OPERATOR /, = {;, NORMS OF GAUSSIAN MATRICES

RAFAL LATALA AND MARTA STRZELECKA

ABsTrRACT. We confirm the conjecture posed by Guédon, Hinrichs, Litvak,
and Prochno in 2017 that E|[(ai;gij)i<m,j<n: £y — £3*|| is comparable, up to
constants depending only on p and g, to

max [|(aij)jllp= +max|l(ai;)illg + Emax ai;gi;]
provided that 1 <p <2< qgor4/3 <p<2<¢q<4. In the remaining cases,

when p=2and ¢ >4or1<p<4/3and g =2, we prove it up to a factor of
order log log(mn).

1. INTRODUCTION
Let A = (aij)i<m,j<n be a deterministic m x n matrix and let p,q € [1,00].
In this paper we study ¢; — £;" norms of centered structured Gaussian random
matrices Ga = (aij9ij)i<m,j<n With a variance profile Ao A = (a?j)igm,jgna ie.,
quantities of the form

m

n
—pm = Sup{ZZaijgijsitj: s € Bgﬁ,t € Bg},

i=1 j=1

1Gallp—q = IGa

where random variables g;; are iid standard Gaussians, ¢* denotes the Holder con-
jugate of g, i.e., the unique number from [1, oo] satisfying % + q% =1, and B} is
the unit ball in the £,-norm in R"™.

Although the behaviour of random matrices with iid entries is quite well under-
stood, it is not the case for the random matrices with non-trivial variance profile,
whose £) — {7 norms appear naturally in many problems in applied mathemat-
ics. However, much effort was made recently to understand ¢ — ¢7* norms of
structured random matrices (cf. [2, 17, 12, 6, 18, 11, 13, 1, 4, 15]).

In this paper we focus on two-sided estimates (i.e., lower and upper bounds
matching up to a multiplicative constant) for the expectation of ||Gal|p—q. Such
bounds encode much more information than only an order of E||G4|,—4. They
imply two-sided estimates on higher moments and tail bounds for [|Gal/p—q (see
Corollary 12 below). Moreover, they yield a condition for an infinite Gaussian
matrix to be a bounded operator from ¢, to ¢, (see Corollary 7 below). We also
discuss how to generalize the estimates for |G 4]|p—4 to more general classes of
random matrices with independent, but not necessarily Gaussian entries.

Before we move further, let us introduce some more notation. For two non-
negative functions f and g we write f < g (or g 2 f) if there exists an absolute
constant C' such that f < Cg; the notation f ~ g means that f < g < f. We
write Sa, ~k 5, etc. if the underlying constant depends on the parameters given in
the subscripts. Whenever we write p > p; or p < pa we mean that p € [p1, 0] or
p € [1, po], respectively. By [m] we denote the set {1,...,m} of the first m positive
integers. Let us also denote

Logz =1VInz forxz >0, and Log0=1.
1
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If p =2 = g, the £; — (" norm coincides with the spectral norm and it is known
by [12] that

El|Gall2—2 ~ max |[(ai;);ll2 + max [[(aiz)ill2 + EH}%X |ai;gijl
~ max [(ai;9i5)jl2 + max||(ai;gis);2-

Moreover, two-sided bounds are also known for extremal values of (p, q), i.e., when
p € {1,00} or ¢ € {1,00} (see [6, Remark 1.4] and [1, Propositions 1.8 and 1.10]).
The question whether similar two-sided inequalities hold for other ranges of p and
g with arbitrary A was, up to now, entirely open; all known bounds match only up
to a logarithmic constant (see [6, 1]) or are valid only in some very special cases
(for the trivial structure, i.e., when a;; = 1 for all ¢, j, or, more generally, for tensor
structures — this follows by the Chevet inequality). We refer to the introductions
to [1] and [9] for more details and an overview of the history of the problem.
From now on, we will consider only the case 1 < p <2 < ¢ < oco. The following
conjecture was formulated in [6] (see [1] for a discussion of other ranges of p and ¢).

Conjecture 1. For every p < 2 < q and every deterministic m X n matrix A =
(@ij)i<m j<n,

E[[G allp~q ~p.q max [(ai;)jllp + max|l(aij)illy + Emax|ai;gi;].

The main difficulty in obtaining Conjecture 1 is to prove the upper estimate,
since the lower bound is easy. It was shown in [6] that the upper bound holds up
to multiplicative constants depending logarithmically on the dimensions. Our main
result states that one may skip these logarithmic factors in the range 4/3 < p <
2<g<4andin the range 1 <p <2 < g < o0.

Theorem 2. If p*, q € [2,4) or p*,q € (2,00), then for every deterministic matriz
A = (Gij)i<m,j<n we have

E[lGallp—q ~pq max|[(ai;);llp- + max [l (@ij)illq + EHF}X |aij gisl
,

~ max [[(aij)jllp +max||(ai;)ifl +max nf, vLogh max |ai;]

~p.q Max [[(aij);lp- + max I (@ij)illq + max m:i?flzk V Lngié??éJ |aij|

~p.q Bmax||(ai;gij)jlp- +Emax|{(aijgi;)illy.

Remark 3. The constant in the first lower bound of Theorem 2 does not depend on
p and ¢. Moreover, if p* V g > 2, the constant in the first upper bound is at most
of order

(p* v @) Log (;250%5)

(p*V q—2)%/2
* 5/2 P Ag ) P 1 1
Vg Log(i if p*,g>2and - + — > 3/2,
( ) p*ANg—2 p g /
(" V @) Log (=22
(p*V q—2)5/2
The latter quantity blows up when p and g approach 2. However, we show in the

appendix that the upper bound from Theorem 2 holds with the constant bounded
in the range 2 < p*,¢ < 4 — ¢ (but blowing up when p* or ¢ approaches 4).

1 1
if p*,¢>2and -~ + — < 3/2,
p q

if p*,q € [2,4) and p* Vg > 2.

Remark 4. Recall that the two-sided bounds for E||G 4l/,—4 were known before in
the cases when p = 2 = ¢ and when p* or ¢ is infinite; [6, Remark 1.4] implies that
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for every p*,q > 2
E[|Gall1—q = Emjax (aijgii)illy S ﬁmfx [(aij)illq + ]EH}%X |95

and

ElGallp—oe = Emax(aijgij)jllp: S VP max |[(aij);lp + Emaxiai;gil.
Theorem 2 and Remark 4 provide an affirmative answer to Conjecture 1, exclud-
ing the cases when p* = 2 and ¢ € [4, 00) or when ¢ = 2 and p* € [4,00). From our
proof of Theorem 2 in the case p*, ¢ > 2 one may deduce the following proposition.
It says that in order to prove Conjecture 1 in the remaining ranges, it suffices to

derive a weaker dimension dependent bound.

Proposition 5. Let v > 0, a > 1, and p < 2 < q. Assume that p* vV q > 2 and
that for every integers m and n, and every deterministic matric A = (aij)i<m,j<n,

(1) ElGallpsq < or(max [[(asg); - +mas [(asy)illg + Log (mn) mas ay|).
Then for every integers m and n, and every deterministic matriz A = (@ij)i<m,j<n;

(p* vV q)*3?aLogy
(p* vV g —2)5/?

ElGallp—q S (mlax I€ai;);slp- +max|l(ai;)illq

+ max inf +/Logk max |a;; )
Ry i, VEos R e, la]

Unfortunately, we were not able to provide (1) in the remaining range p* Aq = 2
and p*Vq > 4. However, our methods yield the following estimate, which is optimal
up to a polylog factor.

Theorem 6. If p* Aq = 2 and p* V q > 4, then for every deterministic matriz
A= (aij)igm,jgn we have

E[|Gallp—q Sp.q Log Log(mn) (m?X I (@iz)jllp- + max | (@ij)illq + EH}?;X |aijgij|)-

Although we were able to confirm Conjecture 1 in almost whole range p*,q > 2,
our methods do not allow us to retrieve the exact dependence of E||G 4|, 4 on p*
and ¢ in Theorem 2. For example, if a; ; = 1 for all 7 <m and j < n, then

E[Gallp.q ~ vp* A Lognmax|[(ai;)jllp + +/q A Log mmax[(ai;)illq

(the third term disappears since, in this case, it is upper bounded by the sum of the
first two terms), whereas the constant in the first upper bound in Theorem 2 (for
p* A ¢ separated from 2) grows like (p* V ¢)7 with v > 1. However, we conjecture,
that the correct dependence of parameters p and ¢ in the range p < 2 < ¢ is the
following

?
E||Gallp.q S vP* A Lognmax [(ai;);|

+ Emax |a;;gi;]-
1,7

pr T VA Logmmjax Il (aij)illq

1.1. Consequences of the main result. Let us now present a couple of con-
sequences of Theorem 2. Some of them are immediate and the rest is proven in
Section 2.

Theorem 2 easily implies its non-centered counterpart:

Ell(aijgij+mij)ijllp—sa ~p.q Emax||(ai;gij);lp- +E max (@ijgiz)illg+11(mig)ijllp—q
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for every m;j,a;; € R, i <m, j < n, and every p and ¢ satisfying 2 < p*,q < 4 or
p*,q > 2.

Moreover, Theorem 2, Remark 4, and [1, Proposition 1.2] yield the following
characterisation of the boundedness of Gaussian linear operators from ¢, to ¢,
whenever 2 < p*,q < 4 or p*,q > 2. We say that a matrix B = (b;;); jen defines
a bounded operator from ¢, to ¢, if for all x € ¢, the product Bz is well defined,
belongs to ¢, and the corresponding linear operator is bounded.

Corollary 7. Let p and g be such that 2 < p*,q < 4 or p*,q > 2, and let (a;;); jen
be an infinite deterministic real matriz. The matric (ai;9:5)i jen defines a bounded
linear operator between £, and g almost surely if and only if sup; ||(a;;);||p+ < oo,
sup; [|(ai;)illg < oo, and Esup; jelai;gij| < oo.

Remark 8. The condition Esup; ;e |ai;gi;| < oo in Corollary 7 is equivalent to the
deterministic bound

sup mf v/ Logk sup la;;] < oo

k>0 1| (i,5) E(NXN)\T
(see estimate (12) below).

Theorem 2 easily implies two-sided bounds for norms of Gaussian mixtures. We
say that a random variable X is a Gaussian mixture if there exists a nonnegative
random variable R such that such that X has the same distribution as Rg, where
g is a standard Gaussian random variable, independent of R (cf. [5]). The next
corollary is an immediate consequence of Theorem 2.

Corollary 9. Assume that 2 <p*,q <4 orp*,q > 2 and let X;5, 1 < m,j <n, be
independent Gaussian mixtures. Then

El(Xij)i<m.j<nllp—qg ~p.g BEmax||(Xiz);lp- + Emjax 1(Xij)illg-

We say that X is a symmetric Weibull random variable with (shape) parameter
r € (0,00] if X is symmetric and for every ¢ > 0,
P(IX|>t)=e".

Corollary 10. Let X;;, ¢ < m, j < n, be independent symmetric Weibull variables
with parameter v € (0,2]. Then for every p and q satisfying 2 < p*,q < 4 or
P*,q € (2,00), and every deterministic matriz A = (Gi;)i<m,j<n we have

El[(aij Xij)i<m.j<nllp—q

~p,q,r max l[(@ij)jllp

+ mjax [(aij)illq + Emax |aij Xijl

~y maxH(aU) llp= + max [|(a;;) Hq—i—max 1nf Log YT | max |a;j]
J

0 |1|= (6.3)¢1

f L 1/r
—|—maXH(aU) Hq+rl?§())<|1| H‘lj‘:k og "k én’?iéclmzﬂ

~p,q,r max l[(@ij);llp

pquEmaxH(aZ]XU)\ +Em]ax|\(alj Xij)illq-

We postpone the proof of Corollary 10 to Section 2.

