C,(E;, E;) = Exty (&, &;) and such

that D*(X) is equivalent to D*(C,). Then the categories C&' and C& satisfy analogous

conditions for the collections L;o and R;o, respectively.

Proof. As the category CN(, is finite, mutations of twisted complexes over (:,'; are well defined.
Furthermore, the category D°(X) is equivalir/lt to Ci,tr. Under this equivalence Lg, &4
corresponds to Lg, E; 1. Hence the category C is the DG category described by Theorem
1.2.3. By construction it is also finite.

Let Hom('?L«i(LEiEiH, Lg E;ii1) =k-id® S be any splitting of the space of morphisms
and let S :JS’ &) Hom('?;i(Ei, Lg E;11). Then Remark 1.4.3 guarantees that the DG

1/ —~

subcategory C&* | obtained from C%* by removing morphisms in S, is quasi-isomorphic to

— !

CY. Then the category CX is both finite and ordered. O]

2.1.1 Example

Let X be a smooth surface obtained from P? by blowing up a point and then blowing up
the point on the exceptional divisor. Let Fy denote the exceptional divisor of the second

blow up, let E; be a strict transform of the exceptional divisor of the first blow up and
let Ox(H) be a pullback to X of Opz(1). By Orlov’s theorem, [54, Theorem 4.3|

(Op,(E2)[—1], Op, 15, (E1 + Es)[—1], Op2, Ox(H), Ox (2H))

is a full exceptional collection. This collection is not strong and it has the following

Ext-quiver
_ a B1
L> 5 s B2
Op,(Es)[~1] 7~ Op,y5,(E1 + Es)[—1] Ox > Ox(H) —5= Ox(2H)

with morphisms

v € Hom(Opg, (E>)[—1], Op, 45, (£ + E2)[—1]),
7 € Ext!(Og,(Es)[~1], Op, 15, (B1 + E2)[-1]),
5 - HOIH(OEH_EZ (E1 + EQ)[—l], Ox) = Eth(OE1+E2 (El + EQ), Ox)
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and relations given by

Prag = Baauy, Pras = Bsan, Paaiz = Pz,
50'3/:0, a1 06 =0, as 08 =0.
If we mutate Og, g, (F1 + E3)[—1] to the right over Ox then the resulting collection
(Op,(F2)[—1],0x,0x(Ey + E3),Ox(H),Ox(2H)) is strong and has quiver

b

/\ dy i>

Op,(Ey)[—1] —% Ox ‘Ox(E1+ E2) & Ox(H) —= Ox(2H)

\_/

ds
with relations
e10dy = ep 0dy, epods=ezod oc, epods =ezodyoc,
coa =0, diob=0, dzoa=dyob.

We can thus present O, |, (E1 + E») as a twisted complex {Ox % Ox(E; + E;)}. This
shows that the sought after DG quiver is

_ al B1
v 5 s g
Op,(E2)[~1] 7~ Op 45, (£ + Ey)[—1] Ox —,> Ox(H) —5= Ox(2H)

with €; and €; in degree minus one, 74 in degree one and the remaining arrows in degree

zero. The differentials in this quiver are given by

d(€1) =y 06, J(€z) = g0

and relations

51004225200417 510043:530041, 520043:530062,

Baoer=proe, doy=0, €0y =0, €09 =agodor.

2.2 Massey products

Instead of finding the DG quiver of an exceptional collection ¢ one can try to calculate
the minimal A..-structure on the Ext-quiver of o. Since every DG category has a unique
minimal model and every A.-category is A..-quasi-isomorphic to a DG category, both
approaches are equivalent.

The structure of an A,.-category on the Ext-quiver of o can be sometimes calculated

by means of Massey products.
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2.2.1 Minimal model by Merkulov’s construction

In [51, Section 3| Merkulov gives an algorithm for calculating the A..-category H(C) for
any DG-category C. As in Remark 1.3.2 we denote by 0 the differential on the space of
morphisms of C and by p the composition of morphisms. To find higher multiplications
on H(C) we need maps i: H(C) — C, m: C — H(C) of degree zero and h: C — C of degree

minus one such that
Toi=id, iom=1id — d(h), h* = 0.
With chosen 7, i and h we define operations
A Hom (X" X™) @y, ... @, Hom (X9, X1) — Hom, (X", X"[2 — n]).

We put \; = —h~!, Ay = p and

n—1

A= Y (D" (R (), ().
I=1
Then, the operations m,: Homp e (X", X") @ ... @ Homy) (X%, X") —
Homy, ) (X°, X"[2 — n]) defined by

m, =m0\, 0i%"

give the A,.-structure on H(C).

2.2.2 Massey products in triangulated and DG setting

We will later see that Merkulov’s construction can be sometimes identified with Massey
products in enhanced triangulated categories. First, we recall some definitions after |20,
Chapter IV, Section 2.10] and [41].

Let 7 be a triangulated category and let T = {T° LN AN T"} be a finite

complex in T .

Definition 2.2.1. A right Postnikov system of T is a diagram

TO[n) L o Tln—1—s.. . —= T[] o Tn
1] . [1] o~ [1]
. * 0 O g In—1 O -
Jj-1 AN Jo N Jo=id[1]
Yo y! Yy = T7[1]

wn which all triangles
T'n—1 % Y™ - Y 255 Tl — 1+ 1]
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are distinguished and all diagrams of the form

T'n — 1] g Tl — 1 —1]
Yl+1
commute. Here, O': T'[i] — T [i — 1] is a map of degree 1 corresponding to the map O°

under the equality Hom(T?, T*+") ~ Ext!(T°[1], T°").
Definition 2.2.2. A left Postnikov system of T'® is a diagram

70 ke T a T2 . "
N /JO/ \ , /1/ . \in
R S oo
20 =T Z . zn

in which all triangles of the form
AN LN RN L A
are distinguished and all diagrams

Tl+l

/

commute.

Definition 2.2.3. An object S of D is called a right (left) convolution of T if there
exists a right (left) Postnikov system of T® with S = Y°[1] (S = Z", respectively).

Lemma 2.2.4. (/20, Chapter IIl.4, Exercise 1]) The set of left convolutions of T*

coincides with the set of right convolutions of T*.

Proof Assume first that the complex has length 3. Then S = Y°[—1] is a convolution of
70 2 1 2 T2 if there s a diagram

T072) — & T[1]
S N 2
(1] 1]
Yo Y! T2[1]

Then the octahedron axiom

=S T2 1]=S5

\/ \/

[1]| g0 OYI

I \ / \
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tell us that S is a convolution of a right Postnikov system

For a complex of length n + 1 we proceed by induction.
Assume that S = YY[—1] is a right convolution of 7° — ... — T™. Then we have a

/\
\/

diagram

T — ... ey
V \ (1]
J—1 Jn—3
Yo y! ) 2

where Z is the cone of T“*Z[Z] — T"11]. Again, the octahedron

S

Tn— Y- 2 1] Tn— 2 Y- 2 1]

I s

an—2 | [1] o Y 1 ] an—2|[1] *
/ . \
/ \ u . 1]
Y o T T

gives maps r: YY" ?[—1] — Z and ¢q: Z — T"[1] such that vor = j, 3[1] and gou = "1

Now, we consider a map p: T 3[1] Inal72, g 2[-2] — ri-l

T

—— Z[—1] and a complex

Tom 20—> Tl[l] ... = T”—3[1] 2 71-1) ql—1] ™
We will show that Y°[—1] is a right convolution of this complex. Indeed, we have a
diagram

p[2]

Th L~... .. —=T"3]3
A N

which is a Postnikov system because 7 0 i,,_3 = p[Q].

The new complex has length n and hence each right convolution is also a left one, i.e.

we have a diagram

TH] ——...—=T"3]1 a1

o \/\/\
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It follows that P™ is a left convolution of a complex T°[1] — ... — T"73[1] — Z. As this

complex has length n — 1, P" is also its right convolution. Then, from the diagram

T — 1] A Tln—2] - Tr3)2—2= ~n-2y)
[1] \ (1] p[1] (1] on—2
v[1]
P[] R . . Z T
it follows that P™ is a convolution of 7% — ... — T™" ! (because v[1] o p[1] = v[l]or o

in_3[—2] = 0"73). Finally, from the fact that Y° is a cone of a map P" to T" it follows
that Y is also a left convolution of 70 — ... — T™.

The proof that every left convolution is a right convolution is analogous. O

Definition 2.2.5. Let T* = {T° Dyt Byt I T™} be a complex in
T and let
TV —s . ——T"!
[n—2]
p i

S

be a convolution.

The n-fold Massey product ju, (9", ..., 3°) is defined as the subset of Hom(T°, T"[2—
n|) consisting of compositions

qop: T° — T"[2 —n]

where
p: T° — S[2 —nl, q: S—>1T"
are such that
pop=70" goi=0a"",
TO o° Tl jﬂn—l‘9 ! Tn

For any pair of morphisms 77° 71 2 72 we can also put

p2(g, f) =go f.
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2.2.3 Triple Massey product

0 1 2
The triple Massey product is always defined for a complex 77° Tt Oy Lo i T

Let
at T
1«
B
S

Applying the functor Hom(7T°, —) to this distinguished triangle we get the following

T0 ° 1 o 07 T3

be a distinguished triangle.

long exact sequence

af-1]

—— Hom7(T°, T') — Homy(T°, T?)

Since, (0')*(9°) = 8'0d° = 0 there exists ¢ € Hom7(T°, S[—1]) such that 9° = B[—1]*(q).
Moreover, an element ¢ € Homy(7°, S[—1]) is determined up to elements of the form
a[—1] o g for ¢ € Hom7(T°, T?[—1]).

Analogously, applying Hom7(—,T?) we get a long exact sequence

—)o —)ox —)oo?
Hom(T1], 7%) 2% Homy (S, 7%) % Homy (72, 7%) 2% Hom, (17, T%).

Then there exists p € Hom (S, T?) such that 9, = po o and an element p is determined

up to elements of the form po f[—1] for p € Hom¢(T1[1],T7).
The triple Massey product p3(9?, 91, 9°) is then the composition p o ¢ € Hom(T°, T3[—1]).
As we can choose g+ a o ¢ instead of ¢ and p+ po f[—1] instead of p, the composition

p o q is determined only up to
(p+popB-1])o(¢+aocq) —pog=pod’ +0’[-1]oq.
Hence the triple Massey product takes value in Homs(7°, T3[—1])/A for
A =Homy(T'[1],T?) 0 8° + 8*[-1] o Hom7(T°, T*[—1]).
The following lemma can be found as [20, Chapter IV 2, Exercise 3].

Lemma 2.2.6. The complex T® = {T° Lo 2y 2 &y T3} has a convolution if and
only if the image of pu3(9?,0,0°) in Homy(T°, T3[—1])/A vanishes.

Proof. We have a diagram

T o T2 o T3
Ao \ N / \ s 7
/ [1] 7,1\ o /71 [1] 2\ ) /72
7o VA 72



Thus, T* has a convolution if and only if there exists a map jo: Z2 — T° such that
J2 0y = 0%
0 1
Z? is a convolution of the complex {7 KN T?}. By Lemma 2.2.4 it can be also

calculated by means of a right Postnikov system, i.e. we have a diagram

] T

o
/ ' \p\ e d X
ZZ a2 Yl X2

o°[1]

*
[0

Moreover, as 0% o 9! = 0 there exists ¢: Y! — T such that g o o = 9?.

The octahedron axiom tells us that the map iy: T? — Z2 equals ay o a:
T o 7 T o 77

e IS

80 AN is 90 o Y! o io

T° z? 7° Z2.
Now, we can apply the functor Homy(—,T?) to the distinguished triangle

1 vt 2 72 5 7°2).
We obtain
Hom7(Z% T?%) — Hom7 (Y, T3) —— Hom7(T°[1], T?)

q! qop
If the triple Massey product q o p = puz(d?,d',d°) can be chosen to be zero then there
exists jo: Z2 — T3 such that jy 0 ay = ¢. It follows that jy0iy = jooapoa = goa = d5.
Conversely, if there exists jo: Z2 — T° such that j, 0iy = jy 0 @y 0 @ = 9? then taking
q = Jo 0 cra we get that gop = jy0as0p =0 (because ay and p are consecutive maps in

a distinguished triangle). O

Thus the triple Massey product is defined for any complex of length four and such a
complex has a convolution if the triple Massey product vanishes. The picture gets slightly
more complicated when the length of the complex increases.

2.2.4 Quadruple Massey product
8" ! 92 3
Let T* = {T° — T' = T? — T°® — T*} be a complex of length five and let

o T o T3
[2]
p i

S

Tl 2
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be a convolution.

We show that the quadruple Massey product jus(03, 9% 0',3°) is non-empty if the
triple Massey products (0%, 0% 0') and u3(9?,9', 9°) vanish simultaneously. Note that
[20, Chapter IV, Exercise 2.3.b)| omits this condition. However, already in 1978 O’Neill
in [53] gave an example of a topological space X and elements in H*(X,Z) such that
0 € pa(uy, ug, us), 0 € pg(ug, us, ug) but pg(ur, ug, us, ug) = 0.

The quadruple Massey product is defined as the set
p14(9%,0%,0',0°) = {qop: T° = T'[=2] | p: T° = S[-2], ¢: S = T*, pop = ", qoi = 8°};

o O 1 O 2 3 8

The quadruple Massey product py(9%,0% 0',0°) is non-empty if the triple Massey
products u3(9?%,9',9°) and p3(9%,0% 0') vanish simultaneously. To see it consider the
diagram

92 T4
ENVANEAN

[
90 [71}/ 2 -~

-
- - P

Here, Z? is the cone of the map 0': T' — T?. As 9' 0 0° = 0 and 9% 0 &' = 0 there exist
p1: T° — Z?[—1] and js 0 Z? — T? such that py o p; = 0° and jy 0 iy = 9*. Then S! is
defined by means of a distinguished triangle

72 22, 73 B8, g1 Py 7o)
After applying the functor Hom+ (7, —) to it we get

Homy(T?, §*[~2]) — Homy(T°, Z?[~1]) — Hom — 7 (T°, T?[1))

Y4 j2 op1 € M3(82781780>

Hence, there exists p: T° — S'[—2] such that p3op = p; (and also psopsop = d°) if and
only if one can choose p; and j, in such a way that j, o p; = 0, i.e. if 0 € uz(9% 0, 3°).
Note, that S! is defined as a cone of j, and hence depends on the choice of j,.

To give a necessary condition for the existence of ¢q: S — T* such that qois = 9% we

use Lemma 2.2.4 again.
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Consider the diagram

SQ -~ o Y2 a1 T3
\ SN N
2 K 1 * 2 ¢
RN S R S
Tl m T2 = T3

Here, Y2 is the cone of the map d?: T? — T3. As 92 09> = 0 and 9? 0 9* = 0 there exist
qi: Y? = T% and v : T' — Y?[—1] such that ¢, o oy = 9% and 8, 0y, = 9.
S? is defined by means of a distinguished triangle

0
T o

T 2 y2—1] 22 §2(—1] & 7.
Applying Hom7(—, T*) to this triangle we get

Hom7 (52, T*) —— Hom7 (Y2, T%)

Hom (T 1], T%)

G ——qom € pu3(0°,0%,0")

Hence, there exists ¢: S? — T* such that g o as = ¢; (and hence g o ay o a; = 93) if and
only if one can choose ¢;: Y2 — T4 and 7, : T' — Y?[—1] in such a way that y,0q; = 0, i.
e. if 0 € uz(9%,0% 9"). Again, note that S? is defined as a cone of ; and hence depends
on the choice made.

The quadruple Massey product 14(9%, 9%, 9, 9°) is non-empty if one can choose maps
ja, p1, 71 and ¢ in such a way that S! - the cone of j, is equal to S? - the cone of v, that
is when p3(9?,0',0°) and p3(93, 0% 0") vanish simultaneously.

2.2.5 n-tuple Massey product

Definition 2.2.7. Consider a complex T° Lo o D e The n-tuple
Massey products 1, (0", ...,3°) and p,, (0", ...,0") vanish simultaneously if there erists
a convolution S of T* — ... — T ', a convolution S of T? — ... = T" and maps
p:T° - S[2—-n], ¢:S - T, p: T — 5[2 —n] and q: S — T™' defining Massey
products such that

qop =0, gop=0, Coneq = Conep.
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Tn— 10"~ T o Tn+1
Proposition 2.2.8. The n-tuple Massey product p, (0" !, is non-empty if and

only if pn_1(0"1...,0Y) and p,_1(0"72,...,0°) vanish szmultaneously. The complex
T = {T° — A T2 ot 2 T"} has a Postnikov system if and only if
0€ p(0nt ..., 0%.

Proof. We have already seen the proof for small n.
0 n—2
Assume by induction that for any complex {A° oar o2 I Ar2}
of length n — 1 there exists a Postnikov system if and only if 0 € p, 1(f"72%, ..., f°)

0 n—1
and that for any complex {B® &5 B' — ... — B* ' £ B"} of length n the n-
fold Massey product ju,(¢g"!,...,¢") is non-empty if and only if u, 1(¢"2%,...,4¢°) and
tn-1(g" L, ..., g") vanish simultaneously.
Now, take T = {T° ANy L N E AN T”“} and consider the diagram
T0 T1 . Tn—1 ot " o T+l
X\nﬂ 12] Z 1/ _1/ 7/l
[2—n \ [1] ;n
kn

The morphisms j,_; : S® ' — T™ such that j,_; oi,_; = 0" ! exists if and only if
{T' — .-+ — T"} has a Postnikov system, if and only if 0 € p,_1(0"!,..., ).
The map p,_1: T° — S" (2 — n] such that p,_; o p,_; = ° exists if and only if
{T° — --- — T"'} has a Postnikov system, if and only if 0 € p,,_1(9"2,...,3°).
We have a distinguished triangle
gn=1 Jocty iy gn In, S

which leads to

Hom7(T°, S"[1 — n]) — Hom7(T°, S""![2 — n])

Hom (77, S"[2 — n])

Pn—1"t jn—l O Pn—1 S ,un(an_ly s 780)-

It follows that there exists p,: T° — S™[1 — n] such that p,_ ol, o p, = d° if and only
if there exists a Postnikov system for {77 Dot et 20 7"}, if and only if
0€ py(0nt ..., 0%.



It finishes the proof that a complex of length n+ 1 has a Postnikov system if and only
if the n-tuple Massey product contains zero.

Now consider a diagram

g1 a1 §2
[2_"7']//r
[”_”Jvl P =

n n+1
o0 ol e gn—1 r " T

The map 7: 7' — S%2 — n] such that 8y 0o 1 = O' exists if and only if
0€ pp1(0" 1 ...,0" and ¢q: 52 — T+ guch that o 0 ap = O" exists if and only if
0€ pp1(0",...,0%.

The distinguished triangle

TH 2 522 — n] 25 SY2 — n] 2 7]

gives

Homy (S, T"+!) —— Homy (52, T"+') —— Homy(T*[2 — n], T"+1)

Gor——————>q2 071 € pp (0", ..., 0.

Hence, q1: S* — T such that ¢; o ay 0 ap = 0" exists if and only if 0 € p, (97, ..., 0%).

As in the case of the fourfold Massey product, the choice of maps j,_1: S"~* — T™ and
v1: T* — 52 determines objects 5™ and S'. Therefore, the (n + 1)-tuple Massey product
Uni1 (O™, ..., 0°%) is not empty if and only if there exist objects S"™! - a convolution
of {T* = ... = T™ '} and 52 - a convolution of {T? — ... — T"} and maps
o1t STL S T pu_ s TO — S 2 — ),y T — S2[2 — n] and go: 52 — T such
that

Jn-1°Pp-1 =0, qzom =0, qoay=0",
By oy =0, Jno1 0l = 0", P10 Pp1 = 0"
and
Cone(y1) = Cone(jn-1),
that is when ,(Op, ..., 1) and 1, (Op_1, ..., ) vanish simultaneously. O

If H(C) is a homotopy category of a DG category C then Massey products on H(C)
can be defined using the DG structure of C. These two definitions coincide for enhanced

triangulated categories.
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Definition 2.2.9. Let T° 2 7' — ... — 77" 275 7 be 4 comples in H(C). A
defining system for morphisms 0"~ ',...,3° is a set of morphisms «; ; € Homg(T",T7),
0<i<j<n, (i,j) # (0,n) such that the class of a; ;41 in H(C) is 0" and

j—i—1

_ i1+ (1) (|0 . 4871
Oaiz) = Y (1) (DI D a5 0 .

=1
Then, the n-tuple Massey product 1, (0", ..., 0") = is defined as the set of

n—1
I+n+14+(1+1) (|8 4. 4|01
E :(_1) n+14(1+1)(|0 \ |)al,n o oy

1=1
for all defining systems (v ;) for 0", ... 0% Here, the square brackets denote the class
in H(C).
A set of maps (o ;) for any pair 0 < i < j < n satisfying the above conditions is called

extended defining system.

Lemma 2.2.10. Let T° 25 7' = .. 5 T be a complex in H°(C) for a pretriangulated
DG category C. Then

(@30 =~ (0, ., 9.

Proof. First, we will show that for a complex T i) T? — ... — T2 ﬁ T ! a
convolution S in H%(C) is an object representing a twisted complex (C;, ¢; ;)[1 — n] with
Ci =T and ¢;; = (—1)a;; for (o ) - an extended defining system for 9"72,... 9.
Indeed, (C;,q; ;) is a twisted complex as

—1)qi; + ZQI,qu‘,l = Z(_l)l+j+1al,jai,l + Z(_l)l+jal,jai,l =0.
I I !

