Lower bounds on expectations of generalized order statistics from restricted families of distributions

Agnieszka Goroncy¹, Mariusz Bieniek²

¹Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń ²Institute of Mathematics, Maria Curie Skłodowska University, Lublin

XLII Conference on Mathematical Statistics, Będlewo

29th November, 2016

Generalized order statistics (gOSs) (Kamps, 1995)

gOSs unify various models of ordered random variables i.a.

- order statistics,
- sequential order statistics,
- type II progressively censored order statistics,
- records, k-th records,
- Pfeifer's records.

Generalized order statistics (gOSs) (Kamps, 1995)

Let $n \in \mathbb{N}$ and $\gamma = (\gamma_1, \dots, \gamma_n), \gamma_1, \dots, \gamma_n > 0$.

 $X_{\gamma}^{(1)}, \dots, X_{\gamma}^{(n)}$ are called **generalized order statistics (gOSs)** with parameter γ based on distribution function F if

$$X_{\gamma}^{(r)} \stackrel{d}{=} F^{-1} \left(1 - \prod_{i=1}^{r} U_{i}^{1/\gamma_{i}} \right), \quad r = 1, \ldots, n,$$

where $U_1, \ldots, U_n \stackrel{iid}{\sim} U(0,1)$ (Cramer & Kamps (2003)).

Another representation of gOSs:

$$X_{\gamma}^{(r)} = F^{-1}\left(U_{\gamma}^{(r)}\right),$$

where $U_{\gamma}^{(1)}, \dots, U_{\gamma}^{(n)}$ - uniform gOSs based on γ .

Notation:

$$f_{\gamma,r}$$
 - pdf $U_{\gamma}^{(r)}$, $F_{\gamma,r}$ - cdf $U_{\gamma}^{(r)}$.

Examples of gOSs

• order statistics $X_{1:n}, \ldots, X_{n:n}$ based on $X_1, \ldots, X_n \stackrel{iid}{\sim} F$

$$\gamma_j = n - j + 1, \quad j = 1, \dots, n$$

• n first k-th (upper) record values $X_{L(1)}^{(k)}, \ldots, X_{L(n)}^{(k)}$ based on $(X_i)_{i \in \mathbb{N}} \stackrel{iid}{\sim} F$

$$\gamma_j = k, \quad j = 1, \dots, n$$

Generalized Pareto distributions

For a fixed $\alpha > -\frac{1}{2}$, GPD is defined as follows

$$W_{lpha}(x) = \left\{ egin{array}{ll} 1 - (1 - lpha x)^{1/lpha}, & ext{for } x \geqslant 0 ext{ if } lpha < 0, \\ & ext{for } 0 \leqslant x \leqslant rac{1}{lpha} ext{ if } lpha > 0, \end{array}
ight.$$
 $1 - \mathrm{e}^{-x}, \qquad \qquad ext{for } x \geqslant 0 ext{ if } lpha = 0.$

Let $F \succ_c W_\alpha \iff W_\alpha^{-1} F$ - concave on the support of F and if F is absolutely continuous with pdf f,

$$(W_{\alpha}^{-1}F)'(y) = (1 - F(y))^{\alpha - 1}f(y)$$

is decreasing.

Distributions with the decreasing generalized failure rate (DGFR)

Bieniek (2008) introduced the family of DGFR distributions

$$DGFR(\alpha) = \{F : F \succ_{c} W_{\alpha}\},\$$

with the generalized failure rate of an absolutely continuous F, defined as

$$\gamma_{\alpha}(y) = (1 - F(y))^{\alpha - 1} f(y),$$

•
$$\alpha = 1 \implies W_1 = U \implies \mathsf{DGFR}(0) = \mathsf{DFR}$$

•
$$\alpha = 0 \implies W_0 = E \implies \mathsf{DGFR}(1) = \mathsf{DD}$$

PROBLEM

Assumptions

 $\overline{X_1,\ldots,X_n}$ are i.i.d. $\sim F$ with finite moments

$$\mu = \mathbb{E}X_1 = \int_0^1 F^{-1}(x)dx,$$
 $\sigma^2 = VarX_1 = \mathbb{E}|X_1 - \mu|^2.$

Find the lower non-positive bounds on

$$\mathbb{E}\frac{X_{\gamma}^{(r)}-\mu}{\sigma}, \quad 1\leqslant p\leqslant \infty,$$

where $F \in DGFR$.

Procedure

Fix W - cdf on [0, d), $d \leq \infty$, with pdf w and define

$$\mathcal{C}_W = \{g: [0,d) \longrightarrow \mathbb{R}: \int\limits_0^d g^2(u)w(u)du < \infty, g \text{ is nondecreasing and convex}\},$$

and P_W - the projection onto C_W . Let

$$\hat{f}_{\gamma,r} = f_{\gamma,r} \circ W,$$

 $\hat{h}_{\gamma,r} = 1 - \hat{f}_{\gamma,r}.$

Procedure, cont.