Remark 11. One cannot omit the assumption r < 2 in Corollary 10. Indeed, in
the limit case r = oo the entries X;; = ¢;; are independent symmetric Bernoulli
random variables and it is known that the behaviour of the expected operator norm
is different than in the case r < 2 (see [16]). Moreover, it was conjectured in [11]
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and proven in [13] up to a factor of order logloglog(mn) that
?
El[(aijei )il ~max||(aij);ll2 + max |(ai;)ill2

+rl£1>ax inf sup H g a;j€;j8il;
20 1T1=k 15|12, el <1772

= Emax||(aijei)jll2 + Emjax [(aijeiz)ill2

+ max inf sup H E Q;;€ijSily

k20 |I=k |51, |t]2<1 el Logk-
We conjecture that for p < 2 < g,
?
(2)  Ell(aijeij)ijllo-—sq ~p.o max|(ai;);llp- + max [(asj)illq
+ max inf H Z aii€;
K20 1= g e <2l 2 7T g

~p,q Emax [(agzei)llp- + Emax H(aiﬁz‘j)z‘Hq

+ max inf sup H aijsijsith
k20 1=k 5| g It ]], <1 %;,
We also believe that the methods of [13] could be adapted to the case p*, ¢ > 2 and

that — together with Theorem 2 — they would imply (2) up to a polylog factor in
the ranges p*, ¢ > 2 and 2 < p*,q < 4.

Logk.

The bounds for the expectation of the norm of a random matrix with independent
entries satisfying some mild regularity assumptions automatically imply bounds for
higher moments as well as for the tails of this norm. Let us state explicitly two
such estimates for the structured Gaussian and Weibull random matrices.

Theorem 2 and the Gaussian concentration yield the following moment and tail
bounds.

Corollary 12. If2 < p*,q < 4 or p*,q > 2, then for every deterministic matric
A =(aij)i<m,j<n, p> 1, and t > 0 we have

(E||G al| —l—maxH(a”) Hq—l—max 1nf \/Logk masx i

+\/5H;!6}X|aij|,
\

p%q)l/p ~p,q maxH(a”) [~

and

P(IGal-g = C 0.0 (max|(aig); -+ masx (s

+ Iilgé(‘l‘llfk \/Logk: max |a”|) th) < et/ (2maxijal)
I

In the Weibull case, Corollary 10, [8, Theorem 1.1 and Corollary 1.3], and [1,
Lemma 2.19] imply the following. (One may also deduce the moreover part, with
a constant Cy depending on p, ¢ and r, from (3) via Markov’s inequality.)

Corollary 13. Let X;;, ¢ < m, j < n, be independent symmetric Weibull variables
with parameter r € (0,2]. If2 < p*,q < 4 orp*,q > 2, then for every deterministic
matriz A = (Gij)i<m,j<n, and every p > 1 we have

(Ell (a5 Xis)iil15—q)"? ~p.qr max [[(ais);ll,

3 f Log"" k ;
(3) +max inf Log' "k max Jai| +p

-+ max | (0,

Y7 max |ag;|.
1,7
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Moreover, for every t > 0,

P (@5 X35 )i I > Ca(psa,r) (mase [ asy )l + max i)l

+ max inf Log/" k max |a,J|> +t> < 7t/ (Calrymaxslais|7)
k>0 |I|=k i,5)

Remark 14. The upper bound in (3) and, as a consequence, the tail bound from

Corollary 13 hold under the weaker assumption that the variables X;; are indepen-

dent, centered, and have uniformly bounded t,.-norm. This follows by a standard

argument (see, e.g., the proof of [9, Lemma 2.1]).

The next result is a generalization of [7, Theorem 2]. Its advantage is that we
do not need to assume much about the distribution of the entries; however, two
additional summands appear in the upper bound.

Corollary 15. If2 < p*,q < 4 or2 < p*,q < 0o, then for every matriz (X;;)i<m, j<n
with independent centered entries,

«\ 1/p"
(@) EIXi)isllpoa sp,qmgx(ZE\Xﬁ\P ) +max(ZE|Xu| )"

(ZMXWFP ) '+ (;mxim

/(2q)

and

ij

(5) El(Xij)illp-rg Spq max
J

RSV y

p) ’ erjax(;meq) 4

(S (SE) )T (D E ) )T
i J

Remark 16. If p*,q € [2,4) or p*,q € (2,00), @ > 1, and independent centered
random variables X;; satisfy

(6) (BIX;;%)/ @) < a(B|X;50P)7 for p € {p*,q},

then estimate (5) yields

Ell(Xii)iillo—q Spa 27 1 X1l +mH ) X llg

+ml/@E v,

1/(20) 1/ ™V || X4 ||,

S n' p* +m1/qHX11||q7

where in the last inequality we used the AM-GM inequality and the estimate
1 X11ll2(peve) Spogsa | X11llpeng, Which follows from the assumption (6) by Holder’s
inequality. One can repeat the argument from the proof of the lower bound in [10,
Proposition 21] to show that under the above assumptions

o /P <+ m Y X1,

El[(Xi5)i,5llp—~q Zp,a,
so in fact
EH(Xij)i,ijﬁq ~p,q,a nl/p HX11||P* + ml/qHXllHq-

We refer to [10] for more precise two-sided bounds (with constants not depending
on p and ¢) under the stronger assumption that the entries X;; are iid centered
a-regular random variables.



OPERATOR NORMS OF GAUSSIAN MATRICES 7

1.2. Strategy of the proof of the main result. Throughout the paper we denote

Dy = max||(aij)jllp-, D2 := mﬁx\\(az‘j)i\\q

to avoid long formulas for the first two terms on the right-hand side of our main
estimates.

Similarly as in [12], Theorem 2 is a consequence of two weaker estimates given
in the following three propositions. The first one is based on the Slepian-Fernique
lemma and generalizes van Handel’s bound [17]. A similar result for p* = ¢ € [2,4)
was obtained in [14].

Proposition 17. For every 2 < p*,q < 4 and every deterministic matric A =
(aij)i<m.j<ns

E(|Gallp—sq S D1 + D2 + maxLog® 47" VD (i + j)|ay].
,]

Although van Handel’s method fails in the range p* V ¢ > 4, we are able to
prove, using different ideas, the following counterpart of Proposition 17 in the range
p*,q > 2.

Proposition 18. For every 2 < p*,q < oo and every deterministic matric A =
(aij)i<m,j<n,

E|Gallp—q < B(p,q) (VP D1 + aD2) + 5 (p, q) H}é}X(i + )@V g )
where ' (p,q) = (p* V q)B(p,q) and
* vV 3/2L p

(p* Vv @)"/? Log (;2:5%5)
(p* Vg —2)5/2
Note that the third term in the bound from Proposition 18 is often of greater
order than the one from Proposition 17. However, it is sufficiently small to exploit
the method from [12] and deduce our main result in the range p*,¢ > 2 from
Proposition 18 and the following dimension dependent bound.

il lsa
p q
B(p,q) =

1 1
if*+j<3/2.
p q

Proposition 19. Assume that 2 < p*,q < oo or 2 < p*,q < 4. Then for every
deterministic matric A = (ai;)i<m,j<n,

(M ElGalyg S ap.a) (VP + vAD2 + /Loglmn) max|as|).

where
1 ifp* =q=2,
(p* vV q)11/2 Log(4_p2*\/q)
ifp*,q € [2,4) and p* Vv q > 2,
v a- 2 ifp* q €[2,4) and p” Vv q
a(p,q) < P Aq

1 1
* 3/2 sp %
P Vg Log(——) #p",q€(2,00) and — + — > 3/2,
0 v Log (B A o) and L4 L2y
(r" V)" /? Log (;2:0%5)
(p* Vg —2)5/2

In the case p = ¢ = 2 estimate (7) was proven by Bandeira and van Handel in
[2]. We cannot use their combinatorial approach based on the trace method since
for (p, q) # (2,2) we no longer deal with the spectral norm. Proving Proposition 19
is one of the main difficulties and novelties of our paper.

In the case 2 < p*, ¢ < 4 estimate (7) follows by Proposition 17 and the exponent
reduction procedure described in Subsection 4.2. In this step we use some ideas

1 1
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from [13]. Surprisingly, in the case p*,q > 2 we first derive Proposition 19, and
then use it to show Proposition 18.

To prove Proposition 19 in the case p*, ¢ > 2 we exploit the ideas from the proof of
the main result of [1] (to estimate the suprema over vectors with small coordinates)
together with a net argument (which allows us to estimate the suprema over vectors
with small supports). Finally, to deduce Proposition 17 we decompose the matrix A
into block diagonal matrices Ay with blocks of a smaller size, and matrices B; whose
norms are easier to control (due to Proposition 36 below), and use Proposition 19
for each Aj separately.

1.3. Organization of the paper. In Section 2 we show how Propositions 17-19
imply Theorem 2 and then we prove Remark 3 and Corollaries 10 and 15. Section 3
contains the proof of Proposition 17 and some other estimates derived from Slepian’s
lemma, necessary for proving Proposition 19 in the range p* A ¢ > 2. In Section 4
we prove Proposition 19. Finally, Section 5 is devoted to the proof of Proposition 18
and Theorem 6; it also contains a sketch of the proof of Proposition 5.

2. PROOF OF THEOREM 2 AND ITS COROLLARIES

In this section we first show how to deduce the most challenging part of Theo-
rem 2 from Propositions 17-19. Then we give the proofs of Theorem 2 and Corol-
laries 10 and 15.

Proposition 20. Letp*,q > 2, m,n be positive integers and oy, as, as, B1, B2, B3 >
1. Assume that for every 1 <m/ < m, 1 <n' <n and every deterministic matriz
A = (aij)i<m’ j<n s

E[|Gallp—sq < a1D1 + agDy + azy/Log(m/n’) max |a;|
irj

and
. . * -1
E[|Gallp—q < Bi1D1 + B2Ds + 3 max (i + 5)B@v) |aij|)-

Then for every deterministic matriz A = (aij)i<m j<n,
E|Gallp—q S (1 + B1 + B3)D1 + (a2 + B2 + 3) D2
inf \/Logk )
*+ eagg o, VEonk el
We will need the following deterministic lemma about norms of block diagonal
matrices.

Lemma 21. Let (¢;j)i<m,j<n be a block diagonal matriz with blocks C;, and 1 <
p <gq. Then

I(cij)i<m j<nllp—sq = max||Cillp—q-

Proof. Assume that the blocks C, [ < [y, consist of entries a;; such that i € I; and
j € J;. Then

I(cij)icmi<nllpsg = sup > cijsit;
seB™. teB» T
a P Qg

lo

= lsup l E Isup ; E CijSit;
T€B L WEBY I=1 s€x B L tey Byl icly, jeT

o 1/q
= sup Y xyl|Cillpg = sup (Z\yz|qHCl||Z—>q> :

w€BLY yEB,Y 1=1 yeBY |
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Since p < ¢, the latter supremum is attained at y = ¢; for some [ < [, so

1/q
sup (Dl Cillgg) = max|Cilly-. O
yeBY

Proof of Proposition 20. Let

Do, = inf Log klas;|,
K S gy VoR R

Ng =1, and N = 22" for k > 1. Without loss of generality we may assume that
n =m = Ny, for some ko; if necessary, we simply add zero rows and columns.

We follow the ideas of the proof of [12, Theorem 3.9] and [11, Remark 4.5],
starting with constructing a suitable permutations (i1,...,in, ) and (j1,. .., jn,,)
of {1,...,Ni,}. (Note that the change of order of rows and columns does not
change E||Galp—q.) Then we decompose the matrix G4 and bound each piece
of this decomposition separately, each time using one of the assumptions of the
proposition.

