
Completeness of Hyper-Resolution via the

Semantics of Disjunctive Logic Programs∗

Linh Anh Nguyen† Rajeev Goré
Institute of Informatics RSISE and NICTA
University of Warsaw The Australian National University

ul. Banacha 2, 02-097 Warsaw Canberra ACT 0200
Poland Australia

nguyen@mimuw.edu.pl Rajeev.Gore@anu.edu.au

Abstract

We present a proof of completeness of hyper-resolution based on the
fixpoint semantics of disjunctive logic programs. This shows that hyper-
resolution can be studied from the point of view of logic programming.

Keywords: fixpoint semantics, automated theorem proving

1 Introduction

Resolution was introduced by Robinson in his landmark paper [24] in 1965
as a mechanisable method for detecting the unsatisfiability of a given set of
formulae of classical first-order logic. It revolutionised the field of automated
reasoning, and since then, many refinements of resolution have been proposed
by researchers in the field in order to cut down the search space and increase effi-
ciency. One of the most important refinements of resolution is hyper-resolution,
which was also introduced by Robinson [23] in the same year 1965. Hyper-
resolution constructs a resolvent of a number of clauses at each step. Thus
it contracts a sequence of bare resolution steps into a single inference step and
eliminates interactions among intermediary resolvents, and interactions between
them and other clauses.

Resolution and hyper-resolution have been well studied. There are a number
of well-known proofs of completeness of resolution and hyper-resolution. The
classical proofs of completeness of hyper-resolution are often based on proofs

∗Information Processing Letters, 95(2), 2005, 363-369
†Partially supported by a visiting fellowship from NICTA. National ICT Australia (NICTA)

is funded through the Australian Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

1



of completeness of resolution. In Leitsch’s book on resolution [12], complete-
ness results are proved using the semantic tree technique [11]. Some other
methods for proving completeness of resolution and hyper-resolution are Bach-
mair and Ganzinger’s forcing technique [3], Nivelle’s resolution game technique
[7], Boyer’s excess literal technique (see [6]), and a proof-theoretic method by
Goubault-Larrecq [9].

There is a close relationship between the theory of logic programming and
resolution. A refinement of resolution for the Horn fragment, called SLD-
resolution in [1], was first described by Kowalski [10] for logic programming.
It is a top-down procedure for answering queries in definite logic programs. On
the other hand, a bottom-up method for answering queries is based on fixpoint
semantics of logic programs and was first introduced by van Emden and Kowal-
ski [25] using the direct consequence operator TP . This operator is monotonic,
continuous, and has the least fixpoint TP ↑ω =

⋃ω
n=0 TP ↑n, which forms the

least Herbrand model of the given logic program P .
In [16], Minker and Rajasekar extended the fixpoint semantics to disjunctive

logic programs. Their direct consequence operator, denoted by T I
P , iterates over

model-states, which are sets of disjunctions of ground atoms. This operator is
also monotonic, continuous, and has a least fixpoint which is a least model-state
characterizing the given program P .

Fixpoint semantics of logic programs are closely related to hyper-resolution.
More precisely, the intuition behind hyper-resolution is the same as that behind
the fixpoint semantics of disjunctive logic programs, as has been observed by
researchers in logic programming. There are, however, the following differences:
a disjunctive logic program is a set of non-negative clauses, and the direct con-
sequence operator (as defined in [16, 14]) simultaneously applies inference steps
for all ground instances of clauses.

Despite the fact that a number of resolution systems have been implemented
in Prolog, the relationship between the theory of logic programming and the
theory of resolution has been, in our opinion, mostly one-directional: logic pro-
gramming has been studied from the point of view of resolution. Our thesis is
that hyper-resolution can be studied from the point of view of logic program-
ming. In this paper, we give a proof of completeness of hyper-resolution based
on the fixpoint semantics of disjunctive logic programs.

2 Preliminaries

First-order logic is considered in this work and we assume that the reader is fa-
miliar with it. We assume we are given a finite set of first-order formulae, which
we wish to test for satisfiability. We now give the most important definitions
for our work.

2



2.1 Herbrand Models

Let L be the underlying first order language for the considered set of formulae.
Normally, we assume that L is defined by the constants, function symbols and
predicate symbols appearing in the considered set of formulae.

The Herbrand universe UL for L is the set of all ground terms, which can be
formed out of the constants and function symbols appearing in L. If L has no
constants, we add some constant, say a, to form ground terms.

