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Abstract. We confirm the conjecture posed by Guédon, Hinrichs, Litvak,
and Prochno in 2017 that E∥(aijgij)i≤m,j≤n : ℓnp → ℓmq ∥ is comparable, up to
constants depending only on p and q, to

max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q + Emax
i,j

|aijgij |

provided that 1 ≤ p < 2 < q or 4/3 < p ≤ 2 ≤ q < 4. In the remaining cases,
when p = 2 and q ≥ 4 or 1 ≤ p ≤ 4/3 and q = 2, we prove it up to a factor of
order log log(mn).

1. Introduction

Let A = (aij)i≤m,j≤n be a deterministic m × n matrix and let p, q ∈ [1,∞].
In this paper we study ℓnp → ℓmq norms of centered structured Gaussian random
matrices GA = (aijgij)i≤m,j≤n with a variance profile A ◦ A = (a2ij)i≤m,j≤n, i.e.,
quantities of the form

∥GA∥p→q = ∥GA∥ℓnp→ℓmq
= sup

{ m∑
i=1

n∑
j=1

aijgijsitj : s ∈ Bm
q∗ , t ∈ Bn

p

}
,

where random variables gij are iid standard Gaussians, q∗ denotes the Hölder con-
jugate of q, i.e., the unique number from [1,∞] satisfying 1

q + 1
q∗ = 1, and Bn

p is
the unit ball in the ℓp-norm in Rn.

Although the behaviour of random matrices with iid entries is quite well under-
stood, it is not the case for the random matrices with non-trivial variance profile,
whose ℓnp → ℓmq norms appear naturally in many problems in applied mathemat-
ics. However, much effort was made recently to understand ℓnp → ℓmq norms of
structured random matrices (cf. [2, 17, 12, 6, 18, 11, 13, 1, 4, 15]).

In this paper we focus on two-sided estimates (i.e., lower and upper bounds
matching up to a multiplicative constant) for the expectation of ∥GA∥p→q. Such
bounds encode much more information than only an order of E∥GA∥p→q. They
imply two-sided estimates on higher moments and tail bounds for ∥GA∥p→q (see
Corollary 12 below). Moreover, they yield a condition for an infinite Gaussian
matrix to be a bounded operator from ℓp to ℓq (see Corollary 7 below). We also
discuss how to generalize the estimates for ∥GA∥p→q to more general classes of
random matrices with independent, but not necessarily Gaussian entries.

Before we move further, let us introduce some more notation. For two non-
negative functions f and g we write f ≲ g (or g ≳ f) if there exists an absolute
constant C such that f ≤ Cg; the notation f ∼ g means that f ≲ g ≲ f . We
write ≲α, ∼K,γ , etc. if the underlying constant depends on the parameters given in
the subscripts. Whenever we write p ≥ p1 or p ≤ p2 we mean that p ∈ [p1,∞] or
p ∈ [1, p2], respectively. By [m] we denote the set {1, . . . ,m} of the first m positive
integers. Let us also denote

Log x = 1 ∨ lnx for x > 0, and Log 0 = 1.
1
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If p = 2 = q, the ℓnp → ℓmq norm coincides with the spectral norm and it is known
by [12] that

E∥GA∥2→2 ∼ max
i

∥(aij)j∥2 +max
j

∥(aij)i∥2 + Emax
i,j

|aijgij |

∼ max
i

∥(aijgij)j∥2 +max
i

∥(aijgij)j∥2.

Moreover, two-sided bounds are also known for extremal values of (p, q), i.e., when
p ∈ {1,∞} or q ∈ {1,∞} (see [6, Remark 1.4] and [1, Propositions 1.8 and 1.10]).
The question whether similar two-sided inequalities hold for other ranges of p and
q with arbitrary A was, up to now, entirely open; all known bounds match only up
to a logarithmic constant (see [6, 1]) or are valid only in some very special cases
(for the trivial structure, i.e., when aij = 1 for all i, j, or, more generally, for tensor
structures – this follows by the Chevet inequality). We refer to the introductions
to [1] and [9] for more details and an overview of the history of the problem.

From now on, we will consider only the case 1 ≤ p ≤ 2 ≤ q ≤ ∞. The following
conjecture was formulated in [6] (see [1] for a discussion of other ranges of p and q).

Conjecture 1. For every p ≤ 2 ≤ q and every deterministic m × n matrix A =
(aij)i≤m,j≤n,

E∥GA∥p→q ∼p,q max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q + Emax
i,j

|aijgij |.

The main difficulty in obtaining Conjecture 1 is to prove the upper estimate,
since the lower bound is easy. It was shown in [6] that the upper bound holds up
to multiplicative constants depending logarithmically on the dimensions. Our main
result states that one may skip these logarithmic factors in the range 4/3 < p ≤
2 ≤ q < 4 and in the range 1 ≤ p < 2 < q ≤ ∞.

Theorem 2. If p∗, q ∈ [2, 4) or p∗, q ∈ (2,∞), then for every deterministic matrix
A = (aij)i≤m,j≤n we have

E∥GA∥p→q ∼p,q max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q + Emax
i,j

|aijgij |

∼ max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q +max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |

∼p,q max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q +max
k≥0

inf
|I|=|J|=k

√
Log k max

i/∈I,j /∈J
|aij |

∼p,q Emax
i

∥(aijgij)j∥p∗ + Emax
j

∥(aijgij)i∥q.

Remark 3. The constant in the first lower bound of Theorem 2 does not depend on
p and q. Moreover, if p∗ ∨ q > 2, the constant in the first upper bound is at most
of order 

(p∗ ∨ q)13/2 Log
(

p∗∧q
p∗∧q−2

)
(p∗ ∨ q − 2)5/2

if p∗, q > 2 and
1

p
+

1

q∗
< 3/2,

(p∗ ∨ q)5/2 Log
( p∗ ∧ q
p∗ ∧ q − 2

)
if p∗, q > 2 and

1

p
+

1

q∗
≥ 3/2,

(p∗ ∨ q)13/2 Log
(

2
4−p∗∨q

)
(p∗ ∨ q − 2)5/2

if p∗, q ∈ [2, 4) and p∗ ∨ q > 2.

The latter quantity blows up when p and q approach 2. However, we show in the
appendix that the upper bound from Theorem 2 holds with the constant bounded
in the range 2 ≤ p∗, q ≤ 4− δ (but blowing up when p∗ or q approaches 4).

Remark 4. Recall that the two-sided bounds for E∥GA∥p→q were known before in
the cases when p = 2 = q and when p∗ or q is infinite; [6, Remark 1.4] implies that
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for every p∗, q ≥ 2

E∥GA∥1→q = Emax
j

∥(aijgij)i∥q ≲
√
qmax

j
∥(aij)i∥q + Emax

i,j
|aijgij |

and

E∥GA∥p→∞ = Emax
i

∥(aijgij)j∥p∗ ≲
√
p∗ max

i
∥(aij)j∥p∗ + Emax

i,j
|aijgij |.

Theorem 2 and Remark 4 provide an affirmative answer to Conjecture 1, exclud-
ing the cases when p∗ = 2 and q ∈ [4,∞) or when q = 2 and p∗ ∈ [4,∞). From our
proof of Theorem 2 in the case p∗, q > 2 one may deduce the following proposition.
It says that in order to prove Conjecture 1 in the remaining ranges, it suffices to
derive a weaker dimension dependent bound.

Proposition 5. Let γ > 0, α ≥ 1, and p ≤ 2 ≤ q. Assume that p∗ ∨ q > 2 and
that for every integers m and n, and every deterministic matrix A = (aij)i≤m,j≤n,

E∥GA∥p→q ≤ α
(
max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q + Logγ(mn)max

i,j
|aij |

)
.(1)

Then for every integers m and n, and every deterministic matrix A = (aij)i≤m,j≤n,

E∥GA∥p→q ≲
(p∗ ∨ q)13/2αLog γ

(p∗ ∨ q − 2)5/2

(
max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q

+max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |

)
.

Unfortunately, we were not able to provide (1) in the remaining range p∗∧ q = 2
and p∗∨q ≥ 4. However, our methods yield the following estimate, which is optimal
up to a polylog factor.

Theorem 6. If p∗ ∧ q = 2 and p∗ ∨ q ≥ 4, then for every deterministic matrix
A = (aij)i≤m,j≤n we have

E∥GA∥p→q ≲p,q Log Log(mn)
(
max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q + Emax

i,j
|aijgij |

)
.

Although we were able to confirm Conjecture 1 in almost whole range p∗, q ≥ 2,
our methods do not allow us to retrieve the exact dependence of E∥GA∥p,q on p∗

and q in Theorem 2. For example, if ai,j = 1 for all i ≤ m and j ≤ n, then

E∥GA∥p,q ∼
√
p∗ ∧ Log nmax

i
∥(aij)j∥p∗ +

√
q ∧ Logmmax

j
∥(aij)i∥q

(the third term disappears since, in this case, it is upper bounded by the sum of the
first two terms), whereas the constant in the first upper bound in Theorem 2 (for
p∗ ∧ q separated from 2) grows like (p∗ ∨ q)γ with γ > 1. However, we conjecture,
that the correct dependence of parameters p and q in the range p ≤ 2 ≤ q is the
following

E∥GA∥p,q
?

≲
√
p∗ ∧ Log nmax

i
∥(aij)j∥p∗ +

√
q ∧ Logmmax

j
∥(aij)i∥q

+ Emax
i,j

|aijgij |.

1.1. Consequences of the main result. Let us now present a couple of con-
sequences of Theorem 2. Some of them are immediate and the rest is proven in
Section 2.

Theorem 2 easily implies its non-centered counterpart:

E∥(aijgij+mij)i,j∥p→q ∼p,q Emax
i

∥(aijgij)j∥p∗+Emax
j

∥(aijgij)i∥q+∥(mij)i,j∥p→q
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for every mij , aij ∈ R, i ≤ m, j ≤ n, and every p and q satisfying 2 ≤ p∗, q < 4 or
p∗, q > 2.

Moreover, Theorem 2, Remark 4, and [1, Proposition 1.2] yield the following
characterisation of the boundedness of Gaussian linear operators from ℓp to ℓq
whenever 2 ≤ p∗, q < 4 or p∗, q > 2. We say that a matrix B = (bij)i,j∈N defines
a bounded operator from ℓp to ℓq if for all x ∈ ℓp the product Bx is well defined,
belongs to ℓq, and the corresponding linear operator is bounded.

Corollary 7. Let p and q be such that 2 ≤ p∗, q < 4 or p∗, q > 2, and let (aij)i,j∈N
be an infinite deterministic real matrix. The matrix (aijgij)i,j∈N defines a bounded
linear operator between ℓp and ℓq almost surely if and only if supi ∥(aij)j∥p∗ < ∞,
supj ∥(aij)i∥q <∞, and E supi,j∈N |aijgij | <∞.

Remark 8. The condition E supi,j∈N |aijgij | <∞ in Corollary 7 is equivalent to the
deterministic bound

sup
k≥0

inf
|I|=k

√
Log k sup

(i,j)∈(N×N)\I
|aij | <∞

(see estimate (12) below).

Theorem 2 easily implies two-sided bounds for norms of Gaussian mixtures. We
say that a random variable X is a Gaussian mixture if there exists a nonnegative
random variable R such that such that X has the same distribution as Rg, where
g is a standard Gaussian random variable, independent of R (cf. [5]). The next
corollary is an immediate consequence of Theorem 2.

Corollary 9. Assume that 2 ≤ p∗, q < 4 or p∗, q > 2 and let Xij, i ≤ m, j ≤ n, be
independent Gaussian mixtures. Then

E∥(Xij)i≤m,j≤n∥p→q ∼p,q Emax
i

∥(Xij)j∥p∗ + Emax
j

∥(Xij)i∥q.

We say that X is a symmetric Weibull random variable with (shape) parameter
r ∈ (0,∞] if X is symmetric and for every t ≥ 0,

P(|X| ≥ t) = e−tr .

Corollary 10. Let Xij, i ≤ m, j ≤ n, be independent symmetric Weibull variables
with parameter r ∈ (0, 2]. Then for every p and q satisfying 2 ≤ p∗, q < 4 or
p∗, q ∈ (2,∞), and every deterministic matrix A = (aij)i≤m,j≤n we have

E∥(aijXij)i≤m,j≤n∥p→q

∼p,q,r max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q + Emax
i,j

|aijXij |

∼r max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q +max
k≥0

inf
|I|=k

Log1/r k max
(i,j)/∈I

|aij |

∼p,q,r max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q +max
k≥0

inf
|I|=|J|=k

Log1/r k max
i/∈I,j /∈J

|aij |

∼p,q,r Emax
i

∥(aijXij)j∥p∗ + Emax
j

∥(aijXij)i∥q.

We postpone the proof of Corollary 10 to Section 2.

Remark 11. One cannot omit the assumption r ≤ 2 in Corollary 10. Indeed, in
the limit case r = ∞ the entries Xij = εij are independent symmetric Bernoulli
random variables and it is known that the behaviour of the expected operator norm
is different than in the case r ≤ 2 (see [16]). Moreover, it was conjectured in [11]
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and proven in [13] up to a factor of order log log log(mn) that

E∥(aijεij)i,j∥2→2
?∼max

i
∥(aij)j∥2 +max

j
∥(aij)i∥2

+max
k≥0

inf
|I|=k

sup
∥s∥2,∥t∥2≤1

∥∥∥∑
i,j /∈I

aijεijsitj

∥∥∥
Log k

= Emax
i

∥(aijεij)j∥2 + Emax
j

∥(aijεij)i∥2

+max
k≥0

inf
|I|=k

sup
∥s∥2,∥t∥2≤1

∥∥∥∑
i,j /∈I

aijεijsitj

∥∥∥
Log k

.

We conjecture that for p ≤ 2 ≤ q,

E∥(aijεij)i,j∥p→q
?∼p,q max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q(2)

+max
k≥0

inf
|I|=k

sup
∥s∥q∗ ,∥t∥p≤1

∥∥∥∑
i,j /∈I

aijεijsitj

∥∥∥
Log k

∼p,q Emax
i

∥(aijεij)j∥p∗ + Emax
j

∥(aijεij)i∥q

+max
k≥0

inf
|I|=k

sup
∥s∥q∗ ,∥t∥p≤1

∥∥∥∑
i,j /∈I

aijεijsitj

∥∥∥
Log k

.

We also believe that the methods of [13] could be adapted to the case p∗, q ≥ 2 and
that – together with Theorem 2 – they would imply (2) up to a polylog factor in
the ranges p∗, q > 2 and 2 ≤ p∗, q < 4.

The bounds for the expectation of the norm of a random matrix with independent
entries satisfying some mild regularity assumptions automatically imply bounds for
higher moments as well as for the tails of this norm. Let us state explicitly two
such estimates for the structured Gaussian and Weibull random matrices.

Theorem 2 and the Gaussian concentration yield the following moment and tail
bounds.

Corollary 12. If 2 ≤ p∗, q < 4 or p∗, q > 2, then for every deterministic matrix
A = (aij)i≤m,j≤n, ρ ≥ 1, and t > 0 we have

(E∥GA∥ρp→q)
1/ρ ∼p,q max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q +max

k≥0
inf

|I|=k

√
Log k max

(i,j)/∈I
|aij |

+
√
ρmax

i,j
|aij |,

and

P
(
∥GA∥p→q ≥ C(p, q)

(
max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q

+max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |

)
+ t
)
≤ e−t2/(2maxi,j a2

ij).

In the Weibull case, Corollary 10, [8, Theorem 1.1 and Corollary 1.3], and [1,
Lemma 2.19] imply the following. (One may also deduce the moreover part, with
a constant C2 depending on p, q and r, from (3) via Markov’s inequality.)

Corollary 13. Let Xij, i ≤ m, j ≤ n, be independent symmetric Weibull variables
with parameter r ∈ (0, 2]. If 2 ≤ p∗, q < 4 or p∗, q > 2, then for every deterministic
matrix A = (aij)i≤m,j≤n, and every ρ ≥ 1 we have

(E∥(aijXij)i,j∥ρp→q)
1/ρ ∼p,q,r max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q

+max
k≥0

inf
|I|=k

Log1/r k max
(i,j)/∈I

|aij |+ ρ1/r max
i,j

|aij |.(3)
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Moreover, for every t > 0,

P
(
∥(aijXij)i,j∥p→q ≥ C1(p, q, r)

(
max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q

+max
k≥0

inf
|I|=k

Log1/r k max
(i,j)/∈I

|aij |
)
+ t
)
≤ e−tr/(C2(r)maxi,j |aij |r).