In the first step we choose Iy = {i1,...,in, } and J1 = {j1,...,Jn,} in such a
way that

max max |a;;| < Do and maxmax|a;;| < Dioo

igh  J ~ VLog Ny jgn i~ y/LogNy
Suppose now that we have selected Ij, = {i1,...,in,} and Jp = {i1, ..., N}
for k < ko. To construct (in,+1,-.-,in,,,) we choose first N Nj_; indices i from
[m] \ I that contain the Nj_; largest moduli of entries |a;;| from each column
j € Ji. Next, among remaining indices we choose Niy1 — N — NpNi—1 > Ng

indices 4 in such a way that Ip11 = {i1,...,in,,, } satisfies
Do
8 max max|a;;| < —m——.
(8) pax mg |ai;| < Tos N,
Similarly, to construct (jn,+1,---,JN,,,) We choose first Ny N1 indices j from

[n] \ Ji that contain the Nj_; largest moduli of entries |a;;| from each row i € Ij.
Next, among remaining indices we choose Ng11 — Ny — NpNi_1 > Nj indices j in
such a way that Jyy1 = {j1,...,jn,,, } satisfies

D
9 max max |a;;| < ————r-.
®) J¢Tk41 | ]| v/Log Ny,
The above construction implies in particular that for £ > 1,
(10)  |ai;| < DN < 2D,272" 1 /a if j < Ni
and ¢ > My := N + Ny Np_1,

(11)  ay| < DINYP <2D272 P it i < Ny and § > My,

We set (see [12, Fig. 1])
By :=[1,M]> U | J[Nak + 1, Magg1 A N, |2,
k>1

By = J[Nok—1 + 1, Max AN, P\ E1, B3 :=[1, Ny, >\ (E1 U Ey)
E>1

and write G4 = U +V + W, where

Uij = aijgii L jemy: Vi = aij9ii G jemy:  Wis = aijgiiLiG.j)ens)-
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The matrix U is block diagonal with the first block Uy = (Xjj); jer, , of di-
mension |[Ey 1| = M; and blocks Uy = (Xij)ijep,, for k > 2 of dimension
|E17k| S Mgk_l — Ngk_g. We have

(EHU1||127—>11)1/2 (E||U1||2—)2 1/2 ( Z Egzy 1]) <M H}%X |aij| /S Do
i,j€[1,M;] ’
For k = 2,3,... the Gaussian concentration (see, e.g., [3, Theorem 5.6]), the first
assumption of the proposition, and property (8) imply

27k
(BIUMES)  SENUlpg +2/2 max fay

< a1Dy + asDsy + (a3\/210g |E k| + 2k/2) max |a;|
1,J€EE

S a1 D1+ asDy 4+ a3Dog
Thus,

2
M = Sl;p(EHUkH?;:q) S 1Dy + agDy + az Do,

and Lemma 21 yields

k
BIUlp-sq = Bup [01lysg < 200 + ME S L8201 40 sy
k>1

2k X
S2M+MIEZ21*2IC(%) §M<2+221’2k> < 3M
E>1 E>1

S 1Dy + agDs + azDog

In a similar way we show that
]E”V”p%q S a1 D1+ asDy + azDy

Finally, fix (¢,j) € F3 and take k € {0,1,...} such that My < i < M1, where
My = 1. Observe that if My < i < Ngyq, then either j < Ng or j > My and if
Nii1+ 1 <i < Mgy, then either j < Ny or j > Myo. Therefore, either j < N
or j > Myy1. If j < Ni, then by (10)

(i +j)(8(p*vq))’1|aij‘ < 2N;£i(§ Vo) 924 < 9p,.
If on the other hand My, < j < Myiy41 for some [ > 1, then ¢ < Niy; and (11)
imply

(i _|_j)(8(P*V¢Z))71 |aij| < QNIEi(ler;/q)) 2—2’““71/P* < 2D;.

Thus, the second assumption of the proposition yields

BIW g < 6101+ B2Da + s mae (i) 0™ jay |
(4,3 3

< (B1 +2B3)D1 + (B2 + 2f3) D>. O

Proof of Theorem 2. The two-sided estimate between the expressions on the right-
hand side of the first and the last line was proven in [1, Section 5.4]. This also
yields the lower bound in the first asserted two-sided estimate.

The second two-sided estimate follows by

12 Emax|a;;g;;| ~ max inf \/Logk max |a;;
(12) 1a |aijgi;l N Tk g (i7j)¢I| il

(cf. [17, Lemmas 2.3 and 2.4]).
The upper bound from the first two-sided estimate follows by Propositions 17-20
and (12).
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Now we move to the proof of the third two-sided estimate from Theorem 2. We
will show a more precised bound

(13) VP*D1 + \/qD3 + Dog ~ \/p*D1 + \/qD2 + D.,
where

D! :=max inf max \/Logk|a;;|.

k20 |I|=|J|=ki¢l,j¢J

The lower bound in (13) is trivial, since I C Py(I) x Py(I), where P; and P, are
coordinate projections. To establish the upper bound in (13) we need to show that
for any k£ > 1,

(14) v Logk inf max |lai;| S Vp* D1+ \/qD2 + D...

[VI=k (i.5
If £ < 3, then

VLogk inf max |ajj| <maX|aw| < Ds.
VI=Fk (i.5)¢V

If k > 3, then put k¥’ := |\/k/3] and choose |Iy| = |Jo| = k' such that

inf max |a;;| = max |al
[I|=|J|=k"igI,j¢J i¢lo,j¢Jo

Let Vp := (I x Jo) U Vq U Va, where
Vii={(i,5) i € o, ag| > (K) 77" Du},
Vo i=A{(i,5): j € Jo, laiz| > (K')~"/9Dy}.
Then |Vo| < |lo]|Jo| + [Io]k" + |Jolk’ = 3(k")? < k, so that

inf max |a;;| < max |a
IVI=k (i,5)¢V (,7)EVo

< max |a;|+ max la;;| + max |aij]|
i¢lo,j¢Jo (i,5)€ox[n])\V1 (1,5)€([m]xJo)\V2

< (Logk')~Y2D'_ + (K)"Y/?*Dy + (K')~"/1D,.
We have \/ITgk < min{m, \/F(k/)l/p*, \/a(k/)l/q}7 so (14) follows. O

Proof of Remark 3. The order of the constants in the case when p*,q > 2 follows
by Propositions 18, 19, and 20.

In the case p*,q € [2,4), the proof of Proposition 18, given in Section 5 below,
shows that Proposition 19 implies

E[|Gallp—q < B(p,q) (VP* D1 + /aD2) + 5 (p, g) max(i +5) BV [y,

with 3'(p,q) = (p* V ¢)B(p,q) and

(P \ Q)11/2 Log(m)

This, together with Propositions 19 and 20, yields the asserted order of constant in
the range p*, q € [2,4). O

Proof of Corollary 10. Let s > 0 be such that % = % + % (if » = 2, then s = 00)
and let Y;; = gi;]3i;|%/* where (gi;)i; is an independent copy of (g;;): ;. Then for
every p > 1,

(15) (BIXi;|P)!? oy pT o (BIY 107,



12 R. LATALA AND M. STRZELECKA

so Theorem 2 and [12, Lemma 4.7] (applied twice) imply

Ell(@i;Xi5)i.ilp—q ~par Emax|l(ai;lgi**); -
—|—Emax inf v/ Logk max |ai;||gij|>*

=+ Emjax l[(@ij Xij)illq-

+ Ema (a5 g3 /)i

~pqr E max ”(a”LJXZ])

Moreover,

2/s

o fEmax||(|a”| 2g:0); ||2p*/s

Emax||(alg|gzg|2/s)
2/s
. (]Eml_ax||(|a¢j|s/29ij)j||2p*/s)
and similarly
) o2 2/s
B el )il ~ (B o g )ilase)

so [1, equation (5.11)] yields

Emax (aiz1gi1**);llp~ + Emax (ass19:51**)illq

2/s
2 2
e Qg 72)5 131, g2 35, + (B ma a1 )

« + max [[(ai;)illg + Emax|ai|gi| 2.

o max (i)

Note also that

Emax|a”\|gw| 2/s <EI]£1§3( mf v/Logk max \ai;||gi;|¥°

~ Emax |aij||9ij|2/s|gi,j| = Emax a;;Y;;| ~ Emax |a;; X1,
1,] 1,] ]

where the second estimate follows by the conditional application of (12) and the
last one by (15) and [12, Lemma 4.7]. Thus,

Ell(aij Xij)isillp—a ~p.ar max|[(aiz)llp- + max l[(aiz)illg + E max |aij Xijl-
,

Let Z;; = €ij|gij|2/r, where €55, © < m, j < n, are iid symmetric Bernoulli
variables, independent of (g;;);,;. Then

(E|X¢j|p)1/p ~op T (E\Zij\p)l/p7
so [12, Lemma 4.7] and (12) yield
E max |a;; Xij| ~p Emax |a; Z;;| = Emax |a;;[gi;|*"
1,7 2,7 2,

r (EmaXIaij|7'/2|gij|)2/r ~ (Il?gt})(ﬁflfk \/Logk max, |aij \’”/2)2/T

= max inf Log'/"k max |a].
k20 |I|=k (6.9) ¢l

Finally, the third two-sided estimate in Corollary 10 may be established in a
similar way as in the Gaussian case (see the last part of the proof of Theorem 2). O

Proof of Corollary 15. Let (g5);; and (gi;):; be independent matrices with inde-
pendent symmetric =1 and N(0, 1) entries, respectively, and assume that they are
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independent of (X;);,;. Let Y;; = g;;Xi; and Z;; () — = |Y;,|? —E|Y;;|* for p € {p*,q}.
Since X;; are centered,

E”(Xij)Hqu < 2E||(5inij)||p%q = IE| |E||( w)Hp%q

-+ Emax [[(Yig)illg,

~pq E miax (Yij);

where the last bound follows by Corollary 9.
Since for every a,b > 0, (a + )"/ < a'/? + b/, we have

o (Vi )l < mae(Y ORIV 17) "+ max| 20V, 1 - BY1|
By the independence of g;; and X;; we have
s (3B 1) = lgn 1) mae (YL 1)
~Vams(SEx 1)
Moreover, by the Rosenthal inequality we havel for every r > 2,
Emjax‘zzi(f)’l/q < E(Z‘Zzz(gq) r)1/(rq (ZE‘Z (s )1/(rq
i P

(Z(ZMZ(@ ) ZE|Z(q) )

Observe that for u > 1 we have
E|Z{ [ < 2UE|Y;]7 = 29Elgi;|™E|X ;] < 2%(qu) T/ 2E| X;;|7.

Therefore for any r > 2,

1/q
Emax |(Vi)lly S max (3 E|X 1)

r/2 1/(rq)
+ (Y (o Ex ) TSR
J i ,J
In a similar way we show that for every s > 2,

. (Z]EIXUVJ ) 1/p*
) )
A j iJ

Estimate (4) follows if we choose s = r = 2 and estimate (5) if we take r = 2(p*Vq)/q
and s = 2(p* V q)/p*. O

EmaXH( i)

3. BOUNDS FOLLOWING FROM THE SLEPIAN-FERNIQUE LEMMA

3.1. Range p*,q € [2,4). Let us begin with a modification of van Handel’s argu-
ment from [17]. This allows us to prove Proposition 17, i.e., a weaker version of the
main result in the range p*,q € [2,4). Let Ao A = (a ”)l<m,j<n be the variance
proﬁle of GA = (aijgij)igmngn and

0 Ao A
B = (bij)ij<m+n = ((AOA)T 0 ) .
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Let Y be a (m+n)-dimensional Gaussian vector with mean 0 and covariance matrix
B~ being the negative part of B, i.e., B~ = — 7" (\; A O)uul, where B =
S Nuiul s the spectral decomposmon of B. The proof of [17, Corollary 4.2]
yields that Yk are Gaussian random variables with variance EY? < (3, bw)l/ 2,
Hence,

1/2
Var(Y;) < (Z afj) , 1<i<m,

J

1/2
Var(Yj1m) < (Z a’?j) , 1<j<n

K3

Lemma 22. For any bounded, nonempty sets K C R™ and L C R",

(16)

E sup ajjgi5sit; <E  sup Z SiGi
seK,tel SEKtEL ]

+E sup tig
éemz s

+ IEsup S5 2y, + Esup %Y,
- tELZ s

Proof. Let us define the symmetric Gaussian matrix
0 Ga
X = (Xij)ij<m+n = ((GA)T 0 > :

Then B is the variance profile of X. Consider two centered Gaussian processes
indexed by v € R*™™:

m—+n m—+n
Z Xpvpv, and  Z, =2 Z Vi Gk Z vlzb%l + Z V3V,

kJl<m+n k=1 =1 k=1
It was shown in [17, proof of Theorem 4.1] that for any v,v’ € R"*™ E|G,—G|?> <
E|Z, — Z,|? and, as a consequence, the Slepian-Fernique lemma (see, e.g., [3,
Theorem 13.3]) yields

E sup G, <E sup Z,.
vEK XL vEK XL

Thus, to finish the proof it is enough to observe that

sup G, = sup Z Xy

vEK XL UEKXLk,lgm-i-n
= sup ( > Ga)ysiti+ Y ((GA)T)jithi>
SERAEL N\i<m j<n i<m.j<n

=2 sup E aijgijsitj
seK,teL i<m,j<n

and

2 2
tjam + 2thgm+]

sup Z, = sup (225191'

vEK XL sEKEL\ 3

m n
+> siYi+ Z@Ymﬂ») : O
i=1 j=1
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Corollary 23. Ifp <2 <gq, then
ElGalleg—ey < Emax|l(aizg:)ill, + Emax|l(aijg;);llp +E max [Vl

Proof. We apply Lemma 22 with K = By, L = B}. Note that
2
sup 57Y; < sup 3Y<maxY
s Y- g

and

5upzt Y;n-‘r_] S sup Zt Y;n-‘rj S ma‘X|}/’NL+]|

tel ; teBy 75

a/2
The convexity of the function u — Y7 |g;]4 (Z?Zl |uj\a?j) and the fact that
B} = conv{te;: j < n} yield

> >l (3o o))
sup S:iGi = sup( gi ( tia ) )
SEKtEL % e teBp N\ ’ 7%
i a/2\ 1/q
< sup (Z \gilq(ZIUjla?j) )
ueBt Yoy j=1
i 1/q
= max(3loal”) = max g0l
i—
In a similar way we show that
n
‘ = g Nl 0
ggg?@L;%ngm Zsz aij m?X||(angm+j)J||p

We shall also use the following lemma, which follows by the Gaussian concen-
tration (see, e.g., [3, Theorem 5.6]) and [17, Lemma 2.3], applied with X; =
sup,er, Xt — Esupyeq, X¢ and o7 := supyer, (VarXy)/2.

