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Two-pan balance and generalized counterfeit coin problem 
 

Marcel Kołodziejczyk 
 
 

Hugo Steinhaus in „Mathematical Snapshots” ([7]) offers the following problems: 

We have nine nickels, including one counterfeit coin, which can only be told apart by its weight being different 

from the others. How can one tell in no more than two weightings which one it is? The balance we are allowed to 

use only gives information whether two masses have the same weight or – if not – which one is heavier or lighter. 

and 

We have thirteen nickels, including exactly one counterfeit coin. We do not know whether it is heavier or lighter. 

We aim to find the counterfeit nickel in three weightings using a two-pan balance. 

The second problem is often referred to as the counterfeit coin problem and it is a classical puzzle. Various modifications 

of this problem can be found in many publications (cf. References).  

In this paper I consider a wide class of possible generalizations of the counterfeit coin problem. Due to a large number 

of  variants and their mutual similarity I will introduce all of them at once. Particular variants will be identified by a five 

letter code, in the following way. 

We are given two natural numbers n and k. 

We know that among n coins 

A) there is for sure B) there may be 

a counterfeit coin which can be distinguished only by its weight. 

C) We know D) We do not know 

whether it is heavier or lighter than a genuine coin. 

We also have 

E) 0 F) 1 G) infinitely many 

additional genuine coins. 

Our aim is to state whether it is possible 

H) to find out if any of the coins is counterfeit 

and if it is so – to indicate this coin 

I) to find out if any of the coins is counterfeit and 

if it is so – to indicate this coin and tell its weight 

in k weightings using a two-pan balance without weights (we are allowed to use coins only). 

In addition all the weightings 

J) are required K) are not required 

to be planned before the first weighting. Statement J means that the choice of the coins participating 

in subsequent weightings should not depend on the results of previous weightings. 
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The particular variant is determined by a choice of five letters:   one of the letters A, B,  

one of the letters C, D,      one of the letters  E, F or G,  

one of the letters H, I      and one of the letters J, K.  

For example, the above Steihaus’ problems correspond to ACEHK with n=9, k=2 and ADEHK with n=13, k=3. 

There are 2⋅2⋅3⋅2⋅2=48 possible variations of the original puzzle ((A/B)(C/D)(E/F/G)(H/I)(J/K)), but some of them are 

very similar, hence I will often write about a couple of the variants together. In such cases some letters will be substituted 

with the asterisk (*) to tell that the letter can be chosen freely. For example the group AC*** consists of all problems in 

which we know that the counterfeit coin exists and we know whether it is heavier or lighter than other coins. 

I give a full solution to all possible variants of the problem for every n and k. When the answer is positive, I present 

the required algorithm of weightings. When it is negative, I prove that no such algorithm exists. 

Below I state the results, which will be proved in this paper. First I consider the problems in which we know whether 

counterfeit coin is heavier or lighter than the genuine nickels (*C***). The answer here is positive if and only if n and k 

satisfy the following inequalities: 

 

E 
(no additional genuine coins) 

 J 
(weightings are planned in 

advance) 

K 
(weightings are not planned 

in advance) 

F/G 
(we are given 

additional genuine 
coins) 

A 
(we know that the counterfeit coin exists) 
The problem makes sense only if  n≥1 

n≤3k n≤3k n≤3k 

B 
(it is possible that the counterfeit coin does 

not exist) 

n≤3k-1 
n≠1 

n≠3k-2 

n≤3k-1 
n≠1 

n≤3k-1 

 
The problems *D*** (we do not know whether counterfeit coin is heavier or lighter than genuine nickel) have 

the positive answer when n and k satisfy the inequalities: 

 
E 

(no additional genuine 
coins) 

F/G 
(we are given additional 

genuine coins) 
H 

(we do not have to find out if the counterfeit 
coin is heavier or lighter than the genuine ones) 

n≤(3k-1)/2 
n≠2 

n≤(3k+1)/2 
A 

(we know that 
the counterfeit coin 

exists) 
The problem makes 

sense only if  n≥1 

I 
(we have to find out if the counterfeit coin is 

heavier or lighter than the genuine ones) 

n≤(3k-3)/2 
n≠1 
n≠2 

n≤(3k-1)/2 

B 
(it is possible that counterfeit coin does not exist) 

n≤(3k-3)/2 or n=0 
n≠1 
n≠2 

n≤(3k-1)/2 
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Example: It is impossible to find a counterfeit coin among 40 nickels in 4 weightings without additional genuine coins 

when we do not know whether it exists and if it is heavier or lighter than genuine nickels (40>39=(34-3)/2). This answer 

remains correct for each of the variants BDE**. 

