Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego
Publications
Jan Okniński
2017
- Ferran Cedo and Jan Okniński, On a class of automaton algebras, Proceedings Of The Edinburgh Mathematical Society 60 (1) 2017, p. 31–38.see in PBN
- Arkadiusz Męcel and Jan Okniński, Invariants of finite dimensional algebras recognized by the semigroup of conjugacy classes of left ideals, Journal Of Algebra And Its Applications 16 (10) 2017, p. 1750182.see in PBN
- Ferran Cedo, Łukasz Kubat and Jan Okniński, Irreducible representations of the plactic algebra of rank four, Journal Of Algebra 488 2017, p. 403–441.see in PBN
- David Bachiller, Ferran Cedo, Eric Jespers and Jan Okniński, A family of irretractable square-free solutions of the Yang-Baxter equation, Forum Mathematicum 29 (6) 2017, p. 1291–1306.see in PBN
2016
- Jan Okniński, Noetherian semigroup algebras and beyond, in: Multiplicative Ideal Theory and Factorization Theory. Commutative and Non-commutative Perspectives, Springer, 2016, p. 255–276.see in PBN
- Łukasz Kubat and Jan Okniński, Irreducible representations of the Chinese monoid, Journal Of Algebra 466 2016, p. 1–33.see in PBN
- Ferran Cedo, Eric Jespers and Jan Okniński, Nilpotent groups of class three and braces, Publicacions Matematiques 60 (1) 2016, p. 55–79.see in PBN
- Eric Jespers and Jan Okniński, Krull orders in nilpotent groups: corrigendum and addendum, Archiv Der Mathematik 106 2016, p. 295–299.see in PBN
- Eric Jespers and Jan Okniński, Prime ideals in algebras determined by submonoids of nilpotent groups, Algebras And Representation Theory 19 2016, p. 17–31.see in PBN
2015
- Łukasz Kubat and Jan Okniński, Identities of the plactic monoid, Semigroup Forum 90 (1) 2015, p. 100–112.see in PBN
- Eric Jespers, Jan Okniński and Maya Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids, Journal Of Algebra 440 2015, p. 72–99.see in PBN
- Jan Okniński, Identities of the Semigroup of Upper Triangular Tropical Matrices, Communications In Algebra 43 2015, p. 4422–4426.see in PBN
2014
- Ferran Cedo, Eric Jespers and Jan Okniński, Braces and the Yang-Baxter equation, Communications In Mathematical Physics 327 2014, p. 101–116.see in PBN
- Jan Okniński, Trichotomy for finitely generated monomial algebras, Journal Of Algebra 417 2014, p. 145–147.see in PBN
- Jan Okniński, On certain semigroups derived from associative algebras, in: Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics, Springer, 2014, p. 233–245.see in PBN
- Łukasz Kubat and Jan Okniński, Grobner-Shirshov bases for plactic algebras, Algebra Colloquium 21 2014, p. 591–596.see in PBN
- Eric Jespers and Jan Okniński, Krull orders in nilpotent groups, Archiv Der Mathematik 103 2014, p. 27–37.see in PBN
- Jan Okniński, On the semiprimitivity of finitely generated algebras, Proceedings Of The American Mathematical Society 142 2014, p. 4095–4098.see in PBN
2010
- F. Cedo, E. Jespers and Jan Okniński, Finitely presented algebras and groups defined by permutation relations, Journal Of Pure And Applied Algebra 214 (7) 2010, p. 1095–1102.see in PBN
- Ferran Cedo, Eric Jespers and Jan Okniński, Retractability of set theoretic solutions of the Yang-Baxter equation, Advances In Mathematics 224 2010, p. 2472–2484.see in PBN
- Ferran Cedo, Eric Jespers and Jan Okniński, Algebras and groups defined by permutation relations of alternating type, Journal Of Algebra 324 (6) 2010, p. 1290–1313.see in PBN
