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Abstract. We prove that for every p, q ∈ [1,∞] and every random matrixX = (Xi,j)i≤m,j≤n
with iid centered entries satisfying the α-regularity assumption ‖Xi,j‖2ρ ≤ α‖Xi,j‖ρ for every

ρ ≥ 1, the expectation of the operator norm of X from `np to `mq is comparable, up to a

constant depending only on α, to

m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗∧Logn

.

We give more explicit formulas, expressed as exact functions of p, q, m, and n, for the two-sided

bounds of the operator norms in the case when the entries Xi,j are: Gaussian, Weibullian,

log-concave tailed, and log-convex tailed. In the range 1 ≤ q ≤ 2 ≤ p we provide two-sided
bounds under the weaker regularity assumption (EX4

1,1)1/4 ≤ α(EX2
1,1)1/2.

Keywords and phrases: random matrices, operator norm, α-regular moments, iid random
variables, log-concave tails, log-convex tails, Weibull random variables

1. Introduction and main results

Let X = (Xi,j)i≤m,j≤n be an m × n random matrix with iid entries. Seginer proved in [13]
that if the entries Xi,j are symmetric, then the expectation of the spectral norm of X is of the
same order as the expectation of the maximum Euclidean norm of rows and columns of X. In
this article we address a natural question: do there exist similar formulas for operator norms of
X from `np to `mq , where p, q ∈ [1,∞]? Recall that if A = (Ai,j)i≤m,j≤n is an m× n matrix, then

‖A‖`np→`mq = sup
t∈Bnp

‖At‖q = sup
t∈Bnp ,s∈Bmq∗

sTAt = sup
t∈Bnp ,s∈Bmq∗

∑
i≤m,j≤n

Ai,jsitj

denotes its operator norm from `np to `mq ; by ρ∗ we denote the Hölder conjugate of ρ ∈ [1,∞],

i.e., the unique element of [1,∞] satisfying 1
ρ + 1

ρ∗ = 1, and by ‖x‖ρ = (
∑
i |xi|ρ)1/ρ we denote

the `ρ-norm of a vector x (a similar notation, ‖Z‖ρ = (E|Z|ρ)1/ρ is used for the Lρ-norm of a
random variable Z). Whenever we write p ≥ p1 or p ≤ p2 we mean p ∈ [p1,∞] or p ∈ [1, p2],
respectively. If p = 2 = q, then ‖A‖`np→`mq is the spectral norm of A, so the case p = 2 = q
corresponds to the aforementioned result by Seginer.

Let us note that bounds for E‖X‖`np→`mq yield both tail bounds for ‖X‖`np→`mq and bounds

for (E‖X‖ρ`np→`mq )1/ρ for every ρ ≥ 1, provided that the entries of X satisfy a mild regularity

assumption; see [1, Proposition 1.16] for more details. Thus, estimating the expectation of the
operator norm automatically gives us more information about the behaviour of the operator
norm.

Not much is known about the non-asymptotic behaviour of the operator norms of iid random
matrices if (p, q) 6= (2, 2); see the introduction to article [11] for an overview of the state of the
art. In the case when Xi,j = gi,j are iid standard N (0, 1) random variables one may use the
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classical Chevet’s inequality [4] to derive the following two-sided bounds (see [11] for a detailed
calculation; compare also with [7, Remark 1.5]):

E
∥∥(gi,j)i≤m,j≤n

∥∥
`np→`mq

∼


m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q, p∗, q ≤ 2,
√
p∗ ∧ Log n n1/p∗m1/q−1/2 +m1/q, q ≤ 2 ≤ p∗,

n1/p∗ +
√
q ∧ Logmm1/qn1/p∗−1/2, p∗ ≤ 2 ≤ q,

√
p∗ ∧ Log n n1/p∗ +

√
q ∧ Logmm1/q, 2 ≤ q, p∗

∼
√
p∗ ∧ Log n m(1/q−1/2)∨0n1/p∗ +

√
q ∧ Logm n(1/p∗−1/2)∨0m1/q,(1)

where

Log x = max{1, lnx}, for x > 0,

and for two nonnegative functions f and g we write f & g (or g . f) if there exists an absolute
constant C such that Cf ≥ g; the notation f ∼ g means that f & g and g & f . We write
.α, ∼K,γ , etc. if the underlying constant depends on the parameters given in the subscripts.
Equation (1) yields that for n = m we have

E
∥∥(gi,j)

n
i,j=1

∥∥
`np→`nq

∼

{
n1/q+1/p∗−1/2, p∗, q ≤ 2,
√
p∗ ∧ q ∧ Log n n1/(p∗∧q), p∗ ∨ q ≥ 2.

However, even in the case of exponential entries it was initially not clear for us what the order
of the expected operator norm is. This question led us to deriving in [11] two-sided Chevet type
bounds for iid exponential and, more generally, Weibull random vectors with shape parameter
r ∈ [1, 2]. In consequence, we obtained the desired non-asymptotic behaviour of the operator
norm in the Weibull case when r ∈ [1, 2] (r = 1 is the exponential case). Note that this does not
cover the case of a matrix (εi,j)i,j with iid Rademacher entries, which corresponds to the case
r =∞. It is well known (by [2, 3], cf. [1, Remark 4.2]) that in this case

(2) E
∥∥(εi,j)i≤m,j≤n

∥∥
`np→`mq

∼p,q


m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q, p∗, q ≤ 2,

m1/q−1/2n1/p∗ +m1/q, q ≤ 2 ≤ p∗,
n1/p∗ + n1/p∗−1/2m1/q, p∗ ≤ 2 ≤ q,
n1/p∗ +m1/q, 2 ≤ p∗, q.

Moreover, it is not hard to show that constants in lower bounds do not depend on p and q,
whereas [12, Lemma 173] shows that in the case of square matrices the constants in (2) may be
chosen independent of p and q, i.e.,

E
∥∥(εi,j)

n
i,j=1

∥∥
`np→`nq

∼

{
n1/q+1/p∗−1/2, p∗, q ≤ 2,

n1/(p∗∧q), p∗ ∨ q ≥ 2.

It is natural to ask if the upper bound in (2) does not depend on p and q also in the rectangular
case. Surprisingly, the answer to this question is negative — in Corollary 14 below we provide
an exact two-sided bound (different than the one in (2)) up to a constant non-depending on p
and q.

The two-sided bounds for operator norms in all the aforementioned special cases may be
expressed in the following common form:

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼ m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗∧Logn

.

Therefore, it is natural to ask if this formula is valid for other distributions of entries. We are able
to prove it for the class of random variables Xi,j satisfying, for some α ∈ [1,∞), the following
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mild regularity condition

(3) ‖Xi,j‖2ρ ≤ α‖Xi,j‖ρ for all ρ ≥ 1

This condition was investigated in [10] and is sometimes called the α-regularity, and random
variables satisfying it are called α-regular. This condition may be rephrased in terms of tails
of random variables Xi,j (see Proposition 9). The class of α-regular random variables contains,
among others, Gaussian, Rademacher, log-concave, and Weibull random variables with any pa-
rameter r ∈ (0,∞). Although condition (3) is not very rigorous, it fails for some natural classes
of random variables, such as lognormal and β-stable variables with β ∈ (0, 2).

The main result of this paper is the following two-sided bound.

Theorem 1. Let (Xi,j)i≤m,j≤n be iid centered random variables satisfying α-regularity condition
(3) and let p, q ∈ [1,∞]. Then

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗∧Logn

.

Remark 2. If q ≤ 2 ≤ p, then the assertion of Theorem 1 holds under a weaker condition that
random variables Xi,j are independent, centered, have equal variances, and satisfy ‖Xi,j‖4 ≤
α‖Xi,j‖2. We prove this in Subsection 6.1.

Remark 3. In the case when random variables Xi,j are not necessarily centered, Theorem 1 and
Jensen’s inequality imply that (see Subsection 3.3 for a detailed proof)

E
∥∥(Xi,j)i,j

∥∥
`np→`mq

∼α m1/qn1/p∗ |EX1,1|+m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tj(X1,j − EX1,1)
∥∥∥
q∧Logm

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

si(Xi,1 − EX1,1)
∥∥∥
p∗∧Logn

(4)

provided that iid random variables Xi,j , i ≤ m, j ≤ n, satisfy

(5) ‖Xi,j − EXi,j‖2ρ ≤ α‖Xi,j − EXi,j‖ρ for all ρ ≥ 1.

The formula in Theorem 1 looks quite simple but, because of the suprema appearing in it, it
is not always easy to see how the right-hand side depends on p and q. In Section 3 we give exact
formulas for quantities comparable to the one from Theorem 1 in the case when the entries are
Weibulls (this includes exponential and Rademacher random variables) or, more generally, when
the entries have log-concave or log-convex tails.

The next proposition reveals how the two-sided bound from Theorem 1 depends on p and q
in the case when n = m and p∗ ∨ q ≥ 2.

Proposition 4. Let p, q ∈ [1,∞] and p∗ ∨ q ≥ 2. Let Xi,j be iid centered random variables
satisfying (3). Then

n1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logn

+ n1/p∗ sup
s∈Bn

q∗

∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗∧Logn

∼α n1/(p∗∧q)‖X1,1‖p∗∧q∧Logn.

Moreover, if one of the parameters p∗, q is not larger than 2, then in the general rectangular
case one of the terms from the formula in Theorem 1 can be simplified in the following way.

Proposition 5. For q̃ ∈ [1, 2], p ∈ [1,∞] and centered iid random variables Xi we have

1

2
√

2
n(1/p∗−1/2)+‖X1‖q̃ ≤ sup

t∈Bnp

∥∥∥ n∑
j=1

tjXj

∥∥∥
q̃
≤ n(1/p∗−1/2)+‖X1‖2.
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Similarly, for p̃ ∈ [1, 2] and q ∈ [1,∞],

1

2
√

2
m(1/q−1/2)+‖X1‖p̃ ≤ sup

s∈Bm
q∗

∥∥∥ m∑
i=1

siXi

∥∥∥
p̃
≤ m(1/q−1/2)+‖X1‖2.

In particular, if 1 ≤ p∗, q ≤ 2, and Xi,j’s are iid random variables satisfying α̃−1‖Xi,j‖1 ≥
‖Xi,j‖2 = 1, then

m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q

+n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗
∼α̃ m1/qn1/p∗−1/2 + n1/p∗m1/q−1/2.

Theorem 1 and the last part of Proposition 5 imply that under the regularity assumption (3)
the behaviour of E‖(Xi,j)

n
i,j=1‖`np→`nq in the range 1 ≤ p∗, q ≤ 2 is the same as in the case of an

iid Gaussian matrix (see (1)), whose entries have the same variance as X1,1.
Propositions 4 and 5 yield that in the case of square matrices the bound from Theorem 1 may

be expressed in a more explicit way in the whole range of p and q:

Corollary 6. Let (Xi,j)i,j≤n be iid centered random variables satisfying regularity condition (3)
and let 1 ≤ p, q ≤ ∞. Then

E
∥∥(Xi,j)

n
i,j=1

∥∥
`np→`nq

∼α

{
n1/q+1/p∗−1/2‖X1,1‖2, p∗, q ≤ 2,

n1/(p∗∧q)‖X1,1‖p∗∧q∧Logn, p∗ ∨ q ≥ 2.

