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Generalized order statistics (gOSs) (Kamps, 1995)

gOSs unify various models of ordered random variables i.a.

order statistics,

sequential order statistics,

type II progressively censored order statistics,

records, k-th records,

Pfeifer’s records.



Generalized order statistics (gOSs) (Kamps, 1995)

Let n ∈ N and γ = (γ1, . . . , γn), γ1, . . . , γn > 0.

X
(1)
γ , . . . ,X

(n)
γ are called generalized order statistics (gOSs) with parameter γ based

on distribution function F if

X (r)
γ

d
= F−1

(
1−

r∏
i=1

U
1/γi
i

)
, r = 1, . . . , n,

where U1, . . . ,Un
iid∼ U(0, 1) (Cramer & Kamps (2003)).



Another representation of gOSs:

X (r)
γ = F−1

(
U(r)
γ

)
,

where U
(1)
γ , . . . ,U

(n)
γ - uniform gOSs based on γ.

Notation:

fγ,r - pdf U(r)
γ ,

Fγ,r - cdf U(r)
γ .



Examples of gOSs

order statistics X1:n, . . . ,Xn:n based on X1, . . . ,Xn
iid∼ F

γj = n − j + 1, j = 1, . . . , n

n first k-th (upper) record values X
(k)
L(1), . . . ,X

(k)
L(n) based on (Xi )i∈N

iid∼ F

γj = k , j = 1, . . . , n



Generalized Pareto distributions

For a fixed α > −12 , GPD is defined as follows

Wα(x) =


1− (1− αx)1/α, for x  0 if α < 0,

for 0 ¬ x ¬ 1α if α > 0,

1− e−x , for x  0 if α = 0.

Let F �c Wα ⇐⇒ W−1
α F - concave on the support of F and if F is absolutely

continuous with pdf f ,

(W−1
α F )′(y) = (1− F (y))α−1f (y)

is decreasing.



Distributions with the decreasing generalized failure rate (DGFR)

Bieniek (2008) introduced the family of DGFR distributions

DGFR(α) = {F : F �c Wα},

with the generalized failure rate of an absolutely continuous F , defined as

γα(y) = (1− F (y))α−1f (y),

α = 1 =⇒ W1 = U =⇒ DGFR(0)=DFR

α = 0 =⇒ W0 = E =⇒ DGFR(1)=DD



PROBLEM

Assumptions
X1, . . . ,Xn are i.i.d. ∼ F with finite moments

µ = EX1 =
1∫
0

F−1(x)dx ,

σ2 = VarX1 = E|X1 − µ|2.

Find the lower non-positive bounds on

E
X

(r)
γ − µ
σ

, 1 ¬ p ¬ ∞,

where F ∈ DGFR.



Procedure

Fix W - cdf on [0, d), d ¬ ∞, with pdf w and define

CW = {g : [0, d) −→ R :

d∫
0

g2(u)w(u)du <∞, g is nondecreasing and convex},

and PW - the projection onto CW . Let

f̂γ,r = fγ,r ◦W ,

ĥγ,r = 1− f̂γ,r .



Procedure, cont.

Since
d∫
0
ĥγ,r (u)w(u)du = 0, we have

− (EX (r)
γ − µ) =

d∫
0

(F−1W (u)− µ)ĥγ,rw(u)du ¬
d∫
0

(F−1W (u)− µ)PW ĥγ,rw(u)du.

Therefore
EX (r)

γ − µ
σ

 −||PW ĥγ,r ||W ,

where

||PW ĥγ,r ||W =

 d∫
0

|PW ĥγ,r (u)|2w(u)du

1/2 .
”=” holds for F satisfying F−1W (u)−µ

σ = PW ĥγ,r
||PW ĥγ,r ||W

.



Assumptions

(A) Let h be a bounded, twice differentiable function on [0, d), such that

h(0) = lim
x↗d

h(d)  0 and
d∫
0
h(x)w(x)dx = 0, where w is a positive weight function

satisfying
d∫
0
w(x)dx = 1. Moreover, h is decreasing on (0, a), convex increasing on (a, b),

and concave increasing on (b, d), for some 0 < a < b ¬ d .



Shape of functions ĥγ,r

Functions ĥγ,r satisfies assumptions (A):

r  2, 1 < γr ¬ 1 + α: ĥγ,r is decreasing on (0, a), then convex increasing on
(a, d)

r  2, γr > 1 + α: ĥγ,r is decreasing on (0, a), convex increasing on (a, b) and
concave increasing on (b, d)



Auxiliary functions, γr > 1+ α

Consider

λ(β) =

d∫
β

(x − β)(ĥγ,r (x)− ĥγ,r (β))w(x)dx

d∫
β

(x − β)2w(x)dx

,

K (β) = λ(β)− ĥ′γ,r (β),

L(β) =

d∫
β

[ĥγ,r (x)− λ(β)(x − β)− ĥγ,r (β)]w(x)dx .