Lemma 24. Let X = (Xy)ier be a Gaussian process and let Ty, . .., Ty, be nonempty
subsets of T such that T = Ule T;. Then

Esup X; < max[E sup X; + Cmax v/Logi sup(VarXt)l/z.
teT i teTy teT;

In particular, if X is centered, then

(17) Esup Xy < max[E sup Xy +C\/ITgk‘ sup(IEXf)l/Q.
teT v teT; teT

Proof of Proposition 17. Since

sup
xeB;’;

Z% aj; = max |al,

Lemma 24 yields for every ¢ € [2,00),

< T}?jﬂEH(ai]‘gi)in + max \/ﬁgjm?x |aij]

< max (Bl (asjgn)i5) " + max /Tog jmax|ay|

(18) < VqD2 + max \/Log jlai;|.
2,7

Emax ||(ai;jgi)illq
Jj<n
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In a similar way we show that for every p € (1,2],

» S Vp*D1 + max +/Logi|ai;l|.
i,j

Emax||(ai;9;);
By (16) and Lemma 24 we get
1/4
- 4
Eriria}i(Dﬂ,SmiaX\/Logz(Zaij) .
- J

Moreover, for p* < 4,

n 1/4 n N 1/4 .
Logi( g a;lj) < Logi( E la;; [P ) ji’f |aij|(4—p )/4
=1 =

j=1
* S /P * .
< (X laul™) "+ (1= ) maxLog? ) ()] .
j=1 ’
Similarly, for ¢ < 4,
E Y. <4 Ny g\ 19 Loe2/4=D (V. -

m<aX| J+M| S Z |a2]| + 4 max Log (])‘a2]|7

j<n — ¥
so the assertion follows by Corollary 23. (]

3.2. Range p*,q > 2. The first step in the proof of Proposition 19 in the case
p*,q > 2 is Proposition 25 below. In this subsection we follow the ideas from [1] —
which also use the Slepian-Fernique lemma — to provide some tools to be used in
Section 4.1 to prove Proposition 25.

Proposition 25. If p*,q € (2,00), then
E||Gallp—q < VD" D1 + /aD2 + Log” " (mn) max laijl,

where Y(p,q) = &+ max{gPo, 5} = L 4 max{ 2y, 0} ~ S2AL

In order to prove Proposition 25 we split each s € By and ¢ € B} into two parts:
one consisting of vectors with coordinates which do not exceed a certain level and
the second one consisting of vectors with non-vanishing coordinates having absolute
value exceeding the same level. In order to control the supremum over the points
with small coordinates, we first replace the sets By NbB{, and B;: NaBZ} by sets
whose extremal points have a very special and simple structure: absolute values of
their non-zero coordinates are all equal to a constant depending only on the size of
the support of a given point. More precisely, we substitute By NbBf, and Bj:NaBZ]

by the sets K, and Ky« 4, respectively, where, for a given b € [n=1/7 1],
Ky = conv{(|J] 771 Ljes)jznt n 2 |J] 2 6775 € {~1,1}}.
The next lemma shows that by doing so we loose only a logarithmic factor.
Lemma 26. Assume that p € [1,00], and b € (n"Y/? 1]. Then
B NbBY C (3 + Log'/*" (nb?)) Kp,n.p-
Proof. Fix a vector x = (z1,...,7,) € B} NbBZ,. We only need to prove that

(19) %k, ., <3+ Log!?" (nb),

p,n,b —
where
el ..., = (A > 0: 2 € AKp s}
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Since both K, ,, ; and B;Lﬂngo are permutationally invariant and unconditional,
we may and do assume that b > x; > --- >z, > 0. Set j, = [b7?] +1 < n and
Zp41 = 0. Then

Jo—1
(20) x—Zx]e] Z T eJ+Z i —Tir)(en+ o+ eg).
Jj=1 J=Jv

Since j, > b7, j7VP(e; + -+ +e;) € Kpnyp for every integer j € [jy,n], so
ler + -+ €llk,.., < j'/P whenever j € [jy,n]. This, together with the triangle
and Holder inequalities, yields

HZ i~ zir)(en+ e H <Z j = 2)g' "
pwb

J=Jv J=Jv
=i+ D = G- )Y
j=Jgr+1
<1+ > xjf/Hsuanp( Z hy
iZdot1 Zjor1 )
(21) <1+ In?" (nb?),

where we also used the elementary estimates j1/7—(j—1)1/P < j%_l and Z?:JH_ % <

f;; 1dt =1In(n/jp).
Since Kp 4 is unconditional,

Jp—1
92 ‘ 2 — z;,)e; H <H be, H <bjl? < 2.
(22) J;(J 5 )€; Ky Z J - Iy
Estimates (20)—(22) yield the desired inequality (19). O

The next lemma shows how to bound the suprema over the sets K-, , and
Kp.np-

Lemma 27. Assume that a € (m*/9" 1], b € (n=Y? 1], and p*,q > 2. Then

E sup E aijgijsitj
SeKq*,m,avtEKp,n,b 77]

< a2\ /p* Dy + bl_p/Q\/aDg + (al_q*/2 + b*7P/2)/Log(mn) max |lai;|.
0]

Proof. The proof of [1, Proposition 3.1] (see estimate (3.6) and the last formula
on page 3492 therein, based onthe Slepian-Fernique lemma) shows that for every
1<k<mand1<I<n,

Emax sup sup Z aijgijnm;-fjrr}%xz Zafj—i-rrllf?sz Zafj

1,J neBZ n’eBY )

oo jel,jed T oier \ jeg jed \ ier
B Yo (S ¢ B S5, S,
icl jeJ jeJ icl
where the maxima and the suprema are taken over all sets I C {1,...,m}, J C

{1,...,n} such that |[I| =k, |J| =, and ¢1,...,Gm,01,--.,gn are independent
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standard Gaussian variables. Moreover, for every [ > b™P,

kl/q 11/p ” Z Za = sup sup Zsz

m n n
jeJ EB teBNbBY,

= sup (zm: (z”: t?a?j) q/2) e

t€BRNbBL, N7 N4

< b1P/2 qup (i (Zn: |tj|pa§j)Q/2> 1/q

LBy Yol =1

=br max || (aij)illg = b'7P/2 Dy,

a/2

where in the second inequality we used the convexity of u +— > 1", ’Z 1 Uy afj

Likewise, for every k > a=9",

1 N

2 1—q*/2

KT e T Za” sa Di.
jeJ \ ier

A similar reasoning, together with (18), shows that for every [ > b7?,

1
2 1-p/2
WEmaXZ%\/ZTq ”/Emaxll(amgz) lq
el jeJ
S0 P2 (\/gDs + max \/Log jlaij).-
1,7

Similarly, for every k > a=9",
PRV ll/p]EmaXZg, Z]aQ < ald /Q(fDl +max\/Ing|a,] )
V je
This implies that for every a " <k<mand b P << n,
(23) EWiy S o'~ /2Vp"Dy +0'/2 /4Dy
+ (al—q*/Q _‘_bl—p/z)\/mr%xmij"

where

Wk,l = sup E aijgz-jsitj
sekD e i

and
KI()IZL = {lil/p(nj]lje‘]): ne{-1,1}",J C [n],|J| =1}.

Hence, by inequality (17) we obtain

E sup E ai;jgijsit; = E max Wi
SEK g% . atE€EKp nb i a~ 1" <k<m,b—P<Ii<n
5242
< max  EWj ++/Log(mn)  sup E ag;sits
a” 1 <k<m s€BiNaB}
b=P<i<n teBINbBL,

< max EWjg;+ al=a 2pl=p/2 Log(mn) sup
a”? <k<m s€B/ NaB}
b P<I<n teBrMbBL,
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= max EW,;+ al=e /2pt-p/2 Log(mn) max |a;;|.
41" <h<m i,
b P<i<n

Thus, (23) and the assumption that a,b < 1 yield the assertion. O

4. DIMENSION DEPENDENT BOUNDS

In this section our aim is to obtain dimension dependent bounds from Propo-
sition 19. We begin by proving an even weaker estimate in the range p,q > 2,
i.e., Proposition 25. Then, in Subsections 4.2 and 4.3, we show how to reduce the
exponent of the logarithm appearing in this proposition (and in Proposition 17).
The proof of Proposition 19 is provided at the end of this section.

4.1. Proof of Propostion 25. Let us recall that in order to prove Proposition 25
we split each s € B and t € By into two parts: one consisting of vectors with
coordinates which do not exceed a certain level, and the second one consisting of
vectors with non-vanishing coordinates having absolute value exceeding the same
level. Results of Section 3.2 allow us to bound the supremum over the points from
the first part. The next lemma shows how to control the suprema over points with
large non-zero coordinates.

Lemma 28. Ifv > 1 and p*,q > 2, then

(24) E sup sup Za”g”slt Lijs,|>y-1} S VP*D1 4+ /7 Logmmax\a”|

s€BJL teBy

and

E sup sup Za”gljs it IL{|tJ‘>V_1} SVaD2 + /AP Lognmax\a1]|

SEB;'; tEBg i

In the proof of Lemma 28 we shall use the following standard lemma; we formu-
late and prove it for the sake of completeness.

Lemma 29. For every fized s € B}, q € [2,00], and p € (1,2],

(25) E sup Za”g”s it _]EH(ZGWQUSZ) H < +p*D.

teBy "
2%

Similarly, for every fized t € By, p € [1,2], and q € [2,00),

(26) E sup Zauguslt = H(Zaugu ) H < /qDs.

seBm

Proof. We have
p*\ 1/p" p*\ 1/p"
EtSI}Bp Zamgus it E(Z (Z aijgijsi) ) < (EZ(Z aijgij5i> )
€Bn . . . ,
J ? 7 A
p*/2\1/p"
= ||gl71||1?* (Z (Z a;;s 1) ) .

,J
p* S \/IF and7 Since ||8||2 S ”3”(1 S 17

(Z(Za” l)p*/2)2/p —H(Z% U) p/2<ZSQH za

< max||(af;);lp- 2 = max | (ai;);l[ = Di.

We have

Hence, (26) follows. Estimate (25) holds by an analogous argument. O



20 R. LATALA AND M. STRZELECKA
Proof of Lemma 28. By the symmetry it is enough to show (24). For a fixed
nonempty set I let

X1 = |[(aij9ij)ier,j<nllp—q-

Let T be a 1/2-net in B. (with respect to the £, norm) of cardinality at most
571, Then

X7 < 2sup sup Za”gwsl
sE€T teBY

Thus, inequality (17) yields

EX; <supE sup Za”gms it; ++/log |T|sup sup (Za 2t2>

seT teBp seT teBy
Since T' C Bj* C By* and B} C B3 we have

27 sup sup ( a; ) < max |a; ;|-
( ) SeTteBn Z ’L] Z ] 271 | Z]|

Estimate (25) implies that for any fixed s € T,

E sup Zawgwszt < +p*Dq,

teBy

hence,
(28) EX; < Vp*Di + /|| max |az).
i,

There are at most Cm”" subsets of [m] of cardinality at most 49 . Thus,
estimates (17), (27), and (28) yield

1/2
E max X; < max EX;+ /9 Logm  sup (Za” ft?)