The rest of this article is organized as follows. In Section 2 we review properties of random
variables satisfying α-regularity condition (3). In Section 3 we provide explicit functions of
parameters p∗, q, n, m comparable to the bounds from Theorem 1 for some special classes of
distributions, and prove Remark 3. In Section 4 we establish the lower bound of Theorem 1,
and in Section 5 we give proofs of Propositions 4 and 5. Section 6 contains the proof of the
upper bound of Theorem 1. It is divided into several subsections corresponding to particular
ranges of (p, q), since the arguments we use in the proof vary depending on the range we deal
with. In Subsections 6.3 and 6.4 we reveal the methods and tools, respectively, used in the most
challenging parts of the proof.

2. Properties of α-regular random variables

In this section we discuss crucial properties of random variables satisfying α-regularity condi-
tion (3). We also show how to express this condition in terms of tails.

One of the important consequences of α-regularity condition (3) is the comparison of weak
and strong moments of linear combinations of independent centered variables Xi,j , proven in
[10], stating that for every ρ ≥ 1 and every nonempty bounded U ⊂ Rnm,

(6)
(
E sup
u∈U

∣∣∣∑
i,j

Xi,jui,j

∣∣∣ρ)1/ρ

∼α E sup
u∈U

∣∣∣∑
i,j

Xi,jui,j

∣∣∣+ sup
u∈U

∥∥∥∑
i,j

Xi,jui,j

∥∥∥
ρ
.

Another property of independent centered variables satisfying (3) is the following Khintchine–
Kahane-type estimate, derived in [10, Lemma 4.1],

(7)
∥∥∥∑
i,j

ui,jXi,j

∥∥∥
ρ1
.α

(ρ1

ρ2

)β∥∥∥∑
i,j

ui,jXi,j

∥∥∥
ρ2

for every ρ1 ≥ ρ2 ≥ 1,

where β := 1
2 ∨ log2 α and u is an arbitrary m× n deterministic matrix.

For iid random variables Xi,j we define their log-tail function N : [0,∞) → [0,∞] via the
formula

(8) P(|Xi,j | ≥ t) = e−N(t), t ≥ 0.
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The function N is nondecreasing, but not necessary invertible. However, we may consider its
generalized inverse N−1 : [0,∞)→ [0,∞) defined by

N−1(s) = sup{t ≥ 0: N(t) ≤ s}.

Lemma 7. Suppose that condition (3) holds and N is defined by (8). Then for every ρ ≥ 1,

‖Xi,j‖ρ ∼α N−1
(
ρ ∨ (2 ln(2α))

)
.

Proof. To simplify the notation set γ := 2 ln(2α). Note that α ≥ 1 and γ > 1.
For t < N−1(ρ ∨ γ) we have by Chebyshev’s inequality

‖Xi,j‖ρ ≥ P(|Xi,j | ≥ t)1/ρt ≥ e−(1∨(γ/ρ))t ≥ e−γt.
Hence, N−1(ρ ∨ γ) ≤ 4α2‖Xi,j‖ρ.

To derive the opposite bound, observe that the Paley-Zygmund inequality and α-regularity
assumption (3) yield that for every r ≥ 1,

P
(
|Xi,j | ≥

1

2
‖Xi,j‖r

)
= P(|Xi,j |r ≥ 2−rE|Xi,j |r) ≥ (1− 2−r)2 (E|Xi,j |r)2

E|Xi,j |2r
≥ 1

4
α−2r ≥ e−γr.

Therefore, N−1(γr) ≥ 1
2‖Xi,j‖r for every r ≥ 1, so by taking r = 1 ∨ (ρ/γ) and applying (3)

multiple times we get

N−1(ρ ∨ γ) ≥ 1

2
‖Xi,j‖1∨(ρ/γ) ≥

1

2
α−dlog2 γe‖Xi,j‖ρ ≥

1

2
(2γ)− log2 α‖Xi,j‖ρ. �

Remark 8. The proof above shows that

1

e
N−1(ρ) ≤ ‖Xi,j‖ρ ≤ 2(4 ln(2α))log2 αN−1(ρ) for ρ ≥ 2 ln(2α).

The next proposition shows how to rephrase condition (3) in terms of tails of Xi,j .

Proposition 9. Let X be a random variable and P(|X| ≥ t) = e−N(t) for N : [0,∞) → [0,∞].
Then the following conditions are equivalent
i) there exists α1 ∈ [1,∞) such that ‖X‖2ρ ≤ α1‖X‖ρ for every ρ ≥ 1;
ii) there exist α2 ∈ [1,∞), β2 ∈ [0,∞) such that N−1(2s) ≤ α2N

−1(s) for every s > β2;
iii) there exist α2 ∈ [1,∞), β2 ∈ [0,∞) such that N(α2t) ≥ 2N(t) for every t > 0 satisfying
N(t) > β2.

Proof. i)⇒ ii) By Lemma 7 we have for s > 2 ln(2α1),

N−1(2s) ∼α1 ‖X‖2s ≤ α1‖X‖s ∼α1 N
−1(s).

Equivalence of ii) and iii) is standard.
iii)⇒ i) Let us fix ρ ≥ 1. We have ‖X‖ρρ ≥ tρP(|X| ≥ t) = tρe−N(t). Thus, N(t) > β2 for

t > t0 := eβ2/ρ‖X‖ρ, and so

‖X‖2ρ2ρ = α2ρ
2

∫ ∞
0

2ρt2ρ−1e−N(α2t) dt ≤ α2ρ
2

(
t2ρ0 + 2ρ

∫ ∞
t0

t2ρ−1e−N(α2t) dt
)

≤ α2ρ
2

(
t2ρ0 + 2ρ

∫ ∞
t0

tρe−N(t)tρ−1e−N(t) dt
)
≤ α2ρ

2

(
t2ρ0 + 2‖X‖ρρρ

∫ ∞
t0

tρ−1e−N(t) dt
)

≤ α2ρ
2

(
t2ρ0 + 2‖X‖ρρρ

∫ ∞
0

tρ−1e−N(t) dt
)

= α2ρ
2 ‖X‖2ρρ (e2β2 + 2) ≤ (α2(eβ2 +

√
2))2ρ‖X‖2ρρ .�

Remark 10. Remark 8 and the proof above show that i) implies ii) and iii) with constants
α2 = 2eα1(4 ln(2α1))log2 α1 , β2 = 2 ln(2α1), and conditions ii), iii) imply i) with constants

α1 = α2(eβ2 +
√

2).
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3. Examples

In this section we focus on two particular classes of distributions: with log-concave and log-
convex tails. They include Rademachers, subexponential Weibulls, and heavy-tailed Weibulls.
Our aim is to provide an explicit function of parameters p∗, q, n, m comparable to the bounds
from Theorem 1; such a function in the case of iid Gaussian matrices is given in (1).

Throughout this section, we assume that Xi,j are iid symmetric random variables and their
log-tail function N : [0,∞)→ [0,∞] is given by (8).

3.1. Variables with log-concave tails. In this subsection we consider variables with log-
concave tails, i.e., variables with convex log-tail function N . Since N(0) = 0 and N is convex,
for every s > t > 0 we have

(9)
N(s)

s
≥ N(t)

t
.

In particular, Proposition 9 yields that a random variable with log-concave tails satisfy (3) with
a universal constant α. Hence, in the square case Corollary 6 and Lemma 7 imply that

E
∥∥(Xi,j)

n
i,j=1

∥∥
`np→`nq

∼

{
n1/q+1/p∗−1/2N−1(1) p∗, q ≤ 2,

n1/(p∗∧q)N−1(p∗ ∧ q ∧ Log n) p∗ ∨ q ≥ 2

∼ N−1(p∗ ∧ q ∧ Log n)n1/(p∗∧q)n(1/(p∗∨q)−1/2)∨0.

In the case of log-concave tails it is more convenient to normalize random variables in such
a way that N−1(1) = 1 rather than ‖Xi,j‖2 = 1. Observe that Lemma 7 and (9) yield that
‖Xi,j‖2 ∼ N−1(1).

Lemma 11. Let X1, . . . , Xn be iid symmetric random variables with log-concave tails such that
N−1(1) = 1. Then for every p, q ≥ 1,

sup
t∈Bnp

∥∥∥ n∑
i=1

tiXi

∥∥∥
q
∼ max

1≤k≤q∧n
k1/p∗N−1(q/k) + (q ∧ n)1/(p∗∨2)n(1/p∗−1/2)∨0.

Proof. The result of Gluskin and Kwapień [6] states that∥∥∥ n∑
i=1

tiXi

∥∥∥
q
∼ sup

{ ∑
i≤q∧n

t∗i si :
∑
i≤q∧n

N(si) ≤ q
}

+
√
q
(∑
i>q

|t∗i |2
)1/2

,

where t∗1, . . . , t
∗
n is the nonincreasing rearrangement of |t1|, . . . , |tn|.

Let us fix t ∈ Bnp . Then for every q > n,∑
i≤q

t∗i +
√
q
(∑
k>q

(t∗k)2
)1/2

=
∑
i≤n

t∗i ≤ n1−1/p = n1/2−1/p√q ∧ n = (q ∧ n)1/p∗ .

For p ≥ 2 and q < n we have∑
i≤q

t∗i +
√
q
(∑
k>q

(t∗k)2
)1/2

≤ q1−1/p + q1/2(n− q)1/2−1/p ∼ q1/2n1/2−1/p = n1/2−1/p√q ∧ n.

Note that t∗k ≤ t∗q whenever k > q. Therefore, for p ∈ [1, 2], q < n we obtain∑
i≤q

t∗i +
√
q
(∑
k>q

(t∗k)2
)1/2

≤
∑
i≤q

t∗i +
√
q(t∗q)

(2−p)/2
(∑
k>q

(t∗k)p
)1/2

≤ q1−1/p + q1/2(t∗q)
1−p/2

≤ 2q1−1/p = 2(q ∧ n)1/p∗ .



OPERATOR `p → `q NORMS OF RANDOM MATRICES WITH IID ENTRIES 7

The estimates above might be reversed up to universal constants if we take t =
∑n
i=1 n

−1/pei for

p ≥ 2, and t =
∑q∧n
i=1 (q ∧ n)−1/pei for p ∈ [1, 2]. Thus, in any case,

sup
t∈Bnp

( ∑
i≤q∧n

t∗i +
√
q
(∑
i>q

|t∗i |2
)1/2)

∼ (q ∧ n)1/(p∗∨2)n(1/p∗−1/2)∨0.

Moreover, since N−1(1) = 1,

√
q
(∑
i>q

|t∗i |2
)1/2

≤
∑
i≤q∧n

t∗i +
√
q
(∑
i>q

|t∗i |2
)1/2

≤ sup
{ ∑
i≤q∧n

t∗i si :
∑
i≤q∧n

N(si) ≤ q
}

+
√
q
(∑
i>q

|t∗i |2
)1/2

.

Hence, it remains to prove that

sup
t∈Bnp

sup
{ ∑
i≤q∧n

t∗i si :
∑
i≤q∧n

N(si) ≤ q
}

= sup
{( ∑

i≤q∧n

|si|p
∗
)1/p∗

:
∑
i≤q∧n

N(si) ≤ q
}

∼ max
1≤k≤q∧n

k1/p∗N−1(q/k).