Remark 14. The upper bound in (3) and, as a consequence, the tail bound from
Corollary 13 hold under the weaker assumption that the variables Xij are indepen-
dent, centered, and have uniformly bounded ψr-norm. This follows by a standard
argument (see, e.g., the proof of [9, Lemma 2.1]).

The next result is a generalization of [7, Theorem 2]. Its advantage is that we
do not need to assume much about the distribution of the entries; however, two
additional summands appear in the upper bound.

Corollary 15. If 2 ≤ p∗, q < 4 or 2 < p∗, q <∞, then for every matrix (Xij)i≤m,j≤n

with independent centered entries,

E∥(Xij)i,j∥p→q ≲p,q max
i

(∑
j

E|Xij |p
∗
)1/p∗

+max
j

(∑
i

E|Xij |q
)1/q

(4)

+
(∑

i,j

E|Xij |2p
∗
)1/(2p∗)

+
(∑

i,j

E|Xij |2q
)1/(2q)

and

E∥(Xij)i,j∥p→q ≲p,q max
i

(∑
j

E|Xij |p
∗
)1/p∗

+max
j

(∑
i

E|Xij |q
)1/q

(5)

+
(∑

i

(∑
j

E|Xij |2p
∗
) p∗∨q

p∗
) 1

2(p∗∨q)

+
(∑

j

(∑
i

E|Xij |2q
) p∗∨q

q
) 1

2(p∗∨q)

.

Remark 16. If p∗, q ∈ [2, 4) or p∗, q ∈ (2,∞), α ≥ 1, and independent centered
random variables Xij satisfy

(6) (E|Xij |2ρ)1/(2ρ) ≤ α(E|Xij |ρ)1/ρ for ρ ∈ {p∗, q},

then estimate (5) yields

E∥(Xij)i,j∥p→q ≲p,q n
1/p∗

∥X11∥p∗ +m1/q∥X11∥q
+m1/(2(p∗∨q))n1/(2p

∗)∥X11∥2p∗ +m1/(2q)n1/(2(p
∗∨q))∥X11∥2q

≲p,q,α n
1/p∗

∥X11∥p∗ +m1/q∥X11∥q,

where in the last inequality we used the AM-GM inequality and the estimate
∥X11∥2(p∗∨q) ≲p,q,α ∥X11∥p∗∧q, which follows from the assumption (6) by Hölder’s
inequality. One can repeat the argument from the proof of the lower bound in [10,
Proposition 21] to show that under the above assumptions

E∥(Xij)i,j∥p→q ≳p,q,α n
1/p∗

∥X11∥p∗ +m1/q∥X11∥q,

so in fact
E∥(Xij)i,j∥p→q ∼p,q,α n

1/p∗
∥X11∥p∗ +m1/q∥X11∥q.

We refer to [10] for more precise two-sided bounds (with constants not depending
on p and q) under the stronger assumption that the entries Xij are iid centered
α-regular random variables.
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1.2. Strategy of the proof of the main result. Throughout the paper we denote

D1 := max
i

∥(aij)j∥p∗ , D2 := max
j

∥(aij)i∥q

to avoid long formulas for the first two terms on the right-hand side of our main
estimates.

Similarly as in [12], Theorem 2 is a consequence of two weaker estimates given
in the following three propositions. The first one is based on the Slepian-Fernique
lemma and generalizes van Handel’s bound [17]. A similar result for p∗ = q ∈ [2, 4)
was obtained in [14].

Proposition 17. For every 2 ≤ p∗, q < 4 and every deterministic matrix A =
(aij)i≤m,j≤n,

E∥GA∥p→q ≲ D1 +D2 +max
i,j

Log2/(4−p∗∨q)(i+ j)|aij |.

Although van Handel’s method fails in the range p∗ ∨ q ≥ 4, we are able to
prove, using different ideas, the following counterpart of Proposition 17 in the range
p∗, q > 2.

Proposition 18. For every 2 < p∗, q < ∞ and every deterministic matrix A =
(aij)i≤m,j≤n,

E∥GA∥p→q ≲ β(p, q)
(√
p∗D1 +

√
qD2

)
+ β′(p, q)max

i,j
(i+ j)(8(p

∗∨q))−1

|aij |,

where β′(p, q) = (p∗ ∨ q)β(p, q) and

β(p, q) =


(p∗ ∨ q)3/2 Log

( p∗ ∧ q
p∗ ∧ q − 2

)
if

1

p
+

1

q∗
≥ 3/2,

(p∗ ∨ q)11/2 Log
(

p∗∧q
p∗∧q−2

)
(p∗ ∨ q − 2)5/2

if
1

p
+

1

q∗
< 3/2.

Note that the third term in the bound from Proposition 18 is often of greater
order than the one from Proposition 17. However, it is sufficiently small to exploit
the method from [12] and deduce our main result in the range p∗, q > 2 from
Proposition 18 and the following dimension dependent bound.

Proposition 19. Assume that 2 < p∗, q < ∞ or 2 ≤ p∗, q < 4. Then for every
deterministic matrix A = (aij)i≤m,j≤n,

(7) E∥GA∥p→q ≲ α(p, q)
(√

p∗D1 +
√
qD2 +

√
Log(mn)max

i,j
|aij |

)
,

where

α(p, q) ≤



1 if p∗ = q = 2,

(p∗ ∨ q)11/2 Log
(

2
4−p∗∨q

)
(p∗ ∨ q − 2)5/2

if p∗, q ∈ [2, 4) and p∗ ∨ q > 2,

(p∗ ∨ q)3/2 Log
( p∗ ∧ q
p∗ ∧ q − 2

)
if p∗, q ∈ (2,∞) and

1

p
+

1

q∗
≥ 3/2,

(p∗ ∨ q)11/2 Log
(

p∗∧q
p∗∧q−2

)
(p∗ ∨ q − 2)5/2

if p∗, q ∈ (2,∞) and
1

p
+

1

q∗
< 3/2.

In the case p = q = 2 estimate (7) was proven by Bandeira and van Handel in
[2]. We cannot use their combinatorial approach based on the trace method since
for (p, q) ̸= (2, 2) we no longer deal with the spectral norm. Proving Proposition 19
is one of the main difficulties and novelties of our paper.

In the case 2 ≤ p∗, q < 4 estimate (7) follows by Proposition 17 and the exponent
reduction procedure described in Subsection 4.2. In this step we use some ideas
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from [13]. Surprisingly, in the case p∗, q > 2 we first derive Proposition 19, and
then use it to show Proposition 18.

To prove Proposition 19 in the case p∗, q > 2 we exploit the ideas from the proof of
the main result of [1] (to estimate the suprema over vectors with small coordinates)
together with a net argument (which allows us to estimate the suprema over vectors
with small supports). Finally, to deduce Proposition 17 we decompose the matrix A
into block diagonal matrices Ak with blocks of a smaller size, and matrices Bl whose
norms are easier to control (due to Proposition 36 below), and use Proposition 19
for each Ak separately.

1.3. Organization of the paper. In Section 2 we show how Propositions 17–19
imply Theorem 2 and then we prove Remark 3 and Corollaries 10 and 15. Section 3
contains the proof of Proposition 17 and some other estimates derived from Slepian’s
lemma, necessary for proving Proposition 19 in the range p∗ ∧ q > 2. In Section 4
we prove Proposition 19. Finally, Section 5 is devoted to the proof of Proposition 18
and Theorem 6; it also contains a sketch of the proof of Proposition 5.

2. Proof of Theorem 2 and its corollaries

In this section we first show how to deduce the most challenging part of Theo-
rem 2 from Propositions 17–19. Then we give the proofs of Theorem 2 and Corol-
laries 10 and 15.

Proposition 20. Let p∗, q ≥ 2, m,n be positive integers and α1, α2, α3, β1, β2, β3 ≥
1. Assume that for every 1 ≤ m′ ≤ m, 1 ≤ n′ ≤ n and every deterministic matrix
A = (aij)i≤m′,j≤n′ ,

E∥GA∥p→q ≤ α1D1 + α2D2 + α3

√
Log(m′n′)max

i,j
|aij |

and
E∥GA∥p→q ≤ β1D1 + β2D2 + β3 max

i,j
(i+ j)(8(p

∗∨q))−1

|aij |
)
.

Then for every deterministic matrix A = (aij)i≤m,j≤n,

E∥GA∥p→q ≲ (α1 + β1 + β3)D1 + (α2 + β2 + β3)D2

+ α3 max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |

)
.

We will need the following deterministic lemma about norms of block diagonal
matrices.

Lemma 21. Let (cij)i≤m,j≤n be a block diagonal matrix with blocks Cl, and 1 ≤
p ≤ q. Then

∥(cij)i≤m,j≤n∥p→q = max
l

∥Cl∥p→q.

Proof. Assume that the blocks Cl, l ≤ l0, consist of entries aij such that i ∈ Il and
j ∈ Jl. Then

∥(cij)i≤m,j≤n∥p→q = sup
s∈Bm

q∗ ,t∈Bn
p

∑
i,j

cijsitj

= sup
x∈B

l0
q∗ ,y∈B

l0
p

l0∑
l=1

sup
s∈xlB

Il
q∗ ,t∈ylB

Jl
p

∑
i∈Il,j∈Jl

cijsitj

= sup
x∈B

k0
q∗ ,y∈B

l0
p

l0∑
l=1

xlyl∥Cl∥p→q = sup
y∈B

l0
p

(∑
l

|yl|q∥Cl∥qp→q

)1/q
.
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Since p ≤ q, the latter supremum is attained at y = el for some l ≤ l0, so

sup
y∈B

l0
p

(∑
l

|yl|q∥Cl∥qp→q

)1/q
= max

l
∥Cl∥p→q. □

Proof of Proposition 20. Let

D∞ := max
k≥0

inf
|I|=k

max
(i,j)/∈I

√
Log k|aij |,

N0 = 1, and Nk = 22
k

for k ≥ 1. Without loss of generality we may assume that
n = m = Nk0 for some k0; if necessary, we simply add zero rows and columns.

We follow the ideas of the proof of [12, Theorem 3.9] and [11, Remark 4.5],
starting with constructing a suitable permutations (i1, . . . , iNk0

) and (j1, . . . , jNk0
)

of {1, . . . , Nk0
}. (Note that the change of order of rows and columns does not

change E∥GA∥p→q.) Then we decompose the matrix GA and bound each piece
of this decomposition separately, each time using one of the assumptions of the
proposition.

In the first step we choose I1 = {i1, . . . , iN1
} and J1 = {j1, . . . , jN1

} in such a
way that

max
i/∈I1

max
j

|aij | ≤
D∞√
LogN1

and max
j /∈J1

max
i

|aij | ≤
D∞√
LogN1

.

Suppose now that we have selected Ik = {i1, . . . , iNk
} and Jk = {i1, . . . , jNk

}
for k < k0. To construct (iNk+1, . . . , iNk+1

) we choose first NkNk−1 indices i from
[m] \ Ik that contain the Nk−1 largest moduli of entries |aij | from each column
j ∈ Jk. Next, among remaining indices we choose Nk+1 − Nk − NkNk−1 ≥ Nk

indices i in such a way that Ik+1 = {i1, . . . , iNk+1
} satisfies

(8) max
i/∈Ik+1

max
j

|aij | ≤
D∞√
LogNk

.

Similarly, to construct (jNk+1, . . . , jNk+1
) we choose first NkNk−1 indices j from

[n] \ Jk that contain the Nk−1 largest moduli of entries |aij | from each row i ∈ Ik.
Next, among remaining indices we choose Nk+1 −Nk −NkNk−1 ≥ Nk indices j in
such a way that Jk+1 = {j1, . . . , jNk+1

} satisfies

(9) max
j /∈Jk+1

max
i

|aij | ≤
D∞√
LogNk

.

The above construction implies in particular that for k ≥ 1,

|aij | ≤ D2N
−1/q
k−1 ≤ 2D22

−2k−1/q if j ≤ Nk(10)
and i ≥Mk := Nk +NkNk−1,

|aij | ≤ D1N
−1/p∗

k−1 ≤ 2D12
−2k−1/p∗

if i ≤ Nk and j ≥Mk.(11)

We set (see [12, Fig. 1])

E1 := [1,M1]
2 ∪

⋃
k≥1

[N2k + 1,M2k+1 ∧Nk0
]2,

E2 :=
⋃
k≥1

[N2k−1 + 1,M2k ∧Nk0
]2 \ E1, E3 := [1, Nk0

]2 \ (E1 ∪ E2)

and write GA = U + V +W , where

Uij := aijgij1{(i,j)∈E1}, Vij := aijgij1{(i,j)∈E2}, Wij := aijgij1{(i,j)∈E3}.
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The matrix U is block diagonal with the first block U1 = (Xij)i,j∈E1,1
of di-

mension |E1,1| = M1 and blocks Uk = (Xij)i,j∈E1,k
for k ≥ 2 of dimension

|E1,k| ≤M2k−1 − N2k−2. We have

(E∥U1∥2p→q)
1/2 ≤ (E∥U1∥22→2)

1/2 ≤
( ∑
i,j∈[1,M1]

Eg2ija2ij
)1/2

≤M1 max
i,j

|aij | ≲ D∞.

For k = 2, 3, . . . the Gaussian concentration (see, e.g., [3, Theorem 5.6]), the first
assumption of the proposition, and property (8) imply(

E∥Uk∥2
k

p→q

)2−k

≲ E∥Uk∥p→q + 2k/2 max
i,j∈E1,k

|aij |

≤ α1D1 + α2D2 +
(
α3

√
2 log |E1,k|+ 2k/2

)
max

i,j∈E1,k

|aij |

≲ α1D1 + α2D2 + α3D∞.

Thus,

M := sup
k

(
E∥Uk∥2

k

p→q

)2−k

≲ α1D1 + α2D2 + α3D∞,

and Lemma 21 yields

E∥U∥p→q = E sup
k≥1

∥Uk∥p→q ≤ 2M +ME
∑
k≥1

∥Uk∥p→q

M
1{∥Uk∥p→q≥2M}

≤ 2M +ME
∑
k≥1

21−2k
(∥Uk∥p→q

M

)2k
≤M

(
2 +

∑
k≥1

21−2k
)
≤ 3M

≲ α1D1 + α2D2 + α3D∞.

In a similar way we show that

E∥V ∥p→q ≲ α1D1 + α2D2 + α3D∞.

Finally, fix (i, j) ∈ E3 and take k ∈ {0, 1, . . .} such that Mk ≤ i < Mk+1, where
M0 = 1. Observe that if Mk ≤ i ≤ Nk+1, then either j ≤ Nk or j > Mk+1 and if
Nk+1 + 1 ≤ i < Mk+1, then either j ≤ Nk or j > Mk+2. Therefore, either j ≤ Nk

or j > Mk+1. If j ≤ Nk, then by (10)

(i+ j)(8(p
∗∨q))−1

|aij | ≤ 2N
(8(p∗∨q))−1

k+2 D22
−2k−1/q ≤ 2D2.

If on the other hand Mk+l < j ≤ Mk+l+1 for some l ≥ 1, then i < Nk+l and (11)
imply

(i+ j)(8(p
∗∨q))−1

|aij | ≤ 2N
(8(p∗∨q))−1

k+l+2 D12
−2k+l−1/p∗

≤ 2D1.

Thus, the second assumption of the proposition yields

E∥W∥p→q ≤ β1D1 + β2D2 + β3 max
(i,j)∈E3

(i+ j)(8(p
∗∨q))−1

|aij |

≤ (β1 + 2β3)D1 + (β2 + 2β3)D2. □

Proof of Theorem 2. The two-sided estimate between the expressions on the right-
hand side of the first and the last line was proven in [1, Section 5.4]. This also
yields the lower bound in the first asserted two-sided estimate.

The second two-sided estimate follows by

(12) Emax
i,j

|aijgij | ∼ max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |

(cf. [17, Lemmas 2.3 and 2.4]).
The upper bound from the first two-sided estimate follows by Propositions 17–20

and (12).
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Now we move to the proof of the third two-sided estimate from Theorem 2. We
will show a more precised bound

(13)
√
p∗D1 +

√
qD2 +D∞ ∼

√
p∗D1 +

√
qD2 +D′

∞,

where
D′

∞ := max
k≥0

inf
|I|=|J|=k

max
i/∈I,j /∈J

√
Log k|aij |.