It is worth to notice that the variants A**** of the problem make sense only if n≥1, because there must be at least one 

coin (the counterfeit coin). The authors of [5] write that they do not know the answer of the variant ADEHK. 

The results presented in the tables show that if we have any additional genuine coin it does not matter whether we have 

one or infinite amount of them. We can always solve the problem using only one additional genuine coin. Another 

conclusion is that in general it is possible to make the choice of the coins participating in subsequent weightings without 

knowledge of the results of previous weightings. The only exceptions are variants BCE*K with n=3k-2.  

I shall prove that conditions presented in the tables are necessary and sufficient to perform required weightings. 

 

Necessity of the conditions presented in the tables 
 

The method of proving the necessity of the conditions is following: I shall compare the number of possible results 

of k weightings with the number of possible answers to a particular variant of the problem. If  the number of possible results 

of weightings is less than the number of possible answers then we will not be able to give an answer. 

 

We know whether the counterfeit coin is heavier or lighter than genuine ones (variants *C***) 

In variants AC*** (when we know that the counterfeit coin exists and we know whether it is heavier or lighter than 

genuine ones) I shall prove that if n>3k then we cannot perform required weightings.  Indeed, in one weighting we can get 

one of three possible results (the right hand side of balance is down or the left one is down or the pans are balanced). 

k weightings give one of 3k possible results. The counterfeit coin is one of  n>3k nickels, so the information received 

in k weightings is not sufficient to indicate the counterfeit coin.  

In variants BC*** there are 3k possible results of k weightings while the number of possible answers is equal to n+1 

(either one of n coins is counterfeit or there is no counterfeit nickel). If n>3k-1 then n+1>3k, so we are not able to indicate 

the counterfeit coin. 

Condition n≠1 in variants BCE** is a consequence of the fact that if there is only one coin then we have nothing 

to compare it with. In variants BCE*J we have to prove that k weightings is not enough to indicate the counterfeit coin 

among 3k-2 nickels. We assume, tending to the contradiction, that we can plan required k weightings. Clearly, in each 

weighting the number of coins put onto the left and right pan should be equal. Let us assign to the coins numbers 1,2,...,3k-2. 

If we want to plan k weightings, it is enough to assign to each coin a k-tuple being an element of {R,L,0}k. These 
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k-tuples have the following meaning: Let  (wi
1,w

i
2,…,wi

k) be a k-tuple assigned to the i-th coin (i=1,2,…, 3k-2) and let 

j=1,2,…,k. Then wi
j=R means than during the j-th weighting the i-th coin should be put onto the right pan; wi

j=L means then 

during the j-th weighting the i-th coin should be put onto the left pan. Finally, wi
j=0 means that the i-th coin does not 

participate in the j-th weighting. Clearly, k-tuples assigned to particular coins should be different. Moreover, the zero 

k-tuple, (0,0,…,0), should not be assigned to any coin. The number of non-zero k-tuples is equal to 3k-1, while the number 

of coins is equal to 3k-2. It follows that there exists exactly one non-zero k-tuple (w1,w2,…,wk), which is not assigned to any 

coin. We have wj≠0 for some j=1,2,...,k. We may assume that wj=L (the reasoning is similar when wj=R). The set {i: wi
j=L} 

has 3k-1-1 elements, while the set {i: wi
j=R} has 3k-1 elements. It follows that during the j-th weighting there is one coin 

more put onto the right pan. This contradiction shows that k weightings are not enough to indicate the counterfeit coin 

among 3k-2 nickels in variants BCE*J. 