The lower bound is obvious since N(N−1(u)) ≤ u for every u ≥ 0. To show the upper estimate
let

a := max
1≤k≤q∧n

k1/p∗N−1(q/k),

where the maximum runs through integers k satisfying 1 ≤ k ≤ q ∧ n. Then (9) implies that

sup
1≤t≤q∧n

t1/p
∗
N−1(q/t) ≤ 2a,

where the supremum runs through all t ∈ R satisfying 1 ≤ t ≤ q ∧ n. Hence,

N(s) ≥ q
( s

2a

)p∗
whenever 2a ≥ s ≥ 2a(q ∧ n)−1/p∗ .

Therefore, condition
∑
i≤q∧nN(si) ≤ q yields that si ≤ a and so∑

i≤q∧n

sp
∗

i ≤ (2a)p
∗ ∑
i≤q∧n

( 1

q ∧ n
+

1

q
N(si)

)
≤ 2(2a)p

∗
≤ (4a)p∗. �

Theorem 1 and Lemma 11 yield the following corollary.

Corollary 12. Let (Xi,j)i≤m,j≤n be iid symmetric random variables with log-concave tails such
that N−1(1) = 1. Then for every p, q ≥ 1,

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α



m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q, p∗, q ≤ 2,

n1/p∗
(√

p∗ ∧m ∧ Log nm1/q−1/2 + sup
l≤p∗∧m∧Logn

l1/qN−1
(
p∗∧Logn

l

))
+m1/q, q ≤ 2 ≤ p∗,

n1/p∗ +m1/q
(√

q ∧ n ∧ Logmn1/p∗−1/2 + sup
k≤q∧n∧Logm

k1/p∗N−1
(
q∧Logm

k

))
, p∗ ≤ 2 ≤ q,

n1/p∗
(

(p∗ ∧m ∧ Log n)1/q + sup
l≤p∗∧m∧Logn

l1/qN−1
(
p∗∧Logn

l

))
+m1/q

(
(q ∧ n ∧ Logm)1/p∗ + sup

k≤q∧n∧Logm
k1/p∗N−1

(
q∧Logm

k

))
, 2 ≤ p∗, q.
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3.1.1. Subexponential Weibull matrices. Let Xi,j be symmetric Weibull random variables with
parameter r, i.e., N(t) = tr. If Xi,j are subexponential, i.e. r ≥ 1, then N is convex, and

‖Xi,j‖ρ = (Γ(1 + ρ/r)1/ρ) ∼ ρ1/r. Thus, Corollary 6 implies that

E
∥∥(Xi,j)

n
i,j=1

∥∥
`np→`nq

∼

{
n1/q+1/p∗−1/2 p∗, q ≤ 2,

(p∗ ∧ q ∧ Log n)1/rn1/(p∗∧q), p∗ ∨ q ≥ 2

∼ (p∗ ∧ q ∧ Log n)1/rn1/(p∗∧q)n(1/(p∗∨q)−1/2)∨0.

To obtain a formula in the rectangular case we first observe that N−1(1) = 1 and

sup
1≤k≤l

k1/p∗N−1(q/k) = q1/rl(1/p
∗−1/r)∨0.

If r ∈ [1, 2], then 1/p∗ − 1/r ≤ 0 for p∗ ≥ 2 and Corollary 12 allows to recover the following
bound from [11, Corollary 1.7].

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼


m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q, p∗, q ≤ 2,

(p∗ ∧ Log n)1/rn1/p∗m(1/q−1/r)∨0 +
√
p∗ ∧ Log n n1/p∗m1/q−1/2 +m1/q, q ≤ 2 ≤ p∗,

n1/p∗ + (q ∧ Logm)1/rm1/qn(1/p∗−1/r)∨0 +
√
q ∧ Logmm1/qn1/p∗−1/2, p∗ ≤ 2 ≤ q,

(p∗ ∧ Log n)1/rn1/p∗ + (q ∧ Logm)1/rm1/q, 2 ≤ p∗, q

∼ (p∗ ∧ Log n)1/rm(1/q−1/r)∨0n1/p∗ +
√
p∗ ∧ Log n m(1/q−1/2)∨0n1/p∗

+ (q ∧ Logm)1/rn(1/p∗−1/r)∨0m1/q +
√
q ∧ Logm n(1/p∗−1/2)∨0m1/q.

In the case r > 2 Corollary 12 yields the following.

Corollary 13. Let (Xi,j)i≤m,j≤n be iid Weibull random variables with parameter r ≥ 2. Then
for every p, q ≥ 1,

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼



m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q, p∗, q ≤ 2,

m1/q−1/2(p∗ ∧ Log n)1/r(p∗ ∧m ∧ Log n)1/2−1/rn1/p∗ +m1/q, q ≤ 2 ≤ p∗,
n1/p∗ + n1/p∗−1/2(q ∧ Logm)1/r(q ∧ n ∧ Logm)1/2−1/rm1/q, p∗ ≤ 2 ≤ q,
(p∗ ∧ Log n)1/r(p∗ ∧m ∧ Log n)(1/q−1/r)∨0n1/p∗

+(q ∧ Logm)1/r(q ∧ n ∧ Logm)(1/p∗−1/r)∨0m1/q, 2 ≤ p∗, q

∼ m(1/q−1/2)∨0(p∗ ∧ Log n)1/r(p∗ ∧m ∧ Log n)(1/(q∨2)−1/r)∨0n1/p∗

+ n(1/p∗−1/2)∨0(q ∧ Logm)1/r(q ∧ n ∧ Logm)(1/(p∗∨2)−1/r)∨0m1/q.

In particular, when r = ∞ we get the following two-sided bound for matrices with iid
Rademacher entries εi,j .

Corollary 14. If 1 ≤ p, q ≤ ∞, then

E
∥∥(εi,j)i≤m,j≤n

∥∥
`np→`mq

∼


m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q, p∗, q ≤ 2,
√
p∗ ∧mm1/q−1/2n1/p∗ +m1/q, q ≤ 2 ≤ p∗,

n1/p∗ +
√
q ∧ n n1/p∗−1/2m1/q, p∗ ≤ 2 ≤ q,

(p∗ ∧m)1/qn1/p∗ + (q ∧ n)1/p∗m1/q, 2 ≤ p∗, q.

∼ (p∗ ∧m)1/(q∨2)m(1/q−1/2)∨0n1/p∗ + (q ∧ n)1/(p∗∨2)n(1/p∗−1/2)∨0m1/q.
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Remark 15. In [11, Theorem 3.3] we provide two-sided bounds for E‖(aibjXi,j)i≤m,j≤n‖`np→`mq ,
where the vectors a ∈ Rm and b ∈ Rn are arbitrary, and Xi,j ’s are Weibull random variables
with parameter r ∈ [1, 2]. We do not know similar formulas for r > 2.

3.2. Variables with log-convex tails. In this subsection we assume that Xi,j have log-convex
tails, i.e., the function N given by (8) is concave.

Lemma 16. Let (Xi,j) be iid symmetric random variables with log-convex tails and assume that
(3) holds. Then for every p, q ≥ 1,

sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q
∼α ‖Xi,j‖q +

√
q‖Xi,j‖2n(1/p∗−1/2)∨0.

Proof. If q ≤ 2, then (7) yields

sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q
∼α sup

t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
2
= sup
t∈Bnp

‖t‖2‖Xi,j‖2 = n(1/p∗−1/2)∨0‖Xi,j‖2

∼ ‖Xi,j‖q +
√
q‖Xi,j‖2n(1/p∗−1/2)∨0.

Now assume that q > 2. By [8, Theorem 1.1] we have∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q
∼
( n∑
j=1

|tj |qE|X1,j |q
)1/q

+
√
q
( n∑
j=1

|tj |2E|X1,j |2
)1/2

= ‖t‖q‖Xi,j‖q +
√
q‖t‖2‖Xi,j‖2 & ‖t‖∞‖Xi,j‖q +

√
q‖t‖2‖Xi,j‖2.

We shall show that the last estimate may be reversed up to a constant depending only on α. To
this aim put a := ‖t‖∞‖Xi,j‖q +

√
q‖t‖2‖Xi,j‖2. Then

‖t‖q‖Xi,j‖q ≤ (‖t‖∞‖Xi,j‖q)(q−2)/q(‖t‖2‖Xi,j‖q)2/q ≤ a(‖Xi,j‖q/‖Xi,j‖2)2/q .α a,

where the last estimate follows by (7). Thus, for q > 2,

sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q
∼α sup

t∈Bnp
(‖t‖∞‖Xi,j‖q +

√
q‖t‖2‖Xi,j‖2) ∼ ‖Xi,j‖q +

√
q‖Xi,j‖2n(1/p∗−1/2)∨0.

�

Remark 17. Since N is concave, N−1 is convex and N−1(0) = 0, hence N−1(q) ≥ q
2N
−1(2)

whenever q ≥ 2. So (3) and Lemma 7 imply that ‖Xi,j‖q ∼α N−1(q) &α q‖Xi,j‖2. Thus, we get
by Lemma 16,

sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q
∼α ‖Xi,j‖q for p∗, q ≥ 2.

Theorem 1, Lemma 16, and Remark 17 yield the following corollary.

Corollary 18. Let (Xi,j)i≤m,j≤n be iid symmetric random variables with log-convex tails such
that (3) holds. Then

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α


(m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q)‖Xi,j‖2, p∗, q ≤ 2,

n1/p∗(m1/q−1/2
√
p∗ ∧ Log n‖Xi,j‖2 + ‖Xi,j‖p∗∧Logn) +m1/q‖Xi,j‖2, q ≤ 2 ≤ p∗,

n1/p∗‖Xi,j‖2 +m1/q(n1/p∗−1/2
√
q ∧ Logm‖Xi,j‖2 + ‖Xi,j‖q∧Logm), p∗ ≤ 2 ≤ q,

n1/p∗‖Xi,j‖p∗∧Logn +m1/q‖Xi,j‖q∧Logm, 2 ≤ p∗, q
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3.2.1. Heavy-tailed Weibull random variables. Weibull random variables with parameter r ∈
(0, 1] have log-convex tails. Moreover, in this case ‖Xi,j‖ρ = (Γ(1 + ρ/r)1/ρ) ∼r ρ1/r, so the

Xi,j ’s satisfy (3) with α ∼r 21/r and thus Corollary 6 implies that

E
∥∥(Xi,j)

n
i,j=1

∥∥
`np→`nq

∼r

{
n1/q+1/p∗−1/2 p∗, q ≤ 2,

(p∗ ∧ q ∧ Log n)1/rn1/(p∗∧q), p∗ ∨ q ≤ 2

∼ (p∗ ∧ q ∧ Log n)1/rn1/(p∗∧q)n(1/(p∗∨q)−1/2)∨0.

In the rectangular case Corollary 18 yields the following.

Corollary 19. Let (Xi,j)i≤m,j≤n be iid Weibull random variables with parameter r ∈ (0, 1].
Then for every 1 ≤ p, q ≤ ∞ we have

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼r (q ∧ Logm)1/2n(1/p∗−1/2)∨0m1/q + (q ∧ Logm)1/rm1/q

+ (p∗ ∧ Log n)1/2m(1/q−1/2)∨0n1/p∗ + (p∗ ∧ Log n)1/rn1/p∗ .