The lower bound in (13) is trivial, since I ⊂ P1(I) × P2(I), where P1 and P2 are
coordinate projections. To establish the upper bound in (13) we need to show that
for any k ≥ 1,

(14)
√
Log k inf

|V |=k
max

(i,j)/∈V
|aij | ≲

√
p∗D1 +

√
qD2 +D′

∞.

If k ≤ 3, then √
Log k inf

|V |=k
max

(i,j)/∈V
|aij | ≲ max

i,j
|aij | ≤ D1.

If k ≥ 3, then put k′ := ⌊
√
k/3⌋ and choose |I0| = |J0| = k′ such that

inf
|I|=|J|=k′

max
i/∈I,j /∈J

|aij | = max
i/∈I0,j /∈J0

|aij |.

Let V0 := (I0 × J0) ∪ V1 ∪ V2, where

V1 := {(i, j) : i ∈ I0, |aij | ≥ (k′)−1/p∗D1},

V2 := {(i, j) : j ∈ J0, |aij | ≥ (k′)−1/qD2}.

Then |V0| ≤ |I0||J0|+ |I0|k′ + |J0|k′ = 3(k′)2 ≤ k, so that

inf
|V |=k

max
(i,j)/∈V

|aij | ≤ max
(i,j)/∈V0

|aij |

≤ max
i/∈I0,j /∈J0

|aij |+ max
(i,j)∈(I0×[n])\V1

|aij |+ max
(i,j)∈([m]×J0)\V2

|aij |

≤ (Log k′)−1/2D′
∞ + (k′)−1/p∗D1 + (k′)−1/qD2.

We have
√
Log k ≲ min{

√
Log k′,

√
p∗(k′)1/p

∗
,
√
q(k′)1/q}, so (14) follows. □

Proof of Remark 3. The order of the constants in the case when p∗, q > 2 follows
by Propositions 18, 19, and 20.

In the case p∗, q ∈ [2, 4), the proof of Proposition 18, given in Section 5 below,
shows that Proposition 19 implies

E∥GA∥p→q ≲ β(p, q)
(√
p∗D1 +

√
qD2

)
+ β′(p, q)max

i,j
(i+ j)(8(p

∗∨q))−1

|aij |,

with β′(p, q) = (p∗ ∨ q)β(p, q) and

β(p, q) =
(p∗ ∨ q)11/2 Log

(
2

4−p∗∧q

)
(p∗ ∨ q − 2)5/2

.

This, together with Propositions 19 and 20, yields the asserted order of constant in
the range p∗, q ∈ [2, 4). □

Proof of Corollary 10. Let s > 0 be such that 1
r = 1

2 + 1
s (if r = 2, then s = ∞)

and let Yij = gij |g̃ij |2/s where (g̃ij)i,j is an independent copy of (gij)i,j . Then for
every ρ ≥ 1,

(15) (E|Xij |ρ)1/ρ ∼r ρ
1/r ∼r (E|Yij |ρ)1/ρ,
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so Theorem 2 and [12, Lemma 4.7] (applied twice) imply

E∥(aijXij)i,j∥p→q ∼p,q,r Emax
i

∥(aij |gij |2/s)j∥p∗ + Emax
j

∥(aij |gij |2/s)i∥q

+ Emax
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij ||gij |2/s

∼p,q,r Emax
i

∥(aijXij)j∥p∗ + Emax
j

∥(aijXij)i∥q.

Moreover,

Emax
i

∥(aij |gij |2/s)j∥p∗ = Emax
i

∥(|aij |s/2gij)j∥2/s2p∗/s

∼r

(
Emax

i
∥(|aij |s/2gij)j∥2p∗/s

)2/s
and similarly

Emax
j

∥(aij |gij |2/s)i∥q ∼r

(
Emax

j
∥(|aij |s/2gij)i∥2q/s

)2/s
,

so [1, equation (5.11)] yields

Emax
i

∥(aij |gij |2/s)j∥p∗ + Emax
j

∥(aij |gij |2/s)i∥q

∼p,q,r max
i

∥(|aij |s/2)j∥2/s2p∗/s +max
j

∥(|aij |s/2)i∥2/s2q/s +
(
Emax

i,j
|aij |s/2|gij |

)2/s
∼r max

i
∥(aij)j∥p∗ +max

j
∥(aij)i∥q + Emax

i,j
|aij ||gij |2/s.

Note also that

Emax
i,j

|aij ||gij |2/s ≤ Emax
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij ||gij |2/s

∼ Emax
i,j

|aij ||gij |2/s|g̃i,j | = Emax
i,j

|aijYij | ∼r Emax
i,j

|aijXij |,

where the second estimate follows by the conditional application of (12) and the
last one by (15) and [12, Lemma 4.7]. Thus,

E∥(aijXij)i,j∥p→q ∼p,q,r max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q + Emax
i,j

|aijXij |.

Let Zij = εij |gij |2/r, where εij , i ≤ m, j ≤ n, are iid symmetric Bernoulli
variables, independent of (gij)i,j . Then

(E|Xij |ρ)1/ρ ∼r ρ
1/r ∼r (E|Zij |ρ)1/ρ,

so [12, Lemma 4.7] and (12) yield

Emax
i,j

|aijXij | ∼r Emax
i,j

|aijZij | = Emax
i,j

|aij ||gij |2/r

∼r

(
Emax

i,j
|aij |r/2|gij |

)2/r ∼
(
max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |r/2

)2/r
= max

k≥0
inf

|I|=k
Log1/r k max

(i,j)/∈I
|aij |.

Finally, the third two-sided estimate in Corollary 10 may be established in a
similar way as in the Gaussian case (see the last part of the proof of Theorem 2). □

Proof of Corollary 15. Let (εij)i,j and (gij)i,j be independent matrices with inde-
pendent symmetric ±1 and N (0, 1) entries, respectively, and assume that they are
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independent of (Xij)i,j . Let Yij = gijXij and Z(ρ)
ij = |Yij |ρ−E|Yij |ρ for ρ ∈ {p∗, q}.

Since Xij are centered,

E∥(Xij)∥p→q ≤ 2E∥(εijXij)∥p→q ≤ 2

E|gij |
E∥(Yij)∥p→q

∼p,q Emax
i

∥(Yij)j∥p∗ + Emax
j

∥(Yij)i∥q,

where the last bound follows by Corollary 9.
Since for every a, b ≥ 0, (a+ b)1/q ≤ a1/q + b1/q, we have

Emax
j

∥(Yij)i∥q ≤ max
j

(∑
i

E|Yij |q
)1/q

+ Emax
j

∣∣∣∑
i

(|Yij |q − E|Yij |q)
∣∣∣1/q.

By the independence of gij and Xij we have

max
j

(∑
i

E|Yij |q
)1/q

= (E|g1,1|q)1/q max
j

(∑
i

E|Xij |q
)1/q

∼ √
qmax

j

(∑
i

E|Xij |q
)1/q

.

Moreover, by the Rosenthal inequality we have for every r ≥ 2,

Emax
j

∣∣∣∑
i

Z
(q)
ij

∣∣∣1/q ≤ E
(∑

j

∣∣∣∑
i

Z
(q)
ij

∣∣∣r)1/(rq) ≤ (∑
j

E
∣∣∣∑

i

Z
(q)
ij

∣∣∣r)1/(rq)
≲r

(∑
j

(∑
i

E|Z(q)
ij |2

)r/2
+
∑
i,j

E|Z(q)
ij |r

)1/(rq)
.

Observe that for u ≥ 1 we have

E|Z(q)
ij |u ≤ 2uE|Yij |qu = 2uE|gij |quE|Xij |qu ≤ 2u(qu)(qu)/2E|Xij |qu.

Therefore for any r ≥ 2,

Emax
j

∥(Yij)i∥q ≲q,r max
j

(∑
i

E|Xij |q
)1/q

+
(∑

j

(∑
i

E|Xij |2q
)r/2

+
∑
i,j

E|Xij |rq
)1/(rq)

.

In a similar way we show that for every s ≥ 2,

Emax
i

∥(Yij)j∥p∗ ≲p,s max
i

(∑
j

E|Xij |p
∗
)1/p∗

+
(∑

i

(∑
j

E|Xij |2p
∗
)s/2

+
∑
i,j

E|Xij |sp
∗
)1/(sp∗)

.

Estimate (4) follows if we choose s = r = 2 and estimate (5) if we take r = 2(p∗∨q)/q
and s = 2(p∗ ∨ q)/p∗. □

3. Bounds following from the Slepian-Fernique lemma

3.1. Range p∗, q ∈ [2, 4). Let us begin with a modification of van Handel’s argu-
ment from [17]. This allows us to prove Proposition 17, i.e., a weaker version of the
main result in the range p∗, q ∈ [2, 4). Let A ◦ A = (a2ij)i≤m,j≤n be the variance
profile of GA = (aijgij)i≤m,j≤n and

B = (bij)i,j≤m+n =

(
0 A ◦A

(A ◦A)T 0

)
.
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Let Y be a (m+n)-dimensional Gaussian vector with mean 0 and covariance matrix
B− being the negative part of B, i.e., B− = −

∑m+n
i=1 (λi ∧ 0)uiu

T
i , where B =∑m+n

i=1 λiuiu
T
i is the spectral decomposition of B. The proof of [17, Corollary 4.2]

yields that Yk are Gaussian random variables with variance EY 2
k ≤ (

∑
l b

2
k,l)

1/2.
Hence,

Var(Yi) ≤
(∑

j

a4ij

)1/2
, 1 ≤ i ≤ m,

Var(Yj+m) ≤
(∑

i

a4ij

)1/2
, 1 ≤ j ≤ n.

(16)

Lemma 22. For any bounded, nonempty sets K ⊂ Rm and L ⊂ Rn,

E sup
s∈K,t∈L

aijgijsitj ≤ E sup
s∈K,t∈L

m∑
i=1

sigi

√√√√ n∑
j=1

t2ja
2
ij

+ E sup
s∈K,t∈L

n∑
j=1

tjgm+j

√√√√ m∑
i=1

s2i a
2
ij

+
1

2
E sup

s∈K

m∑
i=1

s2iYi +
1

2
E sup

t∈L

n∑
j=1

t2jYm+j .

Proof. Let us define the symmetric Gaussian matrix

X = (Xij)i,j≤m+n =

(
0 GA

(GA)
T 0

)
.

Then B is the variance profile of X. Consider two centered Gaussian processes
indexed by v ∈ Rn+m:

Gv =
∑

k,l≤m+n

Xklvkvl and Zv = 2

m+n∑
k=1

vkgk

√√√√m+n∑
l=1

v2l b
2
k,l +

m+n∑
k=1

v2kYk,

It was shown in [17, proof of Theorem 4.1] that for any v, v′ ∈ Rn+m, E|Gv−Gv′ |2 ≤
E|Zv − Zv′ |2 and, as a consequence, the Slepian-Fernique lemma (see, e.g., [3,
Theorem 13.3]) yields

E sup
v∈K×L

Gv ≤ E sup
v∈K×L

Zv.

Thus, to finish the proof it is enough to observe that

sup
v∈K×L

Gv = sup
v∈K×L

∑
k,l≤m+n

Xklvkvl

= sup
s∈K,t∈L

( ∑
i≤m,j≤n

(GA)ijsitj +
∑

i≤m,j≤n

((GA)
T )jitjsi

)
= 2 sup

s∈K,t∈L

∑
i≤m,j≤n

aijgijsitj

and

sup
v∈K×L

Zv = sup
s∈K,t∈L

(
2

m∑
i=1

sigi

√√√√ n∑
j=1

t2ja
2
ij + 2

n∑
j=1

tjgm+j

√√√√ m∑
i=1

s2i a
2
ij

+

m∑
i=1

s2iYi +

n∑
j=1

t2jYm+j

)
. □



OPERATOR NORMS OF GAUSSIAN MATRICES 15

Corollary 23. If p ≤ 2 ≤ q, then

E∥GA∥ℓnp→ℓmq
≤ Emax

j≤n
∥(aijgi)i∥q + Emax

i≤m
∥(aijgj)j∥p∗ + E max

k≤m+n
|Yk|.

Proof. We apply Lemma 22 with K = Bm
q∗ , L = Bn

p . Note that

sup
s∈K

m∑
i=1

s2iYi ≤ sup
s∈Bm

2

m∑
i=1

s2iYi ≤ max
i≤m

|Yi|

and

sup
t∈L

n∑
j=1

t2jYm+j ≤ sup
t∈Bn

2

n∑
j=1

t2jYm+j ≤ max
j≤n

|Ym+j |.

The convexity of the function u →
∑m

i=1 |gi|q
(∑n

j=1 |uj |a2ij
)q/2

and the fact that
Bn

1 = conv{±ej : j ≤ n} yield

sup
s∈K,t∈L

m∑
i=1

sigi

√√√√ n∑
j=1

t2ja
2
ij = sup

t∈Bn
p

( m∑
i=1

|gi|q
( n∑
j=1

t2ja
2
ij

)q/2)1/q
≤ sup

u∈Bn
1

( m∑
i=1

|gi|q
( n∑
j=1

|uj |a2ij
)q/2)1/q

= max
j≤n

( m∑
i=1

|gi|q|aij |q
)1/q

= max
j≤n

∥(aijgi)i∥q.

In a similar way we show that

sup
s∈K,t∈L

n∑
j=1

tjgm+j

√√√√ m∑
i=1

s2i a
2
ij = max

i
∥(aijgm+j)j∥p∗ . □

We shall also use the following lemma, which follows by the Gaussian concen-
tration (see, e.g., [3, Theorem 5.6]) and [17, Lemma 2.3], applied with Xi :=
supt∈Ti

Xt − E supt∈Ti
Xt and σi := supt∈Ti

(VarXt)
1/2.

Lemma 24. Let X = (Xt)t∈T be a Gaussian process and let T1, . . . , Tk be nonempty
subsets of T such that T =

⋃k
i=1 Ti. Then

E sup
t∈T

Xt ≤ max
i

E sup
t∈Ti

Xt + Cmax
i

√
Log i sup

t∈Ti

(VarXt)
1/2.

In particular, if X is centered, then

(17) E sup
t∈T

Xt ≤ max
i

E sup
t∈Ti

Xt + C
√
Log k sup

t∈T
(EX2

t )
1/2.

Proof of Proposition 17. Since

sup
x∈Bm

q∗

√√√√ m∑
i=1

x2i a
2
ij = max

i
|aij |,

Lemma 24 yields for every q ∈ [2,∞),

Emax
j≤n

∥(aijgi)i∥q ≲ max
j≤n

E∥(aijgi)i∥q +max
j

√
Log jmax

i
|aij |

≤ max
j≤n

(
E∥(aijgi)i∥qq

)1/q
+max

j

√
Log jmax

i
|aij |

≲
√
qD2 +max

i,j

√
Log j|aij |.(18)
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In a similar way we show that for every p ∈ (1, 2],

Emax
i≤m

∥(aijgj)j∥p∗ ≲
√
p∗D1 +max

i,j

√
Log i|aij |.

By (16) and Lemma 24 we get

Emax
i≤m

|Yi| ≲ max
i

√
Log i

(∑
j

a4ij

)1/4
.

Moreover, for p∗ < 4,√
Log i

( n∑
j=1

a4ij

)1/4
≤
√
Log i

( n∑
j=1

|aij |p
∗
)1/4

max
j≤n

|aij |(4−p∗)/4

≤ p∗

4

( n∑
j=1

|aij |p
∗
)1/p∗

+
(
1− p∗

4

)
max
i,j

Log2/(4−p∗)(i)|aij |.

Similarly, for q < 4,

Emax
j≤n

|Yj+m| ≲ q

4

( m∑
i=1

|aij |q
)1/q

+
(
1− q

4

)
max
i,j

Log2/(4−q)(j)|aij |,

so the assertion follows by Corollary 23. □

3.2. Range p∗, q > 2. The first step in the proof of Proposition 19 in the case
p∗, q > 2 is Proposition 25 below. In this subsection we follow the ideas from [1] –
which also use the Slepian-Fernique lemma – to provide some tools to be used in
Section 4.1 to prove Proposition 25.

Proposition 25. If p∗, q ∈ (2,∞), then

E∥GA∥p→q ≲
√
p∗D1 +

√
qD2 + Logγ(p,q)(mn)max

i,j
|aij |,

where γ(p, q) = 1
2 +max{ p

2−p ,
q∗

2−q∗ } = 1
2 +max{ p∗

p∗−2 ,
q

q−2} ∼ p∗∧q
p∗∧q−2 .