An Herbrand interpretation for L is an interpretation for L such that:

• The domain of the interpretation is the Herbrand universe UL;

• Constants in L are assigned themselves in UL;

• If f is an n-ary function symbol in L, then the mapping from (UL)n to
UL defined by (t1, . . . , tn)→ f(t1, . . . , tn) is assigned to f .

Since the assignment to constants and function symbols is fixed in Herbrand
interpretations, we can identify an Herbrand interpretation with the set of all
ground atoms which are true with respect to that interpretation.

Let S be a set of closed formulae of L. An Herbrand model of S is an
Herbrand interpretation for L which is a model for S.

2.2 Unification

A substitution is a finite set θ = {x1 := t1, . . . , xn := tn}, where x1, . . . , xn are
different variables, t1, . . . , tn are terms, and ti 6= xi for all 1 ≤ i ≤ n. By ε we
denote the empty substitution.

An expression is either a term or a formula without quantifiers, and a simple
expression is either a term or an atom.

Let θ = {x1 := t1, . . . , xn := tn} be a substitution and E be an expression.
Then Eθ, the instance of E by θ, is the expression obtained from E by simul-
taneously replacing all occurrence of the variable xi in E by the term ti, for
1 ≤ i ≤ n.

Let θ = {x1 := t1, . . . , xn := tn} and δ = {y1 := s1, . . . , ym := sm} be
substitutions. Then the composition θδ of θ and δ is the substitution obtained
from the set {x1 := (t1δ), . . . , xn := (tnδ), y1 := s1, . . . , ym := sm} by deleting
any binding xi := (tiδ) for which xi = (tiδ) and deleting any binding yj := sj

for which yj ∈ {x1, . . . , xn}.
If θ and δ are substitutions such that θδ = δθ = ε, then we call them

renaming substitutions and use θ−1 to denote δ (which is unique w.r.t. θ).
A substitution θ is more general than a substitution δ if there exists a sub-

stitution γ such that δ = θγ. Note that according to our definition, θ is more
general than itself.

Let S be a set of simple expressions. A substitution θ is called a unifier for
S if Sθ is a singleton. If Sθ = {E} then we say that θ unifies S (into E). A
unifier θ for S is called a most general unifier (mgu) for S if θ is more general
than every unifier of S.

3



There is an effective algorithm, called the unification algorithm, for check-
ing whether a set S of simple expressions is unifiable (i.e. has a unifier) and
computing an mgu for S if S is unifiable (see, e.g., [13]).

Lemma 1 Let S be a collection of sets S1, . . . , Sn of simple expressions for
some fixed integer n. Suppose there exists a substitution which unifies each Si

for 1 ≤ i ≤ n. Then there exists a substitution θ, called an mgu of S, such that:

• θ unifies each Si for 1 ≤ i ≤ n;

• θ is more general than any substitution that unifies each Si for 1 ≤ i ≤ n.

Proof. By induction on the number of sets n.

Base Case: If n = 1 and δ unifies S1, then let θ be the mgu of S1. By definition,
it unifies S1 and is more general than any other unifier of S1 including δ.

Induction Hypothesis: Assume the lemma holds for all integers 0 < n ≤ k.

Induction Step: Suppose n = k + 1 and suppose that δ unifies each Si for
1 ≤ i ≤ k + 1. The collection of sets S1, . . . , Sk satisfies the conditions of
the lemma, so by the induction hypothesis we know there is a substitution
θk which unifies each Si for 1 ≤ i ≤ k and that θk is more general than δ.

Let γk be a substitution so that δ = θkγk, making γk a unifier for Sk+1θk.
Let σk be an mgu for Sk+1θk. So γk and σk are both unifiers for Sk+1θk,
but σk is an mgu, hence there is a substitution γk+1 such that γk = σkγk+1.

Since θk unifies each Si for 1 ≤ i ≤ k, and σk is an mgu for Sk+1θk, the
substitution θ = θkσk must unify each Si for 1 ≤ i ≤ k + 1. Moreover,
δ = θkγk = θkσkγk+1 = θγk+1, so θ is more general than δ.

Finally, our choice of δ was arbitrary, and θ does not actually depend upon
δ, so the lemma must hold for any such δ.