T€T2(k),k <y 1| <ve” s€By teBy
S VP D1 + /77" Logmmax |a;|.
i
To derive (24) it suffices to note that for s € By?, [{i: |s;| > 7'} < 79", so

E sup sup Zawgws itil{s,)>y-1) S E sup sup Zawgws ity O

GGB’" tEB" 5EB$7|supp(5)‘<7¢Z* tEB"

Proof of Proposition 25. We begin with a simple observation that [1, Proposition 1.8]
implies

1
E sup sup E a;jgijsit; <m” /q" IGallp—1
sEB"‘ﬁm‘l/‘l B tEB"

,J
S 3 (3 v (S () )
te€B i1 =1 2.2
< s ()" v (S () )
P Jj=1 i=1
(29) = Dy + Dy,

and, similarly,

(30) E sup sup Z a;jgi;sit; S D1+ /qDa.

sEBJL teBpnm~l/PBR
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If a = Log"?® %) (mn) > m~Y/7" and b := Log~¥® P (mn) > n=/P, then
Lemmas 26 and 27, imply

E  sup sup E a;;gi;Sit; S Log(mn)E  sup E aijGijSit;
s€BRNaByL teBpnbBL, SEK gm0 57
tEKp n,b

S VP D1+ +/qD2 + /Log(mn) max |a;;|.
i
If a <m~ Y% or b <n~Y? then (29) and (30) yield
E sup sup Z a;jgi;Sit; S Vp*D1+ /qDs.

sEBLNaBL t€BMbBL,

Moreover, Lemma 28 (applied with v = L0g2/(2_Q*)(mn)) implies

]Es?é% tsel}g% Za”gws 51415, 2Log=2/ 247 (mn)}

S \/Z?Dl + /@D + Log' />t /=4 (mp) H}E}X|aij|
and, similarly,

E sup sup E augwszt ]]'{‘t |>L0g72/(2 P)(mn)}
seEB teBp

< «/p*Dl +/qD2 + Log!/?+p/(2= p)(mn) max |a;j|.
7
The last four displayed inequalities yield the assertion. O

4.2. Exponent reduction. Proposition 17 and Proposition 25 show that

E||Gallp—q S VD1 + /@D2 + Log" " (mn) max |ai

whenever p*,q € [2,4) or p*,q > 2, with v(p,q) = 7 being a constant depending
only on p and ¢. In this and the next subsection we show how to reduce the exponent
~ and get Proposition 19. We do it in a similar way as in [13|. The argument is
based on the analysis of the graph associated to the matrix A. To run the exponent
reduction procedure we also need to obtain some weaker estimates with constants
depending on the degree of this graph (we do this in Subsection 4.3). Since we work
in the Gaussian setting and not with bounded Bernoulli entries as in [13], we face
some new difficulties. It is possible to deal with them making the advantage of the
fact that p* A ¢ > 2 (recall that the case p = 2 = ¢ was solved in [12]).
With an m x n matrix A = (a;;)i<m,j<n We associate the set

Eap = {(Z,j) Qij =+ 0} C [m] X [n]
We set

di.a=max|{j < n: (i,5) € Ea}l,
d2,A = m<aX|{Z s m: (’L)j) € EA}|a
i<n
dg = dl,A vV dQ)A.

We do not assume that A is symmetric, but we may treat ([m], [n], F4) as a bipartite
graph. Then dy is its degree. We write i ~4 j if (¢,5) € Ea, and I ~4 j (for
I C [m)]) if there exists i € I such that i ~4 j.

By p = pa we denote the distance on [m] U [n] induced by E4. A subset I C [m]
(resp. J C [n]) is called r-connected if pa(i, I\ {i}) < r for every i € I (resp.
pa(d, J\ {j}) < r for every j € J). Equivalently a set is r-connected if it is a
connected subset of the graph G(r) := ([m],[n], Ea(r)), where (¢,7) € Ea(r) if
and only if pa(i,j) < r.
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We denote by Z.(k) = Z.(k, A) (vesp. J-(k) = J.(k,A)) the family of all r-
connected subsets of [m] (resp. [n]) of cardinality k. Note that the maximal degree
of Ga(r) is at most da + da(da — 1) + --- +da(da — 1)""" < d%. Thus, [13,
Lemma 11] implies

(31) IZ.(k)| <md*df  and |7, (k)| < nabdrf.
For I C [m] we define
I'={jen]: Jic1(i,j) € Ea}
In a similar way we define J' C [m] for J C [n].
The next proposition reveals how one may reduce the exponent at the logarithmic

term to deduce the desired bound (7) from a weaker estimate depending on dj 4
and da 4.

Proposition 30. Let p*,q € [2,00), 0 <y < 1%, 0<yn< %, and oy, 09,3 > 1
be such that for every m X n matriz A,

(32)  EllGallp~g < 01D1 + 02Dp + as(di]y + dyly + /Log(mn)) max faz; .
Then for every m x n matrixz A

Log Log(mn)
—In((71p*) V (129)))
: ((Oq +a3)D1 + (a2 + a3) D2 + azy/Log(mn) max |aij|>-

Moreover, if we assume additionally that for every m X n matriz A,

EGallp—q S

(33) E||Gallp—q < a1 D1 + aaDa + a3 Log™ (mn) max |a;;|
i,j
for some 3 > 0, then for every m x n matriz A,

Log s
—In((11p*) V (129)))

. ((a1 + as)D1 + (o2 + a3) D2 + azy/Log(mn) max |az‘j|)~
]

Proof. Let 0 = ((p*v1)V (¢72)) ™' — 1. Then p*y1,¢72 < (146)7". Let ko = ko(p, q)
be the smallest positive integer satisfying

EHGAHqu S

1
5(1 + 6)ko*1 > Log(mn) > max{Log(n""), Log(m?)},
so that ko < — Log Log(mn)/In((y1p*) V (729))).
Define
ug == (e Log(mn))_%(““s)k“, k=0,1,...,ko.
Let

M := Dq + Do, M= a1 D1 + asDy + ag\/lmnﬁxmm.
Define matrices Ay = (a;;(k))i<m,j<n, K =0,1,...,ko+ 1 by
i (0) = @i L{jay;1>uomys  @ij(ko +1) = aijL{ja;;|<up, M3
and  a;j(k) = aijlju, m<|ay|<up_ my  for k=1,... ko.
Then A = ZZ[’:JBI Ay, so

ko+1
1Gallpsa < Y I1Gallpsa:

k=0
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Observe that for any u > 0,
uM max |{j: |ai;| > ub}'P" < max || (ai;);]lp
K2 3

<M,
uM max [{i: |ag;| > uM}"9 < max||(ai)illq < M.
J J
Thus,
dia, <ui?, doa, <up? fork=0,1,..., ko.
Since
dz,le + d;?Ao < uap*'yl + uaqw < 2u51/(1+6) = 2,/e Log(mn),
assumption (32) (applied to the matrix Ag) yields
1G aollpq S M.
Moreover, assumption (32), applied to the matrix Ay, yields for 1 < k < ko,
1Gallp—q < M + agupy M(dily, +dy’s,) < M+ asMup_1(w,” 7 +u 1)
< M + 205 Muy_yuy, /O = M+ 205 M.
Finally, applying (32) to the matrix Ay,+1 and using the trivial bounds d17Ak0+1 <
n, dia, ., <m, we get
G Ay 12 lp—sg < M + ag(n™ +m"2)up, M < M + 203 M.
To conclude the moreover part of the proposition, we define ky differently by
ko = inf{k > 1: (14 6)F*! > 2935}
and apply the assumption (33) to estimate |G, ,,[[p—q from above by
a1D1 + asDs + 2a3 M.

We finish the proof by noting that kg < O

Log~s
—In((v1p*)V(729))
4.3. Degree dependent bounds. In order to provide a weaker degree dependent

estimate (32) we are going to use the following proposition. For v > 1 we define
the set of v-flat vectors from B;, with support I by

K(u,r,I,7) = {SEB’“ supp(s) = I, sup|s;| Svinflsi\}-
el el

Note that if s € K (u,r, I,7), then max;e; |s;| < v|I|~/". We also put

Yii(v) =Y (v,4,p,¢) = max max sup sup @;;gijSit;-
I1€Ty(k) JeTa(l) s€EK (q*,m,I,v) teK(p,n,Jy) 16;6] R

Proposition 31. For every e€(0,1]] and1 <p<2<gq< oo,

(34) El|Gallp—sq S *E 1I<I}€3<Xm 1I£1la<xn Yia(dy) + Emax |aij gisl

1
(35) < ( max max EYj ;(d%) + +/Log(mn)||(a;; ||OO)

€ 1<k<m 1<I<n
Proof. Fix € € (0,1]. For s € B, t € By and k,l = 1,2,... define
Ii(s) = {i € [m]: d3* < [si] <dy70°),
T0) =i € fnls 3 <l < &),

Then
k !
ST AT L) < Nlslld, S dpP e n)] < it

k>1 >1



24 R. LATALA AND M. STRZELECKA

and

EGalpse =% s s 35S aygusits

[Is]lq«<1 Htl\p<1 kI>14€0,(s) jETi (1)
Define
My = maX|az‘jgz‘j|-

Observe that for any s € Bjt and t € B},

SN ST S aggasits| <D0 > sl > Y aglitl

k>11>k+1/e+1i€l;(s) jET (1) k>liel,(s)  1>k+1/e+1j€Ji(t)

<MAZ Z |sild " 1Z]lEA i,7)

k>1i€lk(s)

SMa) Y si=Mals|3 <

k>14i€lk(s)

« < My

Similarily,

< Malt]3 < Ma.

Z Z Z Z a;i59i5Sit;

1>1 k>1+1/e+1 i€l (s) jET (E)

Therefore, it is enough to estimate

E sup sup Z Z Z ai;j9i;Sit;

iri<ijet1 Mslla<UIEIR<T 55 i r sy jeq()

I—k=r

<(2/e+3) max E sup sup Z Z Z ai;gijSit;.
IP[ST/e+1 s <1 |1E]|p<1 ki>1 i€ In(s) €T ()

l—k=r
Let us fix |r| < 1/e+1, s € By, and t € B). For k,l > 1 with | —k =r
let Ij1,..., I, be 2-connected components of I(s) N Ji(t) and Ji, == {j €
Ji(t): Iy ~a 3}, 1 < uw < ug. Then the sets (Iy )k>1,1<u<u, are nonempty pair-
wise disjoint 2-connected subsets of [m] and the sets (Jx,,)k>1,1<u<u, are nonempty
pairwise disjoint 4-connected subsets of [n]. Define vectors s, 35k, € R™ and
tk,u;{k,u € R"™ by

S
Sk = (8ilgicr, .} )i<ms Sku = ke
~ th,
tk;u = (tj]l{jGJk,,u,})jﬁn7 tk:,u = Htk u” .
sullp

Since Iy, C Ix(s) and Jy ., C Ji(t), s; and t; do not vanish if ¢ € Iy, ,, and j € Ji 4.
Thus, 5., € K(q¢*, m, I, d5) and t, € K(p,n, Jy 4, d5), so

SN aggusiti=Y >, Y. D augisit

k>1 i€l (s) j€Ji(t) k 1<u<ug i€lyu j€T.u
l_ f—

<D0 D Vi (da)

k 1<u<up

< max  Vi(d)) Y.

lsksm,l<lsn k 1<u<ug

Moreover,

DS (X b)) (X X )"

k 1<u<uyp k 1<u<uy k 1<u<up
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(XX tsal) (2 twal)

k 1<u<uyp k 1<u<uyp
*/2
= [|s |-/ [J¢l|/? < 1.

The above calculations show that

1
< = €
Gl S 2, Jax  _ Yii(d}) + Ma,

which yield bound (34).
Moreover, EM4 < Logl/Q(mn)H(aij)Hoo and, by estimate (17),

E max Y. (d5) < max EY.  (dE
oA ki(d) S Lo lnax k1 (d%)

1/2
+ Log(mn) su su ( E Cl 2t2)
g( ) SEBp‘ iEEBl?L “ % !