3.3. Non-centered random variables. In this subsection we prove (4) under centered regu-
larity assumption (5). Note that

‖(EXi,j)‖`np→`mq = |EX1,1| · ‖(1)i,j‖`np→`mq = |EX1,1| · sup
t∈Bnp

( m∑
i=1

∣∣∣ n∑
j=1

tj

∣∣∣q)1/q

= |EX1,1| ·m1/q sup
t∈Bnp

∣∣∣ n∑
j=1

tj

∣∣∣ = m1/qn1/p∗ |EX1,1|.

By the triangle inequality we have

E‖(Xi,j)‖`np→`mq ≤ E
∥∥(Xi,j − EXi,j)

∥∥
`np→`mq

+ ‖(EXi,j)‖`np→`mq
= E

∥∥(Xi,j − EXi,j)
∥∥
`np→`mq

+m1/qn1/p∗ |EX1,1|,

so Theorem 1 implies the upper bound in (4). Moreover, Jensen’s inequality yields E‖(Xi,j)‖`np→`mq ≥
‖(EXi,j)‖`np→`mq , so applying the triangle inequality we get

E‖(Xi,j)‖`np→`mq ≥
1

2
E‖(Xi,j)‖`np→`mq +

1

2

(
E
∥∥(Xi,j − EXi,j)

∥∥
`np→`mq

− ‖(EXi,j)‖`np→`mq
)

≥ 1

2
E
∥∥(Xi,j − EXi,j)

∥∥
`np→`mq

.

Hence, Theorem 1 and another application of the inequality E‖(Xi,j)‖`np→`mq ≥ ‖(EXi,j)‖`np→`mq =

m1/qn1/p∗ |EX1,1| yield the lower bound in (4).

4. Lower bounds

In this section we shall prove the lower bound in Theorem 1. The crucial technical result we
use is the following lower bound for `r-norms of iid sequences.

Lemma 20. Let r ≥ 1 and Y1, Y2, . . . , Yk be iid nonnegative random variables satisfying the
condition ‖Yi‖2r ≤ α‖Yi‖r for some α ∈ [1,∞). Assume that k ≥ 4α2r. Then

E
( k∑
i=1

Y ri

)1/r

≥ 1

128α2
k1/r‖Y1‖r.
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Proof. Define

Z :=

k∑
i=1

1Ai , Ai :=
{
Y ri ≥

1

2
EY ri

}
=
{
Y ri ≥

1

2
EY r1

}
.

The Paley-Zygmund inequality yields

P(Ai) ≥
1

4

(EY ri )2

EY 2r
i

≥ 1

4
α−2r.

Since k ≥ 4α2r, this gives

EZ =

k∑
i=1

P(Ai) ≥
k

4
α−2r ≥ 1

and

EZ2 = 2
∑

1≤i<j≤k

P(Ai)P(Aj) +

k∑
i=1

P(Ai) ≤ (EZ)2 + EZ ≤ 2(EZ)2.

Applying again the Paley-Zygmund inequality we obtain

P
(
Z ≥ 1

2
EZ
)
≥ 1

4

(EZ)2

EZ2
≥ 1

8
.

Hence,

E
( k∑
i=1

Y ri

)1/r

≥ P
(
Z ≥ 1

2
EZ
)(1

2
EZ

1

2
EY r1

)1/r

≥ 1

8

( k
16
α−2rEY r1

)1/r

≥ 1

128α2
k1/r‖Y1‖r. �

Proof of the lower bound in Theorem 1. Let us fix t ∈ Bnp and put Yi := |
∑n
j=1 tjXi,j |. Then

Y1, . . . , Ym are iid random variables. Moreover, by (7), ‖Yi‖2r ≤ α̃‖Yi‖r for r ≥ 1, where
a constant α̃ ≥ 1 depends only on α.

If m ≥ 4α̃2q, then by Lemma 20 we get

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

≥ E
( m∑
i=1

Y qi

)1/q

≥ 1

128α̃2
m1/q‖Yi‖q.

If m ≤ 4α̃2, then by (7) we have

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

≥ ‖Yi‖1 &α ‖Yi‖Logm ∼α m1/q‖Yi‖q∧Logm.

If 4α̃2 ≤ m ≤ 4α̃2q, then m = 4α̃2q̃ for some 1 ≤ q̃ ≤ q. Moreover, in this case m1/q ∼α 1 ∼α
m1/q̃ and q̃ ∼α q ∧ Logm. Hence, Lemma 20 and (7) yield

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

≥ E
( m∑
i=1

Y qi

)1/q

∼α E
( m∑
i=1

Y q̃i

)1/q̃

≥ 1

128α̃2
m1/q̃‖Yi‖q̃ ∼α m1/q‖Yi‖q∧Logm.

The argument above shows that

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

&α m
1/q sup

t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

.

The bound by the other term follows by the following duality

�(10)
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

=
∥∥(Xj,i)j≤n,i≤m

∥∥
`m
q∗→`

n
p∗
.
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5. Formula in the square case

This section contains proofs of Propositions 4 and 5, which immediately yield the equivalence
of formulas from Theorem 1 and Corollary 6 in the square case.

Proof of Proposition 4. By duality it suffices to show that for p∗ ≥ q ∨ 2,

(11) n1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logn

+ n1/p∗ sup
s∈Bn

q∗

∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗∧Logn

∼α n1/q‖X1,1‖q∧Logn.

The lower bound is obvious (with constant 1). To derive the upper bound we observe first
that if we substituted q and p∗ by q ∧ Log n and p∗ ∧ Log n, respectively, then both sides of (11)
would change only be a constant factor. So it is enough to consider the case Log n ≥ p∗ ≥ q ∨ 2.

Now we shall show that

(12)
∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q
.α ‖X1,1‖q for every t ∈ Bnp .

To this end fix t ∈ Bnp and assume without loss of generality that t1 ≥ t2 ≥ · · · ≥ tn ≥ 0. If
1 ≤ q ≤ 4, then by (7) we have∥∥∥ n∑

j=1

tjX1,j

∥∥∥
q
.α

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
2

= ‖t‖2‖X1,1‖2 ≤ α‖X1,1‖1 ≤ α‖X1,1,‖q.

If q ≥ 4, then ∥∥∥ ∑
j≤e4q

tjX1,j

∥∥∥
q
≤
∑
j≤e4q

|tj |‖X1,1‖q ≤ e4q/p∗‖t‖p‖X1,1‖q ≤ e4‖X1,1‖q.

Moreover, by Rosenthal’s inequality [5, Theorem 1.5.11],∥∥∥ ∑
j>e4q

tjX1,j

∥∥∥
q
≤ C q

Log q
(‖(tj)j>e4q‖2‖X1,1‖2 + ‖(tj)j>e4q‖q‖X1,1‖q).

If j > e4q, then tj ≤ j−1/p ≤ e−4q/p, so for p∗ ≥ q ≥ 4 we have

‖(tj)j>e4q‖q ≤ ‖(tj)j>e4q‖2 ≤ ‖t‖p/2p max
j>e4q

t
(2−p)/2
j ≤ ‖t‖p/2p (e−4q/p)1−p/2 ≤ e−q

and (12) follows.
To conclude the proof it is enough to show that for Log n ≥ p∗ ≥ q ∨ 2,

(13) n1/p∗ sup
s∈Bn

q∗

∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗
.α n

1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q

+ n1/q‖X1,1‖q.

For k = 0, 1, . . . define ρk := 32β2 Log(k)(p∗), where Log(k+1) x := Log(Log(k) x), Log(0) x := x,
and β = 1

2 ∨ log2 α. Observe that (ρk)k is nonincreasing and for large k we have ρk = 32β2.

If p∗/q ≤ 32β2, i.e., p∗ ≤ 32β2q, then (7) implies that∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗
.α

(p∗
q

)β∥∥∥ n∑
i=1

siXi,1

∥∥∥
q
.α

∥∥∥ n∑
i=1

siXi,1

∥∥∥
q
.

Moreover, Bnq∗ ⊂ n1/q−1/p∗Bnp , so in this case

n1/p∗ sup
s∈Bn

q∗

∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗
.α n

1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q

and (13) follows.
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Now suppose that ρk < p∗/q ≤ ρk−1 for some k ≥ 1. Define qk := 2p∗/ρk ≥ q ∨ 2. Estimates
(7) and (12), applied with p∗ := qk and q := qk ≥ 2, yield

sup
s∈Bq∗

k

∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗
.α ρ

β
k sup
s∈Bq∗

k

∥∥∥ n∑
i=1

siXi,1

∥∥∥
qk
.α ρ

β
k‖X1,1‖qk .α

(ρkqk
q

)β
‖X1,1‖q.

Since qk ≥ q we have Bnq∗ ⊂ n1/q−1/qkBnq∗k
. Therefore,

n1/p∗ sup
s∈Bn

q∗

∥∥∥ n∑
i=1

siXi,1

∥∥∥
p∗
.α

(p∗
q

)β
n1/p∗−1/qkn1/q‖X1,1‖q =

(p∗
q

)β
n

2−ρk
2p∗ n1/q‖X1,1‖q.

Hence, it is enough to show that

(14)
(p∗
q

)β
n

2−ρk
2p∗ ≤ 1.

Observe that p∗/q ≥ 32β2 ≥ 8, so Log n ≥ p∗ ≥ 8q ≥ 8, Log(p∗/q) = ln(p∗/q), and Log n = lnn.
Thus, (14) is equivalent to

(15)
ρk − 2

2β Log(p
∗

q )
≥ p∗

Log n
.

We have p∗/Log n ≤ 1 and

ρk − 2

2β Log(p
∗

q )
≥ 24β2 Log(k)(p∗)

2β Log ρk−1
≥ 24β2 − 2β + 2β Log(k)(p∗)

2β ln(32β2) + 2β Log(k)(p∗)
≥ 1,

where in the first inequality we used Log(k) x ≥ 1 and 8β2 ≥ 2, in the second one Log(ab) ≤
ln a+ Log b for a ≥ 1, and in the last one ln(32eβ2) ≤ 12β for β ≥ 1/2. �

Now we move to the proof of Proposition 5. Observe that m,n are arbitrary (not necessarily
m = n).

Proof of Proposition 5. It is enough to establish the first part of the assertion. We have

sup
t∈Bnp

∥∥∥ n∑
j=1

tjXj

∥∥∥
q̃
≤ sup
t∈Bnp

∥∥∥ n∑
j=1

tjXj

∥∥∥
2

= sup
t∈Bnp

‖t‖2‖X1‖2

and the upper bound immediately follows.
If p ≤ 2, then (1/p∗ − 1/2)+ = 0 and the lower bound is obvious (with constant 1 instead

of 1/2
√

2). Assume that p > 2. Let (X ′j)j be an independent copy of (Xj)j , and let εi’s be iid
Rademachers independent of all other random variables. Then

sup
t∈Bnp

∥∥∥ n∑
j=1

tjXj

∥∥∥
q̃
≥ n−1/p

∥∥∥ n∑
j=1

Xj

∥∥∥
q̃
≥ 1

2
n−1/p

∥∥∥ n∑
j=1

(Xj −X ′j)
∥∥∥
q̃

=
1

2
n−1/p

∥∥∥ n∑
j=1

εj(Xj −X ′j)
∥∥∥
q̃

≥ 1

2
n−1/p

∥∥∥ n∑
j=1

εj(Xj − EX ′j)
∥∥∥
q̃

=
1

2
n−1/p

∥∥∥ n∑
j=1

εjXj

∥∥∥
q̃
.