 

We do not know if the counterfeit coin is heavier or lighter than genuine ones (variants *D***) 

First I shall consider the variants AD(F/G)I*. We know that one of the coins is counterfeit and we have to find out if it 

is heavier or lighter than genuine nickels. It follows that during at least one of the weightings the pans should not be 

balanced – otherwise we would not be able to find out if the counterfeit coin is heavier or lighter. Hence there are 3k-1 

possible results of weightings. The number of possible answers is equal to 2n (we have to indicate one of n coins and find 

out if it is heavier or lighter). If n>(3k-1)/2 then 2n>3k-1, so we are not able to point the counterfeit coin in k weightings. 

In variants BD(F/G)** we do not need to find out if the counterfeit coin is heavier or lighter than the genuine ones. 

However, we will receive this information during the weightings. The number of possible results of weightings is equal 

to 3k, while the number of possible answers is equal to 2n+1 (either there is no counterfeit coin or any among n coins is 

counterfeit and is heavier or lighter than the others). If n>(3k-1)/2 then 2n+1>3k, so then k weightings are not enough 

Variants AD(F/G)H*. We assume that k weightings are enough to solve the problem. There are 3k possible results 

of weightings. If in all k weightings the pans are balanced, we will not be able to tell if the counterfeit coin is heavier or 

lighter. However, if in at least one weighting any pan of the balance rises, we will point the counterfeit coin and in addition 

we will be able to tell if it is heavier or lighter than the genuine nickels. Hence the inequality 2(n-1)+1≤3k, which is the 

same as n≤(3k+1)/2. 

Condition n≠2 in variants *DE** is a consequence of the fact that if we have exactly 2 coins and we do not know 

whether the counterfeit coin is heavier or lighter, then we cannot identify the counterfeit coin. Condition n≠1 in variants 

BDE** is a consequence of the fact that if there is only one coin then we have nothing to compare it with. Similarly, in 

variants ADEI*: although we know that one coin is counterfeit, still we are not able to find out whether it is heavier or 

lighter than the genuine nickels (we do not possess any additional genuine coins). 
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Proof of inequality n≤(3k-3)/2 for variants ADEI*: Assume that for specified n and k we can perform required 

weightings. Let m be the number of coins, which will be put in the first weighting on each pan. If in the first weighting 

the pans are balanced, the counterfeit coin is one of n-2m nickels not participating in this weighting. Remaining k-1 

weightings must be enough to identify the counterfeit coin among n-2m nickels and to find out if it is heavier or lighter. 

It results in the following inequality: 

(1) 2(n-2m)≤3k-1. 

However, if in the first weighting left or right pan moved up, the counterfeit coin is among 2m nickels, which 

participated in this weighting. Remaining k-1 weightings must be enough to point the counterfeit coin among these 2m 

nickels and to find out if it is heavier or lighter. We obtain the following inequality 2⋅2m≤2⋅3k-1 (2⋅3k-1 – because in the first 

weighting either left or right pan could rise), which is the same as: 

(2) 2m≤3k-1. 

As 3k-1 is odd, we can write inequalities (1) and (2) as: 

(3) 2(n-2m)≤3k-1-1 

(4) 2m≤3k-1-1. 

By adding inequalities (3) and doubled (4) we receive 2n≤3⋅3k-1-3, which is the same as n≤(3k-3)/2. 

In case BDE** let us notice that a detection of a counterfeit coin means, that in one of the weightings the pans were not 

balanced. That means that we have not only identified the false coin, but we also learned whether it is heavier or lighter. 

Therefore the inequality n≤(3k-3)/2, proved already for ADEI* is valid here. 

The proof of n≤(3k-1)/2 for ADEH* is similar to the proof of n≤(3k-3)/2 for the variant ADEI*. The only difference is 

that in the case of balanced pans, with the remaining k-1 weightings we must either detect the counterfeit coin among n-2m 

coins or decide that all coins are genuine.  Inequality (1) will take the form 2(n-2m-1)+1≤3k-1. (Notice that if the pans were 

not balanced all the time, we will not only indicate the false coin but also we will know whether it is heavier or lighter.) 

In this way we have proved that the conditions given in the tables are necessary for the existence of the weightings 

satisfying the conditions of the particular variants. Now we have to prove that these conditions are also sufficient. 