= max  EYj(d%) + \/Log (mn)||(ai;) |l oo,

1<k<m,1<I<n

so estimate (35) follows. O

Now we need a bound for the expectation of Y ;(y). It is derived in the following
proposition.

Proposition 32. For every p*,q € [2,00) and v > 1,
EY;1(7) < Vp*D1 + /qD2 + \/Log(mn) max |ag]
(36) 32 Y minRIY?, K2 kd}ﬁ,ld”?}mmaﬂam

Proof. Observe that

Y, < X7,
() < Iénﬁ% I

where
XI = Xl(pa q, ka l7 ’Y)

= sup{ 3 aigisity: s € By, kYT BL, te By oy B
i€l,j

Define

Okl = Jk,l(pv q,7)

— sup{ Za $22:s € BNk~ BY, t € BI N vl_l/pBgo}.

Ul]

Let us fix I € Zy(k) and choose a 1/2-net T in BJ. N yk=1/4" BL (with respect
to the norm determined by this set) of cardinality 5*. Then

EX; < 2Esup sup Z aijGijSit;-
sETteB”ﬁA/l 1/rBm icl,j

By inequality (17) we have

EX; <supE sup Z a;ijgijsit; +/Log |T|og .
s€T  teBrnyl—1/PB2 iel,j
By (25)
supE sup Z aijgijsit; < V/p*Dj.

s€T teBpmI=1/P BT jeT
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Thus,
EX; S \/}?Dl + \/%O’k,l.

Applying estimate (17) again and using (31) we get
]EYkJ S max EX;+ y/Log ‘I4(k)|0’k7l
I€Z4(k)

(37) SVPD1+ (VkLog(da) + v/Logm)o,.
To estimate o, observe first that BI* C Bf and B, C By, thus

sup sup Z a? 522 < max|a”\2

ijSit;
n
teBL, s€BY T,

Moreover, for any s € By N vk~ Va B% and t € By Nyl™ 1/T’B" we have

Z% 75 < lsllZ 1113 ? max a | lez\q |t51P

4,7
< ,Y47q 7pk172/q 1172/1) max|aij\2
]
< A2 2P max ag 2
=7 E

and

Z% P < sl Ne% Zawlszlq* < IslZ T el% maxza”

,J

“od1,a Irlygx|aij|2 <A 2/pcll,A Irlggx|aij|2
< 73k1—2/q*l—2/pd1)A Hila}x|aij|2.
Therefore
(38) ot < min{l,ykl/zfl/q*ll/%l/p,73/2k1/2*1/q*171/pd},/j} max lai;|-
Estimates (37) and (38) yield
EYii(v) SVp D1+ Logmrrl;f;x|aij|
+ 432 Y Y min {112, d 1/2}\/Log—dAmax|a”|
In a similar way we show that
EYyi(v) S vVaDz2 + \/ITMH;%X |agj|
+ 432 =P min{ kY2 d 1/2}\/Log7d,4max\au| O
To make use of the two previous propositions we consider the cases = —|— >3/2
and 1 5+ q—* < 3/2 separately.

Corollary 33. Suppose that p*,q € [2,00) are such that % + q% > 3/2. Then for
every € € (0,1],

ENGally g S ™ (VI D1+ yaDa + (/25 + /Tog(mn) max|as;]).
i,
Proof. By Proposition 31 we have

1 pe
E||Gallp—q S 7( max max EY ;(d / ) + /Log(mn)||(a;; Hoo)

1<k<m 1<i<n
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Observe that in the case p*, q € [2, oo)7 1y i > 3/2 we have for any k, I,
Va1 =Ye min{ k12, kY2 kdi/j,ldlﬂ} < min{k' V9 /2P p1/2=1/aT -1y
< (EAD3ZYa =1 <1,
Hence estimate (36) yields that
EYii(d{*) S VP D1 + VaDs + (d*v/Log da + v/Tog(mn)) max|as; .

Finally we observe that sup,; 27°Logz Se™*', so di\/Q\/Log da Sdye 2. O

Corollary 34. If p*,q € [2,00) are such that % + q% < % and qV p* > 2, then

qVp*
EHGA”p—n]Nq(vp ) |:\/ * D1 +\/>D2
(qVp)*? st SR
+((qvp*_2)1/2(d12,14 2( +)+d22,A ( +))+\/Log(mn)) n}gx|a¢j| .

Proof. We proceed as in the proof of the previous corollary. The only difference is
a more delicate estimate of

Mot 2= kYO min (k1Y Y20 kd) S 1dy 7Y
Suppose 2 < p* < ¢q and ¢ > 2 (the case when 2 < ¢ < p* and p* > 2 follows by

duality). Let p > 0 be a constant to be chosen later. We consider two cases.
Case 1. k < pl. Assumptlon i i < 2 implies that ; 5t o i > 0, and so

szwc“”fmm%”%wwﬂ*”7ﬁﬁcmﬂo
< k,l/p*—l/q*pl/Z—l/p* (min{k‘,deA})l/Q
< (deA)up*71/q*+1/2p1/271/p* _ pl/qd1{£*+1/q_l/2.
Case 2. k > pl. Then
Ty < kYP VT (min{k’dz,A})l/Q(l/k)l/p* < p VPP (mindk, do 4 })
< pTYPT Ay T = e g a2,

1/2

Choosing p := (dz,a/dx, A)lfp*q/(Z(p*+q)) we obtain in both cases

s < dl/P —q/2(p* +Q))d1/q p*/(2(p*+q)) <= : (dQ/p —q/(P*+q) Jrd?/q p*/(p* +<1))

Therefore, Propositions 31 and 32 (applied to € = ¢/3 and ~ = di‘/ %)

every ¢ € (0,1),

ElGallp—q < = (\FD1+\[D2
+ (dzM(d‘” DEE +dq 7) + Log(mn)) n}gx\aiﬂ).

yield for

Recall that
oy 5 o

and dg = dy,4 Vda 4. Note that p%

p*+q  p* q  p*tq

. q 1 p* 1 p*
g = = mln{ " - — f} and ¢ := —E&Q-
2 pr+q proptq g q
. 2 q 2 q 1
For such a choice of & we have .= — —L- +e < -5 — +q 3t < pr

2 p* 2 p” 3 p” .
nd ¢ — <z - <2 - 2 <1 Moreover, th mption
and o — 2o e <8 — o 0 S 5p — spepg) < 3 Moreover, the assumptio
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1/p+1/q* < 3/2 yields that 1/p* +1/¢ > 1/2 and thus 2/p* — q/(p* + ¢q) > 0 and
2/q —p*/(p* + q) > 0. Hence, the AM-GM inequality implies

2 q
5 2 _ 2 2 _a
BT Md?ﬁm“o p ot g GraE )
1A 245 T 1A 2 q 2,4
P p +q p* 0
2 p*
—*—7, ¥ “+eo0 2 ——4——+eo
P p*+q q pT+q
S d17A +d2,A
and
. « 2 p*
5 e (2 P = — 2
* o €0 (5% +¢€0) * i +eo
d5 Aqup +a < 27d15014q pita + %C@AP e
q  pHq a " prg 70
= (2_ 2_ _p" c0(2__p*
SdlaoA(q S +q)+€+dq o +eo ds( p*+q)+a+dq %14 Teo
2 9
»F T pF +€o +50
<dp, vt +d
3 3
To finish the proof it suffices to note that e ™! < g7 < 755 O

Proof of Proposition 19. The assertion follows by

e Remark 4 if p = ¢ = 2,

e Corollary 34 and Propositions 17 and 30 if p*,q € [2,4) and p* V ¢ > 2
(note that in this case we have 1/p + 1/¢* < 3/2),

e Corollary 33, applied with € = (2(p* V q)) !, and Propositions 25 and 30 if
p*,q € (2,00) and 1/p+ 1/g* > 3/2.

e Corollary 34 and Propositions 25 and 30 if p*,q € (2,00) and 1/p+1/¢* <
3/2.

To get the claimed bounds on a(p, q) we observe that in the case 1/p+1/¢* < 3/2

3
we have 1 > 5 — W >1/2, so that

1(3 qp” ) qp” L p'vg=2
e * ~ * _7"\4*7'
2 2p+q)/ 20p*+q) 27 pVg

Moreover, Corollaries 33 and 34, and Proposition 30 imply the following.

Proposition 35. Suppose that p* = 2 and q € [4,00) or that ¢ = 2 and p* € [4,00).
Then

E[|Gallp—q Sp.q Log Log(mn) (D1 + Dy + y/Log(mn) Irilz;x |aij|).

5. PROOF OF PROPOSITION 18

To prove Proposition 18 we decompose the underlying matrix A into block
diagonal matrices Ay (with blocks of appropriately small size) and matrices B;
whose norm may be controlled by the following proposition providing a crude, but
dimension-independent bound.

Proposition 36. Let p*,q € [2,00). Then for every partition Jy, Ja, ..., Jg, of [n],

3 1/2
(89)  ElGallpq SEIGallzog S VaDz + max max kA2 max  ag).

Similarily, for every partition I, ..., I, of [m],
31711/2
(40)  E|Gallp~g < EllGallps2 S vp* Dy + max  max k7|1 / scnaxaig).

In order to show Proposition 36 we need the following two lemmas; they allow
us to perform the induction step.
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Lemma 37. For every a,b € R™, c € R and q > 2 we have
2/q 1/2 2/q 2/q
(X far+bal?) " +) < (S ladr) " 4 a( X 1)+ )
i<m i<m i<m
Proof. Jensen’s inequality implies that

2/q 1/2 2/q 1/2
i<m

i<m

1/2

The hypercontractivity of Gaussian variables and the triangle inequality in Lg /o
yield

(Y Blai + bigi|q)2/ T2 (D (Bl + \/abigilz)q”)% = li(a? + ab)illo/2

i<m i<m

< 1@f)illgs2 + all (B7)illq/2

_ (Z |ai|q)2/q 'H](Z ‘bilq)ﬂq. .

i<m i<m

Lemma 38. For every ¢ > 2, J C J' C [n], a finite set T C By and functions
b= (b1,...,bm): T = R™ and ¢: T — R we have

Esup((z bi(t) + ;} a;jgijt; ‘q) 2/q+c(t)2) e

teT i<m

< supE((Z

teT i<m

a\ 2/4q 1/2
bz(t) + Z aijgijtj‘ ) +C(t)2> + C\/ LOg ‘T| ‘<ma.>éJ |aij|.
i<m,j
jeJ

Proof. Observe that

a\ 2/4q 1/2
> b > ) = X
i(t) + a;;9i5t; +C(t) = sup s,0,t>
i<m jET s€BJL veB3
where
Xsut =1 E i (bi(t) + E aijgijtj> + vac(t).
i<m jeJ
We have
sup sup Var(X,,;) =sup sup v} E afjsft?
t€T seB veB3 t€T s€BL wEBS i<y ey
< sup sup E a?jsfti = max |a;|.
teBy s€EBL i ey smged
Hence the assertion follows by Lemma 24. O

Proof of Proposition 36. We will prove (39); the second estimate (40) follows by
duality.
For 1 <k < kg let Ty be a 2-2k_net in B‘QJ’“ of cardinality at most 24k Tkl - Qe

Jep = U iy Jep = U J;

1<k I>k
and for t € R™,
m(t) i= (t;) e, € R, man(t) i= (t;)jes., € R7=E.
Define
Ti<pi={t€BJ*": m(t) e Ti 1 <1<k},
Ty =Ty <k, ={t € By: mp(t) € Th,1 <k <ko}.
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Then T; is a %-net in By, and hence,

q) 1/q

We will show by the reverse induction on k& that for 0 < k < ky,

El|Gallp—q < E||Gall2—q < 2E SUTP(E ‘ Y " aijgiit
teTy 3 )
i

a\ 1/q a\ 2/q 1/2
E sup (Z‘Zaijgijtj‘ ) §Esup((2‘ Z aijgijtj‘ ) —|—qu Z t?)
teTy i i teTy i g JE€ T
(41) + Czq/Log |T1,< maxmax|aw|
I>k

For k = ko inequality (41) holds with equality. Observe that

2/q 1/2
(5] 3wt )" +ant ¥ )
teh v jEJ<k JE€I>k
- 19\ 2/4 ~ o\ 1/2
= _Sup ((Z‘ > aigiits ) +C(t)2> ;
tETl,gk i jeJSk

where

c(t) :== /gD sup ~( Z t?)l/Q.