2

2.3 Hyper-Resolution

A clause is a formula of the form

∀x1 . . .∀xh(A1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bm)

where x1, . . . , xh are all the variables occurring in the rest of the formula, n ≥ 0,
m ≥ 0, and each Ai and Bj are atoms. We write such a clause in the form

A1 ∨ . . . ∨An ← B1 ∧ . . . ∧Bm

If n = 0 and m = 0 then the clause is empty. If n = 0 and m > 0 then the clause
is negative and called a goal. If m = 0 and n > 0 then the clause is positive and

4



treated as the set of its atoms. If n ≥ 1 then we call the clause a (disjunctive)
program clause or a non-negative clause.

A disjunctive logic program is a finite set of disjunctive program clauses.
It is well known that any set of first-order formulae can be transformed into

a set of clauses such that the transformation preserves satisfiability. So we can
assume that our initial set of first-order formulae are actually clauses.

Let ⊥ be a special atom not belonging to the primitive language: that is, ⊥
does not occur in the set of clauses given to us. We do not assign any formal
meaning to ⊥, but just treat it as a positive literal. We use it to transform every
negative clause ← B1 ∧ . . . ∧ Bm into the program clause ⊥ ← B1 ∧ . . . ∧ Bm.
Thus we translate our given set of clauses to a disjunctive logic program. If ⊥
is derivable from the obtained program, then the original given set of clauses is
unsatisfiable.

Let ϕ = A1 ∨ . . . ∨ An ← B1 ∧ . . . ∧ Bm with m ≥ 0, and let ψ1, . . . , ψm be
positive clauses. Let ψi = ξi∨ζi for 1 ≤ i ≤ m, where ξi is a non-empty set of so
called selected atoms of ψi. If there exists an mgu θ which unifies each ξi∪{Bi}
for 1 ≤ i ≤ m, then we call the positive clause (A1 ∨ . . . ∨An ∨ ζ1 ∨ . . . ∨ ζm)θ,
written in the compact form with no atom duplicates, a hyper-resolvent of ϕ
and ψ1, . . . , ψm. Note that “factoring” is hidden in this definition. Also note
that if m = 0 then θ is empty and ϕ is a hyper-resolvent of itself.

Let Γ be a set of clauses. A derivation from Γ is a sequence ϕ1, . . . , ϕn of
positive clauses such that, for each 1 ≤ i ≤ n, ϕi is a hyper-resolvent of a clause
of Γ (called the input clause) and standardized variants of some clauses from
ϕ1, . . . , ϕi−1, where a standardized variant is a renaming of all the variables in
the original clause so that it does not contain variables of the input clause and
the other involved variants. A refutation of Γ is a derivation from Γ with the
empty clause as the last clause of the sequence.

Let Γ be a set of clauses. A ground derivation from Γ is a sequence ϕ1, . . . , ϕn

of positive ground clauses such that, for each 1 ≤ i ≤ n, ϕi is a hyper-resolvent
of a ground instance of a clause of Γ and some clauses from ϕ1, . . . , ϕi−1.

3 Fixpoint Semantics of Disjunctive Logic Pro-
grams

In this section, we present the fixpoint semantics of disjunctive logic programs
invented by Minker and Rajasekar [16] (see also [14]). Our formulation is slightly
different than that of [16, 14].

Let P denote a disjunctive logic program. We shall define the direct conse-
quence operator TP as a function that maps a set I of positive ground clauses
to another set of positive ground clauses which can be “directly” derived from
P and I. It is formally defined as follows: TP (I) is the set of all positive ground
clauses which are a hyper-resolvent of a ground instance of a clause of P and
some clauses from I.

Lemma 2 The operator TP is monotonic, compact, and hence also continuous.

5



Hence it has the least fixpoint TP ↑ ω =
⋃ω

n=0 TP ↑ n, where TP ↑ 0 = ∅ and
TP ↑(n+ 1) = TP (TP ↑n).

The first assertion of the above lemma clearly holds. The second assertion
immediately follows from the first one by Kleene’s theorem (see, e.g., [13]).

The following theorem is a consequence of the results of [14].

Theorem 3 Every minimal Herbrand model of TP ↑ω is a minimal Herbrand
model of P .

Proof. Let M be a minimal Herbrand model of TP ↑ω. Since TP ↑ω contains
only consequences of P , it suffices to prove that M is an Herbrand model of P .
Let ϕ = A1∨ . . .∨An ← B1∧ . . .∧Bm be a ground instance of some clause of P
and suppose that M � B1∧ . . .∧Bm. It suffices to show that M � A1∨ . . .∨An.

