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Generalized order statistics (gOSs) (Kamps, 1995)

gOSs unify various models of ordered random variables i.a.
@ order statistics,
@ sequential order statistics,
o type Il progressively censored order statistics,
@ records, k-th records,

o Pfeifer’s records.



Generalized order statistics (gOSs) (Kamps, 1995)

LetnENand’yz(’)’l,---,’Yn). Y15+ Yn > 0.

Xy(l)7 . ,X§”) are called generalized order statistics (gOSs) with parameter v based
on distribution function F if

X§f)§F—1 <1_1_[Ul.1/7">7 r=1,...,n,
i=1

where Uy, ..., U, i U(0,1) (Cramer & Kamps (2003)).



Another representation of gOSs:
where Uf,l), e, US,”) - uniform gOSs based on ~.

Notation:

for - pdf U,
F., - cdf U



Examples of gOSs

@ order statistics Xi.,, ..., Xp.n based on Xq,..., X, i

vy=n—j+1, j=1,...,n
iid

@ n first k-th (upper) record values Xfé(l)), e ,Xﬂ(’z) based on (Xj)jeny ~ F

’}/j:k, j:1,...,n



Generalized Pareto distributions

For a fixed o > —5 , GPD is defined as follows

— (1 —ax)V/®, forx>0if a <0,
Wi (x) = for0<x<i|foz>0,

1—e™%, forx > 0if « =0.

Let F =, W, <= W_'F - concave on the support of F and if F is absolutely
continuous with pdf f,

(W' FY (y) = (1= F(y))* *(y)

is decreasing.



Distributions with the decreasing generalized failure rate (DGFR)

Bieniek (2008) introduced the family of DGFR distributions
DGFR(a) ={F : F =c Wy},
with the generalized failure rate of an absolutely continuous F, defined as

Yaly) = (L= F(y))* (),

ea=1 = W,=U = DGFR(0)=DFR
oa=0 — Wy=E = DGFR(1)=DD



PROBLEM

Assumptions
Xi,..., X, are i.i.d. ~ F with finite moments

1
p = EX; :/F_l(x)dx,

0
0? = VarXy =E|X; — p?
Find the lower non-positive bounds on
X(r) _
EV—M, 1< p<oo,
ag

where F € DGFR.



Procedure

Fix W - cdf on [0, d), d < oo, with pdf w and define
d

Cw = {g:[0,d) —R: /g2(u)w(u)du < 00, g is nondecreasing and convex},
0

and Py - the projection onto Cyy. Let

i-:y,r - f’Y,f © W’
i:”y’r = 1 - ﬁYvr'



Procedure, cont.

d.
Since [ hy (u)w(u)du =0, we have
0

d

— (EX — /(F W(u) = )by rw(u)du < /(F_lW(U) — w)Pwh w(u)du
0
Therefore 8
EXy" — A
=2 R s 1Pwhy
o
where
Y 1/2
||PW/A7'y,r||W = (/|PWi\7'y,r(u)|2W(u)du)
0
=" holds for F satisfying FrIW(u)—p Purhn.r

v —1Pwharllw



Assumptions

(A) Let h be a bounded, twice differentiable function on [0, d), such that

h(0) = Iim h(d) > 0 and fh w(x)dx = 0, where w is a positive weight function

satisfying f x)dx = 1. Moreover, h is decreasing on (0, a), convex increasing on (a, b),

and concave increasing on (b, d), for some 0 < a < b < d.




Shape of functions IAvw

Functions h, , satisfies assumptions (A):

0or>22, 1<~y <l+a /A1W is decreasing on (0, a), then convex increasing on
(a, d)

o r>2 7 >1+a: h,, is decreasing on (0,a), convex increasing on (a, b) and
concave increasing on (b, d)

| M=
f .




Auxiliary functions, v, > 1+ «

Consider

AB) =

K(B) = MB)—Hh, (B),

d
LB = [I[h, (x — B) = hy (B)]w(x)dx.



Proposition, 7, > 1+ «
Let y > a satisfy condition
Fy W(y) = Wy)f, - W(y)

and (3, be the only solution of K(3) =0, 8 € (a, b).
If y satisfies
K(y) > 0and L(y) <0 < L(8.),

then for y. € (y, B«) satisfying L(y.) = 0 we have

~

hyr(y), 0<x<y,
PWE’YJ(X) = B'y,r(x)a y < X< y*7 (C —h— /)

b (") + A4 (x — y*), y* <x<d.




Proposition, v, > 1 + «, cont.

Otherwise we have

5 Fr (W(B) = W(B) | (x=B)1a(x)
Pwh,y,(x) = -2 -
Wily, (X) W(ﬂ) 1+a(1 _aﬁ)l—l-l/a -1], (C /)
for the greatest 0 < B < y, which satisfies the following condition
~0(@) ;o 1 (L—aB)"=  W(B) = F.(W(B))
27O = aweye S OS
(1—ap)/>
(1+2a 1+« )]’ (1)
where .
sQ-I157%) a#0,
oj.r(a) = r =
Z Vi a=0

j




Results: 0 < 7, <1+«

Proposition

Let r > 2, F € DGFR(«), where W = W,,.

If 0 < 4, < 1, then EX{” > 1.

If 1 <~ <1+ a, then

X —p
o

E > _Bla

d
B = (1—£,,(y))?W(y) +1— W(y) —2(1 — F,(W(y))) + / £,

"=" holds for F satisfying

p+ g1 =F(y), 0<x<y,
FY(W(x)) =

pt g1 -F(x), y<x<d

(x)w(x)dx.




Results: v, > 1+ «

Proposition, cont.

Let y > a, satisfy condition F, ,W(y) = W(y)f,,W(y) and B.« be the only solution of K(3) =0,
B € (a, b). If y satisfies
K(y) >0 and L(y) <0 < L(84),

then for y. € (y, 3«) such that L(y~) = 0 we have the following bound

E@ > —B,,
B = (1-F. )W) +1-F.0))70 - W)+ W) — W(y) — 2F, (W(y"))
—ay* 1+1/« n — av*
2R, (W) + 20 T ) a0t

*

- /yy £ () w(x)dx.




Results: v, > 1+ «

Proposition, cont.

"=" holds for F satistfying
pt g1 =), 0<x<y,
FUW()) =4 u+ &1 —F.(x), ySx<y

pt gl = b () F A ) x =y v <x<d. ‘




Results: v, > 1+ «

Proposition, cont.

Otherwise we have

g = WO RWE) T, Lba

W(5)2 1+ 20

for the greatest 0 < 8 < y, satisfying (1).

(1—aB)~ Ve - 1] .




Results: v, > 1+ «

Proposition, cont.

"=" holds for F satistfying
pt g1 =), 0<x<y,
FUW()) =4 u+ &1 —F.(x), ySx<y

pt gl = b () F A ) (x =y v <x<d. ‘
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