teTy : ng(t):t jE€Tsk

Let Ej, denote the integration with respect to random variables (gi;)i<m.jeJy-
Conditional application of Lemma 38 yields

T Sup ((Z‘ Z aijgijt; )2/q+0(t~)2>1/2

teTy <k

JE€EJ<k
~ 19\ 2/4 ~ o\ 1/2
< sup EJk((Z’ Z aijgist; ) +C(t)2) +C\/ Log |T1,<k| max max [a;;|.
teTy <k i jeEJ<k voIe

Lemma 37, applied conditionally, implies that for any ¢ € Th <k,

En((X] 2 avat[)" +e?) "
i jEJ<k

~aN2/a L \1/2
(5] T ) )
i je€EJ<k-_1
where
q/2 2/q -
—o(| X aB) " e
i jeEJg
Note that
a/2\ 2/q q/2\ 2/q
X @) < X8 s (O] X abal )
7 JjEJk JEJk GB 7 JEJk
/q
=Y Ema(Slar) <03 Y 7
JjE€EJIk % J€Jk
SO
&) < qD3 sup Z t?.

t€Ty: mek ()=t je j 4
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Thus,

ESW((Z’ > aigisty q>2/q+qD§ ) t?)l/z

teT: - . .
€h i JEJ<k J€I>k

~a\2/a ~ 5\ 1/2
<E_sup ((Z‘ @ijGijt; ) +5(t)2) +C\/L0g|T1,§k\m§X§%@):|aij|
i

teTt <k JE€J<k-1

ay 2/q 1/2
SEsup((Z‘ az‘jgijtj‘) +aD3 ) ti)

T .
teh JE€J<k-1 JE€EJI>k—1

+ C'y/Log |T1 < | max max |a;;/,
i jeEJ

so the reverse induction step immediately follows.
Estimate (41) for k = 0 gives

k
g\ 1/q 9
sup EZ Ej a;ijgijt; <Vq 2+C,§:1H og | T1,<k In?x%z}]f|a]|

teT
We have
k k
Log|T1 <] <Y TLog|Tii| <D I,
=1 =1
so that
Z \+/Log|T1 <k maxmax|a”| < Z V|| M2 maxmax\a”|
1<I<k<ko
l
< max k3|J|1/? maxmax|a”| Z 4
1sisksko €I 1<I<k<ko
< max  KP|Jy) Y2 maxmax|a”| O
~ 1<i<k<ko jE€J

Now we are ready to prove Proposition 18.

Proof of Proposition 18. Let r = 8(p* V q) and
Dl = max(i + )" asg).
Define the sequence (ng)g>0 by
ng =0, ng = {erkw for k > 1.

Then
(42)  /Log(nrn) < \/Logny + /Logn; < 7(nk_1 +mny_1 +2)/" for k,1 > 1.

For k =1,2,... define

={iem]: np_1 <i<ng},
Jr:={j €[n]: ng_1 <j < ng}

Then

4 /7 < N al < D
(43) ie?,}f})éjl(”k 1+ -1 +2)7 " ag] zef,ﬂﬁjﬁé‘h(lﬂ) laij| < Dy
Let

App = (aij)iern, je,-
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Then Proposition 19 and estimates (42) and (43) yield
E|Gayllps S a(p.q) (VI D1 + vaDs + VLol mas fa])
(44) < a(p,q)(Vp* D1+ \/qD2 + 1 DY)
For r € Z set

A= (aijliien, je  })i<m.j<n-
k>max{0,—r}

For every r (after deleting some zero rows and columns) A, is block diagonal with
blocks Ay +r. Hence, Lemmas 21 and 24, together with estimates (43) and (44),

imply

]E”GATHP—)Q = Emgx ‘|GAk,k+r ||p—>q
< m]?XIEHGAk’HTHpﬁq + max Logk max |a;l

iEIk7jeJk+r
< alp,q)(vVp D1 + gDz + rDL,).

We have
1

A= Z A, + By + Bs,

r=—

By =)
l

Estimate (39) applied to the matrix By yields

(aijlgenjeny)s  Be= (aijliicr, jeny)-
k I>k+

k>142 k+2

< 3 .
EGp.llp—q S vaD2 + maxmax /[ Ji| max max max fa;;|

< D5 + max ®\/n; max maxmax |a;;|.
=Va 1 E>142 i€y jEJ; |ais]

Observe that if ¢ € I, j € J; and k > [ + 2 then
By < mlh <m/T << i+ )Y

Hence,
]E”GBI ||p—>q 5 \/aDQ + Déo-

Similarily, estimate (40) implies
ElGp,llp—q S vPD1 + Dl U

Proceeding similarly as in the proof of Proposition 18 we may show that Propo-
sition 35 implies

. . * -1
E|Gallysg Spa Log Log(mn) (D1 + Dy + max(i + )00 jay )

when p* = 2 and ¢ > 4 or ¢ = 2 and p* > 4. This estimate, together with
Proposition 35, Proposition 20 and estimate (12), yields Theorem 6.

Sketch of the proof of Proposition 5. In a similar way as in the proof of Proposi-
tion 19 (using assumption (1) instead of Proposition 25) we show that

E|Gallp-sq < ' (p,0) (VP D1 + vaDz + /Loglmn) max|as, ),
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where

1 1
(p*V@)*PaLlogy if —+—>3/2,
/ _ poq (p* vV ¢)"'/*aLogy
a(pvq)_ * 11/2 < * 5/2
(p*vag)''Palogy .1 1 (p* v q—2)%
» 572 1f*+*}k <3/2
(p*Vaqg—2) P g

Then, as in the proof of Proposition 18, we obatin the dimension-free estimate

* . . * -1
E|Gallp—q S (0" V @) (p, q) (D1 + Ds + max(i + j)®FTVa) |aij|)

and the assertion follows by Proposition 20. (]
APPENDIX. ESTIMATES IN THE RANGE p*, ¢ € [2,4) WITH THE CONSTANT
BOUNDED IN A NEIGHBOURHOOD OF THE POINT (p,q) = (2,2)

The aim of this appendix is to prove that constants in Theorem 2 are bounded
if p*,q € [2,4) and p* V ¢ is separated from 4. Namely, the following result holds.

Theorem 39. Ifé € (0,1] and p*, q € [2,4—0), then for every deterministic matriz
A = (Gij)i<m,j<n we have

EllG allp—q ~s max [(a);l,~ + max [(aiz)illg + ]EH;&}X |aijgijl

~ max |[(ai;)jllp- +max|(ai;)illg + max Inf /Logh max |aij|

~ max[|(ai;); [lp~ + max ||{ai)ill + max qinf_, VEogh max |aij|

~ Emax||(ai;g;);llp + Emax|[(aijgi)illy-
Moreover, the constant in the first lower bound does not depend on § and the con-
stant in the first upper bound is bounded by (C/8)?/9.

The proof of Theorem 2 shows that to establish Theorem 39 it is enough to prove
that for p*,q € [2,4 — 0)
C\2/6 .
45)  E|Gallpsg < (3) (D1 + Dy - max inf\/ogh max, |aij|).
The crucial new tool we need to establish the above bound is the following result,
which allows a similar exponent reduction as Corollaries 33 and 34 in Section 4.3.

Proposition 40. If p*,q € [2,4 —0) and ¢ € (0,1/2], then

EIGallpso S e [Dr+ Dot (=24 (§
We may deduce the desired estimate (45) from Proposition 40 (applied with
e=WA—-p*Vqg/B(pP* Vq)~4—p"Vgqg>0); todoso we may use the same
arguments as in the proof of Theorem 2 in the case p*, ¢ € [2,4) with the constant
given in Remark 3.
The rest of the appendix is devoted to the proof of Proposition 40. To this end
we will need the following modification of Proposition 17.

2/6
) )dil/4+6+ Log(mn)> n}&}x|aij\}.

Proposition 41. If p*,q € [2,4) and a,b € (0, 1], then

B e e, D itiisits
SEBq*ﬁaBoo tGBp NbB7Z, 47

SDy+ Dy + (a(zfq*)/Q Logﬁ (ma?) + b>P)/2 Log‘%q (nbp)> max |a;;|.
0.
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The proof of Proposition 41 is based on Lemma 22 and the following quite
standard lemma (cf. [13, Lemma 14] for cases p = 1,2).

Lemma 42. Suppose that 1 < p < po, ¢ € (0,1], mj,0; > 0 and nonnegative
random variables Z1, ..., Z, satisfy

P(Z; =2 mj +toy) < e /2 for every 1 < j < n.
Then

1/p
sup ( g uQZJP) Spo maxm; + /Log(nc?) max o;.
uEB"OCB" J J

Proof. Let k be a positive integer such that m <t <1 +and (Z7,...,Z}) be the

nonincreasing rearrangement of (Z1,...,Z,). Let m = max; m;, 0 = max; o;, and
M = (m+ +/2Log(n/k)o)?. Then

R‘\H

1 k . 1/p
(2 E@y) " <2(m+
=1
< (m+ %Zap/ o0 B(Z) > m+a<¢w+t>>dt)“”
=1 0
< (M + %a” /oo ptpflef(tﬂ/ZLog(n/k))Q/th> e

0

o0 1/p
< (M + O'p/ ptpfle*t2/2dt> Spe M+ 1/ Log(n/k)o,
0

Z ~ V/2Log(n/k)o )} ) e

SO

1/ 1 & 1/
E sup (Z u?Zf) ’ < IE(% Z(Zl*)!’) : Spo M+ /Log(n/k)o
=
~ m + /Log(nc?)o. O

Proof of Proposition 41. We apply Lemma 22 with K = Bj* NaBZJ and L =

B NbBL. Observe that [|s|la < [|s[|3™%/?||s||&/%. This, together with a similar
calculatlon for £,-norms, yields

(46) K ca® 2By nat /2B, L cbPP/2(Brnp/2BL).

Estimate (16) implies that Yi,...,Y,, are centered Gaussians with Var(Y; ) <
[(aij);|3. Thus, (46) and Lemma 42, applied with Z; = |Y;|, p = 1, ¢ = a9 /2,
mj =0 and o; = [|(as;);|la, yield that

Ebusz2Y <a®> TR sup ZS2|Y\

sEK SEBI'Na?™ /2B ;1

< a®™1 \/Log(ma?") max ||(a;;) ;|4
1

a* 1" /Log(mat") max | (ai;); [ ma|ag;| 4P/t

IA

IN

* 4 — p* . x - *

pz Dy + Tpam—q /=" Log? 4=P") (1maf" ) max |ay; |
2]

D

|+ a0/ Log? 4P (mat”) ma [as .
1,]

IA
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In a similar way we show that

supZt Yiny S 0277 /Log(nb?) max||(ay):

tEL

< Dy + b7 Log? =9 (nb?) max |a;;).
1,J

By (46) and the convexity of the function x s |x|9/? we get

m q/2\1/q
3o S <om(Solar ($58) ")
i—1

seK, tEL —

< p(2—p)/2 sup (Z |gl (th ”)Q/Q)l/q

teBRNbP/2 B

. Jq 1/2—1/q
<0 p (Y Blagenlz) (2 8)

tEBéLﬂbp/QBgo j=1 j=1

- 1/q
(47) <R sy (S0 (g0l
teBRNbP/2BL, Y
Note that
Ell(aijg0)ills < (Bll(asig0)i| D < Vall(aij)illg,
and

sup [|(aijsi)illq = max|ag].
s€BY z

Therefore, the Gaussian concentration (see, e.g., [3, Theorem 5.6]) yields
42
P(ll(aisg)illy > vall(aij)illy +t max|ai;|) < e™*/2.
Estimate (47) and Lemma 42, applied with Z; = ||(ai;:)illqs p = ¢, ¢ = bP/?, and
Po = 4, lmply

n

> a3 S < max | (ai)illy + b P2/ Log(nb?) max [a; ;|

Jj=1

< Dy + b@7P)/2 Log® =47 (nb?) max |a; ;1.
3

In a similar way we show that

(2-47)/2 LOgZ/(‘l_p)(maQ*)max|ai,j\. O
0.