 

Sufficiency of the conditions presented in the tables 

Variants BCEIJ and BDEIJ 

We start from variants BCEIJ and BDEIJ, as they include the most constraints. We have to plan the weightings in 

advance, we do not know whether a false coin exists, we do not know whether it is heavier of lighter. Moreover, we have no 
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additional coins at our disposal. In the other variants we prove the sufficiency of our conditions by using a suitable 

construction for the variants BCEIJ and BDEIJ. 

In both variants we have to plan k weightings beforehand. It means that we have to assign to each of the n coins 

a k-tuple (w1,w2,…,wk)⊂{R,L,0}k. We have wj=R, wj=L or wj=0 which respectively means that the given coin will be on 

the right pan, on the left pan or it will not take part in the j-th weighting. Different k-tuples must correspond to different 

coins – otherwise it would not be possible to distinguish a pair of coins by this sequence of weightings. The assigned 

k-tuples form an n-element subset A⊂{R,L,0}k. Moreover, we require that in each weighting the number of coins lying 

on both pans is the same. This means that the sets {(w1,w2,…,wk)∈A: wj=R}, {(w1,w2,…,wk)∈A: wj=L} must have the same 

number of elements for j=1, 2, …,k. 

Let us turn to variant BCEIJ. Without loss of generality we may assume that the counterfeit coin (if it exists) is heavier 

than the others. Let us also assume that for each pair k, n satisfying the conditions from the table there exists an n-element 

subset ∆n
k⊂{R,L,0}k such that (0,0,…,0)∉∆n

k and for any j∈{1,2,…,k} the sets {(w1,w2,…,wk)∈∆n
k: wj=R}, 

{(w1,w2,…,wk)∈∆n
k: wj=L} have equal number of elements. Let us assign to each coin a different element of the set ∆n

k. 

Notice that the sequence of weightings designed in this way allows detecting the counterfeit coin, if it exists. In fact, let us 

write the result of k weightings as a k-tuple (w1,w2,…,wk), where wj=R, wj=L, wj=0 means that in the j-th weighting the 

right pane was lower, higher or both pans were balanced, respectively. If all coins are fair, we get the zero k-tuple 

(0,0,…,0). Otherwise we get a k-tuple, which coincides with the k-tuple assigned to the counterfeit coin while planning the 

weightings. It remains to prove that: 

 

For any k≥0 and n such that 2≤n≤3k-3 or n=0 or n=3k-1 there exists an  n-element set ∆n
k⊂{R,L,0}k, such 

that (0,0,…,0)∉∆n
k and for all j∈{1,2,…,k} the sets {(w1,w2,…,wk)∈∆n

k: wj=R} and {(w1,w2,…,wk)∈∆n
k: 

wj=L} have equal number of elements. 

 

For every k≥0 we set  ∆0
k=∅. 

For every k≥1 we set  ∆2
k={(L,0,…,0), (R,0,…,0)}. 

For every k≥2 we set  ∆3
k={(L,R,0,…,0), (R,0,0,…,0), (0,L,0,…,0)},  

∆4
k={(R,0,0,…,0), (L,0,0,…,0), (0,R,0,…,0), (0,L,0,…,0)}, 

∆5
k={(L,R,0,…,0), (R,0,0,…,0), (0,L,0,…,0), (R,R,0,…,0), (L,L,0,…,0)}. 
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We shall construct the other sets ∆n
k using the induction on k. We have already defined all the requested sets ∆n

k for k=0 

and k=1. Let k≥2 and 2≤n≤3k-3 or n=0 or n=3k-1. We assume that for every m<k the sets ∆n
m have already been constructed. 

Since ∆0
k, ∆2

k, ∆3
k, ∆4

k, ∆5
k are already defined we only need to construct the sets ∆n

k for 6≤n≤3k-1, n≠3k-2. 

Number n can be represented as n=n1+2n2,  2≤n1≤3k-1-1,  n1≠3k-1-2,  2≤n2≤3k-1. Numbers n1, n2 can be determined as follows: 

n1=n/3 and n2=n/3 if n≡0 (mod 3) 

n1=(n-1)/3 + 1 and n2=(n-1)/3 if n≡1 (mod 3) 

n1=(n-2)/3 and n2=(n-2)/3 + 1 if n≡2 (mod 3), then. 