Moreover, a map f = (fo,) of degree n — 2 from T° to (C;, ¢;;)[1 — n] which is the
same as a map of degree 0 from T°[—1] to (C;, ¢; ;) is given by fo; = (—=1)!5o;. Here f;;
is an extended defining system for 9"~2,...,9" such that §;; = a;; if i # 0. Indeed, it is

a closed map as
(=1)'d(po, +quzof05—aﬁol +Z ) as 1 (=1)° fos
= Z - S—H_HBS BO s T Z S—Hﬁs,lﬁo,s -

The cone of this map, which is the convolution of a complex T° — ... — T 1 is a
twisted complex with differentials given by (—1)74; ;, where (5; ;) is an extended defining

system for 0" 2,...,0". Inductive argument proves that the convolution of a complex
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T' — ... = T in H°(C) is given by a twisted complex (Cj, ¢ ;) with C; = T and
Qi—nj—n = (—1)7T"q; ; for an extended defining system (a; ;).

Now, let g = (¢1,,) be a map of degree zero from (C;, ¢ ;)[1 —n] to T"[1 — n]. Then
Gin = (—1)"y, where 7;; is an extended defining system for ot ..., 0! such that

Vi; = cuj if j # n. Indeed, it is a closed map of degree zero, as its differential is

( n 18 gln ng nql,s = ’YZn) - Z<_1)n’73,n(_1>k’yl,s -

s

- (- ”"H%,n%,s =) (1) yem s = 0.

Thus, a choice of a convolution S of a complex 7' — ... — T™ ! in H°(C) is the
same as the choice of an extended defining system in C, a choice of a map from T° to
S is the same as a choice of an extended defining system for 7° — ... — 7" ! and a
choice of a map from S to T™ is the same as a choice of an extended defining system for
T' — ... — T™. Moreover, these defining systems have to agree and together they form
a defining system (4, ;) for 7% — ... — T™.

The n-tuple Massey product 1, (0"1,...,3°) is a composition of g and f, i.e. a class

of a map
n—1
,Un(an_lv . = ng nfOs = Z( ) Vs, n( )850,3]
s=1
n—1
— _[ ( 1>s+n+1(55n o 50,3] — _Nn(an 1 ,80)
s=1

]

Remark 2.2.11. From the proof of Lemma 2.2.10 it follows that if C is a pretriangulated
category then a complex in H°(C) can be lifted to a twisted complex over C if and only if

it has a convolution.

2.2.6 Massey products and A.-structure.
Lemma 2.2.10 allows us to prove the following Theorem, see also [46, Theorem 3.1].
Theorem 2.2.12. Let C be a pretriangulated DG category and let

y e o

be a complex in H°(C). Assume that pu,(0"',...,3°) # 0 and choose f €
pn (0" 0. 0. Then, there exists a minimal A-structure on H(C) such that
m,(O"1,...,0% = —f and my(0=L ... 0") = 0 fori € {0,....,n — 1} and | such
that i1 +1 <n —1.
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Proof. Recall from 2.2.1 that Merkulov’s construction of a minimal model of a DG
category C is based on a choice of maps i: H(C) — C, 7: C — H(C) and h: C — C
which define operations A,,.

Note also that the defining system («; ;) for a complex T Lot 5t 2

T™ is such that «; ;4 is some lift of 9" to C and

0(0@7]») = /\j—i(aj—l,jv e ,Ozm'_,_l).

By Lemma 2.2.10 we know that p,(0"',...,8°) = —pm,(0" ', ...,3°). As
3(042-,]-) = Aj—i<aj—1,ju e ,Oéi,z'—l—l) for any pair Z,j such that (Z,]) 7é (O, n) the
element A\;_;(a;_1,...,®;;41) has a trivial cohomology class and hence by Merkulov’s
construction m;_;(371, ... 9") =0

Also, for a suitable choice of h
At - o0) = > (=D)AL (0,0 o hn(0 .., 0°)
= Z(_l)nilJrlal,n O Qo n

which shows that one can choose («; ;) in such a way that

mn(anila s 780) = 7T()‘n(o%fl,na <o ,05071)) = _f'

2.2.7 Examples

Recall that in Section 2.1.1 we have been considering a smooth surface X obtained
from P? by blowing up a point zp and then a point z; on an exceptional divisor.
In the previous notation, we know that the collection (Opg,(Es)[—1], O, +5,(E1 +
Ey)[—1],0x,0x(H),O0x(2H)) is full. If we mutate O, g,(Ey + E>)[—1] and Og,(FE>)
to the right over Ox we obtain a full exceptional collection of line bundles on X, namely

(Ox,0x(E3),Ox(E1 + E»),Ox(H),Ox(2H)).

We show in Section 2.2.7 that Massey products are not enough to calculate the A..-
structure on the Ext-quiver of this collection. However, they provide sufficient information
to calculate the A, -structure on the Ext-quiver of (Ox, Ox(Esy), Ox(Ey + Es), Ox(H)).
We do all the necessary calculations in Section 2.2.7 and present the sought for A..-

structure.

Example of A, -structure that can be calculated via Massey products
The Ext-quiver of the collection

(Ox,0x(Ey),Ox(E1 + E»),Ox(H),Ox(2H)).
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is
0 B1
Ox — = Ox(Ey) —% Ox () + E») “—= Ox(H) —7= Ox(2H)

a2 —_—

with 6 in degree 1 and relations

Birag = Bara, Bin = Bza107,
Ban = B3z, 0y =0,
0516 = 0; 0629 =0.

Note that the pushforward of Ox(—FE; — E,) to P? is an ideal of a 0-dimensional
scheme Z of length 2. This scheme determines the tangent direction at the point zy that
we blow up. In particular, there exists a unique line containing this subscheme Z. Let
D, denote the strict transform of a line on P2. Then D, N Ey # (. The morphism a;
in the above quiver is zero along Dy + F5. v has zeros along Fy and 0 has zeroes along
E;. These three morphisms are determined uniquely up to a constant. Let D; be a line
in P? passing through zy and not containing Z. Then, D; N E; # (). The map a is zero
along D;. The divisor D; is not determined uniquely and one can change o in the above
quiver by adding some multiplicity of .

Note that morphisms form Ox to Ox(H) are pull backs of sections of Opz2(H). As
the preimage of zy in X is E; U Ey, a section of Ox(H) on X is either zero on both E;
and Fy (possibly with some multiplicities) or it is non-zero on every point of E; and Fj.
Sections having zeros along F; and FE, are linear combinations of a;dy and asd7.

The morphisms 7 in the quiver is any section of Ox(H) which is non-zero on F; and
E5. Hence, it can be changed by adding any linear combination of a6y and asd7.

To obtain the above relations we note that Hom(Ox, Ox(H)) ~ Hom(Ox (H), Ox(2H)).
Then we put ; as the morphism corresponding to o167, B2 as the morphism corresponding
to a0y and P3 as the morphism corresponding to 7).

To sum up, 7, § and ay are determined uniquely. Other morphisms can be changed

by

Q1 ~ Q1+ ado

n~n+baydy + casdy

for a,b,c € k. These morphism determine ;’s in such a way that the above relations are
satisfied.

Due to degree reasons only ms operations on the Ext-quiver of this collection can be
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non-trivial. The A.-structure is thus determined by the value of

ms(as,0,7), ms(az, 0,7),
m3(B1, a1, 0), m3(f2, a1, 0), m3(B3, a1, 0),
m3(f1, aa, 0), m3(f2, s, 0), m3(fs, aa, 0),
m3(Bra, 0,7), m3(Baa1,0,7), m3(Bza,0,7),
( (

m3(Baca, 0,7), ms3(B302,0,7).

Let us denote by (G, m,,) the A-category given by this quiver. The A.,.-structure is

unique only up to an A.,-quasi-isomorphism. Thus, we can choose a quasi-isomorphism
F:(G,m,) — (G,m,). Such a functor F' is a quasi-isomorphism if F; = id. Putting

Fy(Bran,0) = —m3(B1, a1, 0),

(Braz, 0) = —ms (b1, a2, 0)

(Boara, 0) = —m3(B2, az, 0),

(Bzan,0) = —m3(B3, a1, 0),

( )

B, ) = —m3(53,052,9

Y

RGN

Fy

and all other values of F,, to be equal to zero we obtain a new A.-structure on G with
my = ma(Fy ® F1) = Fimg = ma,
ms(F1 @ F1 @ F1) — ma(Fo @ Fi) + ma(F1 ® Fy) = Fimg + Fo(me ® id) — F(id ® ma).

In particular

7/—7/1/2 = ma,
7773(51,04179) =0, 7773(5170427‘9) =0,
7713(52,04279) =0, %(537041,9) =0, %(53,04279) =0

and
m3 (B2, o1, 0) = ms(B2, ar, 0) — ms(By, az, 6).
Moreover, the relation
ms(me ®@id ®id) — mg(id ® ma ®id) + m3(id ® id ® my) — ma(mgz @ id) — me(id ® m3) = 0
gives that always

ma(Bra1,0,7) = m3(Br, a1, 0)y — Bims(as, 0,7),
m3(Bra, 0,7) = ma(Br, az, 0)y — fims(as, 0,7)
m3(Baca, 0,7) = m3(Ba, oz, 0)y — Bamz(aa, 0,7),
ms (B3, 0,7) = m3(Bs, a1, 0)y — Bzms(ay, 0,7)

( ) = ms( 0) (a2, 0,7).

ms(Bsae, 0,y 3(B3, g, 0)y — Bams(az, 0

3
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Unfortunately, Theorem 2.2.12 does not allow to calculate the A.-structure of
the collection (Ox,Ox(Ey), Ox(E1 + Es),Ox(H),Ox(2H)) as it does not provide a
way to calculate mg(f5y, ag,0) — m3(52,aq,0). However, Massey products allow us to
determine the A -structure on the (not full) exceptional collection (Ox, Ox(Es), Ox(E1+

E2>7OX(H)>

Calculations of triple Massey products

In order to calculate the A -structure of this collection we have to determine mg(ayq, 6, )
and mg(ag,0,7). These values can be determined by Massey products ps(aq,6,7) and

M3 (Oég, 9’ 7)'
The cone of # is a vector bundle V' which is a non-trivial extension of Ox(FEs) by

Ox(E1 + E»).
0—=Ox(Ey + B) sV —2 Oy (Ey) —=0. (*)

Because 6 oy = 0 there exists (: Ox — V such that ¢»( = 7. Analogously, from the fact
that compositions a06 and 06 are zero follows the existence of maps tq,12: V — Ox(H)
such that ¢;¢01 = ;. Then,

LlOceﬂg(Oél,e,’}/), [’2OC€/“L3(O[2’9’7)'

Massey products us(aq,6,v) and ps(aq,6,7) are not defined uniquely. On the other
hand, from Merkulov’s construction it follows that the A, -structure depends on the choice
of the lifting homotopy on @y o 8, @z o 8 and 6 o 7 where by f we denote some lift of a
morphism f in H°(C) to a morphism in C. Then one can treat maps 1, to and ¢ as the
choice of values of the lifting homotopy on these three compositions. Thus for any ¢, o

and ¢ putting
m3(a17677) :L10C7 m3(0427977) :L2OC

leads to a correct A.-structure.

The maps ¢, ¢; and ¢, are not determined uniquely, they can change by

¢~ (+degidy,
11~ 11+ eardpy + [ andps,
Ly ~ Ly + g 1dde + h aadgo

ford,...,h €k.
Short exact sequence (*) gives ¢;(V) = Ey + 2FE; and (V) = 0. Let us consider the

short exact sequence
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Let T'— F be the torsion part of 7. Then we have the commutative diagram

0 Ox——vV_—_Y . F 0
T N
0 Ox G T 0
0 0

in which G is a sheaf of rank 1. G fits into a short exact sequence
0>G—>V—>F/T—0

with V' locally free and F/T torsion-free. Hence, G is torsion-free and it injects into its
double dual G** with cokernel 77,

0—-G—G"* =T —0.

T’ is a torsion sheaf and a subsheaf of F/T', hence 7" = 0 and G is reflexive. Hartshorne
in [24, Corollary 1.4] proves that every reflexive sheaf on a smooth surface is locally free
and therefore we obtain that G = Ox(D) for some effective divisor D. The composition

of morphisms

Oy —=Ox(D) XV 22 Oy (B)

is equal to 4, so the morphism Ox (D) — Ox(FE>) is non-zero. It follows that D is equal
either to 0 or to Fy. If D = F, then we would have a splitting

X

0—— Ox (B, + By) -2~V —2 Oy (B,) —=0.

As V' is a non-trivial extension of Ox (F3) by Ox(E; + E3) we get a contradiction. Hence,
D = 0 and F is a torsion-free sheaf of rank 1. As c(F) = 0, F is a line bundle.
c1(F) = Ey + 2E, shows that F = Ox(F; 4+ 2E5). Hence, ( fits into the short exact
sequence

% 4
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Let £; = ker(¢;), K; = coker(t;) and M; = Im(¢;). There are three short exact sequences:

0 L; V M, 0,
0 M,; Ox(H) Ki 0,
0—— Ox(E) + E») M, N; 0
The diagram
0 0 0
0 — Ox (B + Es) M; Ni 0
O—>(9X(E1:E2) vV Ox(Ey) —=0
0 L,——L;
0 0

gives relations between the Chern classes:

a(V) =B+ 2B, = c1(L;) + a1 (M),

(V) =0=c1(L;)er(M;) + ca(My),

H = (M;) + a1 (Ky),

c2(Ox(H)) =0 = c1(M;)e1(Ky) + ca(M;) + oK),
c1(M;) = E1 + Ey + c1(N;),

(M) = (Ey + Er)ei(N;) 4 ca(N7),

By = c1(L;) + ar(NVy),

0 = c1(Li)er(NG) + ca(Ns).
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Diagrams

0— Ox(Ey + E») M, M 0
0 0 0
0 0
0 Ko Ky

0 0 0

show that the support of N; is Dy, and the support of Ny is contained in Dy U Es.
KC1 can be supported on a finite number of points or on the whole D;. In the second
case we would get that M; - the image of ¢; is equal to Ox(E; + E») and hence the

sequence

0—>Ox(E1 + Eg) £>‘/£>(9X<E2) —>0

splits. But V' is a non-trivial extension of Ox(E;) by Ox(E; + E») so we know that K,
must be supported on a finite number of points. Hence, ¢;(K1) = 0 and ¢;(N7) = Ds.

An analogous argument shows that the support of Xy can not be equal to Dy + FEs.
Hence, ¢;(Ks) is either Ey, Dy or 0 and ¢1(Ny) = Dsy, Ey or Dy + Es.

The above diagrams give additional relations

H — B, — Ey = ci(N;) + 1 (Ky),
0= Cl(M>Cl(ICi) + CQ(M) + Cg(’Ci).
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For ¢; we have:

e M;=m,0x(FE1+ Ey+ D;), where m,, is the maximal ideal of functions vanishing

at a point x € Dy,
o L[ = OX(E2 - D1>7
L4 Nl = OD17

e K1 = O,(H) ~ O,, (because of the exact sequences N7 — Op,(H) — K; and

We want to know whether the composition

is equal to zero or 7.
¢ and ¢ fit into a diagram
0

0 OX V Ox<E1+2E2)ﬁO
0 Ox(Ey — Dy) = Ox(Ey — Dy)
0

We tensor this diagram with Opg,.
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Ox(FEy + Es + D1) ® O, = Op,, m; ® Op, = Og, as © ¢ Fy so there exists an
epimorphism V'|g, — Op, with kernel Og,(—1).

0

Og,
Ll\EQ

V|E2

0 OE2 OEQ(—l) —0

¢|E2

C‘EQ

OE2<_1)

0
It follows that V|g, = Og, ® Og,(—1) and the composition

¢

Ox V —% M Ox(H)

restricted to Fs is an isomorphism. Hence ¢1( does not have zeros along F5. Changing ¢q

if necessary we obtain that

1¢ = 1.
For 15 there are three possibilities
D, case (A)
c1(N2) =< By, case (B)

Es+ Dy, case (C)

Hence,
Ey+ Es+ Dy, case (A)
c1(My) =< FEi+2Es, case (B)
Ey +2E; + Dy, case (C)

X

M. is a subsheaf of Ox(H) and hence it is of the form Ox (L) ® Z,, where Z, is an ideal
sheaf of a set of points Z € Dy U Fy. Then ¢;(My) = L and c3(My) = deg(Z) > 0.

In case (A) we have:
EQIOX(EQ_DQ), NQIODQ, Cl(Mg) :E1+E2+D2, CQ(MQ) = —1.

The second Chern class of M, is negative and it follows that this case cannot happen.

In case (B) we have:
£2 = OX, NQ = OEQ, 01<M2) = El -+ QEQ, CQ(MQ) =0.
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On X we have an inclusion Ox(F; + Ey) — My — Ox(H). Tensoring with Op, we get
Op,(E1+ Ey) = Op,(1) and Op,(H) = Op,(1). It follows that My ® Op, modulo torsion
is equal to Op,(1). Whereas, in this case it equals to Op,(2).

Thus, we are left we case (C):
£2 — Ox(—DQ), NQ - OD2+E2, Cl(Mz) - E1 —|— 2E2 + DQ, CQ(MQ) - 1

We obtain that My = m, ® Ox(E) + 2E; + D,) for some y € Ey U Dy. If y € Dy then
My ® Op, = Op, and there is no epimorphism from V|p, = Op,(1) ® Op,(1) onto Op,.
Soy € Ey\ Ds.

Thus, we know that 15( is zero on a point y € E,. Hence it has zeros along F, and

one can choose ¢y in such a way that
LQC =0.

Thus the A-structure sought for is

0
Ox — Ox(E») —2 Ox (B + E») al—; Ox(H)

2

n

with

m2(977) = Oa m2<0417 9) = 07 mZ(a% 6) = 07
mg(O./1, 077) =, m3(a2a 9, 7) = O

Remark 2.2.13. In [57] Polishchuk considered A..-structure on the category of line
bundles on an elliptic curve E. In [57, Theorem 2.2| he showed that the A, -structure is

uniquely determined by operations
ms: HOHl(OE, L1)®EXt1(L1, L1®M)®HOHI(L1®M, L1®M®L2) — HOIH(OE, L1®M®L2)

with deg L; = deg L, = 1 and deg M = —1. Moreover, these operations can be calculated

by means of triple Massey products on E.

2.3 Calculating DG quivers via universal extensions

Another way of calculating DG quivers of exceptional collections was presented in [7]. Tt
is based on a construction of universal extensions and coextensions defined by Hille and
Perling in [25].
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2.3.1 Universal extensions and coextensions

Let E, F' be objects of a k-linear abelian category. Note that
End(Ext'(E, F)) = Ext'(E, F ® Ext'(E, F)*).

Asid € End(Ext!(E, F)) there exists a distinguished element id of Ext'(E, F @ Ext!(E, F)*).
Following [25] we say that an object E is the universal extension of E by F if E is the
extension of E by F ® Ext'(E, F)* corresponding to id € Ext!(E, F @ Ext'(E, F)*). E

fits into the short exact sequence:

0— F @ Ext'(E, F)* E E 0.

This short exact sequence gives the long exact sequence
0 — Hom(E, F) — Hom(E, F) — Hom(F, F) ® Ext'(E, F) —=Ext(E, F) — ... .

Assume that Ext"(F, F) = 0 for n > 0. Then the above sequence shows that Ext'(E, F) =
0 and the groups Ext"(E, F) and Ext™(E, F) are isomorphic for n > 1.
If we assume that F' is simple, i.e. Hom(F, F') = k and that Hom(F, E') = 0 then the

long exact sequence
0 — Hom(F, F) ® Ext'(E, F)* — Hom(F, E) — Hom(F, E) — . ..

shows that Hom(F, E) = Ext'(E, F)*.
Thus, if F is exceptional and Ext"(F,E) = 0 for all n then the objects E, F and

morphisms between them determine E as a cone of the canonical morphism
F ®Hom(F, E) 2~ F ——F.

Assume that (£, F') is an exceptional pair in an enhanced triangulated category with
the enhancement C and denote by C the DG subcategory of C with ob jects E and F. Then
the cone of the canonical morphism F' ® Home(F, E) — E in CP™" corresponds to E in
C. Hence, as in the case of mutations, if we know C we can calculate the DG subcategory
of C with objects F and F'

Analogously, we define an object F to be the wuniversal coextension of E by F if
[ is the extension of £ ® Ext'(E, F) by F corresponding to the above defined id €
Ext'(E ® Ext'(E, F), F) ~ Ext'(E, F ® Ext'(E, F)*). The object I fits into a short

exact sequence

0 F F E ® Ext'(E,F) —0.

The same arguments as in the case of universal extensions show that if F is exceptional
and Hom(F, E) = 0 then Ext'(E,F) = 0, Ext"(E,F) ~ Ext"(E,F) for n > 1 and

61



Ext'(E, F) ~ Hom(F, E)*. From the last equality it follows that F is the shift by —1 of

the cone of the canonical map
F 2% E®Hom' (F, E).

Let (Ey,..., E,) be an exceptional collection on a smooth projective variety X such
that Ext’(£;,&) = 0fori > 2 and all j,I. Following [25] we define & (j) as E;if j = 1,... 1.
For j > i we define &(j) as the universal extension of &(j — 1) by &;, so that &(j) fits

into the short exact sequence
0—LE;® Ext'(&(5 — 1), E))—&(j)) —=&(j —1)—0.

Then, by [25, Theorem 4.1|, & = @;_, &(n) is a tilting object. Recall that a tilting
object is an object & such that Ext’(&, &) = 0 for i > 0 and D°(X) is the smallest strictly

full subcategory of D°(X) containing & and closed under taking direct summands.