Since each Bi is a ground atom and M � B1∧. . .∧Bm, we must have Bi ∈M
for all 1 ≤ i ≤ m. Since M is a minimal Herbrand model of TP ↑ω, it follows
that for every 1 ≤ i ≤ m, there exists ψi ∈ TP ↑ω such that ψi can be written
as Bi ∨ ζi and ζi is false in M . We have that ψ = A1 ∨ . . . ∨An ∨ ζ1 ∨ . . . ∨ ζm
is a hyper-resolvent of ϕ and ψ1, . . . , ψm. Hence ψ ∈ TP ↑ω. Since M � TP ↑ω
and ζi is false in M for all 1 ≤ i ≤ m, we have M � A1 ∨ . . . ∨An. 2

Corollary 4 For every Herbrand model M of TP ↑ ω, there exists a minimal
Herbrand model M ′ of P such that M ′ ⊆M .

Proof. It is easily seen that if M1 ⊇ M2 ⊇ . . . is a chain of Herbrand models
of TP ↑ ω then their intersection is also an Herbrand model of TP ↑ ω. By the
Zorn-Kuratowski lemma, it follows that for every Herbrand model M of TP ↑ω
there exists a minimal Herbrand model M ′ of TP ↑ ω such that M ′ ⊆ M . By
Theorem 3, such a model M ′ is also a minimal Herbrand model of P . 2

4 Completeness of Hyper-Resolution

As usual, to prove completeness of a first-order resolution system we need a
lifting lemma.

Lemma 5 (Simplified Lifting Lemma) Let ϕg be a ground instance of a
clause ϕ, and for each 1 ≤ i ≤ m, let ψg

i be a ground instance of a positive
clause ψi. Suppose that ψg is a hyper-resolvent of ϕg and ψg

1 , . . . , ψ
g
m. Let

δ1, . . . , δm be renaming substitutions for standardising apart ψ1, . . . , ψm, with
respect to ϕ as an input clause. Then there exists a hyper-resolvent ψ of ϕ and
ψ1δ1, . . . , ψmδm such that ψg is a (ground) instance of ψ.

Proof. Let ϕg = ϕσ and ϕ = A1 ∨ . . . ∨ An ← B1 ∧ . . . ∧ Bm. We have that
ϕg = Ag

1 ∨ . . .∨Ag
n ← Bg

1 ∧ . . .∧Bg
m, where for each 1 ≤ j ≤ n, Ag

j = Ajσ, and
for each 1 ≤ i ≤ m, Bg

i = Biσ.
Let ψg

i = ψiσi, for 1 ≤ i ≤ m. Without loss of generality, for each 1 ≤ i ≤ m,
we can assume that ψg

i = Bg
i ∨ ζ

g
i , where Bg

i is a selected atom of ψg
i and is not

an atom of ζg
i . Thus ψg = Ag

1 ∨ . . . ∨Ag
n ∨ ζ

g
1 ∨ . . . ∨ ζg

m.

6



For each 1 ≤ i ≤ m, let ξi be the set of all atoms Bi,k of ψi such that
Bg

i = Bi,kσi, and let ζi be the set of the remaining atoms of ψi. We have that
ψi = ξi ∨ ζi, ξiσi = Bg

i , and ζiσi = ζg
i , for 1 ≤ i ≤ m.

Let µ = σ∪δ−1
1 σ1∪ . . .∪δ−1

m σm. Thus µ is a well-defined substitution which
unifies each ξiδi∪{Bi} into Bg

i for 1 ≤ i ≤ m: we have that ξiδiµ = ξiδiδ
−1
i σi =

ξiσi = Bg
i and Biµ = Biσ = Bg

i . By Lemma 1, there exists an mgu θ which
unifies each ξiδi ∪ {Bi} for 1 ≤ i ≤ m and is more general than µ. Let µ = θγ.

Let ψ be the hyper-resolvent of ϕ = A1 ∨ . . . ∨ An ← B1 ∧ . . . ∧ Bm and
ψ1δ1 = (ξ1 ∨ ζ1)δ1, . . . , ψmδm = (ξm ∨ ζm)δm using the mgu θ with each ξiδi as
the set of selected atoms of ψiδi. Then ψ = (A1 ∨ . . .∨An ∨ ζ1δ1 ∨ . . .∨ ζmδm)θ.