In order to prove Proposition 25 we split each s ∈ Bm
q∗ and t ∈ Bn

p into two parts:
one consisting of vectors with coordinates which do not exceed a certain level and
the second one consisting of vectors with non-vanishing coordinates having absolute
value exceeding the same level. In order to control the supremum over the points
with small coordinates, we first replace the sets Bn

p ∩ bBn
∞ and Bm

q∗ ∩ aBm
∞ by sets

whose extremal points have a very special and simple structure: absolute values of
their non-zero coordinates are all equal to a constant depending only on the size of
the support of a given point. More precisely, we substitute Bn

p ∩bBn
∞ and Bm

q∗∩aBm
∞

by the sets Kp,n,b and Kq∗,m,a, respectively, where, for a given b ∈ [n−1/p, 1],

Kp,n,b = conv
{
(|J |−1/pηj1j∈J)j≤n : n ≥ |J | ≥ b−p, ηj ∈ {−1, 1}

}
.

The next lemma shows that by doing so we loose only a logarithmic factor.

Lemma 26. Assume that p ∈ [1,∞], and b ∈ (n−1/p, 1]. Then

Bn
p ∩ bBn

∞ ⊂
(
3 + Log1/p

∗
(nbp)

)
Kp,n,b.

Proof. Fix a vector x = (x1, . . . , xn) ∈ Bn
p ∩ bBn

∞. We only need to prove that

(19) ∥x∥Kp,n,b
≤ 3 + Log1/p

∗
(nbp),

where
∥x∥Kp,n,b

= inf{λ > 0: x ∈ λKp,n,b}.
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Since bothKp,n,b and Bn
p ∩bBn

∞ are permutationally invariant and unconditional,
we may and do assume that b ≥ x1 ≥ · · · ≥ xn ≥ 0. Set jb := ⌊b−p⌋ + 1 ≤ n and
xn+1 := 0. Then

x =

n∑
j=1

xjej =

jb−1∑
j=1

(xj − xjb)ej +

n∑
j=jb

(xj − xj+1)(e1 + · · ·+ ej).(20)

Since jb ≥ b−p, j−1/p(e1 + · · · + ej) ∈ Kp,n,b for every integer j ∈ [jb, n], so
∥e1 + · · · + ej∥Kp,n,b

≤ j1/p whenever j ∈ [jb, n]. This, together with the triangle
and Hölder inequalities, yields∥∥∥ n∑

j=jb

(xj − xj+1)(e1 + · · ·+ ej)
∥∥∥
Kp,n,b

≤
n∑

j=jb

(xj − xj+1)j
1/p

= j
1/p
b xjb +

n∑
j=jb+1

xj(j
1/p − (j − 1)1/p)

≤ 1 +

n∑
j=jb+1

xjj
1/p−1 ≤ 1 + ∥x∥p

( n∑
j=jb+1

1

j

)1/p∗

≤ 1 + ln1/p
∗
(nbp),(21)

where we also used the elementary estimates j1/p−(j−1)1/p ≤ j
1
p−1 and

∑n
j=jb+1

1
j ≤∫ n

jb
1
t dt = ln(n/jb).

Since Kp,n,b is unconditional,

(22)
∥∥∥ jb−1∑

j=1

(xj − xjb)ej

∥∥∥
Kp,n,b

≤
∥∥∥ jb∑

j=1

bej

∥∥∥
Kp,n,b

≤ bj
1/p
b ≤ 2.

Estimates (20)–(22) yield the desired inequality (19). □

The next lemma shows how to bound the suprema over the sets Kq∗,m,a and
Kp,n,b.

Lemma 27. Assume that a ∈ (m1/q∗ , 1], b ∈ (n−1/p, 1], and p∗, q ≥ 2. Then

E sup
s∈Kq∗,m,a,t∈Kp,n,b

∑
i,j

aijgijsitj

≲ a1−q∗/2
√
p∗D1 + b1−p/2√qD2 + (a1−q∗/2 + b1−p/2)

√
Log(mn)max

i,j
|aij |.

Proof. The proof of [1, Proposition 3.1] (see estimate (3.6) and the last formula
on page 3492 therein, based onthe Slepian-Fernique lemma) shows that for every
1 ≤ k ≤ m and 1 ≤ l ≤ n,

Emax
I,J

sup
η∈Bm

∞

sup
η′∈Bn

∞

∑
i∈I,j∈J

aijgijηiη
′
j ≲ max

I,J

∑
i∈I

√∑
j∈J

a2ij +max
I,J

∑
j∈J

√∑
i∈I

a2ij

+ Emax
I,J

∑
i∈I

gi

√∑
j∈J

a2ij + Emax
I,J

∑
j∈J

g̃j

√∑
i∈I

a2ij ,

where the maxima and the suprema are taken over all sets I ⊂ {1, . . . ,m}, J ⊂
{1, . . . , n} such that |I| = k, |J | = l, and g1, . . . , gm, g̃1, . . . , g̃n are independent
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standard Gaussian variables. Moreover, for every l ≥ b−p,

1

k1/q∗ l1/p
max
I,J

∑
i∈I

√∑
j∈J

a2ij ≤ sup
s∈Bm

q∗

sup
t∈Bn

p ∩bBn
∞

m∑
i=1

si

√√√√ n∑
j=1

t2ja
2
ij

= sup
t∈Bn

p ∩bBn
∞

( m∑
i=1

( n∑
j=1

t2ja
2
ij

)q/2)1/q
≤ b1−p/2 sup

t∈Bn
p

( m∑
i=1

( n∑
j=1

|tj |pa2ij
)q/2)1/q

= b1−p/2 max
j

∥(aij)i∥q = b1−p/2D2,

where in the second inequality we used the convexity of u 7→
∑m

i=1

∣∣∣∑n
j=1 uja

2
ij

∣∣∣q/2.
Likewise, for every k ≥ a−q∗ ,

1

k1/q∗ l1/p
max
I,J

∑
j∈J

√∑
i∈I

a2ij ≤ a1−q∗/2D1.

A similar reasoning, together with (18), shows that for every l ≥ b−p,

1

k1/q∗ l1/p
Emax

I,J

∑
i∈I

gi

√∑
j∈J

a2ij ≤ b1−p/2Emax
j

∥(aijgi)i∥q

≲ b1−p/2
(√
qD2 +max

i,j

√
Log j|aij |

)
.

Similarly, for every k ≥ a−q∗ ,

1

k1/q∗ l1/p
Emax

I,J

∑
i∈I

gi

√∑
j∈J

a2ij ≲ a1−q∗/2
(√
p∗D1 +max

i,j

√
Log i|aij |

)
.

This implies that for every a−q∗ ≤ k ≤ m and b−p ≤ l ≤ n,

(23) EWk,l ≲ a1−q∗/2
√
p∗D1 + b1−p/2√qD2

+ (a1−q∗/2 + b1−p/2)
√
Log(mn)max

i,j
|aij |,

where
Wk,l := sup

s∈K
(k)

q∗,m
,t∈K

(l)
p,n

∑
i,j

aijgijsitj

and

K(l)
p,n := {l−1/p(ηj1j∈J) : η ∈ {−1, 1}n, J ⊂ [n], |J | = l}.

Hence, by inequality (17) we obtain

E sup
s∈Kq∗,m,a,t∈Kp,n,b

∑
i,j

aijgijsitj = E max
a−q∗≤k≤m,b−p≤l≤n

Wk,l

≲ max
a−q∗≤k≤m
b−p≤l≤n

EWk,l +
√
Log(mn) sup

s∈Bm
q∗∩aBm

∞
t∈Bn

p ∩bBn
∞

√∑
i,j

a2ijs
2
i t

2
j

≤ max
a−q∗≤k≤m
b−p≤l≤n

EWk,l + a1−q∗/2b1−p/2
√

Log(mn) sup
s∈Bm

q∗∩aBm
∞

t∈Bn
p ∩bBn

∞

√∑
i,j

a2ij |si|q
∗ |tj |p
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= max
a−q∗≤k≤m
b−p≤l≤n

EWk,l + a1−q∗/2b1−p/2
√
Log(mn)max

i,j
|aij |.

Thus, (23) and the assumption that a, b ≤ 1 yield the assertion. □

4. Dimension dependent bounds

In this section our aim is to obtain dimension dependent bounds from Propo-
sition 19. We begin by proving an even weaker estimate in the range p, q > 2,
i.e., Proposition 25. Then, in Subsections 4.2 and 4.3, we show how to reduce the
exponent of the logarithm appearing in this proposition (and in Proposition 17).
The proof of Proposition 19 is provided at the end of this section.

4.1. Proof of Propostion 25. Let us recall that in order to prove Proposition 25
we split each s ∈ Bm

q∗ and t ∈ Bn
p into two parts: one consisting of vectors with

coordinates which do not exceed a certain level, and the second one consisting of
vectors with non-vanishing coordinates having absolute value exceeding the same
level. Results of Section 3.2 allow us to bound the supremum over the points from
the first part. The next lemma shows how to control the suprema over points with
large non-zero coordinates.

Lemma 28. If γ ≥ 1 and p∗, q ≥ 2, then

E sup
s∈Bm

q∗

sup
t∈Bn

p

∑
i,j

aijgijsitj1{|si|≥γ−1} ≲
√
p∗D1 +

√
γq∗ Logmmax

i,j
|aij |(24)

and

E sup
s∈Bm

q∗

sup
t∈Bn

p

∑
i,j

aijgijsitj1{|tj |≥γ−1} ≲
√
qD2 +

√
γp Log nmax

i,j
|aij |.

In the proof of Lemma 28 we shall use the following standard lemma; we formu-
late and prove it for the sake of completeness.

Lemma 29. For every fixed s ∈ Bm
q∗ , q ∈ [2,∞], and p ∈ (1, 2],

(25) E sup
t∈Bn

p

∑
i,j

aijgijsitj = E
∥∥∥(∑

i

aijgijsi

)
j

∥∥∥
p∗

≤
√
p∗D1.

Similarly, for every fixed t ∈ Bn
p , p ∈ [1, 2], and q ∈ [2,∞),

(26) E sup
s∈Bm

q∗

∑
i,j

aijgijsitj =
∥∥∥(∑

j

aijgijtj

)
i

∥∥∥
q
≤ √

qD2.

Proof. We have

E sup
t∈Bn

p

∑
i,j

aijgijsitj = E
(∑

j

(∑
i

aijgijsi

)p∗)1/p∗

≤
(
E
∑
j

(∑
i

aijgijsi

)p∗)1/p∗

= ∥g1,1∥p∗

(∑
j

(∑
i

a2ijs
2
i

)p∗/2)1/p∗

.

We have ∥g1,1∥p∗ ≤
√
p∗ and, since ∥s∥2 ≤ ∥s∥q ≤ 1,(∑

j

(∑
i

a2ijs
2
i

)p∗/2)2/p∗

=
∥∥∥(∑

i

s2i a
2
ij

)
j

∥∥∥
p∗/2

≤
∑
i

s2i ∥(a2ij)j∥p∗/2

≤ max
i

∥(a2ij)j∥p∗/2 = max
i

∥(aij)j∥2p∗ = D2
1.

Hence, (26) follows. Estimate (25) holds by an analogous argument. □
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Proof of Lemma 28. By the symmetry it is enough to show (24). For a fixed
nonempty set I let

XI := ∥(aijgij)i∈I,j≤n∥p→q.

Let T be a 1/2-net in BI
q∗ (with respect to the ℓq∗ norm) of cardinality at most

5|I|. Then
XI ≤ 2 sup

s∈T
sup
t∈Bn

p

∑
i,j

aijgijsitj .

Thus, inequality (17) yields

EXI ≲ sup
s∈T

E sup
t∈Bn

p

∑
i,j

aijgijsitj +
√

log |T | sup
s∈T

sup
t∈Bn

p

(∑
i,j

a2ijs
2
i t

2
j

)1/2
.

Since T ⊂ Bm
q∗ ⊂ Bm

2 and Bn
p ⊂ Bn

2 we have

(27) sup
s∈T

sup
t∈Bn

p

(∑
i,j

a2ijs
2
i t

2
j

)1/2
≤ max

i,j
|aij |.

Estimate (25) implies that for any fixed s ∈ T ,

E sup
t∈Bn

p

∑
i,j

aijgijsitj ≤
√
p∗D1,

hence,

(28) EXI ≲
√
p∗D1 +

√
|I|max

i,j
|aij |.

There are at most Cmγq∗

subsets of [m] of cardinality at most γq
∗
. Thus,

estimates (17), (27), and (28) yield

E max
I∈I2(k),k≤γq∗

XI ≲ max
|I|≤γq∗

EXI +
√
γq∗ Logm sup

s∈Bm
q∗,t∈Bn

p

(∑
i,j

a2ijs
2
i t

2
j

)1/2
≲

√
p∗D1 +

√
γq∗ Logmmax

i,j
|aij |.

To derive (24) it suffices to note that for s ∈ Bm
q∗ , |{i : |si| ≥ γ−1}| ≤ γq

∗
, so

E sup
s∈Bm

q∗

sup
t∈Bn

p

∑
i,j

aijgijsitj1{|si|≥γ−1} ≤ E sup
s∈Bm

q∗,|supp(s)|≤γq∗
sup
t∈Bn

p

∑
i,j

aijgijsitj . □

Proof of Proposition 25. We begin with a simple observation that [1, Proposition 1.8]
implies

E sup
s∈Bm

q∗∩m−1/q∗Bm
∞

sup
t∈Bn

p

∑
i,j

aijgijsitj ≤ m−1/q∗∥GA∥p→1

≲ m−1/q∗ sup
t∈Bn

p

m∑
i=1

( n∑
j=1

a2ijt
2
j

)1/2
+

√
p∗m−1/q∗

( n∑
j=1

( m∑
i=1

a2ij

)p∗/2)1/p∗

≤ sup
t∈Bn

p

( m∑
i=1

( n∑
j=1

a2ijt
2
j

)q/2)1/q
+
√
p∗ sup

s∈Bq∗

( n∑
j=1

( m∑
i=1

a2ijs
2
i

)p∗/2)1/p∗

= D2 +D1,(29)

and, similarly,

E sup
s∈Bm

q∗

sup
t∈Bn

p ∩n−1/pBm
∞

∑
i,j

aijgijsitj ≲ D1 +
√
qD2.(30)



OPERATOR NORMS OF GAUSSIAN MATRICES 21

If a := Log−2/(2−q∗)(mn) > m−1/q∗ and b := Log−2/(2−p)(mn) > n−1/p, then
Lemmas 26 and 27, imply

E sup
s∈Bm

q∗∩aBm
∞

sup
t∈Bn

p ∩bBn
∞

∑
i,j

aijgijsitj ≲ Log(mn)E sup
s∈Kq∗,m,a

t∈Kp,n,b

∑
i,j

aijgijsitj

≲
√
p∗D1 +

√
qD2 +

√
Log(mn)max

i,j
|aij |.

If a ≤ m−1/q∗ or b ≤ n−1/p, then (29) and (30) yield

E sup
s∈Bm

q∗∩aBm
∞

sup
t∈Bn

p ∩bBn
∞

∑
i,j

aijgijsitj ≲
√
p∗D1 +

√
qD2.

Moreover, Lemma 28 (applied with γ = Log2/(2−q∗)(mn)) implies

E sup
s∈Bm

q∗

sup
t∈Bn

p

∑
i,j

aijgijsitj1{|si|≥Log−2/(2−q∗)(mn)}

≲
√
p∗D1 +

√
qD2 + Log1/2+q∗/(2−q∗)(mn)max

i,j
|aij |

and, similarly,

E sup
s∈Bm

q∗

sup
t∈Bn

p

∑
i,j

aijgijsitj1{|tj |≥Log−2/(2−p)(mn)}

≲
√
p∗D1 +

√
qD2 + Log1/2+p/(2−p)(mn)max

i,j
|aij |.

The last four displayed inequalities yield the assertion. □

4.2. Exponent reduction. Proposition 17 and Proposition 25 show that

E∥GA∥p→q ≲
√
p∗D1 +

√
qD2 + Logγ(p,q)(mn)max

i,j
|aij |

whenever p∗, q ∈ [2, 4) or p∗, q > 2, with γ(p, q) =: γ being a constant depending
only on p and q. In this and the next subsection we show how to reduce the exponent
γ and get Proposition 19. We do it in a similar way as in [13]. The argument is
based on the analysis of the graph associated to the matrix A. To run the exponent
reduction procedure we also need to obtain some weaker estimates with constants
depending on the degree of this graph (we do this in Subsection 4.3). Since we work
in the Gaussian setting and not with bounded Bernoulli entries as in [13], we face
some new difficulties. It is possible to deal with them making the advantage of the
fact that p∗ ∧ q > 2 (recall that the case p = 2 = q was solved in [12]).