Theorem 2.3.1. Let 0 = (Ey,...,E,) be a full exceptional collection on a smooth
projective variety X. Let us assume that Exti(Ej,El) =0 fori # 0,1 and any [, j.
Then the DG category A, is determined up to a quasi-isomorphism by the endomorphism
algebra of the tilting generator Homx (€D, E}', @ ET).

Proof. The E;’s are exceptional and there are no morphisms from E; to &(j —1). Thus
the objects £1(n), ..., E,(n) determine &;’s. Thus, as described above, the endomorphisms
algebra of @, &(n) determines the DG structure of the collection (E,. .., E,). O

Remark 2.3.2. In the above theorem instead of universal extensions we can use universal
coextensions and define object F;(j) for i,7 =1,...,n. We put F;(i) = ... = Fi(n) = E;
and for j <i define F;(j — 1) as the universal coextension of F;(j) by E;_1,

0= Fi(j) = Fi(j — 1) = Ejo @ Ext' (B, Fi(j)) — 0.

Then, .# = @, F;(1) is a tilting object in D*(X) and from its endomorphism algebra one
can read off the DG quiver of collection (Ey,. .., E,).

2.3.2 Relations to quasi-hereditary algebras

The construction of universal extensions and coextensions originates in the theory of
quasi-hereditary algebras. We recall some definitions after Klucznik and Konig, [40].

Let A be a finite dimensional k-algebra. Let A be an indexing set for the isomorphism
classes of simple A-modules. For A\ € A the corresponding isomorphism class of a simple
A-module is denoted by L(\). Let < be a partial order on A.

The algebra (A, A) is quasi-hereditary if for every A € A there exists a left A-module
A(A) such that

62



e there is a surjection ¢: A(A) — L(A) for which all the composition factors L(u) of
the kernel satisfy < A\. The module A()) is called a standard module (or a Verma

module).

e The indecomposable projective cover P(A) of L(A) maps onto A(\) via a map
y: P(\) = A(X\) whose kernel is filtered by modules A(u) with g > A.

Analogously, one can consider costandard modules V() and injective covers of simple
modules /(\). An algebra A is quasi-hereditary if there is an injective morphism L(\) —
V(\) whose cokernel has a filtration with composition factors L(u) for 1 < A and if there
is an injective morphism V(A\) — I(\) whose cokernel has a filtration with composition
factors V(u) for A < p.

From the above conditions it follows that Hom(A(M), A(X)) = k, (see [18, Lemma
1.6)).

Universal extensions and coextensions defined in Section 2.3.1 play an important role
in the theory of quasi-hereditary algebras.

The algorithm presented in the proof of Theorem 2.3.1 and Remark 2.3.2 allow us to
remove all Ext'-groups between any sequence i, . .., E, of objects in an abelian category
A. Universal extensions lead to an object & = @ E;, while universal coextesions to
ZF=QF.

If the starting set is the partially ordered set of standard modules over a quasi-
hereditary algebra then the objects obtained by universal extensions are Ey = P()),
the projective cover of A(\) and Fy = T()), a direct summand of the characteristic
tilting module.

The endomorphism algebra of T'= @ T'()\) is again quasi-hereditary and it is called
the Ringel dual of the initial algebra A. The associated poset is dual to the poset of A
(see [58, Theorem 6).

A quasi-hereditary algebra can be also constructed from a standardisable set of objects
in an abelian category. We recall some relevant definitions and constructions from |[18].
Let A be an abelian category. For a set ¥ C ob. A we denote by F(¥) a full subcategory
of A consisting of objects that admit a filtration with quotients in W.

Let © = {O(A\) | A € A} be a finite set of objects of an abelian k-linear category A.
We define a quiver Q(A) with vertex set A. There is an arrow A — g in Q(A) provided
the set of non-invertible maps ©(\) — ©(u) or the set Ext'(O()\), ©(u)) is non-empty.

We say that a finite set © = {O(\) |\ € A} is standardisable if for all A, € A the
spaces Hom(©(A), O(1)) and Ext'(©(A),©(u)) are finite-dimensional over k and if the
quiver Q(A) has no oriented cycles. In particular, any object ©(\) has one-dimensional
endomorphism space and Ext'(©()),0()\)) = 0. Moreover, the quiver Q(A) defines a
partial order on the set A with g < A if there is an arrow g — A.
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The universal extensions algorithm applied to a standardisable set © gives a quasi-
hereditary algebra A such that the subcategory F(©) and the category F(A,) are
equivalent. Similarly, universal extensions allow us to construct a quasi-hereditary algebra
B such that the subcategory F(©) of A and the category F(Vp) are equivalent.

Let (E1,...,E,) =T be an full exceptional collection in a triangulated category T .
Then Fy,..., E, is a standardisable set in 7 and one can construct two associated quasi-
hereditary algebras out of it. We shall also assume that only Hom and the first Ext-groups
between F;, F; are non-zero.

First, using universal extensions, we define the objects F; and put

Note that & is a tilting generator of 7. Moreover, Ext' (&, E;) = 0 for all j.

Analogously, using universal coextensions, we define the objects F; and put
F = O F;

to be another tilting generator of 7. Then for all j we have Ext'(E;, #) = 0.
The endomorphism algebra of &, As = End(&) is quasi-hereditary. The order on
the set {1,...,n} is the standard one. The projective modules are Py (i) = Hom(&, E;).

Because Ext'(&, E;) vanish we have short exact sequences
0 — Hom(&, E;) ® Ext(E/~', E;)* — Hom(&, E/) — Hom(&, E!™") — 0.

If we compose the surjections Hom(&, E;) — Hom(&, E™') — ... — Hom(&, E;) we get
the required map from P& (i) to
Ag(i) = Hom(&, E;).
Similarly, the endomorphism algebra Az = End(.%) is quasi-hereditary. The order on
the set {1,...,n} is the opposite one, ¢ < j if and only if j < i. The projective modules

are Pz (i) = Hom(F}, #). Again, the sequence
0 — Hom(E;,.7) ® Ext!'(E;, F/) — Hom(F/™",.%) — Hom(F/,.#) = 0

is exact. This shows that the composition Hom(F;,.#) — Hom(F?, .F) —» ... —»

Hom(E;, %) is injective and we get the required map from P.% (i) to
Az(i) = Hom(E;, F).
Functors

® =Hom(&,—): FUE;|i=1,...,n}) = F(A4,),
U =Hom(—, #)": F{E;|i=1,...,n}) = F(Va,)
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define equivalences of categories.

In order to find the Ringel dual of the algebra As we have to compute the characteristic
modules. We know that 7'(1) = A(1) = ®(F;) and that the remaining 7°(7)’s are obtained
as universal coextensions from Ay, (7). Under the equivalence of F({E;|i = 1,...,n})
and F (A4, ) we see that T'(i) corresponds exactly to the module F;(1) and hence R(Ays) =
End(@ T(:)) = End(@ Fi(1)) = Az which proves

Proposition 2.3.3. Algebras Ag and Az are Ringel dual to each other.

2.3.3 Example

Let us go back to the example of Section 2.2.7. Recall that X is obtained from P? by

blowing up a point and then blowing up a point of the exceptional divisor. The collection

is a full exceptional collection on X. There is one non-zero Ext! group between objects
in this collection, namely EXt1<0X(E2), Ox(FEy + Ey)) = k.
In order to calculate the DG quiver of this collection using universal extensions one

has to understand endomorphism algebra of
Ox ®V @ Ox(E + E) ® Ox(H) ® Ox(2H)

where V' is a non-trivial extension of Ox(FE; + E3) by Ox(Es) defined by short exact

sequence

0—= Ox(Ey + B) 2=V —2 Oy (E,) —=0. (%)

Recall, that we have considered maps (: Ox — V, t1: V — Ox(H) and 13: V —
Ox(H) such that

Pp0( =", 110 ¢ = ay, Ly 0 1 = Qa.

Calculations of the previous section show that
ol =n, 120 =0.

Then, the collection (not exceptional!) (Ox,V,Ox(E; + E2),Ox(H),Ox(2H)) has a

quiver

B1

Ox =V 2Ox(Ey+ By)  Ox(H)—3= Ox(2H)

S =

L2
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with relations:

1no¢=m, dp200¢; =0, 130¢=0,
51OL10C:530L10¢105¢20C7 520L10C:530L20¢105¢20C7

Bita — Patr € span{fBi 011 0 ¢y 0 0¢ha, [F1 0 L2 0 Py 0 e, [f2 0 Ly 0 Py 0 Seha,
30110010009, 30130 ¢ 0y}

The last inclusion follows from applying functor Hom(—, Ox(2H)) to the short exact
sequence (*).

Recall also that some of the morphisms can be changed:

Q1 ~ a1+ aos
n~~ 1+ bardy + cagdy,
¢~ C+dpioy,
11~ 1+ eaidgy + fazdgy,
Ly ~ Lo + g 10pe + h aads.

A change of a morphism from Ox to Ox(H) results in a change of a morphism from
Ox(H) to Ox(2H) according to the following correspondence

B1 < o107, B2 <+ 207, B <> 1.

A change oy ~ a1 + aay changes ¢1 to 11 + aty (because 117 = «aq). As also

depends on «; we get

Pitg — Paty ~» (51 + aﬁz)m - /3)2(01 + CLLQ) = Bty + aBaty — Pat1 — aBato = Prig — Bata

and hence the parameter a has no influence on the relation between 3115 and Sat;.

As we want 15¢ = 0 the calculation
(LQ + ga15¢2 + hazégbz)(C + dgbldv) = LQC + (d + h) 042(5’7 + galév

show that g must be 0 and h can be arbitrary, as putting d = —h will not lead to any
changes in this relation.

The morphism 7 = ¢;{ can be changed by any combination of a;dv and ay~ so there
is no condition on e and f.

Calculating
Bi(ta+h 042(5¢2) — Ba(t1 +eardpa + f b)) = Brrg — Pata + (h — 6) Bradds — f Bacradho
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we see that e and f can be chosen in such a way that

Pita — Bat1 = A B111010¢2 + B Bst1¢10¢2 + C B3ta10¢s.

Furthermore, the relation f3t0010¢02( = Pat1( gives

0 = B31201002C — Bot1( = P3t2910¢2¢ — BriaC + A Bre1¢16¢2C + B B311010¢2¢
+C B3t2¢10¢2C = A Bru1¢10¢2C + B B311010¢02¢ + (C + 1) B3Lag10¢a(

and leads to A = 0 = B and C' = —1 due to linear independence of B111¢1002(, B3t101002C
and (3t2¢10¢2C.
Note that the relation (it + B3ta10¢ps = Patq composed with ( gives [31001002( =
Bat1¢ which is exactly the relation f3asdy = [on in the Ext quiver of the collection.
Hence relations in the endomorphism algebra of Ox &V & Ox(F, + E2) & Ox(H) &
Ox(2H) in the notation introduced before are:

L2¢ =0, 0oy = 0,
Bru1C = PaL11002(, Bita + Batapr0¢s = Baoty.

The collection (Ox, Ox(Es), Ox(E1+E»), Ox(H), Ox(2H)) has the DG quiver of the
collection

Ox(E; + E3)
Ox. o Ox(Bi+E). Ox(H), Ox(2H))
V

Morphisms from Ox to Ox(F2) have basis

Ox(E1 + E») Ox(E1 + E»)
a) = 0926 é1 Ay = ¢1
Ox 14 Ox —2X% Ly
Ox (B + Es)
az = 1
Ox ———~V

with 8(&1) = 2.
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Morphisms from Ox(Es) to Ox(E; + E3) have basis:

Ox(E, + E»)

Vv OX(El + Eg)

with b in degree 1.
Morphisms from Ox(FE») to Ox(H) are

Ox(Ey + E»)

C1 — é1 Cy =

Ox(E, + E»)
cy = o1 cy =
V9% 0 (H)
Ox(E1 + E»)
s = 1 21 Ce =
4 Ox(H)

with 0(c1) = ¢ and 0(¢y) = 5.

Ox(E, + E»)
®1
1% 2 Ox (B + E)
Ox(Ey, + E»)
" nér
4 Ox(H)
Ox(FEy + E»)
61
1% 2 - Ox(H)
Ox(Ey + E»)
61
V200 5 (H)

Morphisms from Ox (E,) to Ox(2H) factor through Ox(H) so can be written as J;c;.

Relations between these morphisms are

biaz = 0, baaz = 0¢C, L11by = ¢y,
1191be = c3, L2p1b1 = cs, L2¢1by = g,
d(c1) = by, d(ca) = 12¢1b1, craz = 11,
cyaz =0, Bacraz = Baladibeas, Pica = Pac,
Bicraz = Bstidibaas, Bics + Pace = Paca.
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Putting v = a3, d = by, 0 = by, a1 = 1101, Qs = 129, € = ¢; and €5 = ¢4 we obtain
the following DG quiver

0 B1
Ox — 2 Ox(Ey) —% Ox(Ey + Ey) s Ox(H) —7= Ox (2H)

€1

\_/

€2

with relations and differentials given by
d(e1) = aq0, O(e3) = ad, €2y = 0,
Prag = Baar, Paery = Baaz07, Pieg + B3ad = Paey.
Calculating A,.-structure on the cohomology of this category gives
mg(a1,0,7) =n, ms(a,0,7) =0, m3(Pa,1,0) — ms(51, az,0) = Bzasd.

where 7 denotes the cohomology class of €;7.

2.4 Comparison of the methods

We have seen in Section 2.2.7 that Massey products are not enough to determine the

A-structure on the Ext-quiver of the exceptional collection
(Ox,0x(Ey),Ox(E; + Ey),Ox(H),Ox(2H)).

More precisely, Massey products were not sufficient to calculate the value of the difference
ms(P1, g, 0) — ms(Ba, ay, 0) which is an invariant of the A.,-quasi-isomorphism class of
the corresponding A..-category.

However, methods of Section 2.3.3 allowed us to calculate the A, -category in this case.
The value mgs (51, e, 0) — ms(5a, aq,0) was in this case determined by the cohomological
operation fi3( 01, ag; B2, aq,0). We call it a relative triple Massey product. We will motivate
this name in Section 2.4.1.

Such a product is defined for maps in a triangulated category T

/\
\/

such that

boa =20, doa=0, eod=cob.
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If we denote by F' the cone of a

A Bt P A

the conditions boa = 0 and d o a = 0 guarantee that there exist maps §: FF — C and
0: F — E such that

Boir=b, dor=d.

Then, from the fact that eod = cob it follows that there exists a map v: A[l] — D such
that yomr =co 3 —eod. Let us denote the set of all maps ~ like this by

fs(c, bye,d;a).
Then

m3(a17077) € MS(a1a0a7)7
m3(04279”}/) € N3(a27977)7
ms(B1, az,0) — ms(B2, o, 0) € p3(B1, az; B2, o3 6).

2.4.1 Further properties of Massey products in enhanced

triangulated categories

In Section 2.2.5 we have seen that in order to calculate an n-tuple Massey product of
a complex in an enhanced triangulated category 7 = H°(C) one has to find a defining
system in C. In this section we will use this observation to give an equivalent definition

of Massey products in triangulated language.

Lemma 2.4.1. Let S € TotT" be a convolution of a complex T" in an enhanced
triangulated category T = H°(C) and let ¢ € {0,...,n — 1}. Finally, let S* be a cone
Of 8i,'

Ux

Ti &, il 1y i T i)

Then, there exist 9~1: T—1 — S, O+l S s T2 gych that w00 "L = 9L, §itloy, =

O and S is a convolution of a complex

. 0 Hi—2 . 51'71 Hi+2 on—1
71T T - s T — ... — T"[-1].

7

Proof. From Section 2.2.5 it follows that there exists an extended defining system «; ; for
the complex T such that S € T represents a twisted complex (77, ; ;) € CP**'.
Object S; can be presented as a twisted complex {T* BGEN T} in CP ¥ where T"

is in gradation minus one.
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9! and 9"*! are maps in T corresponding respectively to maps

L — and T
o \ l—az’,iﬂ ai,i+ll &H
o Ti—i—l Ti+1aﬁ Ti+2
i+1,i4+2
in CPet, O

Remark 2.4.2. The same argument as in the proof of the above Lemma shows that any

defining system for the complex 7 is also a defining system for 77 .

Proposition 2.4.3. Let T =T° — ... — T" be a complex in an enhanced triangulated
category T, ¢ an element of p, (0" 1,...,0") and let i € {0,...,n — 1}.

Ifi#0,n —1 then ¢ is an element of p,_1 (0", ..., 072 9+ 9i=L 92 . 3% for
the complex T defined in Lemma 2.4.1.

Ifi = 0 then @oug is an element of p,_1 ("1, ..., 0% 50) for the complex Ti;. Similarly,
for i =mn —1 morphism m,_1 o @ belongs to ,un_l(gifl, 02, 0Y).

Moreover, fi,_1(O"2, ..., 072 0 971 9172 . 89 is the subset of p,_1 (0", ..., 8°)
fori#0,n—1.

If i = 0 then any element of p,_ (0", ... ,32,50) is of the form 1 o 1y for some
Y € pn (0", ..., 0Y). Analogously, if i = n—1 then any element of,un_l(gifl, o2 ...,0%
is of the form m,_1 o for some ¥ € p, (0", ..., 0%).

Proof. By Lemma 2.2.10 Massey products in 7 coincide up to a sign with Massey products
defined using the DG structure.

Then, the claim follows from Remark 2.4.2.

To see that any (n—1)-tuple Massey product defined for T, factors through ¢y we note
that SO can be considered as a twisted complex {70 =% T'}. Similar argument works
for T . O

Let

0 1 2
70 Lt L Lo
be a complex in an enhanced triangulated category and let
YAy RN RN L)
be a distinguished triangle.

Since 9! 0 9° = 0 there exists 9': S — T2 such that 9' o1 = 9.

Note that (820 d') o1 = 820 9" = 0 and hence there exists ¢: T[1] — T3 such that
pom =000

By Proposition 2.4.3

¢ € pus(0%,0',0%).

This motivates the name “relative Massey product” used in Section 2.4.
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Remark 2.4.4. As there are many ways to calculate Massey products, the relative Massey

product described in Section 2.4 is in fact a triple Massey product of the following complex

)

A2 B coE-—2
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Chapter 3

DG quivers of smooth rational surfaces

Smooth rational surfaces have full exceptional collections with vanishing second and higher
Ext-groups. Therefore, results of Section 2.3 allow us to calculate corresponding DG
quivers. It turns out that a large class of full exceptional collections can be mutated to
collections for which the tilting object and its endomorphism algebra can be written down
explicitly in terms of generators and relations. Such a presentation is given in Proposition
3.2.16 and Lemma 3.2.18.

In Section 3.1 we recall basic facts about rational surfaces and prove some useful
lemmas.

In Section 3.2 we describe exceptional collections on smooth rational surfaces obtained
from exceptional collections on P? and Hirzebruch surfaces F,. In Section 3.2.1 for a
rational surface X we calculate Ext-quiver of the part of the collection corresponding to
the map f: X — X to its minimal model. In Section 3.2.2 we choose basis of Hom- and
Ext-groups appearing in this collection and in Section 3.2.3 we show how composition
of Hom and Ext-groups can be written in this basis. We also describe in Section 3.2.4
how to calculate which compositions are zero purely in terms of the intersection matrix
of irreducible components of the exceptional divisor of f.

In Section 3.2.5 we describe the full Ext-quiver of the exceptional collection on X,
provided the exceptional collection on Xy we start with is strong.

In Section 3.2.6 we describe the DG quiver of such a collection. In Section 3.2.7
we explicitly describe the tilting object on X obtained by universal coextensions. With
Proposition 3.2.16 and Lemma 3.2.18 we describe how the endomorphism algebra of this
tilting object looks like in a large family of examples.

We then show that above construction allows to calculate DG quiver of full exceptional
collections of line bundles naturally arising on smooth toric surfaces. We recall after
[19] basis definitions in Section 3.3.1 and give examples of full exceptional collections on
smooth toric surfaces in Section 3.3.2. We show that all of these exceptional collections

give an exceptional collection on the total space of the canonical bundle, therefore we
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introduce a canonical DG algebra of a toric surface in Section 3.3.3. We describe how
methods of Section 3.2.6 allow us to calculate this DG algebra. We conclude with some

examples of these DG algebras in Section 3.3.4.

3.1 Geometry of rational surfaces

The first examples of smooth rational surfaces are the projective plane P? and Hirzebruch
surfaces F, for a > 0.

Recall that the Hirzebruch surface F, is a projectivisation of a bundle Op: @ Op1(—a).
Its Picard group is generated by the class of fiber F' of F, — P! and the class C of the

zero section. The intersection form on F, is given by
F?=0, FC=1, C? = —a.

The canonical divisor of P? is Ky = —3H and the canonical divisor of F, is
Ks, = —2C — (a + 2)F.

The collection (Opz, Op2(H), Op2(2H)) is a full strong exceptional collection on P2
while (Op,, Op, (F), Op,(aF+C),Op,((a+1)F+C)) is a full strong exceptional collection
on I, (see for example [26]).

Any smooth rational surface X is obtained by a sequence of blow-ups from P? or F,,.

We have a sequence of maps

1

X=X, =X, = X, > X,

where X, = IP? or IF,. We can also assume that every 7, is a blow up of X,_; at one point
Tiq.

Let us denote by 7: X — X, the composition of all 7;’s.

Let E; C X; be the exceptional divisor of 7;. By an abuse of notation the strict
transform of E; in X is also denoted by F;. By R; C X we denote the pullback of E;
under ;1 ... m,. By definition we can write R; as a sum Y agEj for some ag € 779,

The intersection form is preserved by 7*, i.e. for 7: X — Y and divisors Dy, Dy on
Y we have Dy.Dy = 7*(Dy).7*(D3). Hence, R;’s form an orthogonal basis and R} = —1
for every 1.