For every 1 ≤ j ≤ n, we must have Ajθγ = Ajµ = Ajσ = Ag
j , and for

every 1 ≤ i ≤ m, we must have ζiδiθγ = ζiδiµ = ζiδiδ
−1
i σi = ζiσi = ζg

i . Hence
ψγ = ψg, which completes the proof. 2

Theorem 6 (Completeness) Every finite and unsatisfiable set Γ of clauses
has a hyper-resolution refutation.

Proof. Replace every negative clause← B1∧. . .∧Bm in Γ by ⊥ ← B1∧. . .∧Bm.
Denote the resulting set by P . It is clear that P ∪ {← ⊥} is also unsatisfiable.
Hence P � ⊥: that is, every model for P is a model for ⊥.

We show that ⊥ ∈ TP ↑ω. For a contradiction, suppose that ⊥ /∈ TP ↑ω. By
definition, TP ↑ ω contains only positive ground clauses, each of which we can
treat as the set of its atoms. Thus no clause contains duplicated atoms. Since
⊥ /∈ TP ↑ω, every such clause of TP ↑ω contains some atom different from ⊥. By
choosing these atoms, and assigning them “true”, we can obtain an Herbrand
model M of TP ↑ω not containing ⊥. By Corollary 4, there exists an Herbrand
model M ′ of P such that ⊥ /∈M ′, which contradicts P � ⊥.

Therefore ⊥ ∈ TP ↑ n for some n and there exists a ground derivation
from P with ⊥ as the last clause. By Lemma 5, it follows that there exists a
derivation from P with ⊥ as the last clause. Simulate that derivation for Γ as
follows: whenever ⊥ ← B1 ∧ . . . ∧ Bm is used in the derivation, replace it by
← B1 ∧ . . . ∧Bm. The resulting derivation is a refutation of Γ. 2

5 Discussion

We started to think about this work when developing a hyper-resolution calculus
for first-order modal logics. A number of resolution systems had been previously
developed for first-order modal theorem proving, but all of them are based on
translation to classical logic [22, 2, 21]. We wanted to use a “direct” approach.
The idea is that, because there is a close relationship between hyper-resolution
and fixpoint semantics of disjunctive logic programs, one can extend the fixpoint
semantics of positive modal logic programs given in [17, 18] for disjunctive modal
logic programs and modify it to obtain a hyper-resolution calculus for first-order
modal logics. When proving completeness of our calculus, we first tried to apply
the technique in Leitsch’s book [12] but then met a difficulty with the semantic

7



tree technique. So we decided to try a direct proof using the fixpoint semantics
of disjunctive modal logic programs. This paper is written with a hope that our
method may be useful for others who have a similar problem when developing
resolution calculi for non-classical logics.

Our proof itself is just another proof for a well-known fact. However, it may
be intuitive for some people. For example, as the simplified lifting Lemma 5 is
more or less standard and Theorem 6 has a short and understandable proof, we
expect that our proof will be welcomed by researchers of logic programming.

As mentioned earlier, the relationship between hyper-resolution and fixpoint
semantics of disjunctive logic programs has been observed by other researchers.
However, it was not explicitly studied as done here: hyper-resolution is not
mentioned in the semantics of disjunctive logic programs from [16, 14].

On technical matters, our proof uses the saturation technique, which is a
common technique for proving completeness of logical calculi. Roughly speak-
ing, saturation methods apply some operator to derive as many consequences of
the considered formula set as is possible until the set is “saturated”. The impor-
tant questions then are the choice of operator and how to apply it systematically.
In the theory of logic programming, the direct consequence operator TP is taken
and it is well-known that, since TP is monotonic and continuous, it suffices to
apply this operator ω times to reach the least fixpoint. The operator TP is
continuous because it is monotonic and compact, which is clear to see.

In [3, 4], Bachmair and Ganzinger also use the saturation technique to prove
completeness of various refinements of resolution, including hyper-resolution. In
spite of the similarity in using the saturation technique, our proof is essentially
different from the proofs of Bachmair and Ganzinger [3, 4]. Given a total and
well-founded ordering on the set of ground atoms, the completeness proofs given
in [3, 4] are based on an induction on the ordering. This means that the sys-
tematic way used in [3, 4] for creating a saturation is related to the ordering.
Completeness proofs in Leitsch’s book [12] also use saturation, but they are
based also on the semantic tree technique.