Moreover, Khintchine’s and Hölder’s inequalities yield (recall that q̃ ∈ [1, 2])

E
∣∣∣ n∑
j=1

εjXj

∣∣∣q̃ ≥ 2−q̃/2E
( n∑
j=1

X2
j

)q̃/2
≥ 2−q̃/2nq̃/2−1E

n∑
j=1

|Xj |q̃ = 2−q̃/2nq̃/2E|X1|q̃. �
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6. Upper bounds

To prove the upper bound in Theorem 1 we split the range p∗, q ≥ 1 into several parts. In
each of them we use different arguments to derive the asserted estimate.

6.1. Case p∗, q ≤ 2. In this subsection we shall show that the two-sided bound from Theorem 1
holds in the range p∗, q ≤ 2 under the following mild 4th moment assumption

(16) (EX4
1,1)1/4 ≤ α(EX2

1,1)1/2.

Observe that then Hölder’s inequality yields

EX2
1,1 ≤ (EX4

1,1)1/3(E|X1,1|)2/3 ≤ α4/3(EX2
1,1)2/3(E|X1,1|)2/3,

so

(17) E|X1,1| ≥ α−2(EX2
1,1)1/2.

Let us first consider the case p = q = 2. Then we shall see that it may be easily extrapolated
into the whole range of p∗, q ≤ 2.

Proposition 21. Let (Xi,j)i≤m,j≤n be iid centered random variables satisfying (16). Then

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`n2→`m2

∼α (EX2
1,1)1/2(

√
n+
√
m).

Proof. By [9, Theorem 2] we have

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`n2→`m2

. max
j

√∑
i

EX2
i,j + max

i

√∑
j

EX2
i,j + 4

√∑
i,j

EX4
i,j

≤ (EX2
1,1)1/2(

√
n+
√
m+ α 4

√
nm) .α (EX2

1,1)1/2(
√
n+
√
m).

To get the lower bound we use Jensen’s inequality and (17):

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`n2→`m2

≥ max
{
E
∥∥(|Xi,1|)i≤m

∥∥
2
,E
∥∥(|X1,j |)j≤n

∥∥
2

}
≥ max

{∥∥(E|Xi,1|)i≤m
∥∥

2
,
∥∥(E|X1,j |)j≤n

∥∥
2

}
≥ α−2(EX2

1,1)1/2
√
n ∨m.�

Corollary 22. Let (Xi,j)i≤m,j≤n be iid centered random variables satisfying (16). Then for
p∗, q ≤ 2 we have

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α (EX2
1,1)1/2(m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q).

Proof. Let εi,j ’s be iid Rademacher random variables independent of (Xi,j). Symmetrization (as
in the proof of Proposition 5) and (17) yields

E
∥∥(Xi,j)

n
i≤m,j≤n

∥∥
`np→`mq

≥ 1

2
E
∥∥(εi,j |Xi,j |)ni≤m,j≤n

∥∥
`np→`mq

≥ 1

2
E
∥∥(εi,jE|Xi,j |)i≤m,j≤n

∥∥
`np→`mq

&α (EX2
1,1)1/2E

∥∥(εi,j)
n
i≤m,j≤n

∥∥
`np→`mq

.

We have

E
∥∥(εi,j)

n
i≤m,j≤n

∥∥
`np→`mq

≥ n−1/pE
∥∥∥( n∑

j=1

εi,j

)
i≤m

∥∥∥
q
∼ n1/p∗−1

(
E
∥∥∥( n∑

j=1

εi,j

)
i≤m

∥∥∥q
q

)1/q

= n1/p∗−1m1/q
∥∥∥ n∑
j=1

ε1,j

∥∥∥
q
∼ n1/p∗−1/2m1/q,
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where in the first line we used the Kahane-Khintchine and in the second one the Khintchine
inequalities. By duality (10) we get

E
∥∥(εi,j)i≤m,j≤n

∥∥
`np→`mq

= E
∥∥(εi,j)i≤n,j≤m

∥∥
`m
q∗→`

n
p∗
&α m

1/q−1/2n1/p∗ ,

so the lower bound follows.
To get the upper bound we use Proposition 21 together with the following simple bound∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

≤ ‖Id‖`np→`n2
∥∥(Xi,j)i≤m,j≤n

∥∥
`n2→`m2

‖Id‖`m2 →`mq
= n1/2−1/pm1/q−1/2

∥∥(Xi,j)i≤m,j≤n
∥∥
`n2→`m2

. �

Corollary 22, Proposition 5 and (17) yield that under condition (16) Theorem 1 holds whenever
p∗, q ≤ 2. Moreover, one may prove by repeating the same arguments that the two-sided estimate

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α m1/q−1/2n1/p∗ + n1/p∗−1/2m1/q

holds for every p∗, q ≤ 2 and independent random variables Xi,j satisfying (16) and EX2
i,j = 1

(we do not need to assume that Xi,j ’s are identically distributed).

6.2. Case p∗ ≥ Log n or q ≥ Logm. In this subsection we shall show that Theorem 1 holds
under the regularity assumption (3) if p∗ ≥ Log n or q ≥ Logm.

Remark 23. For p∗ ≥ Log n, q̃ ∈ [1,∞) and iid random variables Xi we have

‖X1‖q̃ ≤ sup
t∈Bnp

∥∥∥ n∑
j=1

tjXj

∥∥∥
q̃
≤ e‖X1‖q̃.

Similarly, for q ≥ Logm and p̃ ∈ [1,∞),

‖X1‖p̃ ≤ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi

∥∥∥
p̃
≤ e‖X1‖p̃.

Proof. The lower bounds are obvious. To see the first upper bound it is enough to use the
triangle inequality in Lq̃ and observe that ‖t‖1 ≤ n1/p∗‖t‖p ≤ e for p∗ ≥ Log n and t ∈ Bnp . �

By Remark 23, Theorem 1 in the case p∗ ≥ Log n or q ≥ Logm reduces to the following
statement.

Proposition 24. Let (Xi,j)i≤n,j≤n be iid centered random variables such that (3) holds. Then
for q ≥ Logm,

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α sup
t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
Logm

+ n1/p∗‖X1,1‖p∗∧Logn.

Analogously, for p∗ ≥ Log n,

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼α sup
s∈Bm

q∗

∥∥∥∑
i≤m

siXi,1

∥∥∥
Logn

+m1/q‖X1,1‖q∧Logm.

Proof. The lower bounds follow by Section 4 and Remark 23. Hence, we should establish only
the upper bounds.

By duality (10) it is enough to consider the case q ≥ Logm. We have ‖(xi)i≤m‖∞ ≤
‖(xi)i≤m‖q ≤ e‖(xi)i≤m‖∞, so∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼ max
i≤m

∥∥(Xi,j)j≤n
∥∥
p∗
.
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Note that for arbitrary random variables Y1, . . . , Yk we have

(18) Emax
i≤k
|Yi| ≤

∥∥max
i≤k
|Yi|
∥∥

Log k
≤
(∑
i≤k

E|Yi|Log k
)1/Log k

≤ emax
i≤k
‖Yi‖Log k,

Hence,

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

.
∥∥∥∥(X1,j)j≤n

∥∥
p∗

∥∥
Logm

.

Inequality (6) (applied with m = 1, U = {1} ⊗Bnp , and ρ = Logm) implies∥∥∥∥∥(X1,j)j≤n
∥∥
p∗

∥∥∥
Logm

∼α E
∥∥(X1,j)j≤n

∥∥
p∗

+ sup
t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
Logm

.

If p∗ ≥ Log n, then

E
∥∥(X1,j)j≤n

∥∥
p∗
∼ Emax

j≤n
|X1,j | . ‖X1,1‖Logn,

where the last bound follows by (18). In the case p∗ ≤ Log n we have

E
∥∥(X1,j)j≤n

∥∥
p∗
≤
(
E
∥∥(X1,j)j≤n

∥∥p∗
p∗

)1/p∗

= n1/p∗‖X1,1‖p∗ . �

6.3. Outline of proofs of upper bounds in remaining ranges. Let us first note that we
may assume that random variables Xi,j are symmetric, due to the following remark.

Remark 25. It suffices to prove the upper bound from Theorem 1 under additional assumption
that random variables Xij are symmetric.

Proof. Let (X ′i,j)i≤m,j≤n be an independent copy of a random matrix (Xi,j)i≤m,j≤n, and let
Yi,j = Xi,j −X ′i,j . Then (3) implies for every ρ ≥ 1,

‖Yi,j‖2ρ ≤ ‖Xi,j‖2ρ + ‖X ′i,j‖2ρ = 2‖Xi,j‖2ρ ≤ 2α‖Xi,j‖ρ = 2α‖Xi,j − EX ′i,j‖ρ
≤ 2α‖Xi,j −X ′i,j‖ρ = 2α‖Yi,j‖ρ.

Therefore, (Yi,j)i≤m,j≤n are iid symmetric random variables satisfying (3) with α := 2α. More-
over,

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj = E sup
s∈S,t∈T

∑
i≤m,j≤n

(Xi,j − EX ′i,j)sitj

≤ E sup
s∈S,t∈T

∑
i≤m,j≤n

(Xi,j −X ′i,j)sitj = E sup
s∈S,t∈T

∑
i≤m,j≤n

Yi,jsitj ,

so it suffices to upper bound E sups∈S,t∈T
∑
i≤m,j≤n Yi,jsitj by

m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjY1,j

∥∥∥
q∧Logm

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siYi,1

∥∥∥
p∗∧Logn

≤ 2m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

+ 2n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗∧Logn

. �

We shall also assume without loss of generality that α ≥
√

2. Then (7) holds with β = log2 α.
One of the ideas used in the sequel is to decompose certain subsets S of Bmq∗ and T of Bnp

in the following way. Let T be a monotone subset of Bnp (we need the monotonicity only to
guarantee that if t ∈ T and I ⊂ [n], then (tI{i∈I}) ∈ T ). Fix a ∈ (0, 1] and write t ∈ T as
t = (tiI{|ti|≤a}) + (tiI{|ti|>a}). Since ap |{i : |ti| > a}| ≤ ‖t‖pp ≤ 1, we get T ⊂ T1 + T2, where

T1 = T ∩ aBn∞, T2 = {t ∈ T : | supp t| ≤ a−p}.
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Choosing a = k−1/p we see that for every 1 ≤ k ≤ n we have T ⊂ T1 + T2, where

T1 = T ∩ k−1/pBn∞, T2 = {t ∈ T : | supp t| ≤ k}.
Similarly, we may also decompose monotone subsets S of Bmq∗ into two parts: one containing
vectors with bounded `∞-norm and the other containing vectors with bounded support.

Once we decompose Bnp and Bmq∗ as above, we need to control the quantities of the form
E sups∈S,t∈T

∑
Xi,jsitj provided we have additional information about the `∞-norm or the size

of the support (or both of them) for vectors from S and T . In the next subsection we present
a couple of lemmas allowing to upper bound this type of quantities in various situations.

6.4. Tools used in proofs of upper bounds in remaining ranges.

Lemma 26. Assume that k, l ∈ Z+, p∗, q ≥ 1, a, b > 0 and (Xi,j)i≤m,j≤n are iid symmetric

random variables satisfying (3) with α ≥
√

2, and EX2
i,j = 1. Denote β = log2 α.