2009
- Ferran Cedo and Jan Okniński, Faithful linear representations of bands, Publicacions Matematiques 53 2009, p. 119–140.see in PBN
- Isabel Goffa, Eric Jespers and Jan Okniński, Semigroup algebras of submonoids of polycyclic-by-finite groups and maximal orders, Algebras And Representation Theory 12 (2-5) 2009, p. 357–363.see in PBN
- Isabel Goffa, Eric Jespers and Jan Okniński, Normal domains with monomial presentations, International Journal Of Algebra And Computation 19 (3) 2009, p. 287–303.see in PBN
- Ferran Cedo, Eric Jespers and Jan Okniński, The radical of the four generated algebra of alternating type, in: Groups, Rings and Group Rings, Contemporary Mathematics, USA 2009.see in PBN
2007
- I. Goffa, E. Jespers and Jan Okniński, Primes of height one and a class of noetherian finitely presented algebras, International Journal Of Algebra And Computation 17 (2) 2007, p. 1465–1491.see in PBN
- F. Cedo and Jan Okniński, Semigroups of matrices of intermediate growth, Advances In Mathematics 212 (2) 2007, p. 669–691.see in PBN
- E. Jespers and Jan Okniński, Noetherian semigroup algebras, Springer, Berlin 2007.see in PBN
2006
- Joanna Jaszuńska and Jan Okniński, Chinese algebras of rank 3, Communications In Algebra 34 2006, p. 2745–2754.see in PBN
- J. Bernik, R. Drnovsek, D. Hadwin, A. Jafarian, D. Kokol Bukovsek, T. Kosir, M. Kramar Fijavz, T. Laffey, L. Livshits, M. Mastnak, R. Meshulam, V. Mueller, E. Nordgren, Jan Okniński, M. Omladic, H. Radjavi, A. Sourour and R. Timoney, Semitransitive subspaces of matrices, Electronic Journal Of Linear Algebra 15 2006, p. 225–238.see in PBN
- E. Jespers and Jan Okniński, Noetherian semigroup algebras, Bulletin Of The London Mathematical Society 38 2006, p. 421–428.see in PBN
- F. Cedo, E. Jespers and Jan Okniński, The Gelfand-Kirillov dimension of quadratic algebras satisfying the cyclic condition, Proceedings Of The American Mathematical Society 134 2006, p. 653–666.see in PBN
- E. Jespers and Jan Okniński, Quadratic algebras of skew type, in: Algebras, Rings and their representations, Proceedings of the International Conference on Algebras, Modules and Rings, World Scientific, xx 2006.see in PBN
2004
- F. Cedo, E. Jespers and Jan Okniński, Semiprime quadratic algebras of Gelfand-Kirillov dimension one, Journal Of Algebra And Its Applications 3 (3) 2004, p. 283–300.see in PBN
- E. Jespers and Jan Okniński, Quadratic algebras of skew type satisfying the cyclic condition, International Journal Of Algebra And Computation 14 (4) 2004, p. 479–498.see in PBN
- Jan Okniński, Prime ideals in cancellative semigroups, Communications In Algebra 32 (7) 2004, p. 2733–2742.see in PBN
- F. Cedo and Jan Okniński, Plactic algebras, Journal Of Algebra 274 2004, p. 97–117.see in PBN
2003
- Jan Okniński and L Renner, Algebras with finitely many orbits, Journal Of Algebra 264(2) 2003, p. 479–495.see in PBN
- T Gateva-Ivanova, E Jaspers and Jan Okniński, Quadratic algebras of skew type and the underlying monoids, Journal Of Algebra 270 (2) 2003, p. 635–659.see in PBN
- L Livshits, G MacDonald, B Mathes, Jan Okniński and H Radjavi, Matrix semigroups with commutable rank, Semigroup Forum 67 2003, p. 288–316.see in PBN
2002
- Jan Okniński, Regular J-classes of subspace semigroups, Semigroup Forum 65 ((3)) 2002, p. 450–459.see in PBN
