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and proteomics

The bottleneck of the large-scale data processing has made bioinformatic
analyses a crucial component in life sciences workflows. The two large fields in
biomedical studies, whose rapid development in the recent years has strongly
depended on computational methods, are genetics and proteomics. They
both are strictly linked to each other, e.g. structural organization of the
genome affects the variety of proteins in the organism; on the other hand,
proteins are the crucial functional molecules that participate in the process of
extracting the information encoded in the genome. In this thesis, we present
selected bioinformatic methods and discuss their application in basic research
as well as in clinical diagnostics.

Methods and results for genome (in)stability

analysis

In the first part of the thesis, we focus on recurrent genomic rearrangements.
These structural aberrations (in our studies: deletions, duplications, and
inversions of chromosomal fragments) are occurring de novo at the same ge-
nomic loci in different individuals. A portion of the abnormal number of
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copies of one or more DNA fragments resulting in an imbalance of DNA is
referred to as a Copy-Number Variant (CNV). The main mechanism respon-
sible for recurrent rearrangements is nonallelic homologous recombination
(NAHR), wherein recombination breakpoints are located within highly sim-
ilar DNA sequences, e.g. low-copy repeats (LCRs).

LCRs or segmental duplications (SDs) [Bailey et al., 2002] are defined as
pairs of DNA fragments with fraction matching (homology score) over 90%
and longer than 1 kb in size. It has been shown [Stankiewicz and Lupski,
2002] that for long LCR elements with high homology (originally the pa-
rameters were suggested to be 10-400 kb and 97%), the NAHR events might
occur within LCRs causing inversions (for inversely oriented LCRs), dele-
tions or reciprocal duplications (for directly oriented LCRs)1, or reciprocal
translocations.

The commonly used molecular biology experimental method called Micro-
array-based Comparative Genomic Hybridization (aCGH) allows for high-
throughput genome-wide data processing in one experiment [Chial, 2008].
The aCGH method enables detection of CNVs as small as tens of kilobases.

Recurrent deletions and reciprocal duplications

In Dittwald et al. [2013c], based on the literature data, we systematically
analyzed the genomic regions of genetic diseases and syndromes associated
with NAHR-mediated recurrent deletions and reciprocal duplications. More-
over, we queried and cross-referenced large and unique clinical database of
high-resolution genomic analyses performed on patients referred for chro-
mosomal microarray analysis (CMA). The applied algorithms using custom
scripts allowed us to filter out cases that refer to NAHR-syndrome regions
flanked by directly oriented paralogous (i.e. very similar) LCRs (DP-LCRs).
The causative association of the patients’ rearrangements with the known
genetic syndromes involved manual specification of the selected parameters
to tackle the issue of different sensitivity of the CMA arrays. As a result,
we were able to determine the prevalence of the known recurrent genomic
disorders in the clinical CMA database. We also determined the frequencies
of the novel rearrangements. To this aim, we narrowed the study to the
cases with genomic breakpoints of the investigated CNVs mapped with a
sufficient resolution. We used a statistic model of quasi-Poisson regression,

1These rearrangements have often prefix micro referring to their sub-microscopic size.
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suitable for count data with missing values, to report genomic features that
correlate with the frequency of de novo recurrent rearrangements. We also
investigated several architectural features of the LCR clusters flanking the
interrogated regions.

Furthermore, we constructed a new genome-wide map of the DP-LCR-
flanked regions in the human genome, i.e. the genomic regions in which re-
current deletions or reciprocal duplications might occur via LCR-mediated
NAHR. We also investigated a concept of LCR cluster (determined by a
hierarchical clustering algorithm). The clustering approach enabled us to
systematically distinguish between overlapping and adjacent regions, and to
combine very similar regions. For example, we were able to identify four
novel recurrent NAHR-mediated deletions involving chromosome 2q12.2q13,
which were previously referred to as a single region. Selected breakpoints
of these novel rearrangements were sequenced using wet-bench experiments,
and further clinically characterized. Using annotation of gene location and
the OMIM database (http://www.omim.org/), we not only identified poten-
tially disrupted genes, but also those of them that might cause disease via
NAHR, and might be useful in diagnostics.

The schematic representation of this study is depicted as Figure 1.

Genome-wide analyses of potential recurrent inversions

It should be noted that balanced genomic rearrangements (e.g. paricen-
tric or paracentric inversions) are not detectable by the CMA assays. This
limitation may be responsible for underestimation of pathogenic recurrent
inversions mediated by NAHR. In Dittwald et al. [2013b], our genome-wide
computational approach aimed to investigate human genome instability po-
tentially caused by balanced genomic inversions. We identified a set of in-
versely oriented, paralogous LCRs (IP-LCRs) that can potentially mediate
recurrent inversions via NAHR, by integrating the recent version of human
genome build, and the criteria from the literature applied for LCRs than
can potentially mediate deletions and duplications. Similarly to the previous
section, our algorithms utilized efficient operation on intervals to efficiently
analyze the genome. The set of IP-LCRs allowed us to estimate the fraction
of the human genome where inversion breakpoints might be located, as well
as the fraction of genome potentially unstable due to NAHR mediated by
IP-LCRs.