With an m× n matrix A = (aij)i≤m,j≤n we associate the set

EA := {(i, j) : aij ̸= 0} ⊂ [m]× [n].

We set

d1,A := max
i≤m

|{j ≤ n : (i, j) ∈ EA}|,

d2,A := max
j≤n

|{i ≤ m : (i, j) ∈ EA}|,

dA := d1,A ∨ d2,A.
We do not assume that A is symmetric, but we may treat ([m], [n], EA) as a bipartite
graph. Then dA is its degree. We write i ∼A j if (i, j) ∈ EA, and I ∼A j (for
I ⊂ [m]) if there exists i ∈ I such that i ∼A j.

By ρ = ρA we denote the distance on [m]∪ [n] induced by EA. A subset I ⊂ [m]
(resp. J ⊂ [n]) is called r-connected if ρA(i, I \ {i}) ≤ r for every i ∈ I (resp.
ρA(j, J \ {j}) ≤ r for every j ∈ J). Equivalently a set is r-connected if it is a
connected subset of the graph GA(r) := ([m], [n], EA(r)), where (i, j) ∈ EA(r) if
and only if ρA(i, j) ≤ r.
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We denote by Ir(k) = Ir(k,A) (resp. Jr(k) = Jr(k,A)) the family of all r-
connected subsets of [m] (resp. [n]) of cardinality k. Note that the maximal degree
of GA(r) is at most dA + dA(dA − 1) + · · · + dA(dA − 1)r−1 ≤ drA. Thus, [13,
Lemma 11] implies

(31) |Ir(k)| ≤ m4kdrkA and |Jr(k)| ≤ n4kdrkA .

For I ⊂ [m] we define

I ′ = {j ∈ [n] : ∃i∈I (i, j) ∈ EA}

In a similar way we define J ′ ⊂ [m] for J ⊂ [n].
The next proposition reveals how one may reduce the exponent at the logarithmic

term to deduce the desired bound (7) from a weaker estimate depending on d1,A
and d2,A.

Proposition 30. Let p∗, q ∈ [2,∞), 0 ≤ γ1 <
1
p∗ , 0 ≤ γ2 <

1
q , and α1, α2, α3 ≥ 1

be such that for every m× n matrix A,

E∥GA∥p→q ≤ α1D1 + α2D2 + α3(d
γ1

1,A + dγ2

2,A +
√

Log(mn))max
i,j

|aij |.(32)

Then for every m× n matrix A

E∥GA∥p→q ≲
Log Log(mn)

− ln((γ1p∗) ∨ (γ2q)))

·
(
(α1 + α3)D1 + (α2 + α3)D2 + α3

√
Log(mn)max

i,j
|aij |

)
.

Moreover, if we assume additionally that for every m× n matrix A,

(33) E∥GA∥p→q ≤ α1D1 + α2D2 + α3 Log
γ3(mn)max

i,j
|aij |

for some γ3 > 0, then for every m× n matrix A,

E∥GA∥p→q ≲
Log γ3

− ln((γ1p∗) ∨ (γ2q)))

·
(
(α1 + α3)D1 + (α2 + α3)D2 + α3

√
Log(mn)max

i,j
|aij |

)
.

Proof. Let δ = ((p∗γ1)∨(qγ2))
−1−1. Then p∗γ1, qγ2 ≤ (1+δ)−1. Let k0 = k0(p, q)

be the smallest positive integer satisfying
1

2
(1 + δ)k0+1 ≥ Log(mn) ≥ max{Log(nγ1),Log(mγ2)},

so that k0 ≲ −Log Log(mn)/ ln((γ1p
∗) ∨ (γ2q))).

Define
uk := (eLog(mn))−

1
2 (1+δ)k+1

, k = 0, 1, . . . , k0.

Let
M := D1 +D2, M̃ := α1D1 + α2D2 + α3

√
Log(mn)max

i,j
|aij |.

Define matrices Ak = (aij(k))i≤m,j≤n, k = 0, 1, . . . , k0 + 1 by

aij(0) = aij1{|aij |≥u0M}, aij(k0 + 1) = aij1{|aij |<uk0
M},

and aij(k) = aij1{ukM≤|aij |<uk−1M} for k = 1, . . . , k0.

Then A =
∑k0+1

k=0 Ak, so

∥GA∥p→q ≤
k0+1∑
k=0

∥GAk
∥p→q.
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Observe that for any u ≥ 0,

uM max
i

|{j : |aij | ≥ uM}|1/p
∗
≤ max

i
∥(aij)j∥p∗ ≤M,

uM max
j

|{i : |aij | ≥ uM}|1/q ≤ max
j

∥(aij)i∥q ≤M.

Thus,
d1,Ak

≤ u−p∗

k , d2,Ak
≤ u−q

k for k = 0, 1, . . . , k0.

Since

dγ1

1,A0
+ dγ2

2,A0
≤ u−p∗γ1

0 + u−qγ2

0 ≤ 2u
−1/(1+δ)
0 = 2

√
eLog(mn),

assumption (32) (applied to the matrix A0) yields

∥GA0
∥p→q ≲ M̃.

Moreover, assumption (32), applied to the matrix Ak, yields for 1 ≤ k ≤ k0,

∥GAk
∥p→q ≤ M̃ + α3uk−1M(dγ1

1,Ak
+ dγ2

2,Ak
) ≤ M̃ + α3Muk−1(u

−p∗γ1

k + u−qγ2

k )

≤ M̃ + 2α3Muk−1u
−1/(1+δ)
k = M̃ + 2α3M.

Finally, applying (32) to the matrixAk0+1 and using the trivial bounds d1,Ak0+1
≤

n, d1,Ak0+1
≤ m, we get

∥GAk0+1
∥p→q ≤ M̃ + α3(n

γ1 +mγ2)uk0
M ≤ M̃ + 2α3M.

To conclude the moreover part of the proposition, we define k0 differently by

k0 := inf{k ≥ 1: (1 + δ)k+1 ≥ 2γ3}

and apply the assumption (33) to estimate ∥GAk0+1
∥p→q from above by

α1D1 + α2D2 + 2α3M.

We finish the proof by noting that k0 ≲ Log γ3

− ln((γ1p∗)∨(γ2q))
. □

4.3. Degree dependent bounds. In order to provide a weaker degree dependent
estimate (32) we are going to use the following proposition. For γ > 1 we define
the set of γ-flat vectors from Br

u with support I by

K(u, r, I, γ) =
{
s ∈ Br

u : supp(s) = I, sup
i∈I

|si| ≤ γ inf
i∈I

|si|
}
.

Note that if s ∈ K(u, r, I, γ), then maxi∈I |si| ≤ γ|I|−1/r. We also put

Yk,l(γ) = Yk,l(γ,A, p, q) = max
I∈I4(k)

max
J∈J4(l)

sup
s∈K(q∗,m,I,γ)

sup
t∈K(p,n,J,γ)

∑
i∈I,j∈J

aijgijsitj .

Proposition 31. For every ε ∈ (0, 1] and 1 ≤ p ≤ 2 ≤ q ≤ ∞,

E∥GA∥p→q ≲
1

ε
E max

1≤k≤m
max
1≤l≤n

Yk,l(d
ε
A) + Emax

i,j
|aijgij |(34)

≲
1

ε

(
max

1≤k≤m
max
1≤l≤n

EYk,l(dεA) +
√

Log(mn)∥(aij)∥∞
)
.(35)

Proof. Fix ε ∈ (0, 1]. For s ∈ Bm
q∗ , t ∈ Bn

p and k, l = 1, 2, . . . define

Ik(s) := {i ∈ [m] : d−kε
A < |si| ≤ d

(1−k)ε
A },

Jl(t) := {j ∈ [n] : d−lε
A < |tj | ≤ d

(1−l)ε
A }.

Then ∑
k≥1

d−q∗kε
A |Ik(s)| ≤ ∥s∥q

∗

q∗ ,
∑
l≥1

d−plε
A |Jl(t)| ≤ ∥t∥pp
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and
E∥GA∥p→q = E sup

∥s∥q∗≤1

sup
∥t∥p≤1

∑
k,l≥1

∑
i∈Ik(s)

∑
j∈Jl(t)

aijgijsitj .

Define
MA = max

i,j
|aijgij |.

Observe that for any s ∈ Bm
q∗ and t ∈ Bn

p ,∣∣∣∣∣∑
k≥1

∑
l≥k+1/ε+1

∑
i∈Ik(s)

∑
j∈Jl(t)

aijgijsitj

∣∣∣∣∣ ≤∑
k≥1

∑
i∈Ik(s)

|si|
∑

l≥k+1/ε+1

∑
j∈Jl(t)

|aijgij ||tj |

≤MA

∑
k≥1

∑
i∈Ik(s)

|si|d−kε−1
A

∑
j

1EA
(i, j)

≤MA

∑
k≥1

∑
i∈Ik(s)

s2i =MA∥s∥22 ≤MA∥s∥2q∗ ≤MA.

Similarily, ∣∣∣∣∣∑
l≥1

∑
k≥l+1/ε+1

∑
i∈Ik(s)

∑
j∈Jl(t)

aijgijsitj

∣∣∣∣∣ ≤MA∥t∥22 ≤MA.

Therefore, it is enough to estimate∑
|r|≤1/ε+1

E sup
∥s∥q∗≤1

sup
∥t∥p≤1

∑
k,l≥1
l−k=r

∑
i∈Ik(s)

∑
j∈Jl(t)

aijgijsitj

≤ (2/ε+ 3) max
|r|≤1/ε+1

E sup
∥s∥q∗≤1

sup
∥t∥p≤1

∑
k,l≥1
l−k=r

∑
i∈Ik(s)

∑
j∈Jl(t)

aijgijsitj .

Let us fix |r| ≤ 1/ε + 1, s ∈ Bm
q∗ , and t ∈ Bn

p . For k, l ≥ 1 with l − k = r
let Ik,1, . . . , Ik,uk

be 2-connected components of Ik(s) ∩ Jl(t)
′ and Jk,u := {j ∈

Jl(t) : Ik,u ∼A j}, 1 ≤ u ≤ uk. Then the sets (Ik,u)k≥1,1≤u≤uk
are nonempty pair-

wise disjoint 2-connected subsets of [m] and the sets (Jk,u)k≥1,1≤u≤uk
are nonempty

pairwise disjoint 4-connected subsets of [n]. Define vectors sk,u, s̄k,u ∈ Rm and
tk,u, t̄k,u ∈ Rn by

sk,u := (si1{i∈Ik,u})i≤m, s̄k,u :=
sk,u

∥sk,u∥q∗
,

tk,u := (tj1{j∈Jk,u})j≤n, t̄k,u :=
tk,u

∥tk,u∥p
.

Since Ik,u ⊂ Ik(s) and Jk,u ⊂ Jl(t), si and tj do not vanish if i ∈ Ik,u and j ∈ Jk,u.
Thus, s̄k,u ∈ K(q∗,m, Ik,u, d

ε
A) and t̄k,u ∈ K(p, n, Jk,u, d

ε
A), so∑

k,l≥1
l−k=r

∑
i∈Ik(s)

∑
j∈Jl(t)

aijgijsitj =
∑
k

∑
1≤u≤uk

∑
i∈Ik,u

∑
j∈Jk,u

aijgijsitj

≤
∑
k

∑
1≤u≤uk

Y|Ik,u|,|Jk,u|(d
ε
A)∥sk,u∥q∗∥tk,u∥p

≤ max
1≤k̃≤m,1≤l̃≤n

Yk̃,l̃(d
ε
A)
∑
k

∑
1≤u≤uk

∥sk,u∥q∗∥tk,u∥p.

Moreover,∑
k

∑
1≤u≤uk

∥sk,u∥q∗∥tk,u∥p ≤
(∑

k

∑
1≤u≤uk

∥sk,u∥2q∗
)1/2(∑

k

∑
1≤u≤uk

∥tk,u∥2p
)1/2
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≤
(∑

k

∑
1≤u≤uk

∥sk,u∥q
∗

q∗

)1/2(∑
k

∑
1≤u≤uk

∥tk,u∥pp
)1/2

= ∥s∥q
∗/2

q∗ ∥t∥p/2p ≤ 1.

The above calculations show that

∥GA∥p→q ≲
1

ε
max

1≤k≤m,1≤l≤n
Yk,l(d

ε
A) +MA,

which yield bound (34).
Moreover, EMA ≲ Log1/2(mn)∥(aij)∥∞ and, by estimate (17),

E max
1≤k≤m,1≤l≤n

Yk,l(d
ε
A) ≲ max

1≤k≤m,1≤l≤n
EYk,l(dεA)

+
√
Log(mn) sup

s∈Bm
q∗

sup
t∈Bn

p

(∑
i,j

a2ijs
2
i t

2
j

)1/2
= max

1≤k≤m,1≤l≤n
EYk,l(dεA) +

√
Log(mn)∥(aij)∥∞,

so estimate (35) follows. □

Now we need a bound for the expectation of Yk,l(γ). It is derived in the following
proposition.

Proposition 32. For every p∗, q ∈ [2,∞) and γ ≥ 1,

EYk,l(γ) ≲
√
p∗D1 +

√
qD2 +

√
Log(mn)max

i,j
|aij |

+ γ3/2k−1/q∗ l−1/p min{kl1/2, k1/2l, kd1/21,A, ld
1/2
2,A}

√
Log(dA)max

i,j
|aij |.(36)

Proof. Observe that
Yk,l(γ) ≤ max

I∈I4(k)
XI ,

where

XI = XI(p, q, k, l, γ)

:= sup
{∑
i∈I,j

aijgijsitj : s ∈ BI
q∗ ∩ γk−1/q∗BI

∞, t ∈ Bn
p ∩ γl−1/pBn

∞

}
.

Define

σk,l = σk,l(p, q, γ)

:= sup
{√∑

i,j

a2ijs
2
i t

2
j : s ∈ Bm

q∗ ∩ γk−1/q∗Bm
∞, t ∈ Bn

p ∩ γl−1/pBn
∞

}
.

Let us fix I ∈ I4(k) and choose a 1/2-net T in BI
q∗ ∩ γk−1/q∗BI

∞ (with respect
to the norm determined by this set) of cardinality 5k. Then

EXI ≤ 2E sup
s∈T

sup
t∈Bn

p ∩γl−1/pBm
∞

∑
i∈I,j

aijgijsitj .

By inequality (17) we have

EXI ≲ sup
s∈T

E sup
t∈Bn

p ∩γl−1/pBm
∞

∑
i∈I,j

aijgijsitj +
√
Log |T |σk,l.

By (25)
sup
s∈T

E sup
t∈Bn

p ∩γl−1/pBm
∞

∑
i∈I,j

aijgijsitj ≤
√
p∗D1.



26 R. LATAŁA AND M. STRZELECKA

Thus,
EXI ≲

√
p∗D1 +

√
kσk,l.

Applying estimate (17) again and using (31) we get

EYk,l ≲ max
I∈I4(k)

EXI +
√

Log |I4(k)|σk,l

≲
√
p∗D1 + (

√
k Log(dA) +

√
Logm)σk,l.(37)

To estimate σk,l observe first that BI
q∗ ⊂ BI

2 and Bn
p ⊂ Bn

2 , thus

sup
t∈BI

q∗

sup
s∈Bn

p

∑
i∈I,j

a2ijs
2
i t

2
j ≤ max

i,j
|aij |2.

Moreover, for any s ∈ Bm
q∗ ∩ γk−1/q∗Bm

∞ and t ∈ Bn
p ∩ γl−1/pBn

∞ we have∑
i,j

a2ijs
2
i t

2
j ≤ ∥s∥2−q∗

∞ ∥t∥2−p
∞ max

i,j
|aij |2

∑
i,j

|si|q
∗
|tj |p

≤ γ4−q∗−pk1−2/q∗ l1−2/p max
i,j

|aij |2

≤ γ2k1−2/q∗ l1−2/p max
i,j

|aij |2

and∑
i,j

a2ijs
2
i t

2
j ≤ ∥s∥2−q∗

∞ ∥t∥2∞
∑
i,j

a2ij |si|q∗ ≤ ∥s∥2−q∗

∞ ∥t∥2∞ max
i

∑
j

a2ij

≤ ∥s∥2−q∗

∞ ∥t∥2∞d1,A max
i,j

|aij |2 ≤ γ4−q∗k1−2/q∗ l−2/pd1,A max
i,j

|aij |2

≤ γ3k1−2/q∗ l−2/pd1,A max
i,j

|aij |2.