We have a natural partial order on the set of R;’s, namely
RZZRJ = Rz—RJZO

Lemma 3.1.1. We have

0 j>i,
>0 j<.u.
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Proof. We proceed by induction on the number n of blow ups. Assume that the statement
is true for R}™" = 7% _;o...om(E;) C X,_;. Then obviously the lemma is true for
R, = E,. Also, since R; = 7*(R!') we know that R;.E, = 0 for i < n. Finally, for
1,7 <n

m(Ry)m(Ey) = RiVE,

and the assertion follows from the induction assumption.

Remark 3.1.2. In fact, one can say more about the intersection form. Assume that the
order on the set {R;};=1 ., is linear and that in the exceptional divisor E(m) of the map

7 the irreducible component F; intersects E; for some [ > i. Then

—1 for j =1,
E;.R; = 1 for j=i+1,...,1
0 for j>1I.

In order to see it, we look at X;, where the irreducible components of E(x) intersect
as F; E; E_4 E;1. Then, for j = ¢+ 1,...,0 the divisor
R; = E; 4+ FE;j41 + ...+ E;. When we pass to X these coefficients do not change. Also, on
X the divisors R; with j > [ are sums of E; with s > j.

It follows that

E} =t{j| EiR; =1} — 1.

Lemma 3.1.3. Let E;FE;.; =1 for somel > 1. Then R; = E; + Z;J:H-l R;.

Proof. Without loss of generality we can assume that the order on the set {R;} is linear,
i.e. the map m;: X; — X;_1 blows up a point on E;_; C X;_;.
We look at the irreducible component FE; in the exceptional fiber of 7. Assume that E;

intersects F;; for some [ > 0. We have seen before that in this case in X;,; the irreducible

curves intersect as

E; Ein Eivi

i+1-
Then, the pull back of F; to X is equal to
Ei+Eq1+2E 0+ ...+ 1By = i+ Rign + Rigo + ... + Ry

The map from X to X;,; blows up points on F;.1,..., E;y; and hence for 5 > i + [ the
multiplicity of F; in LHS coincides with multiplicity in RHS. ]

Finally, the canonical divisor of X is Kx = 7*Kx,+ ). R;. In particular R, Kx = —1

for any 1.
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3.2 Full exceptional collections on rational surfaces and

their DG quivers

Let 7: X — X, be a map from a smooth rational surface to P? or F, and let
(Oxy, N1, ..., N) be a full exceptional collection on Xy. By [54, Theorem 4.3] in this
situation (Og,(R,), ..., O, (R1),Ox,7*(N7),...,7*(N;)) is a full exceptional collection
on X.

Let us understand the Ext-quiver of this collection.

3.2.1 Ext-quiver of (Or (R,),...,Og,(R1))

Lemma 3.2.1. For Og,(R;) and Og,(R;) we have

k if R <R,

0 otheruise;

k if Ry < Rj
0 otherwise

Hom(Og, (R;), Or,(R;)) = { Ext'(Og,(R:), Or,(R;)) = {

and the higher Ezt-groups are always 0.

Proof. From the fact that sheaves Opg,(R;) are in the right orthogonal to Ox and short
exact sequences

0— Ox = Ox(R;) = Og,(R;)) = 0
it follows that
Eth<ORi(Ri)7 ORJ- (R])) ~ Eth(Ox<RZ'), Ox(R])) ~ Hl(X, Ox(Rj — Rl))

From the above sequence we also conclude that H°(Ox(R;)) = k and H?(Ox(R;)) = 0
for 7 # 0.
From Riemann-Roch theorem it follows that x(R; — R;) = 0.

Then, from the short exact sequence
0— OX(Rj — Rz) — Ox(RJ) — ORZ<R]) — 0

we deduce that HY(Ox(R; — R;)) = k = H'(Ox(R; — R;)) if only the divisor R; — R; is

effective and all cohomology groups of Ox(R; — R;) are zero otherwise. O

Now, let us calculate the composition of Hom and Ext' groups between Og, (R;).

Clearly, the composition
Ext' (Og,(R;), Or,(R;)) @ Ext'(Op,(R1), Or,(R;)) — Ext*(On,(R1), Or,(R;))
is zero as groups Ext*(Og,(R;), Og,(R;)) are zero.
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Remark 3.2.2. In order to understand the composition in the Ext-algebra of the
exceptional collection (Og, (R,), ..., Og,(R1)) it is enough to understand it in the case
when the partial order on the set of R;’s is in fact linear. To see it we consider the partially

ordered set [ of R;’s and a subset J C [ satisfying
e for¢,7 € J and [ € I such that : <[ < j the element [ also belongs to J,
e for j € Jand [ € I such that j <[ the element [ also belongs to J.

Then, the map 7 = n; which leads to the poset I factors through a map 7; which gives

a partial order J on divisors {R;|j € J}.

It is slightly easier to answer questions about compositions of Hom and Ext! groups
in a different category. More precisely, let C, denote the category generated by
Ogr,(R,),...,Or,(Ry). If we mutate this category to the right over Ox we obtain an
equivalent category C, with a full exceptional collection (Ox(Ry),...,O0x(Ry)). We will
do the calculations in the category C..

Till the end of this section we will assume that the divisors Ry,..., R, are linearly
ordered. It means that the map m;,: X;41 — X; blows up a point on the exceptional
divisor F; C X;.

Lemma 3.2.3. Let R; < R; < R;. The composition
HOm(Ox(Rj), Ox(RZ)) X HOm(Ox(Rl), Ox(R])) — HOHI(O)((RZ), Ox(RZ))
1s always non-zero.

Proof. Let a;; € Hom(Ox(R;), Ox(R;)) and oj; € Hom(Ox(R;), Ox(R;)) be non-zero.

The map ay; is injective and hence

&0 a1y #0.

Lemma 3.2.4. Let R; < R; < R;. The composition
Ext'(Ox(R;), Ox(R;)) ® Hom(Ox(R,), Ox(R;)) — Ext'(Ox(R;), Ox(R;))
s always non-zero.

Proof. Consider non-zero elements o;; € Hom(Ox (R;), Ox(R;)) and E]/Z € Ext'(Ox(R;), Ox(R))).

The first one fits into a short exact sequence
0— OX(RI) — Ox(R]) — ORJ.,RZ(R]') — 0.
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Applying Hom(—, Ox(R;)) to it we get a long exact sequence from which it follows that
Bjioay =0 < Ext'(On,_n(R)), Ox(R:)) = k.
We have short exact sequences

0— Ox(Rj) — Ox(Rj + Rl) — ORZ(Rj + Rl) ~ ORI(RZ) —0
0— Ox(Rl> — Ox(Rl + Rj) — OR].<R]' + Rl) — O,
0— ORJ,,RI(R]’) — ORj(Rj + Rl) — ORl(Rl + R]) ~ OR1<RZ) — 0.

From the first sequence and the fact that Hom(Ox(R; + R;),Ox(R;)) = 0 it
follows that Ext'(Ox(R; + R;),Ox(R;)) = k. Then, the second sequence gives
Ext'(Or,(R + R;),Ox(R;)) = k. Finally, from the last sequence we learn that
Ext'(Og,—r,(R;), Ox(R;)) = 0. Hence,

Bji o ay; # 0.

Lemma 3.2.5. Let R < R; < R;. The composition
HOII](OX (Rj), Ox(RZ)) & EXt1<Ox(Rl), Ox(R])) — Eth(Ox(Rl), Ox(RZ»

is non-zero if and only if R; — R; — E; 1s not effective.

Proof. Let //Blvj € Ext'(Ox(R), Ox(R;)), aj; € Hom(Ox(R;), Ox(R;)) be non-zero. aj;

fits into an exact sequence
0 — Ox(R;) = Ox(R;) = Og,—r,(R;) = 0.
Applying to it the functor Hom(Ox (R;), —) we see that
a0 By #0 < Hom(Ox(R)), Op,—p,(R;)) = H'(Op,_g,(Ri — R))) = 0.

Let ¢;: X — X; be the composition 1, = 7 0 ...0m,. The functor L*;: D°(X;) —
D*(X) is fully faithful and hence the composition aj; OE; is a pullback of the composition
of the corresponding morphisms on X;. Thus, without loss of generality, we can assume
that [ =n, ie. R, = Ej.

First, we consider the case when the divisor R; — R; — R; = R, — R; — Ej is effective.
Then,

0— OEZ(R]) — ORi_Rj (Rj—i—Ri—Rj—El) ~ OR«;—RJ' (RZ—El) — ORi—Rj—El(Ri_El) —0
is exact.
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From the fact that E; = R; and R;.R; = 0 it follows that O, (R;) ~ Op, which shows
that k = H(Op,(R;)) — H*(Op,—g,(R; — Ry)).

Now, we consider the case when R; — R; — R; is not an effective divisor.

The divisor R; — R; on X is a pullback of a divisor from X; and recall that we assume
that the order on the set of {R,}s=1,. 4 is linear. It follows that for m,: X1 — X, we
have 7,*(Es) = Es + FEgy1 (where Ey C X411 denotes the strict transform of Fy C Xj).

l .
ca.F, is

S$=1

Hence, if the coefficient ay in front of Ej in the presentation R; — R; = )
non-zero for some s > j, so is the coefficient ¢;. And if the coefficient a; is non-zero then
the divisor R; — R; — F; = R; — R; — Ry is effective.

Let us assume first that 7 = ¢ + 1. By the above observation, the condition that
R, — Rj — Ej is not effective is equivalent to the condition that R; — R;11 = E; (because
Ri=E+FE. 1+ le:Z 42 bs s and hence the coefficient in front of E; in the difference

R; — R;y1 is equal to 1 and the coefficient in front of F;,; is zero). In this case
ORiij (Rz - El> - OEz (Rz - El)

From Lemma 3.1.1 we know that FE;.R; = —1. It remains to determine whether FE;
intersects Ej.

Assume that it does. We assume that the order on the set of {RS}{S:L,”J} is linear from
which it follows that some part of the exceptional divisor of 7 has irreducible components

intersecting in the following order

b, ——E

Ei 1 e Ly

It follows that R, = F; + Ejp1+...+ Ej_1+2EF; and R; = E; + ...+ E; which contradicts
the condition R, — R; — Ej not being effective. Hence, £ F; = 0.
We have thus proved that for j =i+ 1

Or,—r,(R; — E1) = Op,(R; — E}) = Op,(—1)

which has no sections.

Now, we proceed to the general case when j > ¢. The short exact sequence
0— OR,——Rj—Ei(Ri — El — Ez) — ORi—Rj(Ri — El) — OEl(Rz — El) — 0

together with the observation that Og,(R; — £;) ~ Og,(—1) gives H*(Or,_g,(Rr — £})) =
H*(OR,—gr,—5,(R; — E;— E;)). We will argue that, under the assumption that R; — R; — £
is not effective, R, — E; = R;,1 and then proceed by induction.

If R, — E; # R;;1 the intersection point of F; and E;;; on X;.; must be blown up
by one of the maps 7, for some s > ¢ + 1. We assume that the order on the set of R,’s

is linear and hence this point must be blown up by m1: X;4o — X;11. In this case
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Ri=Ei+ Eip1 +2E0+ Y., ,b,E, and by > 2 for s > i + 3. In particular b; > 2. We
know also that R; = F; + Zl csEs. 1t follows that R; — R; considered as a divisor on

s=i+1
X, is equal to (b; — 1)E; # 0 and hence the coefficient in front of Ej of the pullback of
this divisor to X is also non-zero. This contradicts our assumption. n

Remark 3.2.6. From the condition that the coefficient in front of E; in the difference
R; — R; is zero it does not follow that the coefficient in front of E; is. In the example with

irreducible components of the exceptional divisor of 7 intersecting as

Ey Ey Es Ey
we have R1 :E1+E2+2E3+3E4, R2:E2+E3+E4 and Rl—R2:E1+E3+2E4.

On the other hand, under the assumption that the order of R;’s in linear the condition
that R, — R; — £ is effective is equivalent to the condition that R; — R; — E; is. In the
proof of Proposition 3.2.5 we have seen one implication. In the other direction, assume
that R; — R; — Ej is effective and R; — R; — Ej; is not. From the second assumption
it follows that in X, the divisor E;;; intersects E; and possibly some E; for s < 1.
The order on R,’s is linear and hence f;41: X192 — X1 is a blow up of a point on
E;i1 C X411 and so on. In the first case, when F;,, intersects only Ej, it follows that
the coefficients in front of E,’s both in R; and R; will agree for s > j. Then, of course,
R; — R; — E; will not be effective for s > j. In the second case, when F;;; C X intersects
some F, we know that on X; some part of the exceptional divisor of the map X; — X

has irreducible components intersecting as

E,—Ejy—FE—— . —FE—— . . —F.

Hence, R, = F; + Bip1 + ...+ Ej + ZZZHQ bsE, and again we see that coefficients b
agree with the coefficients ¢, of R; = F; + Ej 11 + le=1+2 ¢ F.

Finally, we will show that it is possible to choose basis of Hom(Og, (R;), Og, (R;)) and

Ext'(Og,(R;), Og,(R;)) in such a way that no parameters appear in the composition laws.

3.2.2 The basis of Hom(Og,(R)), Og,(R;)) and Ext'(Og,(R;), Or,(R;))
For every i € {1,...,n} let us fix all maps in the distinguished triangle
Ox = Ox(R;) 5 Og,(R;) % Ox|1].
Definition 3.2.7. For any | > j let oyj: Og,(R;) — Og,(R;) be such that the diagram
Ox[1] —*— Ox1]

O, (Ri) —> Og,(R;)

commautes.
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The maps «y; give also maps oy;: Ox(R;) — Ox(R;) defined by the commutative
diagrams

Or (R)) —2>= O, (R;)

tlT th
aj

OX<RZ) - OX(Rj>'
Finally, for any { > j we have Og,(R;) ~ Op,. We fix explicit isomorphisms

Vi Or,(R1) — Og, (1) ® Ox(R;)

such that for all [ > j > ¢ diagrams

a;®id
qu %‘i]
O, (Rt) ———"——=Ok,(R;)
commute. Moreover, for triples [ > 7 > i such that some part of the exceptional divisor
E(7) of 7 has the form E, . E; . E; let also the diagrams
id®ay;
ORZ(RZ) ®O)((Rj>—>ORl(Rl) ®Ox(Rz) (32)
WJT 1%1
Ok, (R1) = Ok, (1)

commute. Notice, that under this condition Z(aj;) = E; + ...+ E;_; and hence all maps
in diagram (3.2) are invertible.

All the above conditions on the maps 1;; can be fulfilled. Indeed, the first set of
diagrams tell us that fixing 1;; we fix also ¥_1;, ..., ¥ x+1)i- The second set of diagrams
leads to relations between v;; and ;. However, these relations are not independent. To

see it consider the diagram

ORj (Rj) (029 Ox(Ri) <~—id®ai,—= OR].(R]') & Ox(Rm)
a; o1 ®id oy Bid o,

ORI(Rl) (%9 Ox(Ri) ~—id®aim—> ORZ(RZ) ® Ox(Rm)

¢Zk/ \7/)1m

/ \
Or, (R1) id Or, (1)

Clearly, the inner and the outer squares commute. Moreover, if upper, lower and right

squares commute the same is true about the left one.
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Definition 3.2.8. With the above morphisms chosen we define B0 Og,(R;)) —
Or, (R;)[1] as Bij = t;[1] o (r; ® id) o ¢y,
Or,(Ri) 2% Op,(Ri) ® Ox(R;) “2% 04 [1] ® Ox(R;) 25 Op, (R;)[1].
Remark 3.2.9. Short exact sequences
0— Ox(R; — R;)) = Ox(R;) = Op, =0
lead to identifications

Hom(Og,(R:), Or,(R;)) ~ H*(Ox(R;)) ~ H°(Ox),
Eth(ORi(Rz’>7 OR].(R]')) ~ HO(ORZ) ~ HO(O)()

Under these identifications maps o;; and f;; correspond to identity morphism in
Hom(Ox, Ox).

3.2.3 Parameters entering the composition in the basis

Proposition 3.2.10. Let R < R; < R;. No parameters enter the composition
Hom(OF, (R;), Ok, (R:)) ® Hom(Og,(R:), Or,(R;)) — Hom(OF,(R:), Or,(R;))-
Proof. This is clear from the definition of the maps ay;. m

Proposition 3.2.11. Let R} < R; < R;. With the above choice of basis no parameters

appear in the composition
Ext'(Og,(R;), Or,(R;)) @ Hom(Og, (R)), Or,(R;)) — Ext'(Og, (R1), Or,(R;)).
Proof. 1t follows the equality r; ® a;; = r; and the fact that diagram (3.1) commutes;

5]'1\

Ok, (R;) i Og,(R;) ® Ox (R;)ri®ie- Ox[1] ® Ox (R;) —t(% Op, (R;)[1]

Oé?j alj,!\@id r®id
ORZ(RZ) ——> ORZ (Rz) (%9 OX(RZ')

Bui

Proposition 3.2.12. Let R < R; < R; be such that the composition
Hom(Og, (R)), Or,(R:)) @ Ext' (Op,(R)), Or,(R;)) — Ext'(Og, (R1), Or,(R;)).

1s non-zero. With the above choice of basis of these spaces no parameters appear in this

composition.
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Proof. 1t follows from the fact that diagram (3.2) commutes;

/311‘\
ORZ(Rl) —ri=> ORZ<Rl) (24 OX (R1> rQid> Ox[l] &® Ox(RJ ti> ORZ(R’L)[l]
i% id@?&; id@i@- aj%[l]
Or, (1) b= Op,(R) ® Ox (R;) nei- Ox[1] ® Ox(R;)41— Og, (R;)[1]

8 . —

J

3.2.4 Combinatorics of the composition

We describe a combinatorial way of determining the Ext-quiver of the collection
(OR, (Rn), - O, (R1)).

To the map m we can associate two graphs G and H. Both of them have vertices
{1,...,n}. Graph G is the dual graph to the graph of E (7). It is not oriented; vertices
i, 7 are connected by an edge if irreducible components E;, E; of the exceptional divisor
E(m) of 7 intersect.

Notice that an oriented graph with vertices {1,...,n} and no cycles allows us to define
an order on the set {R;}i—1
the transitive closure of this relation. Let H be a minimal graph such that the order on
the set {R;} defined by it coincides with the partial order R; > R; which was considered
before.

The Ext-quiver of collection (Og, (R,), ..., Ogr,(R1)) is obtained from the graph # by
changing a vertex i to O, (R;) and every arrow i — j to arrows ay;: Og, (R;) — Og,(R;)
and f3;;: Og,(R;) — Og,(R;)[1]. From the previous section we know that 3;, o 3;; = 0 for
any [ — 7 — s.

» by putting R; < R; if there is an arrow ¢ — j and taking

1111

The path algebra of this quiver has generators in degree zero, «, defined as
compositions of maps «;; and generators in degree one, [y, defined as 5 = Bis 0 ay;
where ¢ is the vertex of H such that there exists an arrow ¢ — s in H.

We already know that

Qs O Q5 = Oy, ﬁjs O Qy; = Bis-

It remains to determine when o, o 8;; = B;s and when this composition is zero. In order
to do it we consider a graph H° obtained from H by reverting all the arrows. Notice,
that if E(m) is connected then HP is a tree with the root 1.

Now we look at a vertex Og (Rs) of H. In the graph H°" we can find all leaves [ for
which there exists a path from s to [ in H°. For any such leaf [ let P be the set of all

vertices of the path connecting s with /. Then the order on the set {R;};cp is linear and
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R, is its maximal element. In the set {R;}:cp, there exists an element Og,(R;) such that
for t < j and Vi > t we have oy, 0 8;; # 0 and for ¢ > j and Vi > t ays 0 8;; = 0. The
index 7 € P, is the minimal one such that on a path from s to j in the graph G there
exists a vertex t € P, such that t > j. If no such index exists then we put j = [.

Repeating this procedure for every leaf [ will give all relations of the form ojs03;; = 0.
If we do the same algorithm for all vertices of the Ext-quiver we get all the relations.

The algorithm for any s finds j such that Ry, = E, + ...+ E;_; +2E; +.... Then,
by Remark 3.2.6, we know that for ¢ < j — 1 and any ¢ > t the coefficient in front of £
in Ry, — R; is zero and that for t > j — 1 and any ¢ > t the coefficient in front of F; in
R, — R, is not zero. By Proposition 3.2.5 we can then conclude about compositions of the
corresponding morphisms and elements of the first Ext-groups.

Let us consider the following example. Let the graph G be

LW——O

Then the graph H°P is

Oy (1) 2527 O, () 53220, () 552 O (1)
auf /

41
Ons(Rs) Z50'~ (91%4(34KH
e For k=1 and [ =5 we have P; = {1,4,5}, 7 = 5 and hence

Psa © a1 = Ps1.
e For k=1 and [ = 6 we have FP; = {1,2,3,6}, j = 2 and hence
B0 =0, Peaoag =0, [ezoaz =0.
o If k=1and ! =7then P; ={1,2,7}, j =7 and hence

Br2 0 21 = Brr.
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o If k=2 and [ =6 then P ={2,3,6}, j = 6 and hence
Be3 © a3z = Bg2-

In the remaining cases (for example k = 2, | = 7) we do not learn anything new about

compositions as there is not enough arrows to compose.