Such a choice of n1 and n2 does not guarantee that  n1≠3k-1-2. To ensure that n1≠3k-1-2 we set: 

n1=3k-1-4 and n2=3k-1 if n=3k-4, 

n1=3k-1-4 and n2=3k-1-1 if n=3k-6, 

n1=3k-1-4 and n2=3k-1-2 if n=3k-8. 

Finally we set: 

233})0{(}),{( 1
2

1
211

12 −≠≠×∆∪×∆=∆ −−
−−

kkn
k

n
k

n
k nandnwhenRL  

or 233)},0,,0(),,0,,0{(})0{(}),{( 1
2

1
21

1
1

12 −==∪×∆∪×∆=∆ −−
−

−
−

kkn
k

n
k

n
k nornwhenRLRL KK  

� 

Let us turn to variant BDEIJ. For w=(w1,w2,…,wk)∈{R,L,0}k we denote by –w  the k-tuple with all L replaced by R 

and vice versa, e.g – (L,0,R,R,L)=(R,0,L,L,R). We will call –w the inverse of w. Moreover, for A⊂{R,L,0}k we denote by 

–A the set {–w: w∈A}. Assume that for all k, n satisfying the condition from the table there exists an n-element set 

Γn
k⊂{R,L,0}k such that (0,0,…,0)∉Γn

k, Γn
k∩(–Γn

k)=∅ and for all j∈{1,2,…,k} the sets {(w1,w2,…,wk)∈Γn
k: wj=R} and 

{(w1,w2,…,wk)∈Γn
k: wj=L} have the same number of elements. We assign to each coin a different element from Γn

k. Notice 

that the sequence of k weightings planned in this way allows us to indicate the counterfeit coin (if exists) and to determine 

whether it is heavier or lighter. In fact, let us write the results of the k weightings in the form (w1,w2,…,wk), with wj=R, 

wj=L, wj=0, as before. If all coins are fair we get (0,0,…,0). If not and the counterfeit coin is heavier, we get a k-tuple 

assigned to it when planning the weightings. If the false coin is lighter, we get the inverse of the same tuple. 

As Γn
k∩(–Γn

k)=∅, we get a different result in each of those situations, which allows to indicate the counterfeit coin and 

determine whether it is heavier or lighter. It remains to prove that 

For any k≥0 and n such that 3≤n≤(3k-3)/2 or n=0 there exists an n-element set Γn
k⊂{L,R,0}k such that  

Γn
k∩(–Γn

k)=∅ and for all j∈{1,2,…,k} the sets {(w1,w2,…,wk)∈Γn
k: wj=R} and {(w1,w2,…,wk)∈Γn

k: wj=L} have 

the same number of elements. 
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The sets Γn
k will be constructed using induction on k. First we consider some special cases. Let Γ0

k=∅ for every k. 

For every k≥2 we set: Γ3
k={(L,R,0,…,0), (R,0,0,…,0), (0,L,0,…,0)}. 

For every k≥3 we set: 

Γ4
k={(R,R,L,0,…,0), (R,L,P,0,…,0), (L,R,R,0,…,0), (L,L,L,0,…,0)} 

Γ5
k={(0,0,R,0,…,0), (P,0,0,0,…,0), (L,0,R,0,…,0), (0,L,L,0,…,0), (0,R,L,0,…,0)} 

Γ6
k={(L,R,L,0,…,0), (R,0,L,0,…,0), (0,L,L,0,…,0), (L,R,R,0,…,0), (R,0,R,0,…,0), (0,L,R,0,…,0)} 

Γ7
k={(L,R,0,0,…,0), (R,0,0,0,…,0), (0,L,0,0,…,0), (R,R,L,0,…,0), (R,L,R,0,…,0), (L,R,R,0,…,0),(L,L,L,0,…,0)} 

Γ8
k={(L,L,L,0,…,0), (L,R,L,0,…,0), (R,L,L,0,…,0), (R,R,L,0,…,0), (0,R,R,0,…,0), (0,L,R,0,…,0), (R,0,R,0,…,0), 

(L,0,R,0,…,0)} 

The sets 2/)33( −Γ
k

k  will be defined using induction on k≥1. The set Γ0
1=∅ is already constructed. Let k>1. We set 