- Jan Okniński, The algebra of the subspace semigroup M(2,F(q)),, Colloquium Mathematicum 92 2002, p. 131–139.see in PBN
- Jan Okniński, Matrix semigroups, in: The Concise Handbook of Algebra, Mikhalev A.V., Pilz G.F. (Eds.), Kluwer Academic Publisher, Doordrecht 2002.see in PBN
2001
- E Jespers and Jan Okniński, Submonoids of polycyclic-by-finite groups and their algebras, Algebras And Representation Theory 4 2001, p. 133–153.see in PBN
- E Jespers, A Kelarev and Jan Okniński, On the Jacobson radical of graded rings, Communications In Algebra 29 2001, p. 2185–2191.see in PBN
- E Jespers and Jan Okniński, Semigroup algebras and noetherian maximal orders, Journal Of Algebra 238 (2) 2001, p. 590–622.see in PBN
- Jan Okniński, Semigroups of zero entropy, Linear Algebra And Its Applications 323 (1-3) 2001, p. 207–211.see in PBN
- Jan Okniński, In search for noetherian algebras, in: Algebra - Representation Theory, Kluwer, Doordrecht 2001.see in PBN
2000
- Jan Okniński and M Putcha, Subspace semigroups, Journal Of Algebra 233 2000, p. 87–104.see in PBN
- E. Jespers and Jan Okniński, Noetherian semigroup algebras: a survey. Interactions between ring theory and representations of algebras (Murcia), in: Lecture Notes in Pure and Applied Mathematics, Dekker, New York 2000.see in PBN
1998
- Eric Jespers and Jan Okniński, Binomial semigroups, Journal Of Algebra 202 (1) 1998, p. 250–275.see in PBN
- Jan Okniński, Graded rings---an approach via semigroups of matrices, in: Trends in ring theory (Miskolc, 1996), 1998, p. 113–126.see in PBN
- Jan Okniński, Semigroups of matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.see in PBN
- A. V. Kelarev and Jan Okniński, A combinatorial property and growth for semigroups of matrices, Communications In Algebra 26 (9) 1998, p. 2789–2805.see in PBN
1996
- A. V. Kelarev and Jan Okniński, The Jacobson radical of graded PI-rings and related classes of rings, Journal Of Algebra 186 (3) 1996, p. 818–830.see in PBN
- Jan Okniński, Nilpotent semigroups of matrices, Mathematical Proceedings Of The Cambridge Philosophical Society 120 (4) 1996, p. 617–630.see in PBN
- Eric Jespers and Jan Okniński, Semigroup algebras that are principal ideal rings, Journal Of Algebra 183 (3) 1996, p. 837–863.see in PBN
- Jan Okniński, Corrigendum: ``Growth of linear semigroups. II'' [J.\ Algebra \bf 178 (1995), no.\ 2, 561--580; MR1359903 (97b:20094)], Journal Of Algebra 181 (2) 1996, p. 660–661.see in PBN
- Jan Okniński, Linear semigroups of polynomial growth in positive characteristic, Journal Of Pure And Applied Algebra 107 (2-3) 1996, p. 253–261.see in PBN
- J. S. Ponizovskii and Jan Okniński, A new matrix representation theorem for semigroups, Semigroup Forum 52 (3) 1996, p. 293–305.see in PBN
- Jan Okniński, Growth of linear semigroups, Journal Of The Australian Mathematical Society Series A-pure Mathematics And Statistics 60 (1) 1996, p. 18–30.see in PBN
1995
- Jan Okniński, Growth of linear semigroups. II, Journal Of Algebra 178 (2) 1995, p. 561–580.see in PBN
- E. Jespers and Jan Okniński, Descending chain conditions and graded rings, Journal Of Algebra 178 (2) 1995, p. 458–479.see in PBN
- Jan Okniński and A. Salwa, Generalised Tits alternative for linear semigroups, Journal Of Pure And Applied Algebra 103 (2) 1995, p. 211–220.see in PBN
- M. V. Clase, E. Jespers, A. V. Kelarev and Jan Okniński, Artinian semigroup-graded rings, Bulletin Of The London Mathematical Society 27 (5) 1995, p. 441–446.see in PBN