3.2.5 Maps from Op (R;) to L'm*D’(Xy)

It remains to understand what are the maps from Og_ (R;) to 7*N; and the compositions
between them.
As N are torsion-free we know that Hom(Og, (R;s), 7*N;) = 0. From the short exact
sequence
0— 1N, = 7N, ® Ox(R,) = Og,(Rs) — 0. (3.3)

we deduce that Ext'(Og, (R,), 7*N;) ~ Hom(Og,(R;), Or.(R,)) = k. Let ¢! denote the
non-zero element of this group.

The diagram

0 ——mN; —=71"N; ® Ox(R;) — O, (R;) ——0

0— T°N; —=7*N; ® Ox (R;) —= O, (R;) —0

shows that the composition
Hom(Og, (R;), Og,(R;)) ® Ext'(Og, (R,), T*N;) — Extl(ORj(Rj), T*N5)

is an isomorphism.

To understand the composition
Ext'(Og. (Ry), 7*N;) ® Hom(m*Nj, 7*N}) — Ext' (O, (R,), 7*N})

we apply the functor Hom(—, 7*N;) to the short exact sequence (3.3). It follows that
for ¢ € Hom(7*N;, 7*N;) the composition ¢ o (! is zero if and only if ¢ factors through
T Ni(—Ry).
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3.2.6 DG quiver of (Og (R,)[—1],...,0gr,(R)[-1],Ox, N1, ..., mN;)

Now, we will present calculations allowing to determine the DG quiver of the full
exceptional collection on X. We will assume that the collection (Ox,, N, ...,N;) on
X is strong.

To calculate the DG category of the collection (Og, (R,)[—1],...,Or,(R)[-1], Ox,

N1, ..., N;) we substitute some objects with universal coextensions.

3.2.7 Tilting object

Note that if Ry > Ry we have a unique non-trivial extension
0— ORl(Rl) — OR1+R2(R1 + RQ) — ORZ(RQ) — 0.

Hence O, . r,(R1 + Ry) is the universal coextension of Og, (R1) by Og,(Rz2).
We will show that for R;, < ... < R;; < R, the universal coextension of
Or, +..+R;, (Riy +...+ Ry)) by Or(Rs) 18 Opgyr; +..+r, (Rs + Riy +... + Ry).

Theorem 3.2.13. Let (Og, (R,)[-1],...,0r,(R1)[-1],O0x, 7Ny, ..., 7m*N;) be an
exceptional collection on X such that (Ox,, N1, ..., N;) is a strong exceptional collection
on Xg. Then

Os, (Sp)[-1] & Os, ,(Su1)[-1 & ... 8 O0s(S1)[-1] & Ox & T"M & ... TN,

1s tilting on X, where Sy are defined as
Sl - Z Rj.
R;<R,

To prove Theorem 3.2.13 we shall need the following Lemma.

Lemma 3.2.14. For R, < R; < R; we have

Hom((’)Ri(Ri), ORZ+,..+Rj<Rl +..+ R])) =
Hom(Og,(R:), Or,,, (Rj41)) ® Hom(Org,,, (Rjt1), Ort.vry (Ri+ ... + Rj)) =k,

Ext' (Og,(R:), Or 4Ry 4try (Rl + Rigr + ...+ Ry)) ~
Hom'(Og,(R;), Or,,,(Rj11)) © Ext' (Og,,,(Rj11), Orr iy (R4 .. + Ry)) = k,

J

where the sum Ry + ...+ R; is taken over all divisors Ry such that j = s = [.

Proof. We proceed by induction. The basis case, for 7 = [ follows from Lemma 3.2.4.
The induction step follows from applying the functor Hom(Og, (R;), —) to the short exact

sequence
0— ORZ+“.+R]~71 (Rl + ...+ Rj—l) — ORZJ’».._J’»R]» (Rl + ...+ RJ> — OR]. (Rj) — 0. (34)

]
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Proof of Theorem 3.2.13. From the above lemma and the short exact sequence (3.4) it
follows that if R; < R; < R, the sheaf Og, . (g, (Ri+. ..+ R;) is the universal coextension
of Oryy.ir;, (B + ...+ Rj_1) by Og,(R;). Hence, by the construction of universal

coextensions the object
Os, (Su)[—1] & Os, ,(Sn1)[-1]®...8 05 (S1)][-1] & Ox & T"N1 & ... 7N,
is tilting on X. O

We describe how to calculate the endomorphism algebra of € Og,(S;) from the

intersection form on irreducible components F;’s.
Lemma 3.2.15. Assume that R, < R,_1 < ... < Ry. Then
dim Hom(Og, 4. +r,(Ri + ...+ Rn),Or,..4r,(Rj + ... + Ry)) = n —max{i,j} + 1.

Proof. First, consider the case when ¢ < j. Because Hj(ORjerJar(Rj +...+R,))=0
for all j

hOHl(ORH_“__i_Rn (Rfl‘ . —I—Rn), ORj+...+Rn (R]—}— . +Rn)) = hO(ORj+...+Rn(_Ri_- . -_Rj—l))-

Because i < j —1 < j we have an isomorphism (’)Rj+,,A+Rn(—Ri —...—Rj_) ~ OR, 4.+ R,-

Short exact sequence
0= Or,y1+..+r(—Rj) = Op;4 4R, = Or; = 0

together with an isomorphism Og, 4. 1r,(=R;) =~ Og,, y..+r, show that indeed
hO(ORj-i---.-I-Rn) =n _j + 1.
Now, assume that ¢ > 7. Then as before

hOHl(ORH_“__i_Rn (Rl—i— . +Rn), ORj+...+Rn(Rj+- . —I—Rn)) = hO(ORj_f__”_,_Rn(Rj—f—. . +Rz—1))
From the short exact sequence
0— ORi+...+Rn — ORj+..,+Rn (Rj +...+ Ri—l) — ORJ-+...+RZ~,1(R]' + ...+ Ri—l) — 0

and the fact that R'7.(Op, 4. g, ,(Rj+...+R;i—1)) = 01t follows that h°(Og, 4. +r, (R;+

It is easy to give the basis of morphisms between Og;,(S;). If i is smaller or equal than

7 we have a map
’}/Zl-JZ ORi+.A.+Rn<Ri 4+ ...+ Rn) —» OR;—i—...—i—Rn(Rl 4+ ...+ Rn) — ORj+...+Rn (Rj + ...+ Rn)
forl=7,7+1,...,n.
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If 7 is greater than j then the same map is defined for I =1¢,i +1,...,n.

Still assuming that the partial order on R;’s is linear we denote by

@it Orvoary(Ripi + ...+ Ry) = Opggr, (Ri + ... + Ry),
ﬁil ORi—i-...—i-Rn(Ri 4+ ...+ Rn) — ORi+l+~--+Rn (Ri—i-l 4+ ...+ Rn)

Proposition 3.2.16. If R, < R,_1 < ... < Ry the endomorphism algebra of @ Os,(S;)
1s a path algebra of the quiver

Osn (STL) - OS’!L*I (Snfl) SN 052 (SQ) S OSI (Sl)
Bn—1 B1

with

(3.5)

41 0. 010 fipjo...0fi i+j<n
fBn-10ap_1 =0, Bioa;=

0 t+7=n
where j is such that E;E;; = 1.

Proof. First, notice that 5;a; is a map
OriitotB(Ri1 ...+ Ry) = Oy 4r, (Rit.. .+ Ry) > Or g tr, (Rig1 ...+ Ry).

The map f; has a kernel O, (R;). Therefore the kernel of ;c; is Op(D) where D is such
that the positive part of R; 1+...+R,—R; isequal to R;,1+...+R,—D. The positive part
of Rip1+.. +R,—R;isRi1+.. +R,—R;+FE;. ByLemma3.1.3 R,—F; = Ri.1+.. . +Riyj
for j > 0 such that F;E;; = 1. Hence, D = R; 1 + ... + R;;; and the map B;«; factors
through the surjection Op, 4 g, (Ri+ ...+ Ry) = Ogrpjihoary (Rigjyr + ...+ Ry).

Because there are n — 2 relations of this form and 2n — 2 arrows the basis elements
a;’s and §;’s can be chosen in such a way that no parameters enter the picture.

The maps v, ; given before are

")/ij:Oéjo---o@lfloﬁlflo---oﬁi-

Given relations allow to present every path in a form in which all o’s are to the left.
Thus, the relations allow us to reduce any path in the quiver to a basis morphism and

hence all other relations between paths follow from relations 3.5. O

Remark 3.2.17. When the order on the set Ry, ..., R, is not linear parameters can occur
in the endomorphism algebra of @ Og,(S;). For example, let us consider a surface X,
obtained from P? in the following five blow-ups of points.

m1: X1 — P? is a blow up of a point. m: X5 — X, is a blow up of a point on the

exceptional divisor of 7. m3: X35 — X5 is a blow up of the intersection of the exceptional
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divisor of m and the strict transform of the exceptional divisor of 7. Finally, my: Xy — X3
is a blow up of two points on the exceptional divisor of 73.
If we denote by E; strict transform of the exceptional divisor of 7; for ¢ = 1,2, 3 and

by Ej, Es irreducible components of the exceptional divisor of 74 then the intersection

form is
E? = -3, E\E, =0, FE\E; =1, E\E, =0, E\E; =0,
E? = -2, EyFy =1, FyE, =0, FEyFEs =0, B3 = -3,
E3E, =1, EsE; =1, E2 =1, E.E5; =0, EZ=—1.

The divisors R; are

Ry = Ey + Ey + 2By + 2B, + 2Es,
Ry = FEy + E5 + Ey + Es,

R3 = E3+ By + Es,

Ry = Ey,

Rs = Ej

and the endomorphism algebra of Og,(5;) is given by the following quiver

054(54\
>S3(S3) - OSQ (82) ~— 051<Sl)
Oss<s5>‘/

with relations

aggoyy = 0, Q30i3y = @ Q53035 + b aysasy,

asasg = 0, Q291 = C Q3200530035003 + d (300430034 0la3

for some a, b, c,d € C*. Changing basis by

V53 = A753, Va3 = bz, Y12 = 2712
we obtain relations
aigayy3 = 0, Qo332 = Q530035 + (430034,
53 = 0, QaQig] = Q3205300350023 + A (32043034 0lo3
for
ad
A= —.
be
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3.2.8 Ext! groups between Og,(S;) and 7*N;
Lemma 3.2.18. Let R;, < R;, , < ... < R;,. Then

Ext' (Op, +.+r, (Riy + ...+ Ry)), 7 N;) = K
and the remaining Ext groups are zero.
Proof. We proceed by induction. The short exact sequence

0= Or, +try, (Biy +...+ Ry ) = Or, 4 gry (Riy +...+ Ry) = Og, (R;)) = 0

together with an equality

Exti(ORil (R;,), m*N;) = Exti((’)Eil (Ey), 7" N;)
completes the proof. O

If we apply the functor Hom(Oyg;(S;), —) to the short exact sequence

0— 1N, = 7N, @ Ox(S)) = Og,(S)) = 0
we get an isomorphism

Ext'(Og,(S)), 7*Ni) ~ Hom(Og,(S)), Og,(S))). (3.6)

The identity morphism in the latter space corresponds to an element ¢} € Ext'(Og,(S)), 7*Nj).
The diagram

Os;—5,(5;) ——= Os,-5,(5;)

J

0—=N,—=N; ® OX(Sj) —>OS]-<SJ') —0

= L

0—>M —>M ® Ox(Sl) —>OSI(Sl) —0

0 0

shows that for an inclusion ¢: Og,(S;) — Og,(S;) we have (f o1 = (.

The isomorphism (3.6) allows also to calculate the Yoneda composition
Hom(7*N;, m*Nj,) @ Ext!(Os,(S)), 7°N;) — Ext'(Og,(S), m*N5).
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Thus, if the collection (Ox,, N1, ...,N;) on X is strong we know the endomorphism
algebra of the tilting object

Os, (Sp)[-1] @ Os,_, (Sp-1)[-1]® ... ® Os,(S1)[-1] & Ox @ TN @ ... ® TN,

Using twisted complexes one can then calculate the DG quiver of the collection
(Og, (Rn)[-1],...,0r, (R1)[-1], Ox,m*Ni,...,7*N;) and of any of its mutations.

3.3 Canonical DG algebras of toric surfaces

We apply results of the previous section to full exceptional collections on smooth toric

surfaces.

3.3.1 Toric surfaces

We recall some information about toric surfaces. More details can be found for example
in [19, Chapter 1].

A smooth projective toric surface Y is determined by its fan, spanned by a collection
of elements py,...,p, in a lattice N = Hom(k*,T) = Z? where T = (k*)? is a two-
dimensional torus. We enumerate p;’s clockwise and consider their indexes, ¢’s, to be
elements of Z/nZ. Then, for every i € Z/nZ, vectors p; and p;y; form an oriented basis
of N. Moreover, for every such pair there is no other p, lying in the rational polyhedral
cone generated by p; and p;1; in Ng = N ® Q.

There is a one-to-one correspondence between one-dimensional orbits of the T-action
on Y and the rays in the fan generated by p;’s. For every i we denote by D; the closure
of this orbit. Then D;’s are T-invariant divisors on X. Every D; is isomorphic to P! and
the intersection form is given by

a; ifi=j,
D,D; = 1 ifje{i—1,i+1}
0 otherwise,
where a; € Z are such that p;_1 + a;p; + pir1 = 0. Conversely, the numbers (aq, ..., a,)
determine the toric surface Y.

Divisors D; and D, intersect transversely in a T-fixed point p; corresponding to the
cone spanned by vectors p; and p;.1.

A surface Y] obtained from Y by a blow-up of a torus-fixed point p; is again a toric
surface. The fan of Y] is determined by vectors p, ..., pi, pi+ pis1, Pists - - -, Pn- Moreover,
every toric surface different from P? can be obtained from some Hirzebruch surface F, by
a finite sequence of blow-ups of T-fixed points.

A canonical divisor of a toric surface is given by Ky = — 3" | D;. The Picard group
of Y is Pic(Y) = Z"2.

91



3.3.2 Exceptional collections on toric surfaces

The a-th Hirzebruch surface F, has a fan with four vectors and we can assume
that w; = (1,0), wy = (0,—1), ws3=(—1,a) and wy = (0,1). The collection
(OFp,,OF,(Dy),0r, (D1 4+ Ds),Op,(Dy + Dy + D3)) is a full strong exceptional collection
on IF,.

If Y is obtained from F, by a sequence of T-equivariant blow-ups then we can assume
that the vectors py, ..., p, determining Y are numbered in such a way that p, = ws; =
(0,1). Then the collection (Oy, Oy (D1),Oy (D1 + D3),...,Oy (D1 + ...+ Dy_1)) on Y
is also full (see [26, Proposition 5.5]). The following lemma tells us that in fact the

numeration of T-invariant divisors is not important.

Lemma 3.3.1. (cf. [9, Theorem 4.1]) Let (&1,...,E,) be a full exceptional collection on
a smooth projective variety Z of dimension m. Then the n-fold mutation of &, to the left

is L"E, = &, @ wz[m — n|, where wy is the canonical line bundle on Z.

Let 01 = (Oy, Oy (Dy),Oy (D1 + Ds),...,Oy(Dy + ...+ D,,_1)) be a full exceptional
collection on Y. Then, by the above lemma

L"Oy(D1+ ...+ D, 1) = Oy(=D,)[2 —n].
Hence, o1 can be mutated to a collection
(Oy(—=Dy)[2 —n|,O0y,0y(D1),O0y(D1 + Ds),...,Oy(D1+ ...+ D, _3))
which, in turn, after a shift and a twist by Oy (D,,) is equivalent to the collection
on = (Oy,0y(D,),O0y (D, + D1),...,O0y(Dy,+ D1+ ...+ Dy, 2)).
One can repeat this operation and obtain full exceptional collections
0, =(Oy,O0y(D;),...,0y(Di+ ...+ Ditn_2))

for any i € Z/n.

3.3.3 Canonical DG algebra of a toric surface

Let Z = Tot wy be the total space of the canonical bundle on Y and let p: Z — Y denote

the canonical projection. As the vector bundle
E=0ydOy(D1)®.. d0y(D1+ ...+ Dy1)
is a generator of D?(Y'), we know that p*(€) is a generator of D*(Z). Moreover,

Homy(p*(£),p"(€)) = Homy (€, p.p*(€)) =
= Homy (£, € @ p.(07)) = @) Homy (£, € ® Oy (—nKy)).

n>0

92



On Y we can consider an infinite sequence (A;);°, of line bundles
Asnir =O(Ky + D1+ ...+ D,), for0<r<n.

Denote by Ay = €D Ay the sum of all elements in this sequence. It is proved in [59,
Lemma 5.1 that the DG enhancement of Hom®(Ay, Ay) can be calculated via the Cech
enhancement. It follows that the DG enhancement of Homy(p*(£), p*(€)) is the same as
the DG enhancement of Homy (Ay, Ay ).

Exceptional collection (Oy, Oy (D1),...,Oy(Dy+ ...+ D,_1)) can be mutated to a
collection of the form described in Section 3.2 and hence the DG algebra of endomorphisms
of @?:_01 A; can be calculated by universal coextensions. Lemma 3.3.1 guarantees that
up to shifts the remaining elements of the sequence (Ay) are obtained by mutations from
Ag, ..., A,_1. Therefore, twisted complexes allow to calculate the DG endomorphism
algebra of Hom(Ay, Ay), the canonical DG algebra of Y.

The composition provides a natural map

Hom(A;,_,, A4;) ®k ... ®, Hom(A4;,, A;,) M Hom(A;,, A;)
and an analogous one for elements of Ext'(A;,, 4;,). If there exists K € N such that for
i,...i; such
that is4q —is < K for all s € {1,...,k — 1} then the canonical DG algebra of ¥ can be
presented as a path algebra of a cyclic DG quiver with K vertices.
If one can choose K to be the number n of T-invariant divisors of Y then the DG
quivers @);’s of exceptional collections o; can be read from the canonical DG quiver @) of

Y

(Qi)r = (Qy)1\{a € (Qy)1|t(a) >i—1> h(a)}

and the canonical DG quiver () is obtained by glueing of the DG quivers Q);.

Remark 3.3.2. The canonical DG algebra of F3 cannot be presented as a path algebra
of such a quiver, i.e. in this case K > 4. If, as before, we consider the fan of F3 with
wy = (1,0), wy = (0, —1), wy = (—1,3) and wy = (0, 1) then the map ¢ : Op,(D; + Ds) —
Or, (2D + 2Dy +2D3 + Dy) with zeroes along 2D, is not a non-trivial composition of any

maps between line bundles.

3.3.4 Examples

We conclude with some examples of canonical DG quivers of toric surfaces.

The canonical DG algebra of [Fy is a path algebra of the quiver
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with relations

d1 bCLQ = dgb(ll,

dyco = dycq,

Co a1 = C1 Ag,

a; f = gd, as f = gds,

aq ed2 :CLQGdl,

Jeo=edyb,

base =cyg,

baje=cg,

fCl :€d1b.

The canonical DG algebra of Fy, with intersection numbers (0,2,0,—2), is a path

algebra of the following DG quiver

with




and relations

Co a1 = €1 Qg, €141 = C3Qg, dibay =dsbay,
cohy =crhy +bare, ayjs=asji, hidy = hydy,
ar fdy = ay fdi, Jdico=fdycr, [fdici= fdyca,
Jg2=ed, J1Co = J201, a1 =Ja201,

as jo = 0, hyd; =0, hads = 0.

c1hys =cohy +base,
aredys = asedy,
Jg1=edyb,

arj1 =0,

If we blow up F; in such a way that the obtained toric surface Y; has intersection numbers

(—1,—1,0,0,—1) then the canonical algebra of Y] is a path algebra of the following quiver

with relations

gb=ceda, hd=fg, hcb= feca,
ked=jfec, bk =1Ff, bjh=¢ejfe,
lfe="0bke, dl=cby, bk=1f,
gl=-ccaj.

If we blow up [F; in another point, to obtain Y5

kg=jhec,
lh=ake,
dak=cajf,

with intersection numbers

(0,1,—1,—1,-2), then the canonical DG algebra is a path algebra of the following DG

quiver:




with

deg(a) =0,
deg(e) = 0,
deg(i) =0,
deg(ly) = 0,
deg(sqs) = —1,
O(ly) = bk,
d(r) = ki h,

and relations

eb=da,
ill :f612+f6a]{72,
amf=br,

]{?132:]{32ng.

deg(b) =0, deg(c) =0, deg(d) = 0,
deg(f) =0, deg(g) =0, deg(h) =0,
deg(k1) = 1, deg(ky) = 0, deg(l1) =0,
deg(m) = 0, deg(r) =0, deg(s1) = —1,
A(l2) = bk, d(m) = ki g,
ds1) = he — gi, O(ss) = hd — g fe
1b= fea, gfca=hchb, ely =cbky + dls,
lyg=0bm, log=am, ar =lyh,

bkgh:akggf, bklh:a/ﬁgf, k’lslzkghc,
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Chapter 4

Birational morphisms of surfaces and

derived categories

In the first part of Chapter 3 we focused on the category
C; ={E € D"(X)|Rf.(£) = 0} Cc D"(X)

defined for a morphism f: X — X, from a smooth rational surface to its minimal model.
In this chapter we define two t-structures on the category C; and describe the relation

between the category C; and discrepancy of f.

First, we notice that Cy is well defined for any birational morphism of smooth projective
surfaces. Thus we no longer assume that X is rational and we consider any birational

morphism f: X — Y between smooth projective surfaces.

In Section 3.2 we described how the category Cy depends on the exceptional divisor
of f. Theorem 4.4.4 shows that all objects of C; are scheme-theoretically supported on
the discrepancy divisor of f. Moreover, Coh(X) N C; has a structure of a highest weight
category with duality (see Proposition 4.5.4).