Since $\int_{0}^{a} \hat{h}_{\gamma,r}(u)w(u)du = 0$, we have

$$-\left(\mathbb{E}X_{\gamma}^{(r)}-\mu\right)=\int\limits_{0}^{d}(F^{-1}W(u)-\mu)\hat{h}_{\gamma,r}w(u)du\leqslant\int\limits_{0}^{d}(F^{-1}W(u)-\mu)P_{W}\hat{h}_{\gamma,r}w(u)du.$$

Therefore

$$\frac{\mathbb{E}X_{\gamma}^{(r)} - \mu}{\sigma} \geqslant -||P_{W}\hat{h}_{\gamma,r}||_{W},$$

where

$$||P_W\hat{h}_{\gamma,r}||_W = \left(\int_0^d |P_W\hat{h}_{\gamma,r}(u)|^2 w(u) du\right)^{1/2}.$$

"=" holds for F satisfying $\frac{F^{-1}W(u)-\mu}{\sigma} = \frac{P_W \hat{h}_{\gamma,r}}{||P_W \hat{h}_{\gamma,r}||_W}$.

Assumptions

(A) Let h be a bounded, twice differentiable function on [0,d), such that $h(0) = \lim_{x \nearrow d} h(d) \geqslant 0$ and $\int_0^d h(x)w(x)dx = 0$, where w is a positive weight function satisfying $\int_0^d w(x)dx = 1$. Moreover, h is decreasing on (0,a), convex increasing on (a,b), and concave increasing on (b,d), for some $0 < a < b \leqslant d$.

Shape of functions $\hat{h}_{\gamma,r}$

Functions $\hat{h}_{\gamma,r}$ satisfies assumptions (A):

- $r \geqslant 2$, $1 < \gamma_r \leqslant 1 + \alpha$: $\hat{h}_{\gamma,r}$ is decreasing on (0,a), then convex increasing on (a,d)
- $r \ge 2$, $\gamma_r > 1 + \alpha$: $\hat{h}_{\gamma,r}$ is decreasing on (0,a), convex increasing on (a,b) and concave increasing on (b,d)

Auxiliary functions, $\gamma_r > 1 + \alpha$

Consider

$$\lambda(\beta) = \frac{\int\limits_{\beta}^{d} (x-\beta)(\hat{h}_{\gamma,r}(x) - \hat{h}_{\gamma,r}(\beta))w(x)dx}{\int\limits_{\beta}^{d} (x-\beta)^{2}w(x)dx},$$

$$K(\beta) = \lambda(\beta) - \hat{h}'_{\gamma,r}(\beta),$$

$$L(\beta) = \int\limits_{\beta}^{d} [\hat{h}_{\gamma,r}(x) - \lambda(\beta)(x-\beta) - \hat{h}_{\gamma,r}(\beta)]w(x)dx.$$

Proposition, $\gamma_r > 1 + \alpha$

Let y > a satisfy condition

$$F_{\gamma,r}W(y) = W(y)f_{\gamma,r}W(y)$$

and β_* be the only solution of $K(\beta) = 0$, $\beta \in (a, b)$. If y satisfies

$$K(y) > 0$$
 and $L(y) < 0 < L(\beta_*)$,

then for $y_* \in (y, \beta_*)$ satisfying $L(y_*) = 0$ we have

$$P_W \hat{h}_{\gamma,r}(x) = \left\{ egin{array}{ll} \hat{h}_{\gamma,r}(y), & 0 \leqslant x \leqslant y, \ & \ \hat{h}_{\gamma,r}(x), & y < x \leqslant y^*, \ & \ \hat{h}_{\gamma,r}(y^*) + \lambda(y^*)(x-y^*), & y^* < x < d. \end{array}
ight.$$

Proposition, $\gamma_r > 1 + \alpha$, cont.

Otherwise we have

$$P_{W}\hat{h}_{\gamma,r}(x) = \frac{F_{\gamma,r}(W(\beta)) - W(\beta)}{W(\beta)} \left[\frac{(x-\beta)\mathbf{1}_{[\beta,d)}(x)}{\frac{1}{1-(1-\alpha\beta)^{1+1/\alpha}}} - 1 \right], \quad (c-l)$$

for the greatest $0 < \beta \leq \gamma$, which satisfies the following condition

$$\sum_{j=1}^{r} \frac{\sigma_{j,r}(\alpha)}{\gamma_{j}} \hat{f}_{\gamma,j}(\beta) = \frac{1}{(1-W(\beta))^{1+\alpha}} \left[\frac{(1-\alpha\beta)^{1+\frac{1}{\alpha}}}{1+\alpha} + \frac{W(\beta)-F_{\gamma,r}(W(\beta))}{W(\beta)} \cdot (1-\alpha\beta) \left(\frac{2}{1+2\alpha} - \frac{(1-\alpha\beta)^{1/\alpha}}{1+\alpha} \right) \right],$$

where

$$\sigma_{j,r}(lpha) = \left\{egin{array}{ll} rac{1}{lpha} (1 - \prod\limits_{i=j}^r rac{\gamma_i}{\gamma_j + lpha}), & lpha
eq 0, \ \sum\limits_{i=j}^r rac{1}{\gamma_i}, & lpha = 0. \end{array}
ight.$$

(1)

Results: $0 < \gamma_r \leqslant 1 + \alpha$

Proposition

Let $r \ge 2$, $F \in \mathsf{DGFR}(\alpha)$, where $W = W_{\alpha}$.