Therefore

(38) σk,l ≤ min{1, γk1/2−1/q∗ l1/2−1/p, γ3/2k1/2−1/q∗ l−1/pd
1/2
1,A}max

i,j
|aij |.

Estimates (37) and (38) yield

EYk,l(γ) ≲
√
p∗D1 +

√
Logmmax

i,j
|aij |

+ γ3/2k1−1/q∗ l−1/p min{l1/2, d1/21,A}
√

Log(dA)max
i,j

|aij |.

In a similar way we show that

EYk,l(γ) ≲
√
qD2 +

√
Log nmax

i,j
|aij |

+ γ3/2k−1/q∗ l1−1/p min{k1/2, d1/22,A}
√
Log(dA)max

i,j
|aij |. □

To make use of the two previous propositions we consider the cases 1
p +

1
q∗ ≥ 3/2

and 1
p + 1

q∗ ≤ 3/2 separately.

Corollary 33. Suppose that p∗, q ∈ [2,∞) are such that 1
p + 1

q∗ ≥ 3/2. Then for
every ε ∈ (0, 1],

E∥GA∥p→q ≲ ε−1
(√

p∗D1 +
√
qD2 + (ε−1/2dεA +

√
Log(mn))max

i,j
|aij |

)
.

Proof. By Proposition 31 we have

E∥GA∥p→q ≲
1

ε

(
max

1≤k≤m
max
1≤l≤n

EYk,l(dε/3A ) +
√

Log(mn)∥(aij)∥∞
)
.
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Observe that in the case p∗, q ∈ [2,∞), 1
p + 1

q∗ ≥ 3/2 we have for any k, l,

k−1/q∗ l−1/p min{kl1/2, k1/2l, kd1/21,A, ld
1/2
2,A} ≤ min{k1−1/q∗ l1/2−1/p, k1/2−1/q∗ l1−1/p}

≤ (k ∧ l)3/2−1/q∗−1/p ≤ 1.

Hence estimate (36) yields that

EYk,l(dε/3A ) ≲
√
p∗D1 +

√
qD2 + (d

ε/2
A

√
Log dA +

√
Log(mn))max

i,j
|aij |.

Finally we observe that supx≥1 x
−ε Log x ≲ ε−1, so dε/2A

√
Log dA ≲ dεAε

−1/2. □

Corollary 34. If p∗, q ∈ [2,∞) are such that 1
p + 1

q∗ ≤ 3
2 and q ∨ p∗ > 2, then

E∥GA∥p→q ≲
(q ∨ p∗)3

q ∨ p∗ − 2

[√
p∗D1 +

√
qD2

+
( (q ∨ p∗)3/2

(q ∨ p∗ − 2)1/2
(d

3
2p∗ − q

2(p∗+q)

1,A + d
3
2q−

p∗
2(p∗+q)

2,A ) +
√
Log(mn)

)
max
i,j

|aij |
]
.

Proof. We proceed as in the proof of the previous corollary. The only difference is
a more delicate estimate of

πk,l := k−1/q∗ l−1/p min{kl1/2, k1/2l, kd1/21,A, ld
1/2
2,A}.

Suppose 2 ≤ p∗ ≤ q and q > 2 (the case when 2 ≤ q ≤ p∗ and p∗ > 2 follows by
duality). Let ρ > 0 be a constant to be chosen later. We consider two cases.

Case 1. k ≤ ρl. Assumption 1
p + 1

q∗ ≤ 3
2 implies that 1

2 + 1
p∗ − 1

q∗ ≥ 0, and so

πk,l ≤ k1/p
∗−1/q∗ min{k1/2(k/l)1/2−1/p∗

, d
1/2
1,A(k/l)

1/p}

≤ k1/p
∗−1/q∗ρ1/2−1/p∗(

min{k, ρd1,A}
)1/2

≤ (ρd1,A)
1/p∗−1/q∗+1/2ρ1/2−1/p∗

= ρ1/qd
1/p∗+1/q−1/2
1,A .

Case 2. k ≥ ρl. Then

πk,l ≤ k1/p
∗−1/q∗

(
min{k, d2,A}

)1/2
(l/k)1/p

∗
≤ ρ−1/p∗

k1/p
∗−1/q∗

(
min{k, d2,A}

)1/2
≤ ρ−1/p∗

d
1/p∗−1/q∗+1/2
2,A = ρ−1/p∗

d
1/p∗+1/q−1/2
2,A .

Choosing ρ := (d2,A/d1,A)
1−p∗q/(2(p∗+q)) we obtain in both cases

πk,l ≤ d
1/p∗−q/(2(p∗+q))
1,A d

1/q−p∗/(2(p∗+q))
2,A ≤ 1

2

(
d
2/p∗−q/(p∗+q)
1,A + d

2/q−p∗/(p∗+q)
2,A

)
.

Therefore, Propositions 31 and 32 (applied to ε := ε/3 and γ := d
ε/3
A ) yield for

every ε ∈ (0, 1),

E∥GA∥p→q ≲
1

ε

(√
p∗D1 +

√
qD2

+
(
d

ε
2

A

√
Log dA

(
d

2
p∗ − q

p∗+q

1,A + d
2
q−

p∗
p∗+q

2,A

)
+
√
Log(mn)

)
max
i,j

|aij |
)
.

Recall that
d
ε/2
A

√
log dA ≲ ε−1/2dεA,

and dA = d1,A ∨d2,A. Note that 2
p∗ − q

p∗+q <
1
p∗ and 2

q −
p∗

p∗+q <
1
q , so we may take

ε0 :=
1

2
min

{ q

p∗ + q
− 1

p∗
,

p∗

p∗ + q
− 1

q

}
and ε :=

p∗

q
ε0.

For such a choice of ε we have 2
p∗ − q

p∗+q + ε ≤
2
p∗ − q

p∗+q + ε0 ≤ 3
2p∗ − q

2(p∗+q) <
1
p∗

and 2
q − p∗

p∗+q + ε ≤ 2
q − p∗

p∗+q + ε0 ≤ 3
2q − p∗

2(p∗+q) <
1
q . Moreover, the assumption



28 R. LATAŁA AND M. STRZELECKA

1/p+ 1/q∗ ≤ 3/2 yields that 1/p∗ + 1/q ≥ 1/2 and thus 2/p∗ − q/(p∗ + q) ≥ 0 and
2/q − p∗/(p∗ + q) ≥ 0. Hence, the AM-GM inequality implies

d
2
p∗ − q

p∗+q

1,A dε2,A ≤
2
p∗ − q

p∗+q
2
p∗ − q

p∗+q + ε0
d

2
p∗ − q

p∗+q
+ε0

1,A +
ε0

2
p∗ − q

p∗+q + ε0
d

ε
ε0

( 2
p∗ − q

p∗+q
+ε0)

2,A

≤ d
2
p∗ − q

p∗+q
+ε0

1,A + d
2
q−

p∗
p∗+q

+ε0

2,A

and

dε1,Ad
2
q−

p∗
p∗+q

2,A ≤ ε0
2
q − p∗

p∗+q + ε0
d

ε
ε0

( 2
q−

p∗
p∗+q

+ε0)

1,A +

2
q − p∗

p∗+q

2
q − p∗

p∗+q + ε0
d

2
q−

p∗
p∗+q

+ε0

2,A

≤ d
ε
ε0

( 2
q−

p∗
p∗+q

)+ε

1,A + d
2
q−

p∗
p∗+q

+ε0

2,A ≤ d
ε0
ε ( 2

q−
p∗

p∗+q
)+ε

1,A + d
2
q−

p∗
p∗+q

+ε0

2,A

≤ d
2
p∗ − q

p∗+q
+ε0

1,A + d
2
q−

p∗
p∗+q

+ε0

2,A .

To finish the proof it suffices to note that ε−1 ≲ q3

(p∗−1)(q−1)−1 ≤ q3

q−2 . □

Proof of Proposition 19. The assertion follows by
• Remark 4 if p = q = 2,
• Corollary 34 and Propositions 17 and 30 if p∗, q ∈ [2, 4) and p∗ ∨ q > 2

(note that in this case we have 1/p+ 1/q∗ < 3/2),
• Corollary 33, applied with ε = (2(p∗ ∨ q))−1, and Propositions 25 and 30 if
p∗, q ∈ (2,∞) and 1/p+ 1/q∗ ≥ 3/2.

• Corollary 34 and Propositions 25 and 30 if p∗, q ∈ (2,∞) and 1/p+1/q∗ <
3/2.

To get the claimed bounds on α(p, q) we observe that in the case 1/p+1/q∗ < 3/2

we have 1 > 3
2 − qp∗

2(p∗+q) ≥ 1/2, so that

− ln
(3
2
− qp∗

2(p∗ + q)

)
∼ qp∗

2(p∗ + q)
− 1

2
≳
p∗ ∨ q − 2

p∗ ∨ q
. □

Moreover, Corollaries 33 and 34, and Proposition 30 imply the following.

Proposition 35. Suppose that p∗ = 2 and q ∈ [4,∞) or that q = 2 and p∗ ∈ [4,∞).
Then

E∥GA∥p→q ≲p,q Log Log(mn)
(
D1 +D2 +

√
Log(mn)max

i,j
|aij |

)
.

5. Proof of Proposition 18

To prove Proposition 18 we decompose the underlying matrix A into block
diagonal matrices Ak (with blocks of appropriately small size) and matrices Bl

whose norm may be controlled by the following proposition providing a crude, but
dimension-independent bound.

Proposition 36. Let p∗, q ∈ [2,∞). Then for every partition J1, J2, . . . , Jk0
of [n],

(39) E∥GA∥p→q ≤ E∥GA∥2→q ≲
√
qD2 + max

1≤k≤k0

max
1≤l≤k

k3|Jl|1/2 max
i≤m,j∈Jk

|aij |.

Similarily, for every partition I1, . . . , Ik0
of [m],

(40) E∥GA∥p→q ≤ E∥GA∥p→2 ≲
√
p∗D1 + max

1≤k≤k0

max
1≤l≤k

k3|Il|1/2 max
i∈Ik,j≤n

|aij |.

In order to show Proposition 36 we need the following two lemmas; they allow
us to perform the induction step.
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Lemma 37. For every a, b ∈ Rm, c ∈ R and q ≥ 2 we have

E
((∑

i≤m

|ai + bigi|q
)2/q

+ c2
)1/2

≤
((∑

i≤m

|ai|q
)2/q

+ q
(∑
i≤m

|bi|q
)2/q

+ c2
)1/2

.

Proof. Jensen’s inequality implies that

E
((∑

i≤m

|ai + bigi|q
)2/q

+ c2
)1/2

≤
((∑

i≤m

E|ai + bigi|q
)2/q

+ c2
)1/2

.

The hypercontractivity of Gaussian variables and the triangle inequality in Lq/2

yield(∑
i≤m

E|ai + bigi|q
)2/q

≤
(∑
i≤m

(E|ai +
√
qbigi|2)q/2

)2/q
= ∥(a2i + qb2i )i∥q/2

≤ ∥(a2i )i∥q/2 + q∥(b2i )i∥q/2

=
(∑
i≤m

|ai|q
)2/q

+ q
(∑
i≤m

|bi|q
)2/q

. □

Lemma 38. For every q ≥ 2, J ⊂ J ′ ⊂ [n], a finite set T ⊂ BJ′

2 and functions
b = (b1, . . . , bm) : T → Rm and c : T → R we have

E sup
t∈T

((∑
i≤m

∣∣∣bi(t) +∑
j∈J

aijgijtj

∣∣∣q)2/q+c(t)2)1/2
≤ sup

t∈T
E
((∑

i≤m

∣∣∣bi(t) +∑
j∈J

aijgijtj

∣∣∣q)2/q+c(t)2)1/2 + C
√
Log |T | max

i≤m,j∈J
|aij |.

Proof. Observe that((∑
i≤m

∣∣∣bi(t) +∑
j∈J

aijgijtj

∣∣∣q)2/q+c(t)2)1/2 = sup
s∈Bm

q∗ ,v∈B2
2

Xs,v,t,

where
Xs,v,t := v1

∑
i≤m

si

(
bi(t) +

∑
j∈J

aijgijtj

)
+ v2c(t).

We have

sup
t∈T

sup
s∈Bm

q∗ ,v∈B2
2

Var(Xs,v,t) = sup
t∈T

sup
s∈Bm

q∗ ,v∈B2
2

v21
∑

i≤m,j∈J

a2ijs
2
i t

2
j

≤ sup
t∈BJ

2

sup
s∈Bm

q∗

∑
i≤m,j∈J

a2ijs
2
i t

2
j = max

i≤m,j∈J
|aij |2.

Hence the assertion follows by Lemma 24. □

Proof of Proposition 36. We will prove (39); the second estimate (40) follows by
duality.

For 1 ≤ k ≤ k0 let T1,k be a 2−2k-net in BJk
2 of cardinality at most 24k|Jk|. Set

J≤k :=
⋃
l≤k

Jl, J>k :=
⋃
l>k

Jl

and for t ∈ Rn,

πk(t) := (tj)j∈Jk
∈ RJk , π≤k(t) := (tj)j∈J≤k

∈ RJ≤k .

Define

T1,≤k := {t ∈ B
J≤k

2 : πl(t) ∈ T1,l, 1 ≤ l ≤ k},
T1 := T1,≤k0 = {t ∈ Bn

2 : πk(t) ∈ T1,k, 1 ≤ k ≤ k0}.
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Then T1 is a 1
2 -net in Bn

2 , and hence,

E∥GA∥p→q ≤ E∥GA∥2→q ≤ 2E sup
t∈T1

(∑
i

∣∣∣∑
j

aijgijtj

∣∣∣q)1/q.
We will show by the reverse induction on k that for 0 ≤ k ≤ k0,

E sup
t∈T1

(∑
i

∣∣∣∑
j

aijgijtj

∣∣∣q)1/q ≤ E sup
t∈T1

((∑
i

∣∣∣ ∑
j∈J≤k

aijgijtj

∣∣∣q)2/q + qD2
2

∑
j∈J>k

t2j

)1/2
+ C

∑
l>k

√
Log |T1,≤l|max

i
max
j∈Jl

|aij |.(41)

For k = k0 inequality (41) holds with equality. Observe that

sup
t∈T1

((∑
i

∣∣∣ ∑
j∈J≤k

aijgijtj

∣∣∣q)2/q + qD2
2

∑
j∈J>k

t2j

)1/2
= sup

t̃∈T1,≤k

((∑
i

∣∣∣ ∑
j∈J≤k

aijgij t̃j

∣∣∣q)2/q + c(t̃)2
)1/2

,

where

c(t̃) :=
√
qD2 sup

t∈T1 : π≤k(t)=t̃

( ∑
j∈J>k

t2j

)1/2
.

Let EJk
denote the integration with respect to random variables (gij)i≤m,j∈Jk

.
Conditional application of Lemma 38 yields

EJk
sup

t̃∈T1,≤k

((∑
i

∣∣∣ ∑
j∈J≤k

aijgij t̃j

∣∣∣q)2/q + c(t̃)2
)1/2

≤ sup
t̃∈T1,≤k

EJk

((∑
i

∣∣∣ ∑
j∈J≤k

aijgij t̃j

∣∣∣q)2/q + c(t̃)2
)1/2

+ C
√
Log |T1,≤k|max

i
max
j∈Jk

|aij |.

Lemma 37, applied conditionally, implies that for any t̃ ∈ T1,≤k,

EJk

((∑
i

∣∣∣ ∑
j∈J≤k

aijgij t̃j

∣∣∣q)2/q + c(t̃)2
)1/2

≤
((∑

i

∣∣∣ ∑
j∈J≤k−1

aijgij t̃j

∣∣∣q)2/q + c̃(t̃)2
)1/2

,

where

c̃(t̃)2 = q
(∑

i

∣∣∣ ∑
j∈Jk

a2ij t̃
2
j

∣∣∣q/2)2/q + c(t̃)2.