The balanced rearrangements may disrupt the genes harboring the re-
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Figure 1: A schematic workflow of the study. The violet and pink colors mark
molecular and clinical data, respectively. The arrows indicate the data trans-
fer, which was usually done using automated or semi-automated procedures.
Figure courtesy: Dr Anna Gambin.
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combination site. Therefore, we reported a set of genes, for which at least
one inversion breakpoint is located within the gene, and identified genes that
are dosage-sensitive and/or associated with diseases (cf. Figure 2). We also
analyzed the X-linked genes, as they have relatively high likelihood of clini-
cally manifesting a disease when disrupted by recurrent inversions in males.
Finally, we processed genomic inversions from the Database of Genomic Vari-
ants [Zhang et al., 2006] that could be associated with NAHR and estimated
the statistical significance of such events.

Methods for proteome analysis

Chemical atoms are built of protons (positively charged), neutrons (not
charged), and electrons (negatively charged). Protons and neutrons, also
called nucleons, form the nucleus, where the vast majority of the atomic
mass is concentrated (therefore the electron mass is omitted in our analy-
ses). Many chemical elements have isotopes2, i.e. the variants that differ
by the amount of neutrons. Here, we will consider only stable isotopes of
the five chemical elements building peptides, namely C, H, N, O, and S.
The lightest isotope variant is called monoisotopic (in our case these are
12C, 1H, 14N, 16O, 32S). A mass unit commonly used for chemical molecules
is dalton (Da), defined as 1

12
the mass of carbon 12C, and approximately equal

to 1.66×10−27 kg. The five considered elements have two (carbons: 12C, 13C;
hydrogens: 1H, 2H; nitrogens: 14N, 15N), three (oxygens: 16O, 17O, 18O), or
four (sulphurs: 32S, 33S, 34S, 36S) isotopic variants. Each of these isotopes
has a certain exact mass, denoted as MC12 , . . . ,MS36 , and appears in the
nature with a certain probability, denoted as PC12 , . . . , PS36 .

Mass spectrometry (MS) is one of the most popular analytical method
used in proteomics to investigate the content of the chemical mixture, which
has already brought a huge portion of insights into the role of biological
systems [Cravatt et al., 2007, Chandramouli and Qian, 2009]. The instru-
mentation used in this method, i.e. mass spectrometer, is composed of the
three main parts: (1.) the ionization source – the molecules are charged (i.e.
ions are created) and brought to a gas phase; (2.) the mass analyzer – ions
are separated by their mass-to-charge (m/z) ratio; (3.) the detector – the

2We will consider only stable isotopes, and ignore the radioactive forms which sponta-
neously undergo the radioactive decay.
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Figure 2: The Circos plot [Krzywinski et al., 2009] depicts the subset of
identified genes potentially disrupted by NAHR-mediated inversions genome-
wide. We highlighted the genes that are associated with diseases (violet),
dosage sensitive (red), and those from both previous groups (green). Figure
source: [Dittwald et al., 2013b].
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spectrum of signals or peaks is produced, it assigns abundance, i.e. number
of ions, for a given m/z.

Isotopic distributions of the molecules

Let us consider the molecule3 ξ(v, w, x, y, z) of a summaric chemical formula
CvHwNxOySz, i.e. composed of v carbon, w hydrogen, x nitrogen, y oxygen,
and z sulphur atoms. For simplification, we will further omit the parameters
v, w, x, y, z, where their presence is obvious from the context.

Analogously to elements, we can also consider isotopic variants of the
molecule. Each isotopic variant has its exact mass and a probability, being
a sumaric mass and a product of probabilities of occurrence of its atoms,
respectively.

The lightest isotopic variant (the one composed purely from the monoi-
sotopic atoms) of the molecule is called a monoisotopic variant. The monoi-
sotopic variant of ξ has an exact mass:

Mmono = vMC12 + wMH1 + xMN14 + yMO16 + zMS32 ,

which is also called a monoisotopic mass of ξ, and a probability:

Pmono = P v
C12
× Pw

H1
× P x

N14
× P y

O16
× P z

S32
.

One can look at the molecule with a different level of accuracy. In a
very precise approach, we can consider isotopic fine structure of ξ, where we
distinguish between any two isotopic variants as long as they are composed
of different number of particular isotopes4. However, even for a very small
molecules, the number of the fine variants is quite large, and while increasing
the number of atoms we can quickly fall into the problem of huge number
of configurations that cannot be easily handled. The simplification of the
fine approach is to look at the aggregated isotopic variants, where we group
together variants with the same number of additional neutrons5. Of note,
the aggregated variant with zero additional neutrons is always composed of a
single fine variant, i.e. the monoisotopic one. The center-mass of aggregated
variant is the average mass of all its fine variants.