If q ≥ 2, S ⊂ Bmq∗ ∩ aBm∞ and T ⊂ {t ∈ Bnp : | supp(t)| ≤ k}, then
(19)

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈T

∥∥∥ n∑
j=1

X1,jtj

∥∥∥
q

+
(
n ∧ (k Log n)

)β
k(1/p∗−1/2)∨0a(2−q∗)/2.

If p∗ ≥ 2, S ⊂ {s ∈ Bmq∗ : | supp(s)| ≤ l} and T ⊂ Bnp ∩ bBn∞, then
(20)

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj .α n
1/p∗ sup

s∈S

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗

+
(
m ∧ (lLogm)

)β
l(1/q−1/2)∨0b(2−p)/2.

Proof. It suffices to prove (19), since (20) follows by duality.
Without loss of generality we may assume that k ≤ n. Let T0 be a 1

2 -net (with respect to `np -

metric) in T of cardinality at most 5n∧
((
n
k

)
5k
)
≤ 5n∧(5n)k = ed, where d = (n ln 5)∧(k ln(5n)).

Then by (18) we get

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj ≤ 2E sup
t∈T0

sup
s∈S

∑
i≤m,j≤n

Xi,jsitj ≤ 2e sup
t∈T0

(
E sup
s∈S

∣∣∣ ∑
i≤m,j≤n

Xi,jsitj

∣∣∣d)1/d

≤ 2e sup
t∈T

(
E sup
s∈S

∣∣∣ ∑
i≤m,j≤n

Xi,jsitj

∣∣∣d)1/d

.(21)

Fix t ∈ T . By (6) applied with U = {(sitj)i,j : s ∈ S} and ρ = d we have

(22)
(
E sup
s∈S

∣∣∣ ∑
i≤m,j≤n

Xi,jsitj

∣∣∣d)1/d

.α E sup
s∈S

∣∣∣ ∑
i≤m,j≤n

Xi,jsitj

∣∣∣+ sup
s∈S

∥∥∥ ∑
i≤m,j≤n

Xi,jsitj

∥∥∥
d
.

Since S ⊂ Bmq∗ ,

(23) E sup
s∈S

∣∣∣ ∑
i≤m,j≤n

Xi,jsitj

∣∣∣ ≤ (E∥∥∥( n∑
j=1

Xi,jtj

)
i≤m

∥∥∥q
q

)1/q

= m1/q
∥∥∥ n∑
j=1

X1,jtj

∥∥∥
q
.

Since α ≥
√

2, β = 1
2 ∨ log2 α, so by inequality (7)

sup
s∈S

∥∥∥ ∑
i≤m,j≤n

Xi,jsitj

∥∥∥
d
.α d

β sup
s∈S,t∈T

‖s‖2‖t‖2 ≤ dβ sup
s∈S
‖s‖(2−q

∗)/2
∞ ‖s‖q

∗/2
q∗ sup

t∈T
k(1/2−1/p)∨0‖t‖p

≤ dβk(1/p∗−1/2)∨0a(2−q∗)/2.(24)

Inequalities (21)-(24) yield (19). �

In the sequel (gi,j)i≤m,j≤n are iid standard Gaussian random variables.
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Lemma 27. Let (Xi,j)i≤m,j≤n be iid symmetric random variables satisfying (3) and EX2
i,j = 1.

Let β = log2 α. Then for any nonempty bounded sets S ⊂ Rm and T ⊂ Rn we have

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj . Logβ(mn)E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj .

Proof. Since Xi,j ’s are independent and symmetric, (Xi,j)i≤m,j≤n has the same distribution
as (εi,j |Xi,j |)i≤m,j≤n, where (εi,j)i≤m,j≤n are iid Rademachers independent of Xi,j ’s. By the
contraction principle

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj = E sup
s∈S,t∈T

∑
i≤m,j≤n

εi,j |Xi,j |sitj

≤ E max
i≤m,j≤n

|Xi,j | · E sup
s∈S,t∈T

∑
i≤m,j≤n

εi,jsitj .(25)

Moreover, by (18) and regularity assumption (3) we have

(26) E max
i≤m,j≤n

|Xi,j | ≤ e‖X1,1‖Log(mn) . Logβ(mn)‖X1,1‖2 = Logβ(mn).

Jensen’s inequality yields

E sup
s∈S,t∈T

∑
i≤m,j≤n

εi,jsitj ∼ E sup
s∈S,t∈T

∑
i≤m,j≤n

εi,jE|gi,j |sitj . E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj .(27)

Inequalities (25)-(27) yield the assertion. �

The next result is an immediate consequence of the contraction principle (see also (25) together
with (27)), but turns out to be helpful.

Lemma 28. Let (Xi,j)i≤m,j≤n be centered random variables. Then

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj . max
i,j
‖Xi,j‖∞E sup

s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj .

Let us recall Chevet’s inequality from [4]:

(28) E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj . sup
s∈S
‖s‖2E sup

t∈T

∑
j≤n

gjtj + sup
t∈T
‖t‖2E sup

s∈S

∑
i≤m

gisi.

We use it to derive the following two lemmas.

Lemma 29. Let q ≥ 2, p ≥ 1, l ≤ m, S ⊂ {s ∈ Bmq∗ : | supp(s)| ≤ l}∩aBm∞, and T ⊂ Bnp . Then

E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj .
√
p∗a(2−q∗)/2n1/p∗ + n(1/p∗−1/2)∨0

√
Logml1/q.

If we assume additionally that l = m, p∗ ≥ 2, and T ⊂ bBn∞, then

E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj .
√
p∗a(2−q∗)/2n1/p∗ +

√
qb(2−p)/2m1/q.(29)

Proof. We have

sup
t∈T
‖t‖2 ≤ sup

t∈Bnp
‖t‖2 = n(1/p∗−1/2)∨0,

sup
s∈S
‖s‖2 ≤ sup

s∈S
‖s‖q

∗/2
q∗ ‖s‖(2−q

∗)/2
∞ ≤ a(2−q∗)/2,

E sup
t∈T

n∑
j=1

gjtj ≤ E sup
t∈Bnp

n∑
j=1

gjtj = E‖(gj)nj=1‖p∗ ≤ (E‖(gj)nj=1‖
p∗

p∗)
1/p∗ = ‖g1‖p∗n1/p∗ ≤

√
p∗n1/p∗ ,
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and

E sup
s∈S

m∑
i=1

gisi ≤ E sup
I⊂[m],|I|≤l

(∑
i∈I
|gi|q

)1/q

≤ l1/qEmax
i≤m
|gi| . l1/q

√
Logm.

The first assertion follows by Chevet’s inequality (28) and the four bounds above.
In the case when l = m, p∗ ≥ 2, and T ⊂ bBn∞ we use a different bound for supt∈T ‖t‖2,

namely

sup
t∈T
‖t‖2 ≤ sup

t∈T
‖t‖p/2p ‖t‖(2−p)/2∞ ≤ b(2−p)/2,

and for E sups∈S
∑m
i=1 gisi, namely

E sup
s∈S

m∑
i=1

gisi ≤ E sup
s∈Bm

q∗

m∑
i=1

gisi ≤
√
qm1/q. �

The next lemma is a slight modification of the previous one.

Lemma 30. Let 2 ≤ p∗, q ≤ γ, l ≤ m, S ⊂ {s ∈ Bmq∗ : | supp(s)| ≤ l}∩aBm∞ and T ⊂ Bnp . Then

E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj .
√
γ
(
a(2−q∗)/2n1/p∗ +

√
Log(m/l) l1/q

)
.

Proof. We proceed as in the previous proof, observing that
√
p∗ ≤ √γ and, by [11, Lemmas 3.12

and 4.2],

E sup
I⊂[m],|I|≤l

(∑
i∈I
|gi|q

)1/q

.
√
γ ∨ Log(m/l) l1/q. �

The next proposition is a consequence of the `n2 → `m2 bound from [9].

Lemma 31. Let (Xi,j)i≤m,j≤n, be be iid symmetric random variables satisfying (3) with α ≥
√

2
and EX2

i,j = 1. Then for M > 0,

E
∥∥(Xi,jI{|Xi,j |≥M}

)
i≤m,j≤n

∥∥
`n2→`m2

.α (
√
n+
√
m) exp

(
− lnα

10
M1/ log2 α

)
.

Proof. By [9, Theorem 2] we have

E
∥∥(Xi,jI{|Xi,j |≥M}

)
i≤m,j≤n

∥∥
`n2→`m2

≤ max
i≤m

(∑
j≤n

EX2
i,jI{|Xi,j |≥M}

)1/2

+ max
j≤n

(∑
i≤m

EX2
i,jI{|Xi,j |≥M}

)1/2

+
( ∑
i≤m,j≤n

EX4
i,jI{|Xi,j |≥M}

)1/4

.

Regularity condition (3) and the normalization ‖Xi,j‖2 = 1 yields ‖Xi,j‖ρ ≤ αlog2 ρ for all
ρ ≥ 1. Thus, for all ρ ≥ 4,(

EX2
i,jI{|Xi,j |≥M}

)1/2 ≤ (EX4
i,jI{|Xi,j |≥M}

)1/4 ≤ (M4−ρE|Xi,j |ρ)1/4 ≤M
(αlog2 ρ

M

)ρ/4
.

Let us choose ρ := 1
2M

1/ log2 α. If M ≥ α3, then ρ ≥ 4, so

M
(αlog2 ρ

M

)ρ/4
= Mα−ρ/4 = M exp

(
− lnα

8
M1/ log2 α

)
.α exp

(
− lnα

10
M1/ log2 α

)
.

If M ≤ α3, then(
EX2

i,jI{|Xi,j |≥M}
)1/2 ≤ (EX4

i,jI{|Xi,j |≥M}
)1/4 ≤ (EX4

ij)
1/4 ≤ α .α exp

(
− lnα

10
M1/ log2 α

)
. �
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6.5. Case p∗ &α Logm or q &α Log n.

Proposition 32. Theorem 1 holds in the case p∗ &α Logm or q &α Log n.

Proof. Without loss of generality we may assume that ‖Xi,j‖2 = 1. By Remark 25 it suffices to

assume that Xi,j ’s are symmetric and α ≥
√

2, and by duality (10) it suffices to consider the
case q ≥ C0(α) Log n, where

C0(α) = 8β = 8 log2 α.

In particular q ≥ 4, so q∗ ≤ 4/3. By Subsection 6.2 it suffices to consider the case p∗ ≤ Log n.
Define

S1 = Bmq∗ ∩ e−qBm∞, S2 = {s ∈ Bmq∗ : |supp(s)| ≤ eqq
∗
}.

Then Bmq∗ ⊂ S1 + S2.
If s ∈ S2, then

‖s‖1 ≤ ‖s‖q∗ | supp(s)|−1/q∗+1 ≤ eq
∗
≤ e4/3,

so S2 ⊂ e4/3Bm∞∗ . Thus, Proposition 24 and (7) imply

E sup
s∈S2,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj . E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`m∞

∼α sup
t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
Logm

+ n1/p∗‖X1,1‖p∗

.α
(

1 ∨ Logm

q

)β
sup
t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
q

+ n1/p∗‖X1,1‖p∗ .

Since the function 0 < q 7→ 1
q lnm + β ln q attains its minimum at q = lnm/β, where the

function’s value is equal to −β ln(β/e) + β ln lnm, we have (Logm/q)β .α m1/q. Hence, the
previous upper bound yields

(30) E sup
s∈S2,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
q

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗
.