Note that(∑
i

∣∣∣ ∑
j∈Jk

a2ij t̃
2
j

∣∣∣q/2)2/q ≤
∑
j∈Jk

t̃2j sup
x∈B

Jk
1

(∑
i

∣∣∣ ∑
j∈Jk

a2ijxj

∣∣∣q/2)2/q
=
∑
j∈Jk

t̃2j max
j∈Jk

(∑
i

|aij |q
)2/q

≤ D2
2

∑
j∈Jk

t̃2j ,

so

c̃(t̃)2 ≤ qD2
2 sup
t∈T1 : π≤k(t)=t̃

∑
j∈J>k−1

t2j .
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Thus,

E sup
t∈T1

((∑
i

∣∣∣ ∑
j∈J≤k

aijgijtj

∣∣∣q)2/q + qD2
2

∑
j∈J>k

t2j

)1/2
≤ E sup

t̃∈T1,≤k

((∑
i

∣∣∣ ∑
j∈J≤k−1

aijgij t̃j

∣∣∣q)2/q + c̃(t̃)2
)1/2

+ C
√
Log |T1,≤k|max

i
max
j∈Jk

|aij |

≤ E sup
t∈T1

((∑
i

∣∣∣ ∑
j∈J≤k−1

aijgijtj

∣∣∣q)2/q + qD2
2

∑
j∈J>k−1

t2j

)1/2
+ C

√
Log |T1,≤k|max

i
max
j∈Jk

|aij |,

so the reverse induction step immediately follows.
Estimate (41) for k = 0 gives

E sup
t∈T1

(∑
i

(∑
j

aijgijtj

)q)1/q
≤ √

qD2 + C

k0∑
k=1

√
Log |T1,≤k|max

i
max
j∈Jk

|aij |.

We have

Log |T1,≤k| ≤
k∑

l=1

Log |T1,l| ≲
k∑

l=1

l|Jl|,

so that
k0∑
k=1

√
Log |T1,≤k|max

i
max
j∈Jk

|aij | ≲
∑

1≤l≤k≤k0

√
l|Jl|1/2 max

i
max
j∈Jk

|aij |

≤ max
1≤l≤k≤k0

k3|Jl|1/2 max
i

max
j∈Jk

|aij | ·
∑

1≤l≤k≤k0

√
l

k3

≲ max
1≤l≤k≤k0

k3|Jl|1/2 max
i

max
j∈Jk

|aij |. □

Now we are ready to prove Proposition 18.

Proof of Proposition 18. Let r = 8(p∗ ∨ q) and

D′
∞ := max

i,j
(i+ j)1/r|aij |.

Define the sequence (nk)k≥0 by

n0 := 0, nk :=
⌈
er

k⌉
for k ≥ 1.

Then

(42)
√
Log(nknl) ≤

√
Log nk +

√
Log nl ≲ r(nk−1 + nl−1 + 2)1/r for k, l ≥ 1.

For k = 1, 2, . . . define

Ik := {i ∈ [m] : nk−1 < i ≤ nk},
Jk := {j ∈ [n] : nk−1 < j ≤ nk}.

Then

(43) max
i∈Ik,j∈Jl

(nk−1 + nl−1 + 2)1/r|aij | ≤ max
i∈Ik,j∈Jl

(i+ j)1/r|aij | ≤ D′
∞.

Let
Ak,l := (aij)i∈Ik,j∈Jl

.
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Then Proposition 19 and estimates (42) and (43) yield

E∥GAk,l
∥p→q ≲ α(p, q)

(√
p∗D1 +

√
qD2 +

√
Log(|Ik||Jl|) max

i∈Ik,j∈Jl

|aij |
)

≲ α(p, q)(
√
p∗D1 +

√
qD2 + rD′

∞).(44)

For r ∈ Z set

Ar =
∑

k≥max{0,−r}

(aij1{i∈Ik,j∈Jk+r})i≤m,j≤n.

For every r (after deleting some zero rows and columns) Ar is block diagonal with
blocks Ak,k+r. Hence, Lemmas 21 and 24, together with estimates (43) and (44),
imply

E∥GAr
∥p→q = Emax

k
∥GAk,k+r

∥p→q

≤ max
k

E∥GAk,k+r
∥p→q +max

k

√
Log k max

i∈Ik,j∈Jk+r

|aij |

≲ α(p, q)(
√
p∗D1 +

√
qD2 + rD′

∞).

We have

A =

1∑
r=−1

Ar +B1 +B2,

where

B1 =
∑
l

∑
k≥l+2

(aij1{i∈Ik,j∈Jl}), B2 =
∑
k

∑
l≥k+2

(aij1{i∈Ik,j∈Jl}).

Estimate (39) applied to the matrix B1 yields

E∥GB1∥p→q ≲
√
qD2 +max

l
max
l′≤l

l3
√

|Jl′ | max
k≥l+2

max
i∈Ik

max
j∈Jl

|aij |

≤ √
qD2 +max

l
l3
√
nl max

k≥l+2
max
i∈Ik

max
j∈Jl

|aij |.

Observe that if i ∈ Ik, j ∈ Jl and k ≥ l + 2 then

l3
√
nl ≲ n

1/r
l+1 ≤ n

1/r
k−1 ≤ i1/r ≤ (i+ j)1/r,

Hence,
E∥GB1∥p→q ≲

√
qD2 +D′

∞.

Similarily, estimate (40) implies

E∥GB2
∥p→q ≲

√
pD1 +D′

∞. □

Proceeding similarly as in the proof of Proposition 18 we may show that Propo-
sition 35 implies

E∥GA∥p→q ≲p,q Log Log(mn)
(
D1 +D2 +max

i,j
(i+ j)(8(p

∗∨q))−1

|aij |
)

when p∗ = 2 and q ≥ 4 or q = 2 and p∗ ≥ 4. This estimate, together with
Proposition 35, Proposition 20 and estimate (12), yields Theorem 6.

Sketch of the proof of Proposition 5. In a similar way as in the proof of Proposi-
tion 19 (using assumption (1) instead of Proposition 25) we show that

E∥GA∥p→q ≲ α′(p, q)
(√

p∗D1 +
√
qD2 +

√
Log(mn)max

i,j
|aij |

)
,
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where

α′(p, q) =


(p∗ ∨ q)3/2αLog γ if

1

p
+

1

q∗
≥ 3/2,

(p∗ ∨ q)11/2αLog γ

(p∗ ∨ q − 2)5/2
if

1

p
+

1

q∗
< 3/2

≤ (p∗ ∨ q)11/2αLog γ

(p∗ ∨ q − 2)5/2
.

Then, as in the proof of Proposition 18, we obatin the dimension-free estimate

E∥GA∥p→q ≲ (p∗ ∨ q)α′(p, q)
(
D1 +D2 +max

i,j
(i+ j)(8(p

∗∨q))−1

|aij |
)

and the assertion follows by Proposition 20. □

Appendix. Estimates in the range p∗, q ∈ [2, 4) with the constant
bounded in a neighbourhood of the point (p, q) = (2, 2)

The aim of this appendix is to prove that constants in Theorem 2 are bounded
if p∗, q ∈ [2, 4) and p∗ ∨ q is separated from 4. Namely, the following result holds.

Theorem 39. If δ ∈ (0, 1] and p∗, q ∈ [2, 4−δ), then for every deterministic matrix
A = (aij)i≤m,j≤n we have

E∥GA∥p→q ∼δ max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q + Emax
i,j

|aijgij |

∼ max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q +max
k≥0

inf
|I|=k

√
Log k max

(i,j)/∈I
|aij |

∼ max
i

∥(aij)j∥p∗ +max
j

∥(aij)i∥q +max
k≥0

inf
|I|=|J|=k

√
Log k max

i/∈I,j /∈J
|aij |

∼ Emax
i

∥(aijgj)j∥p∗ + Emax
j

∥(aijgi)i∥q.

Moreover, the constant in the first lower bound does not depend on δ and the con-
stant in the first upper bound is bounded by (C/δ)2/δ.

The proof of Theorem 2 shows that to establish Theorem 39 it is enough to prove
that for p∗, q ∈ [2, 4− δ)

(45) E∥GA∥p→q ≤
(C
δ

)2/δ(
D1 +D2 +max

k≥0
inf

|I|=k

√
Log k max

(i,j)/∈I
|aij |

)
.

The crucial new tool we need to establish the above bound is the following result,
which allows a similar exponent reduction as Corollaries 33 and 34 in Section 4.3.

Proposition 40. If p∗, q ∈ [2, 4− δ) and ε ∈ (0, 1/2], then

E∥GA∥p→q ≲ ε−2
[
D1 +D2 +

((
ε−1/2 +

(C
δ

)2/δ)
d
1/4+ε
A +

√
Log(mn)

)
max
i,j

|aij |
]
.

We may deduce the desired estimate (45) from Proposition 40 (applied with
ε = (4 − p∗ ∨ q)/(8(p∗ ∨ q)) ∼ 4 − p∗ ∨ q ≥ δ); to do so we may use the same
arguments as in the proof of Theorem 2 in the case p∗, q ∈ [2, 4) with the constant
given in Remark 3.

The rest of the appendix is devoted to the proof of Proposition 40. To this end
we will need the following modification of Proposition 17.

Proposition 41. If p∗, q ∈ [2, 4) and a, b ∈ (0, 1], then

E sup
s∈Bm

q∗∩aBm
∞

sup
t∈Bn

p ∩bBn
∞

∑
i,j

aijgijsitj

≲ D1 +D2 +
(
a(2−q∗)/2 Log

2
4−p∗ (maq

∗
) + b(2−p)/2 Log

2
4−q (nbp)

)
max
i,j

|aij |.
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The proof of Proposition 41 is based on Lemma 22 and the following quite
standard lemma (cf. [13, Lemma 14] for cases ρ = 1, 2).

Lemma 42. Suppose that 1 ≤ ρ ≤ ρ0, c ∈ (0, 1], mj , σj ≥ 0 and nonnegative
random variables Z1, . . . , Zn satisfy

P(Zj ≥ mj + tσj) ≤ e−t2/2 for every 1 ≤ j ≤ n.

Then

E sup
u∈Bn

2 ∩cBn
∞

( n∑
j=1

u2jZ
ρ
j

)1/ρ
≲ρ0 max

j
mj +

√
Log(nc2)max

j
σj .

Proof. Let k be a positive integer such that 1
k+1 < c2 ≤ 1

k and (Z∗
1 , . . . , Z

∗
n) be the

nonincreasing rearrangement of (Z1, . . . , Zn). Let m = maxj mj , σ = maxj σj , and
M = (m+

√
2Log(n/k)σ)ρ. Then

(1
k

k∑
l=1

E(Z∗
l )

ρ
)1/ρ

≤ 2
(
M +

1

k

n∑
l=1

E(Zl −m−
√
2Log(n/k)σ)ρ+

)1/ρ
≲
(
M +

1

k

n∑
l=1

σρ

∫ ∞

0

ρtρ−1 P
(
Zl ≥ m+ σ(

√
2Log(n/k) + t)

)
dt
)1/ρ

≤
(
M +

n

k
σρ

∫ ∞

0

ρtρ−1e−(t+
√

2 Log(n/k))2/2dt
)1/ρ

≤
(
M + σρ

∫ ∞

0

ρtρ−1e−t2/2dt
)1/ρ

≲ρ0
m+

√
Log(n/k)σ,

so

E sup
u∈Bn

2 ∩cBn
∞

( n∑
j=1

u2jZ
ρ
j

)1/ρ
≤ E

(1
k

k∑
l=1

(Z∗
l )

ρ
)1/ρ

≲ρ0
m+

√
Log(n/k)σ

∼ m+
√

Log(nc2)σ. □

Proof of Proposition 41. We apply Lemma 22 with K = Bm
q∗ ∩ aBm

∞ and L =

Bn
p ∩ bBn

∞. Observe that ∥s∥2 ≤ ∥s∥(2−q∗)/2
∞ ∥s∥q

∗/2
q∗ . This, together with a similar

calculation for ℓp-norms, yields

(46) K ⊂ a(2−q∗)/2(Bm
2 ∩ aq

∗/2Bm
∞), L ⊂ b(2−p)/2(Bn

2 ∩ bp/2Bn
∞).

Estimate (16) implies that Y1, . . . , Ym are centered Gaussians with Var(Yi) ≤
∥(aij)j∥24. Thus, (46) and Lemma 42, applied with Zj = |Yj |, ρ = 1, c = aq

∗/2,
mj = 0 and σj = ∥(aij)j∥4, yield that

E sup
s∈K

m∑
i=1

s2iYi ≤ a2−q∗E sup
s∈Bm

2 ∩aq∗/2Bm
∞

m∑
i=1

s2i |Yi|

≲ a2−q∗
√
Log(maq∗)max

i
∥(aij)j∥4

≤ a2−q∗
√
Log(maq∗)max

i
∥(aij)j∥p

∗/4
p∗ max

i,j
|aij |(4−p∗)/4

≤ p∗

4
D1 +

4− p∗

4
a4(2−q∗)/(4−p∗) Log2/(4−p∗)(maq

∗
)max

i,j
|aij |

≤ D1 + a(2−q∗)/2 Log2/(4−p∗)(maq
∗
)max

i,j
|aij |.
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In a similar way we show that

sup
t∈L

n∑
j=1

t2jYm+j ≲ b2−p
√
Log(nbp)max

j
∥(aij)i∥4

≤ D2 + b(2−p)/2 Log2/(4−q)(nbp)max
i,j

|aij |.

By (46) and the convexity of the function x 7→ |x|q/2 we get

sup
s∈K,t∈L

m∑
i=1

sigi

√√√√ n∑
j=1

t2ja
2
ij ≤ sup

t∈L

( m∑
i=1

|gi|q
( n∑
j=1

t2ja
2
ij

)q/2)1/q
≤ b(2−p)/2 sup

t∈Bn
2 ∩bp/2Bn

∞

( m∑
i=1

|gi|q
( n∑
j=1

t2ja
2
ij

)q/2)1/q
≤ b(2−p)/2 sup

t∈Bn
2 ∩bp/2Bn

∞

( n∑
j=1

t2j∥(aijgi)i∥qq
)1/q( n∑

j=1

t2j

)1/2−1/q

≤ b(2−p)/2 sup
t∈Bn

2 ∩bp/2Bn
∞

( n∑
j=1

t2j∥(aijgi)i∥qq
)1/q

.(47)

Note that
E∥(aijgi)i∥q ≤ (E∥(aijgi)i∥qq)1/q ≤ √

q∥(aij)i∥q,
and

sup
s∈Bn

2

∥(aijsi)i∥q = max
i

|aij |.

Therefore, the Gaussian concentration (see, e.g., [3, Theorem 5.6]) yields

P
(
∥(aijgi)i∥q ≥ √

q∥(aij)i∥q + tmax
i

|aij |
)
≤ e−t2/2.

Estimate (47) and Lemma 42, applied with Zj = ∥(aijgi)i∥q, ρ = q, c = bp/2, and
ρ0 = 4, imply

sup
s∈K,t∈L

m∑
i=1

sigi

√√√√ n∑
j=1

t2ja
2
ij ≲ max

j
∥(aij)i∥q + b(2−p)/2

√
Log(nbp)max

i,j
|ai.j |

≤ D2 + b(2−p)/2 Log2/(4−q∗)(nbp)max
i,j

|ai.j |.

In a similar way we show that

sup
s∈K,t∈L

n∑
j=1

tjgj

√√√√ m∑
i=1

s2i a
2
ij ≲ D1 + a(2−q∗)/2 Log2/(4−p)(maq

∗
)max

i,j
|ai.j |. □

We also use the following consequence of Lemma 27 and Proposition 31.

Corollary 43. If 2 ≤ p∗, q <∞, then

E∥GA∥p→q

≲ Log(dA)
(√

p∗ max
i

∥(aij)j∥p∗ +
√
qmax

j
∥(aij)i∥q +

√
Log(nm)max

i,j
|aij |

)
.

Proof. If I ⊂ [m], J ⊂ [n], and γ > 1, then for every (bi)
m
i=1 and (cj)

n
j=1,

sup
s∈K(q∗,m,I,γ)

m∑
i=1

bisi ≤ γ sup
s∈Kq∗,m,1

m∑
i=1

bisi
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and

sup
t∈K(p,n,J,γ)

n∑
j=1

cjtj ≤ γ sup
t∈Kp,n,1

n∑
j=1

cjtj .

Hence,
Yk,l(d

ε
A) ≤ d2εA sup

s∈Kq∗,m,1

sup
t∈Kp,n,1

∑
i,j

aijgijsitj .

