Modele drapieżnik-ofiara dla populacji ze strukturą. Przypadek *Daphnia* i selektywnej ryby planktonożernej.

Jędrzej Jabłoński

Streszczenie Rozprawy Doktorskiej

Celem niniejszej rozprawy jest przedstawienie modelu żerowania selektywnego drapieżnika na populacji ofiar ze strukturą wielkościową oraz analiza równania dynamiki populacji ze śmiertelnością wynikającą z tego modelu. Bardziej szczegółowo zajmiemy się drapieżnictwem ryby planktonożernej, żerującej na rozwielitkach Daphnia.

Budowa modelu żerowania zainspirowana jest badaniami zespołu hydrobiologów Uniwersytetu Warszawskiego, w szczególności wynikami eksperymentalnymi dotyczącymi stanu stacjonarnego rozkładu wielkościowego *Daphnia* [5, 7], agregacji planktonu [6] oraz selektywności drapieżnika [16]. Punktem wyjścia w konstrukcji modelu żerowania, a w konsekwencji śmiertelności ofiar, jest teoria optymalnego żerowania [14, 15, 17, 18, 20]. Zaproponowano model symulacyjny żerowania drapieżnika, którego strategia polega na optymalizacji tempa przywajania energii [13]. Model symulacyjny oraz rozwiązania numeryczne modelu populacyjnego, rozpatrywanego jako rozwiązanie układu McKendricka van Foerstera [1, 21], skonfrontowano z danymi empirycznymi.

Analiza matematyczna modelu dokonana jest przy użyciu teorii rozwiązań o wartościach w przestrzeni miar [3, 9, 10]. Rozwinięto teorię przestrzeni skończonych miar Radona z metryką flat. W szczególności uogólniono rezultaty dotyczące aproksymacji [19, 11] oraz zaproponowano algorytm obliczania ograniczonej odległości lipschitzowskiej (ang. flat distance) między dwiema dyskretnymi miarami o nośniku na N-elementowym podzbiorze \mathbb{R} przy koszcie obliczeniowym $\Theta(N \log N)$ [12]. Przedstawiono także analizę zbieżności i złożoności obliczeniowej algorytmu EBT [2, 8] wraz z wynikami doświadczalnymi dla aproksymacji rozwiązań miarowych układu McKendricka. Opisane zostały również trzy metody usprawnienia algorytmów czą-

stek dla tej klasy równań, wynikające bezpośrenio z wyników dotyczących teorii aproksymacji.

1 Metryki optymalnego transportu na przestrzeni miar

W pierwszym rozdziale pracy wprowadzone są metryki optymalnego transportu na przestrzeni skończonych miar Radona, $\mathfrak{M}(X)$. Głównym obiektem zainteresowania jest metryka flat, zdefiniowana jako

$$\rho_F(\mu,\nu) = \sup\left\{\int_X fd\,(\mu-\nu):\, f\in B_{C_b^{0,1}(X)}(0,1)\right\},\,$$

gdzie $B_X(x,r)$ oznacza kulę w przestrzeni X o środku w x i promieniu r, zaś $C_b^{0,1}(X)$ jest przestrzenią funkcji lipschitzowskich, ograniczonych z normą

$$\|f\|_{C_b^{0,1}(X)} = \max\left(\|f\|_{C(X)}, \sup_{x,y\in X} \frac{|f(x) - f(y)|}{\|x - y\|_X}\right).$$

Podstawowym wynikiem rozdziału jest podanie algorytmu na obliczenie $\rho_F(\sum_{i=1}^N m_i \delta_{x_i}, 0)$ dla $m_i, x_i \in \mathbb{R}$ o złożoności $\mathcal{O}(N \log N)$. Wynik ten można rozpatrywać jako uogólnienie na metrykę flat następującego, prostego faktu zachodzącego dla metryki 1-Wassersteina. Niech μ, ν będą miarami probabilitycznymi na \mathbb{R} , zaś F i G ich dystrybuantami, wówczas

$$W(\mu, \nu) = \|F - G\|_{L^1(\mathbb{R})}.$$

W dalszej części rozdziału rozważana jest aproksymacja różnych klas miar przez miary dyskretne. W szczególności zostały udowodnione następujące twierdzenia.