Moreover, (19) from Lemma 26 applied with S = S1, T = Bnp , a = e−q, and k = n, together
with the inequality q∗ ≤ 4/3, implies that

(31) E sup
s∈S1,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
q

+ nβ+((1/p∗−1/2)∨0)e−q/3.

Since q ≥ C0(α) Log n ≥ 3β lnn and ‖X1,1‖p∗ &α ‖X1,1‖2 = 1, inequalities (30) and (31) yield
the assertion. �

6.6. Case p∗, q ≥ 3. By Subsection 6.2 we may assume that p∗ ≤ Log n and q ≤ Logm. In this
subsection we restrict ourselves to to the case p∗, q ≥ 3. However, similar proofs work also in
the range p∗, q ≥ 2 + ε, where ε > 0 is arbitrary — in this case the constants in upper bounds
depend also on ε and blow up when ε approaches 0. If p∗ or q lies above and close to 2, then we
need different arguments, which we show in next subsections.

Lemma 33. Assume that 3 ≤ p∗, q ≤ Log(mn), (Xi,j)i≤m,j≤n are iid symmetric random

variables satisfying (3) with α ≥
√

2, EX2
i,j = 1, S ⊂ Bmq∗ ∩ Log−8β(mn)Bm∞, and T ⊂

Bnp ∩ Log−8β(mn)Bn∞, where β = log2 α. Then

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj . m
1/q + n1/p∗ .
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Proof. Lemma 27 and inequality (29) yield

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj . Log1/2+β(mn)
(
m1/q Log−4β(2−p)(mn) + n1/p∗ Log−4β(2−q∗)(mn)

)
.

(32)

Since p∗ ≥ 3, (2− p) ≥ 1/2, so

Log−4β(2−p)(mn) ≤ Log−2β(mn) ≤ Log−β−1/2(mn),

and similarly

Log−4β(2−q∗)(mn) ≤ Log−β−1/2(mn),

This together with bound (32) implies the assertion. �

Now we are ready to prove the upper bound in Theorem 1 in the case when p∗, q are separated
from 2.

Proposition 34. Let (Xi,j)i≤m,j≤n be iid symmetric random variables such that (3) holds with

α ≥
√

2. Then the upper bound in Theorem 1 holds whenever 3 ≤ q ≤ Logm and 3 ≤ p∗ ≤ Log n.

Proof. Without loss of generality we assume that EX2
i,j = 1 and that q ≥ p∗ (the opposite case

follows by duality (10)).
Recall that β = log2 α ≥ 1/2 and let us consider the following subsets of balls Bmq∗ and Bnp :

S1 = Bmq∗ ∩ e−qBm∞, S2 = {s ∈ Bmq∗ : |supp(s)| ≤ eqq
∗
},

S3 = Bmq∗ ∩ Log−8β(mn)Bm∞, S4 = {s ∈ Bmq∗ : |supp(s)| ≤ Log8βq∗(mn)},

T1 = Bnp ∩ e−p
∗
Bn∞, T2 = {t ∈ Bnp : |supp(t)| ≤ epp

∗
},

and
T3 = Bnp ∩ Log−8β(mn)Bn∞, T4 = {t ∈ Bnp : |supp(t)| ≤ Log8βp(mn)}.

Note that Bmq∗ ⊂ S1 + S2, Bmq∗ ⊂ S3 + S4, Bnp ⊂ T1 + T2, and Bnp ⊂ T3 + T4. In particular∥∥(Xi,j)i≤m,j≤n
∥∥
`np→`mq

= sup
s∈Bm

q∗ ,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj(33)

≤ sup
s∈S1,t∈T1

∑
i≤m,j≤n

Xi,jsitj + sup
s∈S2,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj + sup
s∈Bm

q∗ ,t∈T2

∑
i≤m,j≤n

Xi,jsitj .

If s ∈ S2, then

‖s‖1 ≤ ‖s‖q∗ | supp(s)|−1/q∗+1 ≤ eq
∗
≤ e3/2 < 5,

so S2 ⊂ 5Bm1 = 5Bm∞∗ and we may proceed as in the proof of (30) to get

(34) E sup
s∈S2,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
q

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗

and, by duality,

(35) E sup
s∈Bm

q∗ ,t∈T2

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈Bnp

∥∥∥∑
j≤n

tjX1,j

∥∥∥
q

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗
.

Bounds (33)-(35) imply that it suffices to prove that

(36) sup
s∈S1,t∈T1

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q

+ n1/p∗ sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗
.

Recall that q ≥ p∗ ≥ 3. Let us consider three cases.
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Case 1, when q, p∗ ≥ 60β2 Log Log(mn). Then e−q, e−p
∗ ≤ Log−8β(mn), so S1 ⊂ S3 and

T1 ⊂ T3. Thus, (36) follows by Lemma 33.
Case 2, when q ≥ 60β2 Log Log(mn) ≥ p∗. Then S1 ⊂ S3 and T1 ⊂ Bnp ⊂ T3 + T4, so

E sup
s∈S1,t∈T1

∑
i≤m,j≤n

Xi,jsitj ≤ E sup
s∈S3,t∈T3

∑
i≤m,j≤n

Xi,jsitj + E sup
s∈S1,t∈T4

∑
i≤m,j≤n

Xi,jsitj .

The first term on the right-hand side may be bounded properly by Lemma 33. In order to
estimate the second term we apply (19) from Lemma 26 with a = e−q and k = bLog12β(mn)c ≥
bLog8βp(mn)c (the inequality follows by p ≤ 3∗ = 3

2 ) to get

E sup
s∈S1,t∈T4

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈T4

∥∥∥ n∑
j=1

X1,jtj

∥∥∥
q

+ (Log14β(mn))βe−q(2−q
∗)/2.

Since q∗ ≤ 3∗ = 3/2, we have

(Log14β(mn))βe−q(2−q
∗)/2 ≤ Log14β2

(mn)e−q/4 ≤ 1,

so (36) holds.
Case 3, when 60β2 Log Log(mn) ≥ q, p∗. Since T1 ⊂ T3 + T4 and S1 ⊂ S3 + S4, we have

E sup
s∈S1,t∈T1

∑
i≤m,j≤n

Xi,jsitj ≤ E sup
s∈S3,t∈T3

∑
i≤m,j≤n

Xi,jsitj + E sup
s∈Bm

q∗ ,t∈T4

∑
i≤m,j≤n

Xi,jsitj

+ E sup
s∈S4,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj .

The first term on the right-hand side may be bounded by Lemma 33. Now we estimate the
second term — the third one may be bounded similarly (by using (20) from Lemma 26 instead

of (19)). By (19) applied with a = 1 and k = bLog12β(mn)c ≥ bLog8βp(mn)c we have

E sup
s∈Bm

q∗ ,t∈T4

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈T4

∥∥∥ n∑
j=1

X1,jtj

∥∥∥
q

+ Log14β2

(mn).

For a fixed β = log2 α ≥ 1/2 there exists C(β) ≥ 3 such that for every x ≥ C(β) =: C0(α) we
have 28β2 lnx ≤ x/(60β2 lnx). Hence, if mn ≥ eC0(α) and p∗ ≤ q ≤ 60β2 Log Log(mn), then

14β2 ln Log(mn) ≤ 1

2
ln(mn)/q ≤ 1

2
(lnm/q + lnn/p∗) ≤ max{lnm/q, lnn/p∗},

so for every m,n ∈ N,

Log14β2

(mn) .α max{m1/q, n1/p∗},
and (36) follows. �

6.7. Case q ≥ 24β ≥ 3 ≥ p∗ or p∗ ≥ 24β ≥ 3 ≥ q. In this subsection we assume (without
loss of generality – see Remark 25) that Xi,j are iid symmetric random variables satisfying (3)

with α ≥
√

2. We also use the notation β = log2 α ≥ 1/2, so 24β ≥ 3. By duality (10) it
suffices to consider the case q ≥ 24β ≥ 3 ≥ p∗. In particular, q∗ ≤ 3/2 whenever q ≥ 24β. By
Subsections 6.2 and 6.5 it suffices to consider the case Logm ∧ (C(α) Log n) ≥ q. In this case
Theorem 1 follows by the following two lemmas.

Lemma 35. If Logm ≥ q ≥ 3 ≥ p∗, n1/3 ≥ m1/qqβ, and ‖X1,1‖2 = 1, then

E‖(Xi,j)i≤m,j≤n‖`np→`mq .α n
1/p∗ .
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Proof. By (7) we get

sup
t∈Bn

3/2

∥∥∥ m∑
i=1

tiXi,1

∥∥∥
q
≤α qβ sup

t∈Bn
3/2

∥∥∥ m∑
i=1

tiXi,1

∥∥∥
2

= qβ sup
t∈Bn

3/2

‖t‖2 = qβ .

This together with the assumption n1/3 ≥ m1/qqβ and the estimate in the case p∗ = 3 ≤ q
(already obtained in Subsection 6.6) gives E‖(Xi,j)‖`n

3/2
→`mq .α n

1/3. Therefore, for every p∗ ≤ 3,

E‖(Xi,j)‖`np→`mq ≤ ‖ Id ‖`np→`n3/2E‖(Xi,j)‖`n
3/2
→`mq .α n

2/3−1/pn1/3 = n1/p∗ . �

Lemma 36. Assume that Logm ∧ C(α) Log n ≥ q ≥ 24β ≥ 3 ≥ p∗ and qβm1/q ≥ n1/3. Then
the upper bound in Theorem 1 holds.

Proof. Without loss of generality we may assume that EX2
i,j = 1 and C(α) ≥ 2. Let

S̃1 =
{
s ∈ Bmq∗ : | supp(s)| ≤ Log4βq∗(mn)

}
, S1 = Bmq∗ ∩ Log−4β(mn)Bm∞.

Then Bmq∗ ⊂ S1 + S̃1.

If Logm ≤ C2(α) Log2 n, then inequality (20) from Lemma 26 (applied with b = 1, p ∧ 2
instead of p and l = Log(mn)4βq∗ ≤ Log(mn)6β) yields

E sup
s∈S̃1,t∈Bnp∧2

∑
i≤m,j≤n

Xi,jsitj .α n
1/(p∗∨2) sup

s∈S̃1

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗∨2

+ (Log n)C1(α)

.α n
1/(p∗∨2) sup

s∈Bm
q∗

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗

+ n1/3

.α n
1/(p∗∨2) sup

s∈Bm
q∗

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗
.

In the case Logm ≥ C2(α) Log2 n we have m1/q ≥ eLogm/(C(α) Logn) ≥ e(Logm)1/2 , so now
inequality (20) yields

E sup
s∈S̃1,t∈Bnp∧2

∑
i≤m,j≤n

Xi,jsitj .α n
1/(p∗∨2) sup

s∈S̃1

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗∨2

+ (Logm)C2(α)

.α n
1/(p∗∨2) sup

s∈Bm
q∗

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗

+m1/q.

Thus, in any case

E sup
s∈S̃1,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj ≤ n(1/p∗−1/2)∨0 E sup
s∈S̃1,t∈Bnp∧2

∑
i≤m,j≤n

Xi,jsitj

.α n
1/p∗ sup

s∈Bm
q∗

∥∥∥ m∑
i=1

Xi,1si

∥∥∥
p∗

+m1/qn(1/p∗−1/2)∨0.(37)

Let

S2 =
{
s ∈ Bmq∗ : | supp(s)| ≤ mLog−q(β+1)(mn)

}
∩ Log−4β(mn)Bm∞,

S3 = Bmq∗ ∩m−1/q∗ Log(β+1)q/q∗(mn)Bm∞.