)},0,,0,0(),0,,,,(),,,,,{(}0,,{2/)33(
1

2/)33( 1

LRRRRLLLRL
kk

kk KKK∪×Γ=Γ −
−

− −

 

The constructed above sets 2/)33( −Γ
k

k  satisfy the following conditions: 

1° (R,…,R), (L,…,L)∉ 2/)33( −Γ
k

k for k≥0, 

2° (L,R,0,0,…,0), (R,R,0,0,…,0), (0,L,0,0,…,0), (L,…,L,R,0), (0,…,0,0,L), (0,…,0,L,0)∈ 2/)33( −Γ
k

k  for k≥3, 

3° (0,R,0,0,…,0), (0,0,…,0,0,R,0)∉ 2/)33( −Γ
k

k for k≥3. 

These conditions can be easily proved by induction. The conditions 1°, 2°, 3° imply that we may define the sets 

2/)53( −Γ
k

k  and 2/)73( −Γ
k

k by the following formulas: 

})0,,0,,0(),,,,,{(})0,,0,,0(),,0,0,,0(),0,,,,{(\)33(2/)53( RLLLLLLRLL
kk

kk KKKKK ∪Γ=Γ −−

})0,,0,,0{(})0,,0,,0(),0,,0,,(),0,,0,,{(\)33(2/)73(
KKKK RLRRRL

kk

kk ∪Γ=Γ −− . 

Now we may pass to the main part of the construction. We use induction on k. The sets Γn
k, where k=0, k=1 and k=2, are 

already constructed. Let k≥3 and 0≤n≤(3k-3)/2, n≠1,2. 

If n<9 or n=(3k-3)/2 or n=(3k-5)/2 or n=(3k-7)/2 then sets Γn
k have already been determined, so we can assume 9≤n≤(3k-9)/2. 

Number n can be represented as n=n1+2n2,    3≤n1,n2≤(3k-1-3)/2, where n1 and n2 may be set as: 

n1= n/3 and n2=n/3 if n≡0 (mod 3), 

n1=(n-1)/3 + 1 and n2=(n-1)/3 if n≡1 (mod 3), 

n1=(n-2)/3 and n2=(n-2)/3 +1 if n≡2 (mod 3). 

Finally we define }0{},{ 12
11 ×Γ∪×Γ=Γ −−

n
k

n
k

n
k RL   � 
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The remaining variants 

The remaining variants can be easily reduced to one of BCEIJ or BDEIJ. As an example we will consider variants 

BCF** and BCE*K. Variants BCF**: If n=1 then we compare the only one coin with additional genuine one, which we 

posses (letter F). If n=3k-2 then we use additional coin and we perform the weightings similarly to variant BCEIJ with 

n+1=3k-1 coins and k weightings. If n≤3k-1, n≠1 and n≠3k-2, we follow variant BCEIJ. 

Variants BCE*K. If n and k satisfy conditions of BCEIJ, i.e., n≤3k-1, n≠1 and n≠3k-2, we follow variant BCEIJ. If 

n=3k-2 and k≥2, we split n coins into 3 groups: group A consisting of 3k-1-2 coins and groups B and C of 3k-1 coins each. In 

the first weighting we put groups B and C onto the pans. If any pan rises then the counterfeit coin is among one of these 

groups (we know which one). The remaining k-1 weightings are enough to indicate the counterfeit coin among 3k-1 coins 

(the sequence of weightings is the same as in variants ACE*K, which can be reduced to BCEIJ). If the pans are balanced the 

counterfeit coin (if it exists) is among group A. We perform the remaining k-1 weightings following variants BCF** for 

group A (we know that coins from groups B and C are genuine so we may use them as additional genuine coins). 

In the remaining cases we proceed in a similar way (cf. the second of the examples below for the variant BDFHJ.) 

 

Examples 
 

We are given 19 nickels including one counterfeit coin, which is lighter than the genuine ones. We have to find 

out which one it is in no more than three weightings using a two-pan balance.  