Twierdzenie 1. Niech μ będzie skończoną miarą Radona o nośniku zawartym w [0,1]. Wówczas optymalna aproksymacja μ w klasie miar dyskretnych, N-atomowych w metryce flat jest tożsama z optymalną aproksymacją w metryce 1-Wassersteina.

Twierdzenie 2. Niech μ będzie dyskretną miarą N-atomową o nośniku zawartym w [0,1]. Wówczas błąd optymalnej aproksymacja μ w klasie miar dyskretnych N-1-atomowych w metryce flat szacuje się przez

$$\frac{2\|\mu\|}{N^2}$$

Ponadto, istnieje algorytm o złożoności $\mathcal{O}(N)$ wyznaczający tę aproksymację.

Twierdzenie 3. Niech f będzie funkcją Lipschitzowską na [0, 1], zaś \mathcal{L} miarą Lebesgue'a. Wówczas błąd w metryce flat optymalnej aproksymacji f \mathcal{L} (miary o gęstości f względem miary Lebesgue'a) w klasie funkcji prostych, kawałkami stałych na N odcinkach, szacuje się przez

$$\frac{Lip(f)}{6} \cdot N^{-2}$$

2 Równanie dynamiki populacji

W drugim rozdziale podjęty jest temat dynamiki populacji ze strukturą wielkościową poddanej selektywnemu drapieżnictwu w ujęciu miarowym. Rozwiązania o wartościach w przestrzeni skończonych miar Radona są naturalnym narzędziem dla tego problemu z trzech powodów:

- 1. Modele funkcyjne narażone są na singularności wynikające z immanentnych własności procesu wzrostu wielkościowego.
- 2. Porównanie wyników eksperymentalnych z wynikami modelu wymaga zastosowania metryk między rozkładami.
- 3. Struktura populacji jest w swojej istocie dyskretna. Operowanie gęstościami rozkładu w modelu wymaga więc uzasadnienia takiego przejścia granicznego. Podejście miarowe natomiast pozwala uniknąć apriorycznych założeń dotyczą-cych regularności warunków początkowych. Ponadto rezultat dotyczący stabilności modelu w przestrzeni miar zapewnia poprawność przejścia do ciągłych rozkładów pod określonymi warunkami.

Rozważany model populacyjny przewiduje dynamikę, rozumianą jako funkcję $u: [0,T] \to \mathfrak{M}^+[0, s_{max}]$ dla parametrów:

- 1. prędkości wzrostu $g : [0,T] \times \mathfrak{M}^+[0, s_{max}] \to ([0, s_{max}] \to \mathbb{R})$, określającej tempo wzrostu osobnika wielkości s w czasie t przy zadanej strukturze populacji μ jako $g(t, \mu)(s)$,
- 2. śmiertelności $m : [0, T] \times \mathfrak{M}^+[0, s_{max}] \to ([0, s_{max}] \to \mathbb{R})$, określającej prawdopodobieństwo śmierci osobnika wielkości s w czasie t przy zadanej strukturze populacji μ w jednostce czasu jako $m(t, \mu)(s)$,
- 3. rozrodczości $\beta : [0,T] \times \mathfrak{M}^+[0,s_{max}] \to ([0,s_{max}] \to \mathbb{R})$, określającej tempo rozrodu osobnika wielkości s w czasie t przy zadanej strukturze populacji μ w jednostce czasu jako $\beta(t,\mu)(s)$.
 - 3

Analizowany jest model McKendricka van Foerstera, zadany jako

$$\begin{cases} \partial_t u + \partial_s(g(t, u)u) + m(t, u)u = 0 & \text{for } t \in T \\ g(t, u)(0) \left(D_{\mathcal{L}} u(t) \right)(0) = \int_0^{s_{max}} \beta(t, u)(s)u(ds) & \\ u(0) = u_0 \in \mathfrak{M}^+[0, s_{max}] & . \end{cases}$$
(1)