Then S1 ⊂ S2 + S3.
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Lemmas 27 and 29 (applied with l = mLog−q(β+1)(mn) and a = Log−4β(mn)), and inequality
q∗ ≤ 3

2 yield

E sup
s∈S2,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj

≤ Logβ(mn)
(

Log−2β(2−q∗)(mn)n1/p∗ + n(1/p∗−1/2)∨0m1/q Log−β−1/2(mn)
)

≤ n1/p∗ + n(1/p∗−1/2)∨0m1/q.(38)

Moreover, if Logm ≤ C2(α) Log2 n, then inequalities n1/3 ≤ m1/qqβ ≤ m1/q Logβm and
q/(3q∗) ≥ 4β + q/(12q∗) imply

m1/q∗ Log−(β+1)q/q∗(mn) ≥ nq/(3q
∗) Log−βq/q

∗
mLog−(β+1)q/q∗(mn) &α n

4β ,

and if Logm ≥ C2(α) Log2 n ≥ Log2 n, then

m1/q∗ Log−(β+1)q/q∗(mn) ≥ eLogm/q∗ Log−C3(α)qm ≥ exp
(
(Logm)/2− C4(α) Log n · ln(Logm)

)
&α e

(Log2 n)/4 &α n
4β .

Since q∗ ≤ 3
2 , in both cases we have

(m1/q∗ Log−(β+1)q/q∗(mn))(2−q∗)/2 &α n
β .

Therefore, inequality (19) from Lemma 26 (applied with a = m−1/q∗ Log(β+1)q/q∗(mn) and
k = n) yields

E sup
s∈S3,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj .α m
1/q sup

t∈Bnp

∥∥∥ n∑
j=1

X1,jtj

∥∥∥
q

+ n(1/p∗−1/2)∨0.(39)

Since

n(1/p∗−1/2)∨0 = sup
t∈Bnp

‖t‖2 ≤ sup
t∈Bnp

∥∥∥ n∑
j=1

X1,jtj

∥∥∥
q
,

estimates (37)-(39) yield the assertion. �

6.8. Case 24β ≥ q ≥ p∗ or 24β ≥ p∗ ≥ q. Once we prove the upper bound in the case
24β ≥ q ≥ p∗, the upper bound in the case 24β ≥ p∗ ≥ q follows by duality (10). We first deal
with the case p∗ ≥ 2 and then move to the case 2 ≥ p∗ at the end of this subsection.

Let us begin with the proof in the case p∗ = q ≥ 2, where an interpolation argument works.

Lemma 37. If p∗ = q ≥ 2, then the upper bound in Theorem 1 holds.

Proof. By Subsections 6.1 and 6.6 we know that the assertion holds when p∗ = q ∈ {2} ∪ [3,∞].
Assume without loss of generality that EX2

i,j = 1. Fix p∗ = q ∈ (2, 3) and let θ ∈ (0, 1) be

such that 1
q = θ

2 + 1−θ
3 , i.e., 1

p = 1− 1
q = θ

2 + 1−θ
3∗ . Then (7) implies that

(40) sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

∼α sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
2

= 1,

and similarly

(41) sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗∧Logn

∼α 1,
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By the Riesz-Thorin interpolation theorem, Hölder’s inequality, (40) and (41) we get

E
∥∥(Xi,j)i,j

∥∥
`np→`mq

≤ E
(∥∥(Xi,j)i,j

∥∥θ
`n2→`m2

∥∥(Xi,j)i,j
∥∥1−θ
`n
3∗→`

m
3

)
≤
(
E
∥∥(Xi,j)i,j

∥∥
`n2→`m2

)θ(
E
∥∥(Xi,j)i,j

∥∥
`n
3∗→`

m
3

)1−θ

.α (n ∨m)θ/2(n ∨m)(1−θ)/3 = (n ∨m)1/q ∼ n1/p∗ +m1/q. �

Proof of the upper bound in Theorem 1 in the case 24β ≥ q ≥ p∗ ≥ 2. By Remark 25 it suffices
to assume that Xi,j ’s are symmetric and α ≥

√
2. Then β = log2 α ≥ 1/2. Inequality (7) implies

that in the case 24β ≥ q ≥ p∗ ≥ 2 the upper bound in Theorem 1 is equivalent to

(42) E‖(Xi,j)i,j‖`np→`nq .α n
1/p∗ +m1/q.

If m ≤ n, then Lemma 37 yields

E‖(Xi,j)i,j‖`np→`mq ≤ ‖Id‖`np→`nq∗E‖(Xi,j)i,j‖`n
q∗→`mq = n1/q∗−1/pE‖(Xi,j)i,j‖`n

q∗→`mq .α n
1/p∗ .

Thus, in the sequel we assume that 2 ≤ p∗ ≤ q ≤ 24β and m ≥ n. Define

k0 := inf

{
k ∈ {0, 1, . . .} : 2k ≥ 5

lnα

2− q∗

q∗
Logm

}
.

Observe that

(43) k0 = 0 or 2k0 ≤ 10

lnα

2− q∗

q∗
Logm.

By Lemma 31 and the definition of k0 we have

E
∥∥(Xi,jI{|Xi,j |≥αk0}

)
i≤m,j≤n

∥∥
`np→`mq

≤ E
∥∥(Xi,jI{|Xi,j |≥αk0}

)
i≤m,j≤n

∥∥
`n2→`m2

.α
√
m exp

(
− lnα

10
2k0
)

≤ m
1
2−

2−q∗
2q∗ = m1/q.

By Lemma 28 and two-sided bound (1) we have

E
∥∥(Xi,jI{|Xi,j |≤1}

)
i≤m,j≤n

∥∥
`np→`mq

. E‖(gi,j)i≤m,j≤n‖`np→`mq .α n
1/p∗ +m1/q.

We have Bmq∗ ⊂ S1 + S2, where

S1 = {s ∈ Bmq∗ : | supp(s)| ≤ m1/(2βq)}, S2 = Bmq∗ ∩m−1/(2βqq∗)Bm∞.

Inequality (20) from Lemma 26 applied with b = 1, l = m1/(2βq) shows that

(44) E sup
s∈S1,t∈Bnp

∑
i≤m,j≤n

Xi,jsitj .α n
1/p∗ +m1/q.

Since 2βqq∗ ≤ 100β2 we have

S2 ⊂ S3 := Bmq∗ ∩m−1/(100β2)Bm∞.

Thus, to finish the proof it is enough to upper bound the following quantity

E sup
s∈S3,t∈Bnp

∑
i≤m,j≤n

Xi,jI{1≤|Xi,j |<αk0}sitj ≤
k0∑
k=1

E sup
s∈S3,t∈Bnp

∑
i≤m,j≤n

Xi,jI{αk−1≤|Xi,j |<αk}sitj .

Let u1, . . . , uk0 be positive numbers to be chosen later. We decompose the set S3 in the
following way, depending on k:

S3 ⊂ S4,k + S5,k,
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where

S4,k := {s ∈ Bmq∗ : | supp s| ≤ m/uk} ∩m−1/(100β2)Bm∞, S5,k := Bmq∗ ∩
(uk
m

)1/q∗

Bm∞.

Thus,

E sup
s∈S3,t∈Bnp

∑
i≤m,j≤n

Xi,jI{αk−1≤|Xi,j |<αk}sitj

≤ E sup
s∈S4,k,t∈Bnp

∑
i≤m,j≤n

Xi,jI{|Xi,j |<αk}sitj + E sup
s∈S5,k,t∈Bnp

∑
i≤m,j≤n

Xi,jI{αk−1≤|Xi,j |}sitj .

Observe that Bnp ⊂ Bn2 and

sup
s∈S5,k

‖s‖2 ≤ sup
s∈S5,k

‖s‖q
∗/2
q∗ ‖s‖(2−q

∗)/2
∞ ≤

(uk
m

) 2−q∗
2q∗

.

Hence, Lemma 31 yields

E sup
s∈S5,k,t∈Bnp

∑
i≤m,j≤n

Xi,jI{αk−1≤|Xi,j |}sitj ≤
(uk
m

) 2−q∗
2q∗ E‖(Xi,jI{αk−1≤|Xi,j |})‖`m2 →`n2

.α m
1/qu

2−q∗
2q∗

k exp
(
− lnα

10
2k−1

)
.

Thus, if we choose

uk := exp
( q∗ lnα

20(2− q∗)
2k
)
,

we get

k0∑
k=1

E sup
s∈S5,k,t∈Bnp

∑
i≤m,j≤n

Xi,jI{αk−1≤|Xi,j |}sitj .α

∞∑
k=1

m1/q exp
(
− lnα

40
2k
)
.α m

1/q.

Lemmas 28 and 30 applied with l = m
uk

, a = m−1/(100β2), and γ = 24β yield

E sup
s∈S4,k,t∈Bnp

∑
i≤m,j≤n

Xi,jI{|Xi,j |<αk}sitj .α α
k
(
m
− (2−q∗)

200β2 n1/p∗ +
√

Log uk(m/uk)1/q
)
.

Property (43) yields

k0∑
k=1

αkm
− (2−q∗)

200β2 n1/p∗ . αk0I{k0 6=0}m
− (2−q∗)

200β2 n1/p∗ .α
( 10

lnα

2− q∗

q∗
Logm

)log2 α

e
− (2−q∗)

200β2
lnm

n1/p∗

.α n
1/p∗ sup

x>0
xlog2 αe−x .α n

1/p∗ .

Finally, since q ≤ 24β and uk ≥ 1 we get
√

Log uk(m/uk)1/q .α m1/qu
−1/(2q)
k , so

k0∑
k=1

αk
√

Log uk(m/uk)1/q .α m
1/q
∑
k≥1

αk exp
(
− q∗ lnα

40q(2− q∗)
2k
)
.α m

1/q. �

The case 2 ≥ p∗, q was considered in Subsection 6.1. The proof in the case 24β ≥ q ≥ 2 ≥ p∗

is easy and bases on the already proven case when q ≥ 2 = p∗ (see the proof above).
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Proof of the upper bound in Theorem 1 in the case 24β ≥ q ≥ 2 ≥ p∗. Inequality (7) implies that
in the case 24β ≥ q ≥ 2 ≥ p∗ the upper bound in Theorem 1 is equivalent to

(45) E‖(Xi,j)i,j‖`np→`mq .α n
1/p∗ +m1/qn1/p∗−1/2.

In particular, an already obtained upper bound in the case 24β ≥ q ≥ 2 = p∗ yields

E‖(Xi,j)i,j‖`n2→`mq .α n
1/2 +m1/q,

so

E‖(Xi,j)i,j‖`np→`mq ≤ ‖ Id ‖`np→`n2 E‖(Xi,j)i,j‖`n2→`mq .α n
1/p∗−1/2(n1/2 +m1/q)

= n1/p∗ +m1/qn1/p∗−1/2,

and thus, (45) holds. �
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6. E. D. Gluskin and S. Kwapień, Tail and moment estimates for sums of independent random variables with

logarithmically concave tails, Studia Math. 114 (1995), no. 3, 303–309. MR 1338834
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