- A. V. Kelarev and Jan Okniński, On group graded rings satisfying polynomial identities, Glasgow Mathematical Journal 37 (2) 1995, p. 205–210.see in PBN
1993
- Jan Okniński, Linear semigroups with identities, in: SEMIGROUPS, Algebraic Theory and Applications to Formal Languages and Codes, Ed.:C.Bonzini,A.Cherubini, World Sci., 1993, p. 201–211.see in PBN
- Jan Okniński, Gelfand-Kirillov dimension of Noetherian semigroup algebras, Journal Of Algebra 162 (2) 1993, p. 302–316.see in PBN
- Jan Okniński, Prime and semiprime semigroup rings of cancellative semigroups, Glasgow Mathematical Journal 35 (1) 1993, p. 1–12.see in PBN
1991
- Jan Okniński and Mohan S. Putcha, Complex representations of matrix semigroups, Transactions Of The American Mathematical Society 323 (2) 1991, p. 563–581.see in PBN
- Jan Okniński, Semigroup algebras, Marcel Dekker, Inc., New York, 1991.see in PBN
- Jan Okniński and Mohan S. Putcha, Parabolic subgroups and cuspidal representations of finite monoids, International Journal Of Algebra And Computation 1 (1) 1991, p. 33–47.see in PBN
- Jan Okniński and Mohan S. Putcha, Embedding finite semigroup amalgams, Journal Of The Australian Mathematical Society Series A-pure Mathematics And Statistics 51 (3) 1991, p. 489–496.see in PBN
- Jan Okniński, Linear representations of semigroups, in: Monoids and semigroups with applications (Berkeley, CA, 1989), 1991, p. 257–277.see in PBN
1988
- Jan Okniński, On monomial algebras, Archiv Der Mathematik 50 (5) 1988, p. 417–423.see in PBN
- Jan Okniński and F. Van Oystaeyen, Cancellative semigroup rings which are Azumaya algebras, Journal Of Algebra 117 (2) 1988, p. 290–296.see in PBN
- Jan Okniński, Commutative monoid rings with Krull dimension, in: Semigroups, theory and applications (Oberwolfach, 1986), 1988, p. 251–259.see in PBN
- Jan Okniński, Noetherian property for semigroup rings, in: Ring theory (Granada, 1986), 1988, p. 209–218.see in PBN
- Jan Okniński, A note on the PI-property of semigroup algebras, in: Perspectives in ring theory (Antwerp, 1987), 1988, p. 275–278.see in PBN
- Andre Leroy, Jerzy Matczuk and Jan Okniński, On the Gelfand-Kirillov dimension of normal localizations and twisted polynomial rings, in: Perspectives in ring theory, 1988, p. 205–214.see in PBN
1987
- Jan Krempa and Jan Okniński, Gel'fand-Kirillov dimensions of a tensor product, Mathematische Zeitschrift 194 (4) 1987, p. 487–494.see in PBN
- Jan Okniński, On cancellative semigroup rings, Communications In Algebra 15 (8) 1987, p. 1667–1677.see in PBN
- Jan Okniński, Radicals of group and semigroup rings, in: Contributions to general algebra, 4 (Krems, 1985), 1987, p. 125–150.see in PBN
- Jan Okniński, Semigroup rings as excellent extensions and the regular radical, Bulletin Of The Belgian Mathematical Society-simon Stevin 61 (3-4) 1987, p. 301–311.see in PBN
1984
- Jan Okniński, Semilocal semigroup rings, Glasgow Mathematical Journal 25 (1) 1984, p. 37–44.see in PBN
- Jan Okniński, On self-injective semigroup rings, Archiv Der Mathematik 43 (5) 1984, p. 407–411.see in PBN
- Jan Okniński, Finiteness conditions for semigroup rings, Acta Universitatis Carolinae - Mathematica Et Physica 25 (1) 1984, p. 29–32.see in PBN
- Jan Okniński, On regular semigroup rings, Proceedings Of The Royal Society Of Edinburgh Section A-mathematics 99 (1-2) 1984, p. 145–151.see in PBN