To prove Theorem 4.4.4 we use t-structures on C; given by tilting generators of Cy
constructed by universal extensions and coextensions. Therefore, in Section 4.1 we recall
definitions of t-structures and tilting after [4]. We also give after [56] definitions of highest

weight categories.

In Section 4.2 we define Cy and give its basic properties. Then in Section 4.3 we
describe three natural ¢-structures on Cy. In Section 4.4 we use one of these ¢-structures
to prove Theorem 4.4.4. In Section 4.5 we show that two of the three t-structures on
Cs coincide. We describe simple objects in the heart of the non-standard t-structure in
Section 4.5.1.
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4.1 t-structures, tilting and highest weight categories

In this section we recall some definitions after [4].

Definition 4.1.1. A semi-orthogonal decomposition of a triangulated category T is a
family of full triangulated subcategories T1,...,T, of T such that

e if i > j then Homy(T;,T;) =0 for any T; € T; and T; € T;.

e Any object T € T has a filtration 0 =T,, — T,, 1 — ... = Ty =T such that a cone
of the map T; — T;_1 is an element of T;.

Semi-orthogonal decompositions generalise the notion of full exceptional collections.

Any full exceptional collection (Fy, ..., E,) in T gives a semi-orthogonal decomposition

with 7; = (E;) ~ D(k).

Definition 4.1.2. A t-structure on a triangulated category T consists of two strictly full

triangulated subcategories T=C, T=! such that

o 750U C T°° T='[-1] C T='. We denote those categories by T="1 = T=°[1],
22 _ TZl[_l]

e Hom, (771 720 = 0.
e any object T € T fits into a distinguished triangle
T-—=T—T"—= T[]
with T+ € T=' and T~ € T=°.

The category A = T7=°N T-Y is an abelian category and is called a heart a the
t-structure. Short exact sequences in A are distinguished triangles in 7 with all objects
contained in A.

For any T € T objects TT and T~ are determined uniquely. In fact, there exist
functors 7<o: T — 7= and 751: T — T-! such that 7<o(T) = T~ and 7=1(T) = T™.
More generally, we can define functors 7<,,: 7 — 7" and 7>,: T — T-". The functor
T<nTon: T — A[—n] is a cohomology functor on 7 with respect to the given ¢-structure.
We will denote in by HYj.

A t-structure is bounded if every object T' € T lies in T="NT =™ for some m, n. Recall
the following [15, Lemma 3.2].

Lemma 4.1.3. An abelian subcategory A C T of a triangulated category is a heart of a
bounded t-structure if and only if

o HOHIT(Al[k'l], Ag[kz]) =0 fOT’ any Al, Ay € A and ki > ko.
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e For any non-zero T' € T there exist ky > ko > ... > k, and maps 0 =Ty — T; —
. > Ty = T, =T such that a cone of T; — T,_1 is an element of Alk;].

The first example of a t-structure on a triangulated category T occurs in the case when
T is the derived category of an abelian category A. Then D(A)=C is the full subcategory
of objects whose cohomology is concentrated in degrees less or equal to zero. Similarly,
D(A)*! is the full subcategory of objects whose cohomology is concentrated in degrees
greater than zero. This defines the so called, standard t-structure on D(A). Its heart is
equivalent to A. If 7 is a bounded derived category of some abelian category A then the
standard ¢-structure on 7T is also bounded.

This example allows us to construct a t-structure from an equivalence T ~ D(A) for
some abelian category A. In particular, if & is a tilting object on a smooth projective
variety X then the equivalence D°(X) ~ D’(Mod- End(&))) defines a new t-structure on
DY (X).

The following lemma proves to be very useful when comparing two t-structures on a

triangulated category.

Lemma 4.1.4. Let A, B be abelian subcategories of a triangulated category C such that
both are hearts of bounded t-structures and A C B. Then A = B.

Proof. By Lemma 4.1.3 if an abelian subcategory A C C is a heart of a bounded t-structure
(C=Y,C=Y) the every object C' € C admits a sequence of maps

0=Cy—-C, —» ... C,.1 —C,=C

such that the cone A; of the map C;_; — C; liesin A[l;] and l; > Iy > ... > [,. Moreover,
such a sequence is unique. Then also C=0 = {C'|l; < 0} and C*° = {C'|l,, > 0}.

Let C' € C be an object in C=4°. Then the objects A; € A[l;] C B[l;] and I; < 0. It
follows that C' is also an object of C¥8°. A similar argument shows that C=4A~! c CZ51.
Then +(C*571) = =80 C €40 = L(C=471). Tt follows that C=4% = C=£ and hence the

two t-structures in question are equal. O

From a t-structure on 7 and a torsion pair on its heart A we can construct a new

t-structure on 7T .

Definition 4.1.5. A torsion pair on an abelian category A is a pair of additive
subcategories §,T C A such that

e Hom(%,§) =0.
e For any A € A there exists a short exact sequence
0T —-A—=F—=0

in AwithT €% and F € §.
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A torsion pair (T,F) on a heart A of a bounded ¢-structure on 7 allows to define a
new t-structure on 7 with a heart

A ={EcT|HYF) €%, H'(E)cF}

Then a t-structure with heart A is called a tilt of t-structure with heart A.
If a triangulated category 7 has a semi-orthogonal decomposition 7 = (S, R) then

sometimes t-structures on S and R can be glued to give a t-structure on 7.

Definition 4.1.6. Let 7, S, R be triangulated categories. The category T admits
recollement relative to & and R if there exist exact functors i, = 4,: S — T, j5 =
§T =R, i T =8 and ji, j.: R — T such that
o (i* i, =14 44") and (ji 4 j' = 7* 4 j.), where i* i, means that i* is left adjoint
to i,.

e The composition i'j, = 0.
e Functors i, ji, j. are full embeddings and thus i*i, ~ ids ~ i‘i, and j*j ~ idg ~
J -
e for any object T € T triangles
0Wwi'T =T — j.j*T — 0i*T1],
G T =T — i, i*T — 5,5'T[1]
are ezxact.
We denote such a recollement by
S—T—R
Proposition 4.1.7. (/4, Theorem 1.4.10]) Suppose that T admits a recollement
S=—=T=—=7R. Then t-structures (§=°,8=1), (R=°, R=1) induce a t-structure on T
with
T ={T € T|*T) € R, i*(T) € S},
T ={T € T|;(T) e R**, i{T) € S'}.

We will also need the following definitions (see [56]).

A Ek-linear abelian category A is locally artinian if A admits arbitrary unions of
subobjects and if every object in A is an union of its subobjects of finite length. Moreover,
we require that the category A has enough injectives and BN (|, 4«) = U, (BN A,) for
all subobjects B and all family of objects {A,} of each object A.

A poset A is locally finite if the set [\, u] = {7| A < 7 < u} are finite for any pair
A\ pe A
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Definition 4.1.8. A highest weight category is a locally artinian abelian category A such
that there exists a locally finite poset A (the poset of weights) satisfying the following

conditions

e There is a complete collection {S(X)}rea of isomorphism classes of simple object in

A.

e There is a collection {A(N)} of standard objects of A and a surjection A(X) — S(A)
such that all composition factors S(u) of the kernel satisfy pu < A.

e The projective cover P(\) of S(\) admits a surjection to A(X). The kernel of this
surjection has a filtration with quotients A(p) for > A and such that every A(u)

appears in this filtration only finitely many times.

The motivating example for considering highest weight categories is the category O
introduced in [5] (see also |28]). Therefore, standard modules in the above definition are
sometimes called Verma modules. Another class of examples is given by categories of
modules over quasi-hereditary algebras as defined in Section 2.3.2.

Following [29, Section 2| we say that a highest weight category A has a duality if there
exists an antiequivalence D of A such that D? is equivalent to id4 and D(S())) =~ S(\)
for any A € A.

4.2 Category C;

Section 3 focuses on smooth rational surfaces. However, Sections 3.2.1 - 3.2.4 deal only
an arbitrary birational morphism between smooth surfaces.
Let f: X — Y be such a morphism. f can be decomposed into a sequence of blow-ups
of single points
X=X, x5 . >x 5 x=Y

For simplicity, we denote by m; the composition fj1;0...0 f,: X — X;.
In this case R’ f,(Ox) = Oy and by the projection formula the functor L* f*: D*(Y) —
Db(X) is fully faithful,

Homx (L"f*E, L f*F) = Homy (€, R" f.(L" f*(F))) =
= Homy (€, R f.(Ox) @ F) = Homy (&, F).

Therefore we have semi-orthogonal decompositions
D'(X) = (C;, D'(Y)), D'(X)=(D"(Y),Dy),
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where
C;r={£eD"X)| Hom(L f*F,) =0VF € D"(YV)} = {€ € D"(X)| R f.(§) = 0}
and
Dy ={€ € D"(X)| Hom(E, L' f*F) = 0 VF € D*(Y)}.

With the notation from Section 3, (Og,(R,),...,Or,(R1)) is a full exceptional

collection in Cy. Its Ext-quiver is described in Section 3.2.1.

Remark 4.2.1. A_-structure on this Ext-quiver does not have to be trivial. The first
example when a non-zero higher multiplication appears is in the case when the exceptional

divisor of f has four irreducible components intersecting as

El Eg E4 EQ.

In this case

R1:E1+E2+2E3+3E4, R3:E3+E4,
Ry = FEs + B3+ 2E,, Ry, = FEy,

and the operation

ms: Hom(Og,(Ry), Or, (R1)) ® Ext'(Og,(Rs), Or,(R,)) ® Ext'(Og,(Rys), O, (R3)) —
— Ext'(Ogr,(Ry), Og, (R1))

is non-zero in any A..-category A,.-quasi-isomorphic to the Ext-algebra of this collection.

The category Dy is obtained from C; by mutation over L' f*D’(Y’). Direct calculations
show that the equivalence functor ¢: C; — Dy is given by ¢(£) = £ ® wx/y, where

wx/y = O(>_ R;) is the relative canonical class.

4.3 t-structures on C;

Results of Section 2.3.1 allow us to find two tilting objects in the category Cy. Thus we
have two hearts. By A, we denote the heart corresponding to a tilting generator obtained
from (Og, (R,),...,Ogr,(R1)) by universal extensions. By A, we denote the heart given
by the tilting object constructed from the above collection by universal coextensions.

By construction the tilting object obtained by universal extensions decomposes as
a direct sum of n objects. Let us denote it by €., P;. Here, P; is obtained from
Og,(R;) by universal extension by Og, ,(R;_1),Og, ,(Ri—2),...,Ogr,(R1). In particular,
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Py = Og,(Ry). Thus P; are indecomposable projective objects in the abelian category
Ae.

In Section 3.2.7 we have seen that projective objects in Ao are sheaves 7, = Og, (.S))
for S; =5 ri<k, Fi- Let us note that the decomposition of f into X NND'¢ 2V shows

that Sy is the relative canonical divisor for the map ;.

Proposition 4.3.1. The category Cy has two natural t-structures. The first t-structure
is obtained from the exceptional collection by means of universal extensions and @ P;
is the projective object in its heart, A.. The second t-structure is obtained from this
collection by universal coextensions and @ Z; is the projective object in its heart, Acpe.
The endomorphism algebras of @ P; and @ Z; are Ringel dual quasi-hereditary algebras.

Moreover, both t-structures are bounded.

Proof. We only need to check that the described ¢-structures are bounded. As the category
C; is a subcategory of D°(X), it is Ext-finite. It follows that for any F € C; only finitely
many of Ext' (€ P, F) (or Ext' (€ Z;, F)) are non-zero and hence the induced ¢-structure
is bounded. O

Also by [14, Lemma 3.1| the standard t-structure on D?(X) induces a t-structure on
Cs. We call it a standard ¢-structure and denote its heart by Ay = Coh(X) N Cy.

4.4 Support of objects in the category Cy

We show by induction that every object of Coh(X) N Cy is supported on a subscheme of

the relative canonical divisor Kx/y = By + ... + R,.

Lemma 4.4.1. Let f: X — Y be a birational morphism of smooth surfaces and let
X575y beits factorization with g: Z — Y a blow up of a single point. Then there

15 a recollement of the form

C, — C; e,

and the t-structure with heart A. is glued from the corresponding t-structures on Cp and

C,.

Proof. The t-structure on Cy glued from Coh(X) N C; and Coh(Z) NC, is bounded and
given by

Ci° = {F € C;| Rh.(F) € C;°, Hom(E, ;") = 0},
C?O = {F €C;|Rh.(F) € C;O, Hom(Cf_l, E)=0}.

Let us denote, temporarily, the heart of this ¢-structure by C?. Then Coh(X)NC), C CJQ.
Also we have Og,(R) = Lh*(Og,(Ey)) € C}. The first condition, Rh.(Og,(R1)) €
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Coh(Z), is satisfied because of the projection formula. The necessary Hom’s vanish
because Og, (R,) is a sheaf on X. Hence, O, (R1) € Cj.
The simple objects Op,(Rz),...,O0g,(R,) € Coh(X)NC, C C} by the induction

assumption. By Lemma 3.1.3 we have a short exact sequence
0—K— ORl(Rl) — OEl(Rl) —0

with £ € C, and hence Rh,(Og,(R1)) = Og,(E1). Also, Og,(E,) is a sheaf on X
which makes all the Hom’s spaces in the definition of the heart CJQ vanish. It proves that
Op, (Ry) € C}.

Thus objects O, (Ry),...,Op,(R,) € C}§ and it follows that Coh(X)NCy C C}. As

both are hearts of bounded t-structures we conclude by Lemma 4.1.4. O]

Recall that a scheme theoretic support of a coherent sheaf F' on X is the smallest closed
subscheme i: Z — X such that there exists a coherent sheaf G on Z with i,(G) = F. If
X is affine then Z is the zero locus of Ann(M) where F' = M~ (see [60, Lemma 28.5.4]).

Proposition 4.4.2. Let E € Coh(X) NCs. Then the scheme theoretic support of E is a
subscheme of Kx/y = Ri + ...+ R,.

Proof. First, we notice that if £ is a sheaf in C; then the support of E' is of pure dimension
one (because a direct image of a non-zero sheaf supported on a point is a non-zero sheaf
supported on a point). Hence, the annihilator of E is of the form O(—D).

Now we proceed by induction. If f is a blow up of a single point then Coh(X) NCy
consists of direct sums of O, (E;) and the support of every object is equal to £y = Kx/y.

For f: X = Y let f: X " 7 % Y be a factorization with g: Z — Y a blow up
at a single point. Let us take & € Coh(X) N Cy. By the previous lemma there exists a
distinguished triangle in C;

Lh*Rh.(E) = & — F — Lh.Rh*(E)[1],

where F € C, and Rh,(€) is a direct sum of copies of Og, (E;). The last observation
follows from the fact that £ is an object of the glued heart. Hence Lh*(Og,(E,)) =
h*(Og,(Ey)) = Og,(Ry) and Lh*Rh.(E) = h*h.(E). Taking cohomology sheaves of the

above triangle we get an exact sequence of sheaves on X:
0—=H YF) = hh, () = E—H(F)—=0

Both H~Y(F), H°(F) are elements of Coh(X)NC, (because Coh(X)NC), C Coh(X)NCy
and the cohomology functors with respect to these two hearts coincide for objects in Cp,).
Hence, by the induction assumption, the scheme theoretic support of H=1(F) and H°(F)
is contained in Kx/z = Ry+...+ R, and the scheme theoretic support of h*h, (&) is equal
to Ry (if he(€) = 0 then £ € Cj, and there is nothing to prove).
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Clearly, if
M1 — MQ — M3 — 0

is an exact sequence of A-modules then Ann(M;) - Ann(M3) C Ann(Ms).

In our case Ann(h*h,(€)) = O(—Ry), Ann(H(F)) = O(—Ry—...—R,) and Ann(&)
O(—D) for some divisor D. For effective divisors D; and D, we have an equality O(—D;)-
O(—D3) = O(—=D1) ® O(—Dy) so from the fact that O(—R;) ® O(—Ry — ... — R,,)
O(—D) we conclude that D < Ry + ...+ R,,.

N

Let ¢: £y — X denote the inclusion of the non-reduced discrepancy divisor of f. By
Proposition 4.4.2 for every object F' € Coh(X) N Cy there exists F € Coh(Ey) such that
F =1, F. Thus the functor ¢*: Coh(X)NCy — Coh(E;) gives a commutative diagram

Coh(X) NCs “— Coh(Ey)

LL*

Coh(X).
Indeed, if F' € Coh(X) NCy then t,0*(F) = 1t 1 (F) = 1o(F) = F as ¥, = id.

Proposition 4.4.3. Let £ be any element of Cy. Then there exists £e Db(Ey) such that
£ =u(&).

Proof. We know that C; is equivalent to a bounded derived category of Ag... This category
has enough projectives and thus every object in C; can be represented by a complex of

projective objects in Acqe,
E~{0—>P,—...—> P, — 0}

Moreover, by Proposition 4.3.1 all projective objects in A are supported on Ey, i.e.
P, = 1, P, for some sheaf P, € Coh(Ey). Therefore

Homy (2. P, L*ﬁ]) = Homy (P, L*L*]Sj) = Homy (P, lgj)

Hence the homomorphisms between L*f’l’s have a unique lift to homomorphisms between
P’s. Thus a complex on X lifts to a complex on Ey.

If we define & by a complex

{0>P,—...—P,—0}

then & = 1.(&). O

Theorem 4.4.4. Let f: X — Y be a birational morphism of smooth projective surfaces
and let E =Y E; be the exceptional divisor of f. It has a non-reduced scheme structure
E= > a;E; given by the discrepancy of f, Kx = f*Ky + E.
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Let C; = {€ € DY(X) | R f.(€) = 0} be a full subcategory of D°(X). Then D°(X) has
a semi-orthogonal decomposition, D*(X) = (Cy, L' f*D*(Y)) and any object € € C; is of

the form LE for some Ee 'Db(E), where 11 E— X 1s the closed embedding.

Proof. In Section 4.2 we have proved that the functor L' f*: D*(Y) — DY(X) is fully
faithful and gives the requested semi-orthogonal decomposition of D?(X).

In Section 4.3 we constructed a titling object @ %; in Cy. By Proposition 4.3.1 Cy is
equivalent to the bounded derived category of A.... Moreover, A is equivalent to the
category of finite dimensional modules over the endomorphism algebra of € %;.

Finally, Proposition 4.4.3 proves that every object in C; is supported on the

discrepancy divisor of f. m

4.5 Comparing the ¢-structures

Proposition 4.5.1. The t-structures with hearts Ay and Ac.. are different.

Proof. Let us consider the case when f: X — Y is a composition of two blow ups. In
Section 4.5.1 we shall see that in this case simple objects in A are Og, (Ey + Es)[1] and
OE1+E2(E1 + 2E2) O

In order to show that A, = Ay we use properties of perverse coherent sheaves
introduced by Bridgeland in [14]. Let us recall after [14, Section 3| that for a morphism
f: X — Y with fibers of dimensions at most one and such that R’ f,(Ox) = Oy one can
define a t-structure on D’(X) which is glued from the standard t-structure on D*(Y) and
a t-structure on C; with heart Ag[p| for any p € Z. The heart of the new ¢-structure on
D*(X) is denoted by PPer(X/Y).

Let Y = Spec(R) with R a noetherian complete local ring with maximal ideal m such
that £ = R/m is algebraically closed and & C R. By [62, Proposition 3.5.7| in this case
simple objects in ~'Per(X/Y) are Og, and Og,(—1)[—1]. It follows that simple objects
in Ay are of the form Og,(—1) ~ O, (R;).

Lemma 4.5.2. For any i the sheaf Og,(R;) is an element of A..

Proof. According to Lemma 3.1.1 we have E;R; = —1 so Og,(R;) ~ Og,(—1).
Let us recall that for any effective divisors Dy, Dy on a surface we have a short exact

sequence

0— ODZ(DQ) — OD(D) — ODl(D) — 0,
where D = D; + D,. We apply this to the equality R; — E; = Z;:l R, ; for some s > 0

(which follows from Lemma 3.1.3). Hence we have a short exact sequence

0— OR¢+1+...+R (RiJrl + ...+ Ri+s) — ORZ(Rz) — OEl(_l) — 0. (41)

i+s
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Short exact sequences of the form

0= Oripitotrig(Rivi + o+ Rivt) = Orgyoryy (Rivn + -+ Riisn)

— ORi+l+1 (Ri+l+1) — 0

show that the kernel of the canonical map Opg,(R;) — Opg,(—1) has filtration with
quotients O, (R;) for j > i.

By [18, Theorem 2| we have Ext"(P;, Og,(R;)) = 0 for k # 0 and any 4, j, where
P, denotes the tilting generator constructed from Opg, (R;) by universal extensions Hence,
the sheaves Og,(R;) lie in the heart of t-structure given by @ P;. It also follows that
ORy 1+t Ripy (Rig1 + ...+ Rigg) lie in A..

Finally, (4.1) implies that Op, (R;) € A.. O

Proposition 4.5.3. t-structures on Cy with heart A. and Ay are equal.

Proof. By Lemma 4.5.2 we know that all simple objects in A are elements of A,.. It
follows that Ay C A.. As both t-structures are bounded we can apply Lemma 4.1.4 to
finish the proof. O

Thus the category Ag = Coh(X) N Cy is a highest weight category. The order on
the set of standard modules Og,(R;) is induced from the order on R; that we considered

before.
Proposition 4.5.4. The category Coh(X)NCy is a highest weight category with a duality.

Proof. By Proposition 4.5.3 the heart Ay = Coh(X) N Cy of the standard t-structure on
Cy coincides with A.. The endomorphism algebra of the projective generator @ P; of A,
is quasi-hereditary and hence the category of modules over it, equivalent to the category
Coh(X) NCy, is a highest weight category.