Zdefiniowany jest schemat numeryczny EBT [4] oraz naszkicowany jest szkic dowodu jego zbieżności [8]. Nie jest to oryginalny wynik autora. Algorytm EBT oparty jest na idei przybliżenia warunków początkowych przez miarę dyskretną $\sum_{i=1}^{N} m_i(0)\delta_{x_i(0)}$ i "śledzenie" każdego atomu osobno przy pomocy równania

$$\begin{cases} \frac{d}{dt}x_i(t) = g(t, \sum_{i \in I} m_i(t)\delta_{x_i(t)})(x_i(t)) \\ \frac{d}{dt}m_i(t) = -m(t, \sum_{i \in I} m_i(t)\delta_{x_i(t)})(x_i(t)) \cdot m_i(t) \end{cases}$$

Dodatkowo na każdym odcinku $[k\Delta t, (k+1)\Delta t]$ śledzona jest kohorta brzegowa odpowiadająca nowonarodzonym osobnikom:

$$\begin{cases} \frac{d}{dt}x_B(t) = g(t, \sum_{i \in I} m_i(t)\delta_{x_i(t)})(x_B(t)) \\ \frac{d}{dt}m_B(t) = -m(t, \sum_{i \in I} m_i(t)\delta_{x_i(t)})(x_B(t)) \cdot m_i(t) + \sum_{i \in I} \beta(t, u)(x_i(t))m_i(t) \\ x_B(k\Delta t) = m_B(k\Delta t) = 0 \end{cases}$$

W chwilach będących wielokrotonościami Δt kohorta brzegowa staje się kohortą wewnętrzną, zaś masa i położenie kohorty brzegowej wracają do zera.

Na podstawie trzech twierdzeń z poprzedniego rozdziału sformułowano trzy usprawnienia do algorytmu EBT zmniejszające błąd jego aproksymacji i rząd zbieżności. Zastosowanie Twierdzenia 1 pozwala na redukcję błędu aproksymacji warunków początkowych. Twierdzenie 2 pozwala na zmniejszenie złożoności algorytmu. Twierdzenie 3 pozwala na zwiększenie rzędu zbieżności przez modyfikację metody wprowadzania kohort brzegowych.

W daleszej części zdefiniowany zostaje operator śmiertelności $C_{LOW}: \mathfrak{M}^+[0, s_{max}] \to \mathfrak{M}^+[0, s_{max}]$ jako

$$C_{LOW}[u] = \frac{\pi v[u]r^2 u}{1 + T_h \pi v[u] \int_0^{s_{max}} r^2(\sigma) u(d\sigma)},$$
(2)

gdzie $v: \mathfrak{M}^+[0, s_{max}] \to \mathbb{R}^{\geq 0}$ jest argumentem maksymalizującym funkcję

$$P(u,v) = \pi v \int_0^{s_{max}} r^2(\sigma) \left(e(\sigma) - A(v)\right) u(d\sigma) - R(v).$$

Udowodniono istnienie oraz jednoznaczność rozwiązania równania (1) dla parametrów g, m, β spełniających następujące warunki pochodzące z biologicznych rozważań .

- 1. $m(t, u)u = C_{LOW}[u]$
- 2. funkcje r^2 i e są lipschitzowskie na $[0, s_{max}]$ oraz $A, R \in C^2(\mathbb{R}^{\geq 0}, \mathbb{R}),$
- 3. pochodne A'(v) i R'(v) są nieujemne i ściśle rosnące,
- 4. A(0) = 0, R(0) > 0,
- 5. $\lim_{v \to \infty} A(v) = \lim_{v \to \infty} R(v) = \infty$,
- 6. e(s) > 0i r(s) > 0 dla s > 0,
- 7. funkcja g ma postać wzrostu Bertalanffy'ego, czyli $g(s) = \gamma (s_{max} s)$ dla pewnej stałej γ ,
- 8. $\beta \in C_b^{\alpha,1}([0,T] \times \mathfrak{M}^+[0, s_{max}]; C^{0,1}[0, s_{max}]) \text{ oraz } \beta \geq 0.$

Scharakteryzowana jest także postać stanu stacjonarnego równania (1) przy tych samych założeniach.