In automated model building, hyper-resolution can be used to extract min-
imal models (from the ground instances of hyper-resolvents of the considered
clause set). This has been often studied for classes of inputs for which resolu-
tion decision procedures can be established and finite minimal models can be
extracted (see, e.g., [12, 8]). In this paper, extraction of minimal models for
disjunctive logic programs is formulated for the general case. (Theorem 3 is a
consequence of the results of Lobo et al [14], but not explicitly stated there.)

The problem of generating minimal models has been also studied implicitly
by Manthey and Bry [15] and explicitly by Bry and Yahya [5]. In their work,
minimal models are generated by positive unit hyper-resolution tableaux, which
differ from traditional hyper-resolution in two respects: first they require a
splitting rule, and second they allow a hyper-resolvent to be derivable from a
clause and positive unit clauses only.

Recently, Nguyen has applied our method to prove answer completeness of
negative hyper-resolution semantics of disjunctive logic programs [19]. In [20],
he successfully adapted our method to extend [19] to ordered hyper-resolution.

8



Acknowledgements

We are grateful to Professor Jan Chomicki and the anonymous reviewers for
helpful comments and suggestions.

References

[1] K.R. Apt and M.H. van Emden. Contributions to the theory of logic pro-
gramming. Journal of the ACM, 29(3):841–862, 1982.

[2] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational view-
point. Journal of Logic and Computation, 2(3):247–297, 1992.

[3] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[4] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, pages
19–99. Elsevier, 2001.

[5] F. Bry and A.H. Yahya. Positive unit hyperresolution tableaux and their
application to minimal model generation. Journal of Automated Reasoning,
25(1):35–82, 2000.

[6] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, 1973.

[7] Hans de Nivelle. Resolution games and non-liftable resolution orderings. In
L. Pacholski and J. Tiuryn, editors, Proceedings of CSL 1994, LNCS 933,
pages 279–293. Springer, 1995.

[8] C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution deci-
sion procedures. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 1791–1849. Elsevier, 2001.

[9] J. Goubault-Larrecq. A note on the completeness of certain refinements of
resolution. Technical Report LSV-02-8, Lab. Specification and Verification,
ENS de Cachan, Cachan, France, July 2002.

[10] R.A. Kowalski. Predicate logic as a programming language. In J.L. Rosen-
feld, editor, Information Processing 74, Proceedings of IFIP Congress 74,
pages 569–574, 1974.

[11] R.A. Kowalski and P.J. Hayes. Semantic trees in automatic theorem-
proving. Machine Intelligence, 4:87–101, 1969.

[12] A. Leitsch. The Resolution Calculus. Springer, 1997.

9



[13] J.W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-
Verlag, 1987.

[14] J. Lobo, A. Rajasekar, and J. Minker. Semantics of Horn and disjunctive
logic programs. Theoretical Computer Science, 86(1):93–106, 1991.

[15] R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in
Prolog. In E.L. Lusk and R.A. Overbeek, editors, Proceedings of CADE
1988, LNCS 310, pages 415–434. Springer, 1988.

[16] J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive logic
programs. Journal of Logic Programming, 9(1):45–74, 1990.

[17] L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for
modal logic programs. Fundamenta Informaticae, 55(1):63–100, 2003.

[18] L.A. Nguyen. Multimodal logic programming and its applications
to modal deductive databases. Manuscript, available on Internet at
http://www.mimuw.edu.pl/∼nguyen/papers.html, 2003.

[19] L.A. Nguyen. Negative hyper-resolution as procedural semantics of dis-
junctive logic programs. In J.J. Alferes and J.A. Leite, editors, Proceedings
of JELIA 2004, LNCS 3229, pages 565–577. Springer, 2004.

[20] L.A. Nguyen. Negative ordered hyper-resolution as a proof procedure
for disjunctive logic programming. Manuscript, available on Internet at
http://www.mimuw.edu.pl/∼nguyen/papers.html, 2004.

[21] A. Nonnengart. A Resolution-Based Calculus for Temporal Logics. PhD
thesis, Universität des Saarlandes, Saabrücken, Germany, 1995.

[22] H.J. Ohlbach. A resolution calculus for modal logics. In E.L. Lusk and
R.A. Overbeek, editors, Proceedings of CADE-88, LNCS 310, pages 500–
516. Springer, 1988.

[23] J.A. Robinson. Automatic deduction with hyper-resolution. International
Journal of Computer Mathematics, 1:227–234, 1965.

[24] J.A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

[25] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as
a programming language. Journal of the ACM, 23(4):733–742, 1976.

10


