Nie jesteś zalogowany | zaloguj się

Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego

  • Skala szarości
  • Wysoki kontrast
  • Negatyw
  • Podkreślenie linków
  • Reset

Aktualności — Wydarzenia

Sem. Topologia i T. Mnogości


What would the rational Urysohn space and the random graph look like if they were uncountable?

Prelegent: Ziemowit Kostana

2021-04-14 16:15

We apply the technology developed in the 80s by Avraham, Rubin, and Shelah, to prove that the following is consistent with ZFC: there exists an uncountable, separable metric space X with rational distances, such that every uncountable partial 1-1 function from X to X is an isometry on an uncountable subset. We prove similar results for some other classes of models, for instance graphs. In certain cases we give a (consistent) classification of constructed models.