The standard modules are Og,(R;) and the simple modules are Og,(R;) = Og,(—1).
Let us denote by P, the indecomposable projective objects in C; N Coh(X).

There is an exact functor D;: D*(X) — Db(X) given by

D¢(F) = RHomx (F, f(Oy)),

which maps Cy into itself.
Knowing that f'(Oy) = Ox(R; + ...+ R,) we can calculate

Di(Og,(R:)) = RHom(Og,(R;), f'Oy) =~

~ RHom([O(R; — E;)) = O(R)],O(R1 + ...+ R,)) =

= [RHom(O(R;),O(R1 + ...+ R,)) = RHom(O(R; — E;),O(R1 + ...+ R,))] =
=[OR+..+R1+R1+...+R,) > OE+R+...+R 1+ Ri1+...+ R,
=0 (Ei+Ri+...+ R 1+ Riyr+ ...+ Ry)[1] ~ Og,(—1)[1].

—_
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Hence, up to a shift, the functor D preserves simple objects in Ag.

As the functor D;: D*(X) — Db(X) is exact, if 0 - A — B — C — 0 is a short
exact sequence of sheaves such that Df(A) and D¢(C) are complexes concentrated in only
one degree, the same is true about Dy(B). As every object of Coh(X) NCy is an iterated
extension of sheaves of the form Op, (—1) we know that Dy is a contravariant exact functor
which maps Coh(X) N Cs to Coh(X) NCy and preserves simple sheaves in this category.

[

Remark 4.5.5. The functor Dy = RHomx(—, f'(Oy)) is not a duality on Acoe. Already
when f is a composition of two blowups, the projective objects in A.. are %, =
Op, 128, (F1 4+ 2E5), 92 = Op,(F>) and the simple objects are S1 = Og, . g, (E1 + 2E5)][1]
and Sy = Op, 428, (E1 + 2E53). The functor Dy maps Sy to Sy but

Df<OE1+E2<E1 + 2E2)) = OE1+E2(E1 + EQ) ¢ ‘ACO@

as Hom(Op, (E»), Op, 15, (B + E»)) = k = Ext'(Op, (E»), Op,+5,(E1 + E»)).

4.5.1 Simple objects in A¢e

In [61] Toda constructed a bounded t-structure on the category Dy defined in Section 4.2
by specifying simple objects in its heart. We show that the ¢-structure he considers on Dy
corresponds to the t-structure with heart Aq.. on C; under the equivalence ¢: C; — Dy
defined in Section 4.2.

Toda’s t-structure is constructed by induction. If a map f: X — Y factors as n
blow-ups of single points then the heart D} = |5y, ..., S,|, where |Si,...,S,| denotes the
smallest abelian subcategory of Coh(X) closed under extensions and containing objects
S1,...,59,. These objects are constructed in the following way.

Let X 5 X' % Y be a decomposition of f with g: X’ — Y a blow up of a single
point. Then D) = [S5,...,S/|. We first consider a t-structure on Dy glued from the
t-structure on D, and a standard ¢-structure on D, (there, the heart is (Op,)). Then

DS)‘ = ‘D?L: OR1‘

and (DY, |Og,|) is a torsion pair in DJ. Also, ((Og,), Op,) is a torsion pair in b\? and Dy

is defined as a tilt with respect to this torsion pair, i.e.
1
Df = |OR17 ORI[_]'”‘

Then
Df — ‘Slw . .,Sn’,
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where S; = Og,[—1] and S; are determined by the following universal extensions
0— S — S; = Og, ® Ext'(Og,,S}) = 0.

The simple objects .S; can be also constructed explicitly. Recall that f has a decomposition
X, I X, 5 o X I Xy Weput m = firro...0 fur X, — X; and g;; =
fitr1o...0fit Xi = X;.

Simple objects S; correspond to irreducible components F; of the exceptional divisor
of f. If E; is such a curve that the point f;(E;) does not lie on any E; for j < ¢ then the

corresponding simple object is S; = Og,[—1]. If this is not the case, let us set
k(i) = max{j | fi(E;) € Ej}.
Then on X; we have a short exact sequence
0= Si = g; i) (Og,,,) = O, — 0

and

The t-structure with heart Ac,. on C; has projective objects

% =05, 1) R
R;<R;
Therefore the corresponding t-structure on Dy has projective objects R; = OszSRi R;-
This follows from the fact that the equivalence ¢: Cy — Dy of Section 4.2 is given by
tensor product with Ox(—R; — ... — R,,) and from the isomorphism Og, (R;) ~ Op, for
R; < Ry. We will show that the objects S;[1] lie in the heart of this t-structure. More

precisely, we have the following lemma

Lemma 4.5.6. Let S;, R; be as above. Then

7

Proof. The t-structure with simple objects S; is defined inductively, so we proceed by
induction on the rank of Pic(X/Y'). We also assume that f(E(f)) is a single point. If
it is not the case the morphism f decomposes as f = hy o...o h; such that hy,... h;
have connected and mutually disjoint exceptional divisors. Then the category Dy equals
Dy, @ ... @ Dy, and for each Dy, this assumption is satisfied.

If the rank of Pic(X/Y) is one then S = Opg,[—1] and Ry = Opg,. If the rank
equals n then f factors as X 2 X’ % Y, where Pic(X'/Y) =7Z, Dy, = (S),...,S!) and
hom(R;, S%[1]) = &7 for i, > 2. Then the projective object Ry equals Og, 4. +x, and the

J
simple object S; is equal to Og, [—1].
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Then for ¢ > 2,

HOHl. (RZ7 Sl[]-]) - HOIH.(ORU OZRJ-SRZ‘ Rj( Z Rj))v -

R;i<R;
= Hom'(Op, (R1), Os,, _,. 1y > R))Y =0
- R;<R;
because
OS e B ( Y R) € (On,(R),...,On,(Rs))
R;<R;
and

<<ORn(Rn)7 SRR 032 (R2>>7 ORl (R1)>

is a semi-orthogonal decomposition of Cy.
From the definition of the objects S; as universal extensions of Si[1] by S! is also
follows that hom(R;, S;[1]) = &7 for i > 2 and j > 1.

In order to calculate hom(Ry, S1[1]) we use the short exact sequence
0= O(—Ry) > O — Og, —0.
Applying the functor Ext"(—, Og,+. +r,(R1 + ...+ R,)) we see that

EX'CH_1 (ORN OR1+...+Rn (Rl + ...+ Rn)) ~
k ifi=1

0 otherwise.

~ EXtZ(O, OR1+“_+Rn<2R1 -+ RQ + ...+ Rn> = {

The last equality follows from the sequence
0— OR1 (2R1> — OR1+...+Rn(2R1 + R2 + ...+ Rn) — OR2+..‘+Rn(R2 + ...+ Rn) — 0.

Thus we know that the only non-zero Ext group between Og, and Og, 4 +g, (R1+...+R;)
is Ext? which by Serre duality proves that Hom(R;, Si[1]) = k and other Ext-groups
vanish.

It remains to show that Hom"(R;,S1) = 0 for ¢ # 1. In order to prove this we first
check when the group Ext'(Op,, S!) vanishes.

Let us choose some i. First, let us assume that x(i) = 1. Then S] = Og,[—1] and
applying Hom(—, S![1]) to the exact sequence 0 — O(—R;) — O — Og, — 0 we get

Hom(Og,, Si[1]) = k, Ext'(Og,,S][1]) =k,

i.e. Ext! and Ext® groups between Op, and S/ do not vanish. From the definition of S;

as the universal extension we immediately obtain that
Ext?(Og,,S;) =k, Ext/(Opg,,S;) =0 forj # 2.
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On the other hand, if () > 1 then

0S5, = 91,u(Ox,,) = O, =0,

r~(2)

from which it follows that g; (), (Si) = O, (—1) and hence

foSi = i1, (5:) = g ()1, (OEM( 1)) =0.

Then, by adjunction Hom(Og,, S;) = Hom(Og,, f.(S;)) = 0.

Finally, we notice that R, fits into a short exact sequence

0= & R, —>Ri— O —0.
{1 m(i)=1}

Applying Hom(—, S;) to this sequence we get that Hom" (R4, S;) = 0, which finishes the
proof. O]

Proposition 4.5.7. Let S; be as above. Then S; @ O(> R;) are, up to isomorphsism, all

simple objects in A.pe.

Proof. The category A.qe is equivalent to the category of modules over the endomorphism
algebra of @) | Z;. Hence it has n simple objects and every object in A admits a
filtration by those simple modules. In particular, a simple object .S; appears in a filtration

of M exactly dimy Hom(%;, M) times. The proposition follows from Lemma 4.5.6. O
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Chapter 5

Birational morphisms of surfaces and
representation theory of simple Lie

algebras

In this chapter we show that for some smooth morphisms f: X — Y the highest weight
category Cy N Coh(X) described in Chapter 4 appears also in representation theory of
semisimple Lie algebras. More precisely, this happens if f is a composition of n blow-ups
of points such that the (i 4+ 1)’st map blows up a point on the exceptional divisor of the
1’th map. Equivalently, the exceptional divisor of f is a chain of n — 1 rational curves
of self-intersection —2 and one curve of self-intersection —1. In Theorem 5.3.12 we prove
that for such an f the category C; N Coh(X) is equivalent to a certain block O,, of the
Bernstein-Gelfand-Gelfand category O for sl(n, k).

The proof of Theorem 5.3.12 is based on comparing endomorphism algebras of
projective generators of Cy N Coh(X) and O,,. In fact, those endomorphism algebras
are uniquely determined by Ext-algebras of standard objects Og,(R;) in C; N Coh(X)
and Verma modules M()\;) in O,,. In Chapter 3 we calculated the first Ext-algebra. In
this chapter we calculate the Ext-algebra of Verma modules in O,, and prove that it is
isomorphic to the Ext-algebra of Og, (R;).

We begin with Section 5.1 is which we recall after [27] and [28] all definitions and
facts about Lie algebras that we will use. We also compute the linkage class of weight
A1 = w; — p that determines the block O, (see Lemma 5.1.2).

Then in Sections 5.2.1 and 5.2.2 we define the category O and give, following [28], all
of its properties that we use in our calculations in Section 5.3. We particularly focus on
constructing projective covers P(\) of Verma modules M (A). The detailed description of

these modules is the most important part of Section 5.3.
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5.1 Review of simple Lie algebras
Let g be a simple Lie algebra. Let h be its Cartan subalgebra. For a character « of b let
0o ={z € g|[h,z] = a(h)x for all h € b}

denote a root space. The algebra g has a decomposition

g=bePo.
acd
where ® C b* is a root system, i.e. the set of all characters such that g, in non-zero.
For any o € ® the dimension on g, is one. A hyperplane in h* which does not contain
any root gives a decomposition of ® into a set of positive, and negative roots denoted by
& and ®~ respectively. Simple roots A C ®T are such roots that any positive root is a
Z-linear combination of simple roots with non-negative coefficients.

We are mostly interested in the case g = sl(n, k). The Cartan subalgebra b C sl(n, k)
consists of diagonal matrices. Let e;; denote the basis matrix with 1 in the i-th row
and j-th column. Let us denote by e*/ the dual basis. If i < j the algebra of diagonal
matrices acts on e; ; via the character e — 7. Thus, the root system of sl(n, k) consists
of elements e** — e/7. If we denote o = e — et then ay, ..., a1 are simple roots
and

ot = {ai+ i1 +...+ al}{1§i§l<n}'

With such a choice the subalgebra nt C g generated by x € g, for a € ®*, is the algebra
of upper triangular matrices and the algebra n™ C g generated by y € g_,, a € & is the
algebra of lower triangular matrices.
The Killing form
k(z,y) = tr(adz o ady)

is a non-degenerate bilinear form on g. If g = sl(n, k) then k(z,y) = 2ntr(zy).

The root system spans a Q-subspace E of h* on which the Killing form in non-
degenerate. Thus F is an euclidean space with inner product (A, p).

For any o € ® we define a coroot oV € E*. The element oV is uniquely determined
by the equality
2(8, )
(a, @)

where (, ): E* x E' — k is the canonical pairing of a vector space and its dual.

(B,0”) =

Y

We have already seen that for g = sl(n, k) there are n — 1 simple roots. We can order

them in such a way that

(g, =2, (i, 0 ) = —1, <ozi,oz}/> =0 for [i —j| > 1.
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The Weyl group W is the group of all automorphisms of h* which preserve the root
system ®. For any a € ® the group W contains a reflection in a hyperplane orthogonal

to a.. This reflection is given by
5a(A) =X = (\, oY)

Moreover, the Weyl group is generated by s, for a € A.

For sl(n, k) every simple root has the form a; = %' —e' ™! and so s,, acts on h* ~ k"
as a transposition of i-th and (i 4+ 1)-st coordinates. It shows that the Weyl group for
sl(n, k) is a symmetric group X,. A root o = o;; + ... + o € & acts by transposition of

i-th and [-th element. Hence,
Sa = Sa; 0 8a;,1 O +-08q,_; 084,084, 0...054.,, 058q,.

Next we consider the universal enveloping algebra U(g), i.e. an associative unital k-
algebra with a morphism ¢: g — U(g) such that any morphism from g to an associative
unital k-algebra factors through U(g). The Poincaré-Bikhoff-Witt theorem gives a basis
of U(g) (see [39, Theorem 5.11]).

Theorem 5.1.1 (Poincaré-Birkhoff-Witt). Let xq,...,x, be an ordered basis of g. Then

the monomials %' ...z form a basis of U(g).

For sl(n, k) we denote by z; = €41, ¥i = €;+1,; elements corresponding to a simple
root «; and by x;, € n", y;, € n~ elements corresponding to a root a; + ...+ ag, for
i < k. Representing = and y as matrices gives the commutation laws in U(sl(n, k)).

We fix a lexicographic order on ®*. This establishes an order on the bases of n™, b
and n™. Finally, we order the basis of sl(n, k) by saying that vectors of n~ are smaller
than vectors of h and n™ while vectors of h are smaller than vectors of n™. According to
Theorem 5.1.1 the order on the basis of sl(n, k) establishes a basis of U(sl(n, k)).

Inside E we have the root lattice A, spanned by ®. We also consider a lattice
A={ e E|(\a')€ZVae A}
spanned by fundamental weights w;, i.e. elements of E determined by the condition
(wi,af) = 0.

Finally, we denote by I' C A the set of linear combinations of simple roots with

coefficients in Z* which gives us a partial order on A
p<Ae A—pel.
The Weyl group W can also act on h* by the dot action,
w-A=w(A+p)—p.
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where

p=w1+...+w
is a sum of fundamental weights. Equivalently, we can define p as

p=5 Y a

acdt

The orbit W - A ={w-X|w € W} is called the linkage class of .

We say that a weight A is regular if [W - A\| = |W/|. Otherwise, A is called singular.
One can see that A is regular if (A + p, ") # 0 for all a € ®.

We say that a weight A € A is dominant if s, - A < X\ for all & € ®*. Analogously,
A € A is antidominant if s, - A > X for all @ € ®. More generally, a weight A € b* is
dominant if (A + p,aV) ¢ Z<Y for all o € & and it is antidominant if (A + p,a") ¢ Z”°
for all « € O,

For weights A\, u € b* we write u + X if 4 = X or there is a root a € ®* such that
[ = Sq A < A; in other words (\ + p,aV) € Z>°. More generally, we say that yu is
strongly linked to X if u = X or there exist oy, ..., € ®F such that g = (s4y ... 8a,) A T
(Sag -+ +Sap) * AT oot Sap - AT A

For A € A the set of positive roots a such that s, - A < A is

Pt (\) ={a e dT|(A\+p,a”) e N\ 0}.
Thus, 1t A if and only if = s, - A and @ € ®T(N).

Lemma 5.1.2. Let g = sl(n, k) with simple roots avy, ..., a,_1. Then the linkage class of

A = wy — p s equal to
i—1
W ={\,..., \h; Ai:Al_ZaL
=1

Moreover, for i > j the weight \; is strongly linked to \; and |®*(\;)| =n —i.
Proof. First, we notice that for n — 1 > ¢ > 1 we have
<06z'_1 +OZZ‘+OZZ'+1,OZI\-/> =—-142-1=0.

For : = 1 we have
(wy —ag +ag,af) =1-2+1=0.

Thus,
i—1
(wy — ZO%OZD =0
k=1
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if 7 #1—1,17. Also

i—1 i—1
(w1 — Zak,@iﬂ) = -1, (wi— Zak,o@ =1
k=1 k=1

Hence
A ifi#E i -1,
A= A ifi=5-1,
A1 if i =7.

S

(3

As s, are generators of the Weyl group W, the linkage class of \; consists of A\1,..., \,.
We have also seen that for a positive root @ = a;+. ..+ we have s, = 5,,0...54,0...05,,.

Hence,

Sai+..4ag * i = >\l+1 Sa;+..4a; ° )\l+1 =\

and the remaining positive roots fix \;. It proves that for [ > ¢ we have \;;; T A\; and

|(I)+()\z)| = ‘{Oéi, (67 + iy, 04 4+ ...+ Oén,1}| =n—1.

5.2 The Bernstein Gelfand Gelfand category O

5.2.1 Definition

For a module M over g we define
M, ={ve M|h(v)=Ah)vVh e b} TI(M)={Ne E|M,+#{0}}.

Following |28, Definition 1.1| we define the category O as a full subcategory of
Mod—U(g) whose objects are U(g)-modules M such that

(O1) M is a finitely generated U(g)-module.

(O2) M is h-semisimple, i.e. M is a weight module, M = ®Aeh* M.

(O3) M is locally n-finite; for each v € M the subspace U(n)v of M is finite dimensional.
(O4) All weight spaces of M are finite dimensional.

(O5) The set II(M) of all weights is contained in the union of finitely many sets of the
form A — I, where A € h* and T' is the semigroup in A, generated by ®7.
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In fact, the last two conditions follow from the first three (see [28, Proposition 1.1]).

Let M be a module in the category O. A non-zero vector v € M is a mazimal vector
of weight X if v* € M, and n- vt = 0. Every non-zero module in O has at least one
maximal vector.

A module M is a highest weight module of weight A if there exists a maximal vector
vt € M), such that M = U(g)v". By the PBW decomposition such an M has the form
M=Un")v".

Theorem 5.2.1. (/28, Theorem 1.2]) Let M be the highest weight module of weight A € bh*
generated by a mazximal vector v*. Fiz an ordering of positive roots oy, . . ., o, and choose

corresponding root vectors y; in g_,,. Then

e M is spanned by vectors yi* ... ymot with i; € Z* having respective weights

A=Y ija;. Thus M is a semisimple h-module.
o All weights p of M satisfy i < A, i.e. = X — (sum of positive roots).

e For all weights p of M we have dim M,, < oo while dim My = 1. Thus M is a
weight module, locally finite as an n-module and M € O.

e Each non-zero quotient of M is again a highest weight module of weight \.

e Fach submodule of M is a weight module. A submodule generated by a mazimal
vector of weight p < X is proper; in particular, if M is simple its maximal vectors

are all multiples of v™.

e M has a unique mazimal submodule and a unique simple quotient. In particular,

M is indecomposable.
o All simple highest weight modules of weight A are isomorphic.

Verma modules are the first examples of highest weight modules. In order to construct
them we choose a Borel subalgebra b C g which has an abelian quotient algebra b/n ~ b.
For any A € h* we consider a one-dimensional module k) on which h acts via the character.

ky can be also considered as a b module with a trivial n action. We set
M) =U(g) @ue) kr, M(A) ~U(n™) ® kyas left U(n™)-module.

As M () is generated by one vector v+ on which n acts trivially and b acts via A we
get another description, namely M(X) = U(g)/I where [ is an ideal generated by n and
(h—A(h)1) for h € b.

We will denote by L(A) the unique simple quotient of M ().
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Let Z(g) be the centre of U(g) and let M € O be a highest weight module generated
by a maximal vector v of weight A. Then, for z € Z(g) and h € h we have

he(z-vH)=z-(h-v")=2-(Ah)v")=A(h)z-v*.

Because dim My = 1 above equality forces z - v = y,(z)v" for some scalar x,(z) € k.
The element z acts by this scalar on all vectors of M because M is spanned U(n)-v" and
z lies in the centre of Ul(g).

Thus, a fixed A gives a character x,: Z(g) — k. It turns out that x\ = x, if p is
linked to A (see |28, Proposition 1.8]). Moreover, every character x: Z(g) — k is of the
form x, for some A € E (see [28, Theorem 1.10]).

For any M € O and a character x of Z(g) we define

MY ={ve M|Vze Z(g)(z — x(z))"v = 0 for somen > 0depending on z}.

We denote by O, the full subcategory of O containing modules M such that M = MX.
Then the category O is a direct sum of categories O, as x ranges over the characters of

Z(g) (see |28, Proposition 1.12]|). Moreover, we have the following proposition

Proposition 5.2.2. (/28, Proposition 1.13]) If A € A the subcategory O, is a block of
0.

Let us recall that a full subcategory A of an abelian category A is called a block if A
is closed under extensions and it is minimal with this property.
It turns out that for A ¢ A the category O,, can be further decomposed into blocks.

5.2.2 Properties of the category O

By [28, Theorem 1.11] each module M € O is both artinian and noetherian. Moreover,

each M possesses a composition series with simple quotients L(A) (recall that L(\) is

the unique simple quotient of M(A)). The multiplicity of L(A) is independent of the

composition series and is denoted by [M : L()\)]. It is called Jordan-Hoelder multiplicity.