3 Model śmiertelności wynikającej z selektywnego żerowania

Ostatni rozdział, ściśle związany z pracą [13], poświęcony jest biologicznym rozważaniom dotyczącym selektywnego drapieżnika kierującego się wzrokiem oraz modelom odpowiedzi funkcjonalnej, charakteryzującej strategie drapieżnictwa, bazującym na koncepcji optymalnego drapieżnictwa. Dotychczasowe prace korzystające z teorii optymalnego żerowania skupiają się na konkretnych aspektach drapieżnictwa, wykorzystując optymalne żerowanie jako argument rozstrzygający jednostkową hipotezę. Model symulacyjny wprowadzony w tym rozdziale, mając jako punkt wyjściowy model ograniczeń ruchowych i zmysłowych drapieżnika, prowadzi do całościowego opisu drapieżnictwa. Wszystkie parametry wyprowadzonego modelu są fizycznie mierzalne i nie wymagają technik dopasowywania do danych eksperymentalnych.

Zdefiniowany jest model odległości reakcji (minimalnej odległości z której widziana jest ofiara) jako równanie

$$(|C_0| \cdot \exp(-Cr)) (I_0 \exp(-KZ)) \frac{af^2}{r^2} = S_t,$$

gdzie Z jest głębokością, K współczynnikiem ekstynkcji światła, C współczynnikiem ekstrynkcji kontrastu, C_0 kontrastem ofiary, f długością ogniskowej soczewki drapieżnika, a polem przekroju ofiary, I_0 intensywnością światła na powierzchni i ostatecznie S_t możliwością rozdzielczą oka drapieżnika.

Na tej podstawie zdefiniowano wartość oczekiwaną tempa przychodu energetycznego jako

$$\mathcal{E}(v, s_0) = \mathbb{E}P(\sigma, v, \delta + r(\sigma)) = \mathbb{E}\left(\mathbb{E}P(\sigma, v, \delta + r(\sigma))|\delta\right) = \\ = \mathbb{E}\left(\int_{s_0}^{s_{max}} \frac{\pi}{U_{s_0}} r(\sigma)^2 P(\sigma, v, \delta + r(\sigma)) \cdot u(d\sigma)\right) = \\ = \pi \int_0^\infty \int_{s_0}^{s_{max}} e^{-U_{s_0}\delta} r(\sigma)^2 P(\sigma, v, \delta + r(\sigma)) \cdot u(d\sigma) d\delta.$$
(3)

gdzie v jest prędkością drapieżnika, s_0 minimalną wielkością chwytanej ofiary, $P(\sigma, v, \delta)$ jest średnim tempem przychodu energetycznego w procesie chwytania ofiary wielkości σ z prędkością v z odległości δ , zaś $U_{s_0} = \pi \int_{s_0}^{s_{max}} r^2(\sigma) u(d\sigma)$. Maksymalizacja $\mathcal{E}(v, s_0)$ względem parametrów pozwala określić optymalną prędkość przelotową oraz minimalny rozmiar ofiary opłacalnej do zaatakowania.

Ostatecznie model żerowania zdefiniowany jest jako następujący proces chwytania ofiar:

- 1. Dla każdej ofiary w promieniu odległości reakcji oblicz maksimum $P(s,v,\delta)$ pov
- 2. Zaatakuj ofiarę o największej wartości z prędkością wyznaczoną z maksymalizacji
- 3. Tak długo jak nie pojawią się nowe ofiary w polu widzenia poruszaj się z prędkością przelotową

Tak zdefiniowany model prowadzi do realistycznych przewidywań i pozwala testować różne hipotezy badawcze dotyczące żerowania. Jest on jednak trudny do zastosowania przy modelowaniu dynamiki populacji. Korzystając z faktu, że w rzeczywistych środowiskach wodnych poziom zagęszczenia populacji ofiar jest mały ($\mathbb{E}\delta >> s_{max}$, a prawdopodobieństwo napotkania dwóch ofiar w polu widzenia jest zbliżone do 0) wyprowadzone zostaje uproszczenie tego modelu do postaci, którą w języku teorii miar można przedstawić jako równanie 2.