We also use the following consequence of Lemma 27 and Proposition 31.
Corollary 43. If 2 < p*,q < oo, then
EllGallp—q
< Log(da) (vp* max [[(ai);lp + v/gmax |(ai;)illg + /Log(nm) max |%‘|)-

Proof. If I C [m], J C [n], and v > 1, then for every (b;)i2; and (c;)7_;,

sup Zb81<’7 sup sti

s€EK(q*,m,1,7) 5 SE€K g m1 5
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and
n

sup chtj <~ sup Xn:cjtj.

tEK(p,n,J,'y) j=1 ter-,nJ j=1
Hence,

Yii(d5) < d25 sup sup Zaljgljs it
SEKQ* m,1 tEKp n,1 i,j

We choose ¢ = 1/ Log(d4) and apply Lemma 27 (with ¢ = b = 1) and Proposi-
tion 31. 0

As in Section 4.3, we estimate E||G 4l/,—,, using Propostion 31, so we need to
upper bound EY}, ;(d%). For I C [m] and a > 0 define

B(p,I,a) = B(p,I,a, A) := {tEB" maXZa t2<a}

ij7]

and for I C [m] and J C [n] let
"= {Z S [m] Hjep (Z,]) € EA} and J' = {j S [n] EIiEJ’ (Z,j) S EA}.

Without loss of generality we may assume that matrix A has no zero rows and
columns, so I C I” and J C J” for any I C [m] and J C [n].

Lemma 44. For everyp <2, 1 <r<k<mand1 <[ <n we have

EY; 1 (d%)

< E max max  max sup sup Z ;3 9ijSit;
T€Z4(k) IoCL|Io|=r JET4(l) seK(q*,m,I,d,) teK(p,n,J,dfq)ie]é/mI,jelénJ
(48)
+E max sup sup Z a;;9ijSit;,
I€Z4(k) seB™ teB(p,1,a,) il jen]
where

a, = min{1, d51"/2~/Pr=1/2} max |ay;).
2,7

Proof. Let us fix I € Zy(k) and J € J4(1) and consider the following greedy algo-

rithm with output being a subset Iy = {i1,..., .} of I of size r.
o In the first step we pick a vertex i; € I with maximal number of neighbours
in J.
e Once we chose {i1,...,4,} for u < r, we pick i, 41 € I\ {i1,...,i,} with
maximal number of neighbours in J\ {i1,...,%,} .
If I, denotes the number of neighbours of 4, in J\ {i1,...,4,—1}', then [y > Iy >

. > 1, sorl, <|J| =1. Hence, using this algorithm we get a subset Iy C I with
cardinality r such that for every i € I\ Iy, |{j € J\ I}: (i,5) € Ea}| <1/r.

Observe that if ¢ € I and j € I} N J are such that a;; # 0, then ¢ € I NI, and if
i€l andje€ J\Ijare such that a;; # 0, then i € I'\ Iy. Hence, for any s € By
and ¢ € B},

g aijgijSity = E @ijgijsity + E ijGijSity.
iel,jet ierynljeryng ieI\Io,jeJ\I}

Moreover, for any i € I\ Iy and t € K(p,n, J,d5),

l
Z a”t7 < maxa2 mln{l ma;(t]} < maxa2 mm{l d25l1 2/pr—1} . ag
roge 7
jeJ\I)



OPERATOR NORMS OF GAUSSIAN MATRICES 37
Therefore,

max 1max sup sup E Q3595 Sitj
T1€Z4(k) J€Ta(l) seK (g ,m,I,d5) teK(p,n,J,d5) . ieI\Io,jeI\I/
» 0

< max sup sup Z aijgijsit;. O

TeZy(k) SEBTL teB(p,l,ar) ;o1 eln]

We begin by estimating the second term on the right-hand side of (48).

Lemma 45. For p*,q € [2,00), 1 <k <m, and « € [0,1] we have

E max sup  sup E ;395 Sit;
T€T,(k m '
a(k) seBL teB(p,1,a) ieljeln]

SVP Dy + a(y/kLogda + v/Logm).

Proof. Observe that for any I € Zy(k), s € By C By, and t € B(p, I, ) we have

5242 2
Z ” sity < I?eaXZa”tJ < a?

iel,j€ln]

Define for s € B,
D(p,s,a) = {t € B, Zaw Zt? <a }

For I € Z,(k) let us choose a 1/2-net T7 in BL. = {s € B*: supp(s) C I} (in
l4~-norm) of cardinality at most 5F and put T := Urez k) Tr- Then, by (31),
IT| < 5%|Z4(k)| < m20*d¥F, so

max sup sup E a;jgijsit; <2 max sup  sup E a;59ijSit;
IeTy(k m IeZy(k
a(k) seBr teB(p.1,0) e Cin) 4(k) seTy tEB(P1,0) 12 )

< 2max sup Za”gws it
S€T teD(p,s,a)

Thus, estimate (17) implies

E max sup sup E a/z]gz_yszt < maxE Sup E QijGij S7f
I€Zy(k) sEB;'i teB(p,I,a) iel.jen] seT teD(p,s, a)

1/2
Log |T| max _sup (Z afjsft]) .
tGD(p,s a) Ny J

For any fixed s € T' C By estimate (25) yields

sup Zaljgljs it; <E sup Za”gmslt < /p*D;7.

tED(p,s a) teBp

Moreover, /Log |T| < v/Logm + y/kLog(da) and

1/2
max  sup ( as ) <a. O
s€T teD(p,s,a) Z ity

Now we estimate the first term on the right-hand side of (48).



38 R. LATALA AND M. STRZELECKA

Lemma 46. Ifl >r, € € (0,1/2], and p*,q € [2,4), then

E max max max sup sup E [ Sitj
IC[m] IoCI | To|=r J€Ta() se K (q*,m,1,d5) teK(p,n,J,d;)iez(;ml,jel()m

Se! |:D1 + Dy

. 1/
+ ((5 Log(da))*/ ="V + /Tog(mn) + v/Tog dady (1) ) maay

Proof. Let us fix I C [m], Iy C I with |Ih| =r, J € Ju(l), s € K(¢*,m,I,d5),
and t € K(p,n,J,d5). Let Io1,...,Io,v be 4-connected componets of Iy. Then

(16,17 e 716,‘/) is a partition of [}, and (I(’)’,l, e I(’)”V) is a partition of ). Hence,
v
Z aijgijsit; = Z Z aijgijSit;-
ierynI v=14ery NI
JELGNT jeI ,NJ
Let
oep | —oep |J
V= {v <V, NJ|<d>P=|Io,| = dAQEPU|IO,,,|}.
’ r Lol
Then
Yo D auggsity < N1Gallpsg D Isiery mrlle ) ser; sl
vey ie[éfUQI veY
JEI ,NJ

1/2

/
<Gl (X Wsdiergunrl2) (1) ery ol2)

veY veVY

«\ 1/a" 1
<G allpra (D2 Wsidiery ) (30 Mt)sens ll)

veY veV
°p 1/p
qa* (Z ﬁ‘f(lm N J|)
veEY

e 1 1/p .
< a3 Gallpa (3 frlonl) < TGl
veEY

/P

< ||GA||p—>q||5

For a nonempty Iy C [m], 1 <u <n, and v > 1 define

ZIO:“(’}/)

Yicrynt,jerng ®ii9iiSity

= 1max max sup sup .
IpcIC[m] JCn],lINIg|Zu seK (g m,I,y) t€K(p,n,J,y) ||(Si)iefg;qu*||(tj)jel(;nJ||p

Moreover, for 1 <r <m, 1 <wu<n,and v > 1, set

Zru = Z u 5
() e Zo, ()

and for « € (0,1] and v > 1, let

Zo(y) = ax max Zyru(7)-

Observe that for v ¢ V, |I), N J| > a|lo,|, where a = d;*"L > d?, so
D> augisity < Za(dd) Y (sdiery arlla 1) jer; mly
vV el NI vV
JEI ,NJ
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() (Z I(si)iery ) (Z (t)jer; ,nallp )1/2
(d) (Z (s zeIé’v ) (Z [I(¢; ]ezévaH ) 1/p

< Zo(d)[sllg- 1ty < Za(d2)-

The above argument shows that

max  max  max sup sup E aijgijSit;

1€Za(k) IoCL|Io|=r J€T1(l) seK(q*,m,1,d5) tE€K(p,n,J,d5) ielynIjer,ng
—E& €

S A" [|Gallp—qg + Za(dy).

Corollary 43 yields that

ATENGAlly g < up(a~ Log ) (D1 + Dy + v/Tog(rm) max |

e~ (D1 + Ds + v/Tog(mn) max Ja] ),
7‘7‘7

Therefore, the assertion follows by part iii) of the next lemma. O

Lemma 47. Let v > 1 and p*,q € [2,4).
i) If Iy C [m] and 1 < u < n satisfy u > |Io|d,>, then

EZ1y () < D1 + D2+ (3Log(dav))¥ 7"V max |ay|.
0.
W) If 1 <r <m and 1 <u<n satisfy u > rdf, then
EZ,w(v) S D1+ D>

+ ((3 Log(d4v))?/4=P"V0 4\ /Logm + \/r Log dA’ydz/Zu_l/p) max |aij|.

i) If a > d;Q, then
EZ,(v) < D1+ Do
+ (3 Log(dam)/ 479 1 \/Logmm) + vLogdard}{a™/7) max|ay |.
,]

Proof. Let us fix Iy C I C [m], J C [n] with |Ip| = r, |JNIH| > u, s € K(¢*,m, I,7)
and t € K(p,n,J,v). Define

5= (s)ieryntlly (s)ierznr, T = 1t)jennally () jemns
Recall that Iy C I, 50 ||5]lg= = 1, [|5]lee < A|IY NI|~YT < A|Io|~ Y0 < yr= Va7,
17, = 1, and [|[flee < YI{ N J|7YP < qu='/P < ~4d*/Pr=1/P. Hence, part i)
of the assertion follows by Proposition 41 applied with the matrix (ai;);e 1y jelss

=1 <d}r,n=|I}| <dar,a= (yr~"T)A1land b= (’ydi‘/pr_l/p) Al
To show part ii) observe that

2 2272 2
Z a;;5;t; < max a” ;< maxa S min{1, dallt]|%}

ieli'nl,jerinJ JjeJ

< max aij min{1, day?u"2/P}.
i

Moreover, estimate (31) yields y/Log|Z4(r)| < Logm + +/rLogda, so part ii)
follows by part i) and estimate (17).
Part iii) easily follows from ii) and another application of (17). O
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Corollary 48. If 1<k <m,1<1<mn, p* q€l2,4), and e € (0,1/2], then
EYy(d5) <e ! [Dl + Dy

_ 10 2/(4_17*\/‘1) 1/44+4
L (24 (=) Jai ) maas o
+ (vToglmn) + (/2 + e A1) max fay|

Proof. By symmetry we may assume that [ > k.
First assume that k& > dz/ ?. Lemmas 44-46 yield that for every 1 < r <k,

EViy(d5) <&t [Dl + D,
+ ((5 Log(d))*/ =7V + \/Log(mn))max ||
27]
+ (VEogdad{>*(5)"" + RTogdady 131712 max|a;
gdad, 7 + og dad r Ir}e}x|azj|.

Moreover,

. 10 2/(4=p"Va)
5 Log(d 4))2/4—p"Va) < (7) /4
(5Log(da)) STvg A

(49) VLogda < e V245,

and
inf (dl/“f”s(f)l/er\/Ed& 11/2_1/pr_1/2) < inf (d1/2+35(f)1/2+\/%d8 7‘_1/2)
1<r<k\ 4 l A ~i<r<k\ A k A

< d114/4+35,

where the last estimate follows by taking r = Lkdgl/zj € [1,k].
Now assume that k& < d114/ ?. Recall that for a fixed nonempty set I,

X1 = X1(A,p,q) = (aij9ij)icr,jem] |l p—q-

Note that

Yii(dy) < Xr.
) <, X

Therefore, estimates (17), (28), and |Z4(k)| < m4*d4 (see (31)) yield

1/2
EYk’l(di)glénﬁé)EXI—&— Log|Z4(k)| max sup sup (Za%s?t?) .

TEZalk) |Is)l = <1 el <1 N5

(50) < Dy + (Vk + /Logm + /k Log d4) max |aj|.
]

The assertion easily follows by the assumption that k < d114/ % and estimate (49). O

Proof of Proposition 40. We apply Proposition 31 and Corollary 48 (with £/4 in-
stead of €). O
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