Thus the Grothendieck group of O is generated by classes of simple modules [L(\)].
Furthermore, thanks to |28, Proposition 1.15 and 6.14] we have

Proposition 5.2.3. For any N € O we have

[N] =D X (Extd (M (), N))[M(u)],

where X (Ext (M (1), N)) = S_(—1)"dim Extl, (M (1), N) is the Euler characteristic.
It turns out that the weights A € b give a lot of information about the corresponding

Verma modules M () and relations between them.
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Theorem 5.2.4. (/28, Theorem 4.8]) Let A € h*. Then M(X) = L(\) if and only if X is

antidominant.

Proposition 5.2.5. (/28, Proposition 3.8]) If A € b* is dominant then M(X) is projective

i O. Moreover, if P is projective and L is finite-dimensional then P® L is also projective.

Following [28, Section 3.6] we describe a module T' = M (\)®y L for a finite-dimensional
module L. If dim L = [ then the module T admits a filtration0 =Ty, Cc Ty C ... CT; =T
with quotients M (X + u), where p ranges over the weights of L (see |28, Theorem 3.6]).
To construct the filtration we choose a basis vy, ..., v, of L. We assume that v; has weight
p; and that from the fact that p; < p; it follows that ¢ > j. If we denote by v* the
maximal vector of M (\) of weight A\ then vectors t; = vT @ v1,...4, = v ® v; generate
T as a U(g)-module. The filtration T, is obtained by taking 7; to be the submodule of T’
generated by t1,...,t;. Direct calculations show that the image of ¢; under the quotient
map T; — T;/T;_; is the maximal vector of weight A+p; of the module M (A+p;) ~ T;/T; 1
(see [28, Section 3.6]).

In general, we say that a module M € O has a standard filtration if it admits a
filtration with quotients M (A) for A € h*. The multiplicity of M () in this filtration is
denoted by (M : M(\)). In the above example T'= M ()\) ®; L has a standard filtration
and (T': M(A+ p)) =dim L.

The above description allows us to find for any simple module L(\) a projective module
P and an epimorphism P — L(A). In fact, instead of dealing with L(\), itself we shall
construct a map P — M ()\) and then compose it with the projection M(\) — L(\).
For any A there exists [ € N such that A + [p is dominant. Then, thanks to Proposition
5.2.5, the module M (A+1p) is projective and so are all the modules obtained by tensoring
M (X +1p) by a finitely-dimensional module. Finally, module L(lp) is finitely-dimensional
(see [28, Theorem 1.6]) and its minimal weight is —lp. Thus, the filtration of M (A+1p) @
L(lp) described above gives an epimorphism M (X + Ip) ®;, L(lp) = M(X).

We denote the projective cover of L(\) by P(A). From the above discussion it follows
that P(A) is a direct summand of M (X + kp) ® L(kp) for any k& € N such that A + kp is

dominant.

Theorem 5.2.6. (/28, Theorem 3.9]) The modules P(\) with X\ € b* satisfy the following
property:

e Fvery indecomposable projective module in category O is isomorphic to some

projective cover P(\).

e When a projective module P € O 1is written as a direct sum of indecomposables
modules then the number of direct summands isomorphic to P(X\) is equal to

dim Home (P, L(X)).
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o Forall M €O
dim Homp (P (\), M) = [M : L(\)].

In particular, dim EndoP(\) = [P(\) : L(\)].

We obtained the module P(\) as a submodule of M (X + lp) ®; L(lp). The module
P(\) also has a standard filtration. Moreover, there are restrictions on which M (u) can

appear as quotients of this filtration.

Theorem 5.2.7. ([28, Theorem 3.10]) Each projective module in O has a standard
filtration. In a standard filtration of P(\), (P(\) : M(\)) = 1 and the multiplicity
(P(X) : M(p)) is non-zero only if 1 > A.

It turns out that there exists a relation between multiplicities of L(\) in a composition

series and M (u) in a standard filtration.

Theorem 5.2.8. (BGG reciprocity, [28, Theorem 3.11]) Let A\, i € b*. Then

Moreover, there cannot be many maps between Verma modules, i.e. we have the

following:

Theorem 5.2.9. (/28, Theorem 4.2]) Let A, ju € h*.
e Any non-zero homomorphism ¢: M(u) — M(N) is injective.
e In all cases, dim Home (M (), M (X)) < 1.
Furthermore, we have

Theorem 5.2.10. (/28, Theorem 5.1]) Let A\, € b*. If p is strongly linked to \ then
M(u) <= M(X). In particular [M(X) : L(p)] # 0. Moreover, if [M(X) : L(p)] # 0 then u
1s strongly linked to \.

5.3 Singular block of the category O and the category
COh(X) M Cf

Let g = sl(n, k). The aim of this section is to show that the singular block of the category
O associated with the linkage class of \; = wy —p is equivalent to the category Coh(X)NCy
for a birational morphism f: X — Y of smooth surfaces such that the exceptional divisor

of f is a chain of n — 1 curves of self-intersection (-2) and one curve of self-intersection

(-1).
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We have seen in Section 4.5 that in this case Coh(X)NCy is a highest weight category
with n standard objects Og, (R,), ..., Og, (R;) such that

koif i > 7,

0 otherwise.

Hom(OF, (R:), Ok, (R;)) = {

Moreover,
k if > 7,
Ext' (O, (R;), Or,(R;)) = ]
0 otherwise

and the compositions

Hom(Og, (R;), O, (Ry)) ® Ext'(Og,(R1), Or,(R;)) = Ext'(Og,(Ry), Og, (R1)),
Ext'(Og,(R;), Or,(Rx)) © Hom(Og,(R1), Or,(R;)) = Ext'(Og,(R1), Or, (Ry)),

are non-zero whenever the domain is non-zero.

Remark 5.3.1. For a map f as above calculating the projective generator of Coh(X)NCy
via universal extensions can be done explicitly; we have P; = Op,+ 4r,(Ri + ... + Ry)

and the endomorphism algebra of @ P; is a path algebra of the following quiver

Qp Qn—1 a3 a2
P Pr-1 . Pa P
ﬁn—l /Bn—Q ﬁ? 51
with relations
04251 = 0, O‘i—i—lﬁi = Bi—laiv 7= 2, Lo, = 1.

Thus, in this case the endomorphism algebra of the projective generator of Coh(X)NCy
is uniquely determined by the Ext-algebra of standard objects.

Jordan-Holder multiplicities in the singular block

Thanks to Theorem 5.2.10 we know that [M();) : L(\;)] = 0 for ¢ > j. Now, we will

prove
Proposition 5.3.2. Fori < j we have
IM(A) : L)) = L.
In order to do this we use the following

Theorem 5.3.3. ([30, Theorem 5.20]) Let A\, € b* with u t X. Then, the following are

equivalent
e [MOV): L(w)] = 1,
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o For all i/ € b* such that ' # X and p 1t ' 1t X we have [M(¢') : L(n)] =1 and
27N = @7 ()| = {or € ©T(A) [ 11 50 - A}

Proof of Proposition 5.3.2. .

From Theorem 5.2.4 it follows that M (\,) = L(A,). For \; with ¢ > n we proceed by
induction.

Assume that [M(N;) : L();)] =1 for all i < ! and j < i. From the BGG reciprocity
(5.2.8) and Theorem 5.2.7 it follows that [M()\;) : L(\)] = 1 and [M()\;) : L(A;)] = 0 for
j <. If j > [lthen by Lemma 5.1.2if n % Ny and A\; t oot Ay then € {A\j, \j1, ..., A -
By the induction hypothesis for all such p we have [M(p) : L(A;)] = 1. Moreover, thanks
to Lemma 5.1.2 |®*(\)| =n —1, |27 ()\;)| =n — j and

{Oé € q)+(>\l) ’ )\j T Sa - )\l}, = {CK[,O([ + o4, 00+ 0+ Oéj,l}.
Hence [M(X;) : L(\;)] = 1 by Theorem 5.3.3. O

By the BGG reciprocity we immediately get

By Theorem 5.2.9 every map of Verma modules is injective and hence, by looking at

the class in the Grothendieck group, we get short exact sequences

0— M(Nj1) = M(N;) — L(\;) — 0.

Projective resolutions of Verma modules

By Proposition 5.2.5

P(A) = M(\)
because A\; is dominant. In order to find projective covers of the remaining simple modules
we use the algorithm described in Section 5.2.2.

First, we notice that for any 7 € 2,...,n the weight \; + p is dominant and hence
M(X\i+p)®i L(p) is a projective module with a map to M (A;). Thus, P();) is a submodule
of M(Ai + p) @i L(p).

In order to better understand the structure of P();) we shall use some properties of
the module L(p). |28, Theorem 1.6] guarantees that dim L(p)_, = 1. We fix a non-zero
vector v € L(p)_,. As —p is the minimal weight of L(p), for any y € U(n~) we have
y-v=0.

On the other hand, for any i € {1,...,n — 1} we have z;v # 0 as

yiriv = 2y, 0 — hyv = —p(hy) v = v.

Analogous argument shows that xpxgiq...2;,v # 0 forany 1 < k <i < n.
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Lemma 5.3.4. Let A € A and a € A be such that (A, a") = 0. Consider a short exact
sequence

0=+ MANS>P5SMMA-—a)—0
with P generated by a vector w such that w(w) is the generating vector of M(A — «) and

Tow = 1(v), where v is the generating vector of M(X). Then the sequence does not split.

Proof. The subspace of weight A — a of P, Py_, is spanned by w and y,z,w. Because
(A, ¥) = 0, the vector y,, w is a maximal vector of weight A—«a in P, i.e. U(n") y,z4-
w = 0.

Let w = m(w) be the generating vector of M (A — «). A morphism s: M(A — «a) — P
lifting 7 must satisfy s(w) = w + cy,r,w for some ¢ € k. On the other hand s(z, W) =

Zo (W) = 0 while z4(w + cYarow) = x4 w # 0. So s is not a map of U(g)-modules. [

If g = sl(n, k) we can generalise the above construction of the module P for a sequence
of simple roots a;, aiq1,...cq € A. For A € h* we define \; = A and \j,1 = 54, - A; for
j =1,...,I. We assume that A € h* was chosen in such a way that (\;,a)) = 0 for
j=1i,....1. Then, \j 1 = A= 37 ay.

We consider a module P; ;1 € M generated by a vector w;y; of weight \;; with the
following U (g)-action. We define w; = x;w;1; and assume that w; # 0, wi_o # 0, ..., w; #
0 and w;—1 = z;_1w; = 0. Furthermore, z,w; = 0 for s # j — 1 and U(n™) acts freely on
each wj;. It follows that w; is a maximal vector in P; ;1 of weight A\; = A.

If the simple root « considered in Lemma 5.3.4 is the i-th simple root then the module

P of this lemma becomes in the new notation P, ;41.

Lemma 5.3.5. Let g =sl(n, k), a;,...a; € A, X € b* and a module P;; be as above. The

natural inclusion P;; C P41 leads to a short exact sequence
0— P — Py — M) —0.
which does not split.

Proof. The argument is the same as in the proof of Lemma 5.3.4. Namely, if w is the
generating vector of M()\;) then the splitting homomorphism s: M(\;) — P, ;41 would
map W to a vector of weight A, of the form v = w1 + > vy, for some v; € (P 141),,
v; # wiy1. Moreover, as s is a homomorphism of U(g) modules, U(n")v = 0. We will
show that such a vector v does not exist.

As U(nt)o = 0 we have 2;v = 0. On the other hand, by assumption zjw;; =
w; # 0. The only vector of weight ); in the U(n™)-submodule spanned by w; is yw;.
As (N1, ) = 0, we have z;y;w; = 0. Relations between w; guarantee that vectors of
weight A; in U(n~)-submodules of P; ;1 generated by w;_1, ..., w; would not give w; while
multiplied by z;. Finally, any vector of P, ;.4 lies in a U(n™)-submodule generated by w;

for some j. Hence, a sought for vector v does not exist. O
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Now, we are ready to describe P()\;).

Proposition 5.3.6. For \;, i # 1 the projective cover of M(X\;) is isomorphic to the

module P ;.
Proof. From Section 5.2.2 we know that P();) is a direct summand of
T" = M(X\ + p) @k L(p).

The module T admits a filtration with quotients M()\; + p + p) for u such that
L(p), # 0. We order the basis of L(p), vi,...,v, in such a way that v = v, is the only
vector of weight —p. We assume that the weight of v; is ;. On the other hand, vectors
Vi, Viy+1, - - -, Vj, are all the basis elements with weight .

The only weights of the form \; + p + pu, for p as above, linked to A; are Ay, ..., \;.
Putting p; = —p+Z§;} a; we have \;+p—+py; = N. Then L(p),, # 0 because z; ... x;_1v #
0.

We can also assume that the basis of L(p) is ordered in such a way that v;, =
Ty ... X1V,

The standard filtration of 7" is obtained by considering submodules T} C T* generated
by t1,...,t;, where t; = vt ®uv; and vt € M(\;+ p) is the maximal vector of weight \; + p.

For l < Uiy, the weight \; is not linked to any \; + p + v, and hence

Tz‘iz—l =T,

ZM—I

® M () Lo,

From Lemma 5.3.4 we deduce that 7}22 has as a direct summand a module P containing
P .

Analogously, using Lemma 5.3.5 we see that the submodule TfM has as a direct
summand a module P containing F; ;.

Finally, the submodule of T* containing ¢, contains also Py .

This finishes the proof. We know that both P;; and P();) have standard filtrations.
By (5.1) we know that (P(\;) : M (X)) = 1 for [ <. On the other hand, by construction
(Pr;: M(N))=1forl <iand P; C P(\). O

Using Lemma 5.3.5 and the above proposition we obtain
Corollary 5.3.7. Leti € {2,...,n}. Then
0— P(\i_1) = P(\) = M(\) =0
is a projective resolution of the Verma module M(\;).

124



Ext-algebra of Verma modules
Theorem 5.2.10 implies that
[T
Hom(M(\;), M();)) = nr=
0 otherwise.

On the other hand, using Proposition 5.2.3 we know that
V(Ext' (M), M(Ay)) =0 for i .

Finally, Corollary 5.3.7 implies that Ext™ (M ();), M) = 0 for any module M € O. Thus

ko if i > g,
Eth(M()\i)’M()\j)) - { 0 otherwise

and the remaining Ext-groups vanish.
From Theorem 5.2.9 we know that a non-zero map M(\;) — M (});) is injective and

hence the composition
Hom(M (A;), M(A;)) ® Hom(M (A;), M(X;)) — Hom(M (\), M(A;))
is non-zero for any triple [ > ¢ > j.
Lemma 5.3.8. For j < i the composition
Hom(M(A;), M (X)) ® Ext' (M (Aiy1), M (A;)) — Ext! (M (Ais1), M (X))
1S NON-Zero.

Proof. Let 3 € Ext'(M(A\it1), M(N)), v € Hom(M(\;), M()\;)) be non-zero. Assume
that v o 8 = 0. Then, applying the functor Hom(—, M ();)) to the short exact sequence

0— M()\l) — Pi,i—i—l — M()\H—l) —0

we get that
Hom(P, 1, M();)) = k>

As P(Mi11) can be constructed as an iterated universal extension of Verma
modules M (Aj11), M(N;), ... M(\) we have an epimorphism P(\;+1) — P, ;1. Hence,
Hom(P; 11, M();)) C Hom(P(Xit1), M(A;)). Thus, dim Hom(P(Xi11), M();)) > 2. This
contradicts the fact that dim Hom(P(X\i41), M (A;)) = [M(A;) : L(Ait1)] = 1 (see Theorem
5.2.6 and 5.2.10). [

Proposition 5.3.9. For any triple i, k,l such that | > 1 > j the composition
Hom(M (\;), M()})) @ Ext' (M (\), M(\;)) — Ext'(M(N\), M()\;))

1S NON-2€ero.
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Proof. Let 3 € Ext'(M(X\),M(N\;)), v € Hom(M(\;), M()\;)) be non-zero elements.
We know that Ext'(M()\;), M()\;)) = k and hence by Lemma 5.3.8 3 = v, o 3, for
81 € Ext'(M(\), M(N_1)), 11 € Hom(M (\_1), M(};)). Then

voB=(yom)oPL#0
again by Lemma 5.3.8 and remark before Lemma 5.3.8. O

Lemma 5.3.10. The composition
Ext' (M (X\;), M(Xi—1)) ® Hom(M (Aiy1), M(Ni)) — Ext' (M (Xiy1), M(Ai_1))
1S MON-2€70.

Proof. Let v € Hom(M (A1), M(N\;)), B € Ext*(M(\;), M(A\;i_1)) be non-zero elements.
We already know that g corresponds to a short exact sequence

0— M(Az—l) — -P'i—l,i — M()\z) — 0.
Applying to this sequence Hom(M (A1), —) we get that
5 oy 7& 0 < dim Hom(M()\iH), Pi_172‘) = 1.

As the Verma module M (A1) is generated by a maximal vector of weight A;;q, the
dimension of the space of homomorphisms from M (X\;;1) to P,_1; equals to the dimension
of the subspace of (P;—1;),,, spanned by the maximal vectors, that is by vectors on which
U(n™) acts by zero.

From the construction of P,_;; it follows that the space of vectors of weight \;;; is

three dimensional with basis

Yi Wiy Yi—1Y; Wi—1, Yi—1, Wi—1,

where w;_1 = x;_qw;.

Direct calculations show that

1Y Wy = Y;W;—1, Ti—1Yi—1Yi Wi—1 = Y; Wi—1, Ti—1Yi—1,; Wi—1 = —Y; Wi—1,
iy w; = 0, TiYi—1Yi Wi—1 = —Yi—1 Wi-1, TilYi—1; Wi—1 = Yi—1 Wi—1,
Ti-1,iY; Wi = Wi—1, Ti-1,iYi-1Y; Wi—1 = Wi-1, LTi—1,iYi—1,; Wi—1 = —W;—1

and all other elements of U(n™) act on the above elements by zero. Hence, up to
scalar there is only one maximal vector of weight A;y; in FP,_;; which proves that
dim HOHI(M()\Z'Jrl),pZ‘,Li) =1. ]
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Proposition 5.3.11. For any triple | > i > j the composition
Ext'(M(\i), M()\;)) @ Hom(M (\;), M(\;)) — Ext'(M(\), M(X}))
18 non-zero.

Proof. Let f3;; € Ext'(M(\),M(}\;)) and v, € Hom(M(\),M();)) be non-zero.
Then by Lemma 5.3.8 B;; = 71, o Bii1 for some B;; ; € Ext'(M(\), M(\i_1))
and v_1; € Hom(M(N_1),M(};)). Moreover, v; = 741 © ...7—1 for some
Vs.s—1 € Hom(M(As), M (As—1)).

By Lemmas 5.3.10, 5.3.8 and the fact that Ext'(M(\iyi), M(\ii1)) = k we
know that for any non-zero element 711, € Hom(M(A41),M(N\;)) and B;;-1 €
Ext'(M()\;), M(X\;i_1)) there exist non-zero Bit1i € Ext'(M(\iy1), M(\;)) and Viie1 €
Hom (M (A;41), M(N;)) such that

5i,i—1 O Yi+14s = YVii—1© ﬁi+1,i-

Hence

Bik © Vi = Yie1.k © Biim1 © Vi1, © - - - Vid—1 = Yie1,k © Viji—1 O Bit1,i © Vit2,i41© - -- O V-1 =

= ... = %1k ©%i,i=10 .- 0Y—11-20° B1y—1 # 0
by Proposition 5.3.9. [

Theorem 5.3.12. Let f: X — Y be a birational morphism of smooth surfaces such
that the exceptional divisor of f is a chain of (n — 1) curves of self-intersection (-2) and
one curve of self-intersection (-1). Let C; be the full subcategory of D'(X) with objects
F € D*(X) such that R" f.(F) =0.

Then, the category Cy N Coh(X) is equivalent to a block O, of category O for the Lie
algebra sl(n, k) determined by the (dominant) weight A = wy — p.

Proof. We use notation of Chapter 3.

From Proposition 4.5.4 we know that Coh(X) N Cy is a highest weight category with
standard objects Og, (R,),...,Ogr, (R1). Moreover, we calculated in Section 3.2.1 the
Ext-algebra of these standard objects.

With Lemma 5.1.2 we proved that the block of the category O determined by weight
A has n Verma modules, M(\,), ..., M(\y).

Proposition 5.3.9 and 5.3.11 show that the Ext-algebras of @ Og,(R;) and € M (\;)
are isomorphic.

Finally, from Remark 5.3.1 we conclude that endomorphism algebras of projective
generators of both Coh(X) N C; and O,, are uniquely determined by Ext-algebras of

standard objects and Verma modules respectively. O]
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Remark 5.3.13. We could also start with a dominant weight 4 = ws — p. Then, for
sl(n, k) with n > 4 the linkage class of p is

{Ma/i—az,M—Oél—OézaM—Oé2—0437,U—Oél—Oéz—Oé:a,M—Oé1—062—043—044,--.}

If we put

M2 = Say * b = b — (g,

M1 = Say * U2 = b — 0 — Qig,

M3 = Sag * P2 = b — Q2 — (s,

H13 = Saz * 1 = Sqy "3 = b — Q1 — Qg — Q3
M4 = Say - 13 = U — Q1 — Q2 — (i3 — Qiy,

M5 = ...

then homomorphisms between Verma modules are

7

co—— M (py) — M(p13)

N

M (ps)

\
M (pi2) —= M (p).
/

M (pa)
(

A category with the above morphisms between standard objects cannot be of the form
Coh(X)NCy for a birational morphism between smooth projective surfaces because of the

non-zero maps from M (py3) to two incomparable objects M (u1) and M (p3).
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