3We will not distinguish between molecules and ions.
4We do not distinguish between isoforms, where the order of isotopes matters.
5Additional neutrons in comparison to the monoisotopic variant of considered element

or molecule.
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Results for proteome analysis

Aggregated isotopic variants

Our aim in this part of the analysis is to effectively process the isotopic
distribution using the concept of aggregated variant. By qj we will denote a
probability of j-th aggregated isotopic variant of molecule ξ, which can be
calculated as:

qj =
∑
k

pjk (1)

and the center-mass (i.e. expected value) for j-th isotopic variant is defined
as:

E(mj) = m̄j =

∑
kmjkpjk∑

k pjk
. (2)

The mjk and pjk are, respectively, masses and probabilities of the fine variants
(indexed by k) with j additional neutrons on comparison to the monoisotopic
variant.

In Claesen et al. [2012], we developed the algorithm called BRAIN (Baffling
Recursive Algorithm for Isotopic distributioN calculations) that is able to
compute the aggregated isotope distribution for a given molecule with a
formula CvHwNxOySz. This algorithm uses two polynomial generating func-
tions. First of these functions, Q, is defined as:

Q(I; v, w, x, y, z) =
(
PC12I

0 + PC13I
1
)v ×(

PH1I
0 + PH2I

1
)w ×(

PN14I
0 + PN15I

1
)x ×(

PO16I
0 + PO17I

1 + PO18I
2
)y ×(

PS32I
0 + PS33I

1 + PS34I
2 + PS36I

4
)z

.

The second function, U , is defined with the usage of the function Q:

U(I; v, w, x, y, z) =

vQ(I; v − 1, w, x, y, z)
(
PC12MC12 + PC13MC13I

1
)

+wQ(I; v, w − 1, x, y, z)
(
PH1MH1 + PH2MH2I

1
)

+xQ(I; v, w, x− 1, y, z)
(
PN14MN14 + PN15MN15I

1
)

+yQ(I; v, w, x, y − 1, z)
(
PO16MO16 + PO17MO17I

1 + PO18MO18I
2
)

+zQ(I; v, w, x, y, z − 1)×(
PS32MS32 + PS33MS33I

1 + PS34MS34I
2 + PS36MS36I

4
)
.
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The algorithm calculate iteratively the coefficients of both generating func-
tions using the theory of Newton-Girard and Viète’s formulae [Séroul, 2000,
Vinberg, 2003]. In particular, we obtain the following iterative formula for
the probabilities of the aggregated variants:

qj = −1

j

j∑
l=1

qj−lψl,

where ψl is a sum of (−l)-powers of roots of polynomial Q(I; v, w, x, y, z).

Moreover, in Dittwald et al. [2013a], we implemented BRAIN as a part of
R Bioconductor repository [Gentleman et al., 2004] together with a stopping
criteria to calculate the substantial part of the isotopic distribution, and
applied it in the case study involving batch processing of large protein dataset
extracted from the Uniprot database. Namely, we build the linear model
predicting the monoisotopic mass based on the corresponding most abundant
center-mass. This approach might be potentially useful for experimentalists,
who are not able to observe monoisotopic mass for heavy peptides, but would
like to use it for molecule identification. We also evaluated the performance
of C++ implementation of BRAIN [Hu et al., 2013].

Furthermore, in Dittwald and Valkenborg [2014] we introduced BRAIN
2.0., involving two improvements to decrease both time and memory complex-
ity in obtaining the ratios of the consecutive aggregated isotopic probabilities
and a concept to represent the element isotope distribution in a more generic
manner than in the original BRAIN.

Finally, we proposed an automatic procedure for discrimination between
lipid and peptide signals. The bunch of random forest classifiers is able
to distinguish between lipids and peptides based on the features derived
from the aggregated isotopic distribution. Moreover, we propose to extend
the classification for discriminating between different lipid classes, also using
random forest classification. The experiments were tested on lipids and in
silico digested peptides based on online databases, and a real lipid/peptide
mixture analyzed by a mass spectrometer.

Fine isotopic structure

In the next step of the analysis, we tried to characterize the fine structure
of aggregated isotopic variants (in practice, we especially looked at the most
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abundant peaks). We applied a generating function based approach to cal-
culate variance and information theory entropy of mass for the aggregated
isotopic variants. More precisely, we first introduced the polynomial:

Q⊥(I, J,K; v, w, x, y, z) =
∑
j

(
∑
k

pjkJ
mjkKmjk)Ij,

and then show that the variance of the aggregated isotopic variants can be
obtained by the coefficients of:

∂2

∂J∂K
Q⊥(I, J,K; v, w, x, y, z)|J=K=1,

which is also a polynomial. Also the information theory entropy for the j-th
aggregated variant (denoted as H(j)) can be calculated using the polynomial
generating functions and the following formula:

H(j) =
−
∑

k pjk log(pjk)∑
k pjk

+ log(
∑
k

pjk).

After processing the Uniprot database, we built the linear model for the
variance of the most abundant aggregated peak based on its the center-
mass. Further, we also estimated the spread of mass distribution of the j-th
aggregated variant by:

j · (µ2H − µ15N).

which served for estimating when the overlap between consecutive aggregated
peaks occurs.
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