This puzzle corresponds to the variant ACEHK of the problem with n=19 and k=3. Let us number all the coins with 1, 2,…, 

19. In the first weighting we should put coins 1, 2, 3, 4, 5, 6 onto the left pan and coins 7, 8, 9, 10, 11, 12 onto the right pan. 

1° If the left pan rises then we know that the counterfeit coin is among 1, 2, 3, 4, 5, 6. In the second weighting we 

compare coins 1, 2 with 3, 4. The third weighting allows us to indicate the counterfeit coin. 

2° If the right pan rises then we know that the counterfeit coin is among 7, 8, 9, 10, 11, 12. In the second weighting 

we compare coins 7, 8 with 9, 10. The third weighting allows us to indicate the counterfeit coin. 

3° If the pans are balanced then we know the counterfeit coin is one among 13, 14, 15, 16, 17, 18, 19. In the second 

weighting we compare coins 13, 14 with 15, 16. The third weighting allows indicating the counterfeit coin. 

 

We are given 40 coins including at most one counterfeit nickel. We do not know if it is heavier or lighter. We have 

arbitrary many additional genuine coins. We want to know if any of the coins is counterfeit and if it is so – 

indicate this coin and tell whether it is heavier or lighter. We may use two-pan balance not more than four times.  

We will solve the problem using only one additional genuine coin. We will plan all the weightings in advance. This is 

variant BDFHJ of generalized problem. We know we can solve the problem because the numbers of coins and of weightings 
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satisfy the inequality presented in the table for variant BDFHJ (40≤(34-1)/2). Let us number the coins:  1, 2, 3, ... ,40. 

We will find elements of Γ39
4, what is helpful to plan the weightings. 

Γ39
4=Γ12

3×{L,R,0}∪{(L,L,L,R), (R,R,R,0), (0,0,0,L)} 

Γ12
3=Γ3

2×{L,R,0}∪{(L,L,R), (R,R,0), (0,0,L)} 

Γ3
2={(L,R), (R,0), (0,L)} 

Finally Γ39
4={(L,R,L,L), (R,0,L,L), (0,L,L,L), (L,R,R,L), (R,0,R,L), (0,L,R,L), (L,R,0,L), (R,0,0,L), (0,L,0,L), (L,L,R,L), 

(R,R,0,L), (0,0,L,L), (L,R,L,R), (R,0,L,R), (0,L,L,R), (L,R,R,R), (R,0,R,R), (0,L,R,R), (L,R,0,R), (R,0,0,R), (0,L,0,R), 

(L,L,R,R), (R,R,0,R), (0,0,L,R), (L,R,L,0), (R,0,L,0), (0,L,L,0), (L,R,R,0), (R,0,R,0), (0,L,R,0), (L,R,0,0), (R,0,0,0), 

(0,L,0,0), (L,L,R,0), (R,R,0,0), (0,0,L,0), (L,L,L,R), (R,R,R,0), (0,0,0,L)}. 

For each coin numbered with 1,2,…,39 we map exactly one element of Γ39
4, e.g. we assign (L,R,L,L) to coin 1, (R,0,L,L) 

to coin 2, etc, (0,0,0,L) to coin 39.  We assign (L,L,L,L) to coin 40 and, finally, (R,R,R,R) to the additional genuine coin. 

In this way all weightings are planned (0 corresponds to the additional coin) as follows: 

 The left pan The right pan 

The 1st weighting 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40 0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38 

The 2nd weighting 3, 6, 9, 10, 15, 18, 21, 22, 27, 30, 33, 34, 37, 40 0, 1, 4, 7, 11, 13, 16, 19, 23, 25, 28, 31, 35, 38 

The 3rd weighting 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, 27, 36, 37, 40 0, 4, 5, 6, 10, 16, 17, 18, 22, 28, 29, 30, 34, 38 

The 4th weighting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40 0, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 37 

 
The weighting results we code as quadruples (w1,w2,w3,w4), as before. If we get (0,0,0,0), all coins are genuine. Otherwise 

we get the quadruple assigned earlier to the counterfeit coin (if it is heavier) or its inverse (if it is lighter than genuine ones). 
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