We choose ε = 1/Log(dA) and apply Lemma 27 (with a = b = 1) and Proposi-
tion 31. □

As in Section 4.3, we estimate E∥GA∥p→q using Propostion 31, so we need to
upper bound EYk,l(dεA). For I ⊂ [m] and α ≥ 0 define

B(p, I, α) = B(p, I, α,A) :=
{
t ∈ Bn

p : max
i∈I

n∑
j=1

a2ijt
2
j ≤ α2

}
,

and for I ⊂ [m] and J ⊂ [n] let

I ′′ = {i ∈ [m] : ∃j∈I′ (i, j) ∈ EA} and J ′′ = {j ∈ [n] : ∃i∈J′ (i, j) ∈ EA}.

Without loss of generality we may assume that matrix A has no zero rows and
columns, so I ⊂ I ′′ and J ⊂ J ′′ for any I ⊂ [m] and J ⊂ [n].

Lemma 44. For every p ≤ 2, 1 ≤ r ≤ k ≤ m and 1 ≤ l ≤ n we have

EYk,l(dεA)

≤ E max
I∈I4(k)

max
I0⊂I,|I0|=r

max
J∈J4(l)

sup
s∈K(q∗,m,I,dε

A)

sup
t∈K(p,n,J,dε

A)

∑
i∈I′′

0 ∩I,j∈I′
0∩J

aijgijsitj

+ E max
I∈I4(k)

sup
s∈Bm

q∗

sup
t∈B(p,I,αr)

∑
i∈I,j∈[n]

aijgijsitj ,

(48)

where
αr = min{1, dεAl1/2−1/pr−1/2}max

i,j
|aij |.

Proof. Let us fix I ∈ I4(k) and J ∈ J4(l) and consider the following greedy algo-
rithm with output being a subset I0 = {i1, . . . , ir} of I of size r.

• In the first step we pick a vertex i1 ∈ I with maximal number of neighbours
in J .

• Once we chose {i1, . . . , iu} for u < r, we pick iu+1 ∈ I \ {i1, . . . , iu} with
maximal number of neighbours in J \ {i1, . . . , iu}′.

If lu denotes the number of neighbours of iu in J \ {i1, . . . , iu−1}′, then l1 ≥ l2 ≥
. . . ≥ lr, so rlr ≤ |J | = l. Hence, using this algorithm we get a subset I0 ⊂ I with
cardinality r such that for every i ∈ I \ I0, |{j ∈ J \ I ′0 : (i, j) ∈ EA}| ≤ l/r.

Observe that if i ∈ I and j ∈ I ′0 ∩ J are such that aij ̸= 0, then i ∈ I ′′0 ∩ I, and if
i ∈ I and j ∈ J \ I ′0 are such that aij ̸= 0, then i ∈ I \ I0. Hence, for any s ∈ Bm

q∗

and t ∈ Bn
p ,∑

i∈I,j∈J

aijgijsitj =
∑

i∈I′′
0 ∩I,j∈I′

0∩J

aijgijsitj +
∑

i∈I\I0,j∈J\I′
0

aijgijsitj .

Moreover, for any i ∈ I \ I0 and t ∈ K(p, n, J, dεA),∑
j∈J\I′

0

a2ijt
2
j ≤ max

i,j
a2ij min

{
1,
l

r
max
j∈J

t2j

}
≤ max

i,j
a2ij min{1, d2εA l1−2/pr−1} = α2

r.
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Therefore,

max
I∈I4(k)

max
J∈J4(l)

sup
s∈K(q∗,m,I,dε

A)

sup
t∈K(p,n,J,dε

A)

∑
i∈I\I0,j∈J\I′

0

aijgijsitj

≤ max
I∈I4(k)

sup
s∈Bm

q∗

sup
t∈B(p,I,αr)

∑
i∈I,j∈[n]

aijgijsitj . □

We begin by estimating the second term on the right-hand side of (48).

Lemma 45. For p∗, q ∈ [2,∞), 1 ≤ k ≤ m, and α ∈ [0, 1] we have

E max
I∈I4(k)

sup
s∈Bm

q∗

sup
t∈B(p,I,α)

∑
i∈I,j∈[n]

aijgijsitj

≲
√
p∗D1 + α

(√
k Log dA +

√
Logm

)
.

Proof. Observe that for any I ∈ I4(k), s ∈ Bm
q∗ ⊂ Bm

2 , and t ∈ B(p, I, α) we have∑
i∈I,j∈[n]

a2ijs
2
i t

2
j ≤ max

i∈I

∑
j

a2ijt
2
j ≤ α2.

Define for s ∈ Bm
q∗ ,

D(p, s, α) :=
{
t ∈ Bn

p :
∑
i,j

a2ijs
2
i t

2
j ≤ α2

}
.

For I ∈ I4(k) let us choose a 1/2-net TI in BI
q∗ = {s ∈ Bm

q∗ : supp(s) ⊂ I} (in
ℓq∗ -norm) of cardinality at most 5k and put T :=

⋃
I∈I4(k)

TI . Then, by (31),
|T | ≤ 5k|I4(k)| ≤ m20kd4kA , so

max
I∈I4(k)

sup
s∈Bm

q∗

sup
t∈B(p,I,α)

∑
i∈I,j∈[n]

aijgijsitj ≤ 2 max
I∈I4(k)

sup
s∈TI

sup
t∈B(p,I,α)

∑
i∈I,j∈[n]

aijgijsitj

≤ 2max
s∈T

sup
t∈D(p,s,α)

∑
i,j

aijgijsitj .

Thus, estimate (17) implies

E max
I∈I4(k)

sup
s∈Bm

q∗

sup
t∈B(p,I,α)

∑
i∈I,j∈[n]

aijgijsitj ≲ max
s∈T

E sup
t∈D(p,s,α)

∑
i,j

aijgijsitj

+
√

Log |T |max
s∈T

sup
t∈D(p,s,α)

(∑
i,j

a2ijs
2
i t

2
j

)1/2
.

For any fixed s ∈ T ⊂ Bm
q∗ estimate (25) yields

E sup
t∈D(p,s,α)

∑
i,j

aijgijsitj ≤ E sup
t∈Bn

p

∑
i,j

aijgijsitj ≤
√
p∗D1.

Moreover,
√
Log |T | ≲

√
Logm+

√
k Log(dA) and

max
s∈T

sup
t∈D(p,s,α)

(∑
i,j

a2ijs
2
i t

2
j

)1/2
≤ α. □

Now we estimate the first term on the right-hand side of (48).
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Lemma 46. If l ≥ r, ε ∈ (0, 1/2], and p∗, q ∈ [2, 4), then

E max
I⊂[m]

max
I0⊂I,|I0|=r

max
J∈J4(l)

sup
s∈K(q∗,m,I,dε

A)

sup
t∈K(p,n,J,dε

A)

∑
i∈I′′

0 ∩I,j∈I′
0∩J

aijgijsitj

≲ ε−1
[
D1 +D2

+
(
(5 Log(dA))

2/(4−p∗∨q) +
√

Log(mn) +
√
Log dAd

1/2+3ε
A

(r
l

)1/p)
max
i,j

|aij |
]
.

Proof. Let us fix I ⊂ [m], I0 ⊂ I with |I0| = r, J ∈ J4(l), s ∈ K(q∗,m, I, dεA),
and t ∈ K(p, n, J, dεA). Let I0,1, . . . , I0,V be 4-connected componets of I0. Then
(I ′0,1, . . . , I

′
0,V ) is a partition of I ′0, and (I ′′0,1, . . . , I

′′
0,V ) is a partition of I ′′0 . Hence,

∑
i∈I′′

0 ∩I

j∈I′
0∩J

aijgijsitj =

V∑
v=1

∑
i∈I′′

0,v∩I

j∈I′
0,v∩J

aijgijsitj .

Let

V =
{
v ≤ V : |I ′0,v ∩ J | < d−2εp

A

l

r
|I0,v| = d−2εp

A

|J |
|I0|

|I0,v|
}
.

Then∑
v∈V

∑
i∈I′′

0,v∩I

j∈I′
0,v∩J

aijgijsitj ≤ ∥GA∥p→q

∑
v∈V

∥(si)i∈I′′
0,v∩I∥q∗∥(tj)j∈I′

0,v∩J∥p

≤ ∥GA∥p→q

(∑
v∈V

∥(si)i∈I′′
0,v∩I∥2q∗

)1/2(∑
v∈V

∥(tj)j∈I′
0,v∩J∥2p

)1/2
≤ ∥GA∥p→q

(∑
v∈V

∥(si)i∈I′′
0,v∩I∥q

∗

q∗

)1/q∗(∑
v∈V

∥(tj)j∈I′
0,v∩J∥pp

)1/p
≤ ∥GA∥p→q∥s∥q∗

(∑
v∈V

dεpA
|J |

|I ′0,v ∩ J |
)1/p

≤ d−ε
A ∥GA∥p→q

(∑
v∈V

1

|I0|
|I0,v|

)1/p
≤ d−ε

A ∥GA∥p→q.

For a nonempty I0 ⊂ [m], 1 ≤ u ≤ n, and γ ≥ 1 define

ZI0,u(γ)

:= max
I0⊂I⊂[m]

max
J⊂[n],|J∩I′

0|≥u
sup

s∈K(q∗,m,I,γ)

sup
t∈K(p,n,J,γ)

∑
i∈I′′

0 ∩I,j∈I′
0∩J aijgijsitj

∥(si)i∈I′′
0 ∩I∥q∗∥(tj)j∈I′

0∩J∥p
.

Moreover, for 1 ≤ r ≤ m, 1 ≤ u ≤ n, and γ ≥ 1, set

Zr,u(γ) := max
I0∈I4(r)

ZI0,u(γ),

and for α ∈ (0, 1] and γ ≥ 1, let

Zα(γ) := max
1≤r≤m

max
u≥αr

Zr,u(γ).

Observe that for v /∈ V, |I ′0,v ∩ J | ≥ α|I0,v|, where α = d−2εp
A

l
r ≥ d−2

A , so∑
v/∈V

∑
i∈I′′

0,v∩I

j∈I′
0,v∩J

aijgijsitj ≤ Zα(d
ε
A)
∑
v/∈V

∥(si)i∈I′′
0,v∩I∥q∗∥(tj)j∈I′

0,v∩J∥p
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≤ Zα(d
ε
A)
(∑

v

∥(si)i∈I′′
0,v∩I∥2q∗

)1/2(∑
v

∥(tj)j∈I′
0,v∩J∥2p

)1/2
≤ Zα(d

ε
A)
(∑

v

∥(si)i∈I′′
0,v∩I∥q

∗

q∗

)1/q∗(∑
v

∥(tj)j∈I′
0,v∩J∥pp

)1/p
≤ Zα(d

ε
A)∥s∥q∗∥t∥p ≤ Zα(d

ε
A).

The above argument shows that

max
I∈I4(k)

max
I0⊂I,|I0|=r

max
J∈J4(l)

sup
s∈K(q∗,m,I,dε

A)

sup
t∈K(p,n,J,dε

A)

∑
i∈I′′

0 ∩I,j∈I′
0∩J

aijgijsitj

≤ d−ε
A ∥GA∥p→q + Zα(d

ε
A).

Corollary 43 yields that

d−ε
A E∥GA∥p→q ≲ sup

x≥1
(x−ε Log x)

(
D1 +D2 +

√
Log(mn)max

i,j
|aij |

)
∼ ε−1

(
D1 +D2 +

√
Log(mn)max

i,j
|aij |

)
,

Therefore, the assertion follows by part iii) of the next lemma. □

Lemma 47. Let γ ≥ 1 and p∗, q ∈ [2, 4).
i) If I0 ⊂ [m] and 1 ≤ u ≤ n satisfy u ≥ |I0|d−2

A , then

EZI0,u(γ) ≲ D1 +D2 + (3Log(dAγ))
2/(4−p∗∨q) max

i,j
|aij |.

ii) If 1 ≤ r ≤ m and 1 ≤ u ≤ n satisfy u ≥ rd−2
A , then

EZr,u(γ) ≲ D1 +D2

+
(
(3 Log(dAγ))

2/(4−p∗∨q) +
√
Logm+

√
r Log dAγd

1/2
A u−1/p

)
max
i,j

|aij |.

iii) If α ≥ d−2
A , then

EZα(γ) ≲ D1 +D2

+
(
(3 Log(dAγ))

2/(4−p∗∨q) +
√
Log(mn) +

√
Log dAγd

1/2
A α−1/p

)
max
i,j

|aij |.

Proof. Let us fix I0 ⊂ I ⊂ [m], J ⊂ [n] with |I0| = r, |J∩I ′0| ≥ u, s ∈ K(q∗,m, I, γ)
and t ∈ K(p, n, J, γ). Define

s̄ = ∥(si)i∈I′′
0 ∩I∥−1

q∗ (si)i∈I′′
0 ∩I , t̄ = ∥(tj)j∈I′

0∩J∥−1
p (tj)j∈I′

0∩J .

Recall that I0 ⊂ I ′′0 , so ∥s̄∥q∗ = 1, ∥s̄∥∞ ≤ γ|I ′′0 ∩ I|−1/q∗ ≤ γ|I0|−1/q∗ ≤ γr−1/q∗ ,
∥t̄∥p = 1, and ∥t̄∥∞ ≤ γ|I ′0 ∩ J |−1/p ≤ γu−1/p ≤ γd

2/p
A r−1/p. Hence, part i)

of the assertion follows by Proposition 41 applied with the matrix (aij)i∈I′′
0 ,j∈I′

0
,

m = |I ′′0 | ≤ d2Ar, n = |I ′0| ≤ dAr, a = (γr−1/q∗) ∧ 1 and b = (γd
2/p
A r−1/p) ∧ 1.

To show part ii) observe that∑
i∈I′′

0 ∩I,j∈I′
0∩J

a2ij s̄
2
i t̄

2
j ≤ max

i∈I

∑
j∈J

a2ij t̄
2
j ≤ max

i,j
a2ij min{1, dA∥t̄∥2∞}

≤ max
i,j

a2ij min{1, dAγ2u−2/p}.

Moreover, estimate (31) yields
√

Log |I4(r)| ≲
√
Logm +

√
r Log dA, so part ii)

follows by part i) and estimate (17).
Part iii) easily follows from ii) and another application of (17). □
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Corollary 48. If 1 ≤ k ≤ m, 1 ≤ l ≤ n, p∗, q ∈ [2, 4), and ε ∈ (0, 1/2], then

EYk,l(dεA) ≲ ε−1
[
D1 +D2

+
(√

Log(mn) +
(
ε−1/2 +

( 10

4− p∗ ∨ q

)2/(4−p∗∨q))
d
1/4+4ε
A

)
max
i,j

|aij |
]
.

Proof. By symmetry we may assume that l ≥ k.
First assume that k ≥ d

1/2
A . Lemmas 44–46 yield that for every 1 ≤ r ≤ k,

EYk,l(dεA) ≲ ε−1
[
D1 +D2

+
(
(5 Log(dA))

2/(4−p∗∨q) +
√

Log(mn)
)
max
i,j

|aij |

+
(√

Log dAd
1/2+3ε
A

(r
l

)1/p
+
√
k Log dAd

ε
Al

1/2−1/pr−1/2
)
max
i,j

|aij |
]
.

Moreover,

(5 Log(dA))
2/(4−p∗∨q) ≲

( 10

4− p∗ ∨ q

)2/(4−p∗∨q)

d
1/4
A ,√

Log dA ≲ ε−1/2dεA,(49)

and

inf
1≤r≤k

(
d
1/2+3ε
A

(r
l

)1/p
+
√
kdεAl

1/2−1/pr−1/2
)
≤ inf

1≤r≤k

(
d
1/2+3ε
A

( r
k

)1/2
+

√
kdεAr

−1/2
)

≲ d
1/4+3ε
A ,

where the last estimate follows by taking r = ⌊kd−1/2
A ⌋ ∈ [1, k].

Now assume that k < d
1/2
A . Recall that for a fixed nonempty set I,

XI = XI(A, p, q) := ∥(aijgij)i∈I,j∈[n]∥p→q.

Note that

Yk,l(d
ε
A) ≤ max

I∈I4(k)
XI .

Therefore, estimates (17), (28), and |I4(k)| ≤ m4kd4kA (see (31)) yield

EYk,l(dεA) ≲ max
I∈I4(k)

EXI +
√

Log |I4(k)| max
I∈I4(k)

sup
∥s∥q∗≤1

sup
∥t∥p≤1

(∑
i,j

a2ijs
2
i t

2
j

)1/2
.

≲ D1 + (
√
k +

√
Logm+

√
k Log dA)max

i,j
|aij |.(50)

The assertion easily follows by the assumption that k < d
1/2
A and estimate (49). □

Proof of Proposition 40. We apply Proposition 31 and Corollary 48 (with ε/4 in-
stead of ε). □
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