Proposition, γr > 1 + α

Let y > a satisfy condition
Fγ,rW (y) = W (y)fγ,rW (y)

and β∗ be the only solution of K (β) = 0, β ∈ (a, b).
If y satisfies

K (y) > 0 and L(y) < 0 < L(β∗),

then for y∗ ∈ (y , β∗) satisfying L(y∗) = 0 we have

PW ĥγ,r (x) =


ĥγ,r (y), 0 ¬ x ¬ y ,

ĥγ,r (x), y < x ¬ y∗,

ĥγ,r (y
∗) + λ(y∗)(x − y∗), y∗ < x < d .

(c − h − l)



Proposition, γr > 1 + α, cont.

Otherwise we have

PW ĥγ,r (x) =
Fγ,r (W (β))−W (β)

W (β)

[
(x − β)1[β,d)(x)
1
1+α(1− αβ)1+1/α

− 1

]
, (c − l)

for the greatest 0 < β ¬ y , which satisfies the following condition
r∑

j=1

σj,r (α)

γj
f̂γ,j(β) =

1
(1−W (β))1+α

[
(1− αβ)1+

1
α

1 + α
+

W (β)− Fγ,r (W (β))

W (β)
·

·(1− αβ)
(

2
1 + 2α

− (1− αβ)1/α

1 + α

)]
, (1)

where

σj,r (α) =


1
α
(1−

r∏
i=j

γi
γi+α

), α 6= 0,

r∑
i=j

1
γi
, α = 0.



Results: 0 < γr ¬ 1+ α

Proposition

Let r  2, F ∈ DGFR(α), where W = Wα.
If 0 < γr ¬ 1, then EX (r)

γ  µ.
If 1 < γr ¬ 1 + α, then

E
X

(r)
γ − µ
σ

 −B1,

B21 = (1− f̂γ,r (y))
2W (y) + 1−W (y)− 2(1− Fγ,r (W (y))) +

d∫
y

f̂ 2γ,r (x)w(x)dx .

”=” holds for F satisfying

F−1(W (x)) =


µ+ σ

B1
(1− f̂γ,r (y)), 0 < x < y ,

µ+ σ
B1
(1− f̂γ,r (x)), y ¬ x < d .



Results: γr > 1+ α

Proposition, cont.
Let y > a, satisfy condition Fγ,rW (y) = W (y)fγ,rW (y) and β∗ be the only solution of K(β) = 0,
β ∈ (a, b). If y satisfies

K(y) > 0 and L(y) < 0 < L(β∗),

then for y∗ ∈ (y , β∗) such that L(y∗) = 0 we have the following bound

EX
(r)
γ − µ
σ

 −B2,

B22 = (1− f̂γ,r (y))
2W (y) + (1− f̂γ,r (y

∗))2(1−W (y∗)) +W (y∗)−W (y)− 2Fγ,r (W (y∗))

−2Fγ,r (W (y)) + 2λ(y∗)
(1− αy∗)1+1/α

1 + α

[
1− f̂γ,r (y

∗) + λ(y∗)
1− αy∗

1 + 2α

]
+

∫ y∗

y

f̂γ,r (x)w(x)dx .



Results: γr > 1+ α

Proposition, cont.

”=” holds for F satistfying

F−1(W (x)) =



µ+ σ
B2
(1− f̂γ,r (y)), 0 ¬ x < y ,

µ+ σ
B2
(1− f̂γ,r (x)), y ¬ x < y∗,

µ+ σ
B2
[1− f̂γ,r (y

∗) + λ(y∗)(x − y∗)], y∗ ¬ x < d .



Results: γr > 1+ α

Proposition, cont.

Otherwise we have

E
X

(r)
γ − µ
σ

 −B3,

B23 =
(W (β)− Fγ,r (W (β)))2

W (β)2

[
2

1 + α

1 + 2α
(1− αβ)−1/α − 1

]
.

for the greatest 0 < β ¬ y , satisfying (1).



Results: γr > 1+ α

Proposition, cont.

”=” holds for F satistfying

F−1(W (x)) =



µ+ σ
B3
(1− f̂γ,r (y)), 0 ¬ x < y ,

µ+ σ
B3
(1− f̂γ,r (x)), y ¬ x < y∗,

µ+ σ
B3
[1− f̂γ,r (y

∗) + λ(y∗)(x − y∗)], y∗ ¬ x < d .
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