Wyniki model symulacyjnego oraz rozwiązania numeryczne modelu populacyjnego zostały skonfrontowany z danymi empirycznymi i krytycznie przedyskutowane.

Literatura

- Ackleh A. S., Banks H. T., Deng K., 2001, A finite difference approximation for a coupled system of non-linear size-structured populations, Nonlinear Analysis 50 727-748
- [2] Brännström Å., Carlsson L., Simpson D., 2012, On the convergence of the Escalator Boxcar Train, arXiv:1210.1444 [math.NA]
- [3] Carrillo J.A., Colombo R.M, Gwiazda P., Ulikowska A., 2012, Structured populations, cell growth and measure valued balance laws, J. Diff. Eq. 252: 3245–3277
- [4] De Roos A., D., 1989, Daphnids on a Train, Development and Application of A New Numerical Method for Physiologically Structured Population Models, Rijksuniversiteit te Leiden
- [5] Gliwicz, Z. M. 2001. Species-specific population-density thresholds in cladocerans? Hydrobiologia 442:291–300.
- [6] Gliwicz Z. M., Maszczyk P., Jabłoński J., Wrzosek D., 2013, Patch exploitation by planktivorous fish and the concept of aggregation as an antipredation defense in zooplankton, Limnol. Oceanogr. 58: 1621–1639.
- [7] Gliwicz Z. M., Szymańska E., Wrzosek D., 2010, Body size distribution in *Daphnia* populations as an effect of prey selectivity by planktivorous fish, Hydrobiologia, Volume 643, Issue 1, pp 5-19
- [8] Gwiazda P, Jabłonski J, Marciniak-Czochra A, Ulikowska A, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance, arXiv:1309.2408
- [9] Gwiazda P., Lorenz T., Marciniak-Czochra A., 2010, A nonlinear structured population model: Lipschitz continuity of measure valued solutions with respect to model ingredients, J. Diff. Eq. 248: 2703–2735
- [10] Gwiazda P., Marciniak-Czochra A., 2010, Structured population models in metric spaces, J. Hyper. Diff. Eq. 7: 733–773
- [11] Jabłoński J., Approximation of Radon Measures in Flat Metric and Applications in Modelling, in preparation

- [12] Jablonski J., Marciniak-Czochra A., Efficient algorithms computing distances between Radon measures on R, arXiv:1304.3501
- [13] Jabłoński J., Wrzosek D., Functional response resulting from an optimal foraging model of a size-selective predator-harvester, submitted.
- [14] MacArtur, R.H. and Pianka., 1966. On optimal use of a patchy environment. American Naturalist 100: 603-609.
- [15] Manatunge, J., Asaeda, T.,1990. Optimal foraging as the criteria of prey selection by two centrarchid fishes, Hydrobiologia 391, 223-240.
- [16] Maszczyk, P., Gliwicz, M.Z., 2014. Selectivity by planktivorous fish at different prey densities, heterogeneities, and spatial scales, Limnol. Oceanogr. 59(1), 68-78
- [17] Pyke, G.H., Pulliam, H.R. Charnov, E.L. ,1977. Optimal foraging: a selective review of theory and tests. The Quarterly Rev. of Biology 52, 138-154.
- [18] Pyke, G.H., 1981. Optimal travel speeds of animals. Am. Nat. 118, 475-487.
- [19] Rapoport E. O., Discerte Approximation of Continuous Measures and Some Applications, 2012, Journal of Applied and Industrial Mathematics, Vol. 6, No. 4, pp. 469-479
- [20] Sih, A. and Christensen, B. 2001. Optimal diet theory: when it works, and when and why does it fail?, Animal Behaviour 61, 379-390.
- [21] Webb G.F., 1986, Logistic models of structured population growth, Computers & Mathematics with Applications Vol 12A, pp 527-539, 1986