If $0 < \gamma_r \leq 1$, then $\mathbb{E} X_{\gamma}^{(r)} \geqslant \mu$.

If
$$1 < \gamma_r \leq 1 + \alpha$$
, then

$$\mathbb{E}\frac{X_{\gamma}^{(r)}-\mu}{\sigma}\geqslant -B_1,$$

$$B_1^2 = (1 - \hat{f}_{\gamma,r}(y))^2 W(y) + 1 - W(y) - 2(1 - F_{\gamma,r}(W(y))) + \int_{0}^{d} \hat{f}_{\gamma,r}^2(x) w(x) dx.$$

"=" holds for F satisfying

$$F^{-1}(W(x)) = \begin{cases} \mu + \frac{\sigma}{B_1}(1 - \hat{f}_{\gamma,r}(y)), & 0 < x < y, \\ \mu + \frac{\sigma}{B_1}(1 - \hat{f}_{\gamma,r}(x)), & y \leq x < d. \end{cases}$$

Proposition, cont.

Let y > a, satisfy condition $F_{\gamma,r}W(y) = W(y)f_{\gamma,r}W(y)$ and β_* be the only solution of $K(\beta) = 0$, $\beta \in (a,b)$. If y satisfies

$$K(y) > 0$$
 and $L(y) < 0 < L(\beta_*)$,

then for $y_* \in (y, \beta_*)$ such that $L(y_*) = 0$ we have the following bound

$$\mathbb{E}\frac{X_{\gamma}^{(r)}-\mu}{\sigma}\geqslant -B_2,$$

$$B_{2}^{2} = (1 - \hat{f}_{\gamma,r}(y))^{2}W(y) + (1 - \hat{f}_{\gamma,r}(y^{*}))^{2}(1 - W(y^{*})) + W(y^{*}) - W(y) - 2F_{\gamma,r}(W(y^{*}))$$

$$-2F_{\gamma,r}(W(y)) + 2\lambda(y^{*})\frac{(1 - \alpha y^{*})^{1+1/\alpha}}{1 + \alpha} \left[1 - \hat{f}_{\gamma,r}(y^{*}) + \lambda(y^{*})\frac{1 - \alpha y^{*}}{1 + 2\alpha}\right]$$

$$+ \int_{y}^{y^{*}} \hat{f}_{\gamma,r}(x)w(x)dx.$$

- - - - OQC

Proposition, cont.

"=" holds for F satistfying

$$F^{-1}(W(x)) = \begin{cases} \mu + \frac{\sigma}{B_2} (1 - \hat{f}_{\gamma,r}(y)), & 0 \leqslant x < y, \\ \mu + \frac{\sigma}{B_2} (1 - \hat{f}_{\gamma,r}(x)), & y \leqslant x < y^*, \\ \mu + \frac{\sigma}{B_2} [1 - \hat{f}_{\gamma,r}(y^*) + \lambda(y^*)(x - y^*)], & y^* \leqslant x < d. \end{cases}$$

Proposition, cont.

Otherwise we have

$$\mathbb{E}\frac{X_{\gamma}^{(r)}-\mu}{\sigma}\geqslant -B_3,$$

$$B_3^2 = \frac{(W(\beta) - F_{\gamma,r}(W(\beta)))^2}{W(\beta)^2} \left[2 \frac{1+\alpha}{1+2\alpha} (1-\alpha\beta)^{-1/\alpha} - 1 \right].$$

for the greatest $0 < \beta \leq y$, satisfying (1).

Proposition, cont.

"=" holds for F satistfying

$$F^{-1}(W(x)) = \begin{cases} \mu + \frac{\sigma}{B_3} (1 - \hat{f}_{\gamma,r}(y)), & 0 \leqslant x < y, \\ \mu + \frac{\sigma}{B_3} (1 - \hat{f}_{\gamma,r}(x)), & y \leqslant x < y^*, \\ \mu + \frac{\sigma}{B_3} [1 - \hat{f}_{\gamma,r}(y^*) + \lambda(y^*)(x - y^*)], & y^* \leqslant x < d. \end{cases}$$

References

- Bieniek, M. (2006), Projection bounds on expectations of generalized order statistics from DFR and DFRA families, *Statistics*, **40**: 339–351.
- Bieniek, M. (2008), On families of distributions for which optimal bounds on expectations of GOS can be derived, Comm. Stat. Theor. Meth., 37, 1997–2009.
- Bieniek, M. (2008), Projection bounds on expectations of generalized order statistics from DD and DDA families, J. Statist. Plann. Inference, 138, 971–981.
- Danielak, K., Rychlik, T. (2004), Sharp bounds for expectations of spacings from decreasing density and failure rate families, Appl. Math., 31, 369–395.
- Goroncy, A. (2014), Bounds on expected generalized order statistics, Statistics, 48, 593–608.