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Chapter 1

Definition of a Markov Chain

1.1 Stochastic Process

A Markov chain is a collection of random variables X = (Xn)n∈T , where T is a countable time-set. It is
customary to write T as Z+ := {0, 1, 2, ...}, and we will do this henceforth.

We require that each Xi takes values in (X ,B(X )) (some measurable space which we call state space
for X). There are three different types of state space:

1. The state space X is called countable if X is discrete with a finite or countable number of elements,
and with B(X ) the σ-field of all subsets of X .

2. The state space X is called general if it is equipped with a countably generated σ-field B(X).

3. The state space X is called topological if it is equipped with a locally compact, separable, metrizable
topology with B(X ) as the Borel σ-field.

Whenever we consider the Markov chain as an entity we regard values of the whole chain X itself as
lying in the sequence or path space formed by a countable product Ω = X∞ =

∏∞
i=0 Xi where each Xi

is a copy of X equipped with a copy of B(X ). To make the definition precise (so that Xi is a random
variable) we define a σ-field F as the smallest that contains B(Xi) in projection (i.e. we require that
projections on each coordinate are measurable). Finally, for each x ∈ X we there will be a measure
Px such that the probability of the event {X ∈ A} is well defined for any A ∈ F ; the initial condition
requires of course that Px(X0 = x) = 1. The triple (Ω,F ,Px) thus defines a stochastic process, since
Ω = {ω0, ω1, ... : ωi ∈ Xi} has the product structure to enable the projections ωn at time n to be well
defined realizations of the random variables Xn.

Heuristically the critical aspect of a Markov process, as opposed to any other set of random variables,
is that it is forgetful of all but its most immediate past. The precise meaning of this requirement for
the evolution of Markov chain in time, is that the future of the process is independent of the past given
only its present value.
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1.2 Markov Chain on Countable Space

Definition 1 The process X = (X0, X1, ...) taking values in (Ω,F ,P) is a Markov chain if for every n,
and any sequence of states {x0, x1, x2, ..., xn},

Pµ(X0 = x0, X1 = x1, ..., Xn = xn) = µ(x0)Px0(X1 = x1)...Pxn−1(X1 = xn) (1.1)

The probability measure µ is called the initial distribution of the chain. The process X is a time ho-
mogeneous Markov chain if the probabilities Pxj (X1 = xj+1) depend on the values xj , xj+1 and are
independent of the time points j.

If X is a time homogeneous Markov chain, we write

P (x, y) := Px(X1 = y);

then the definition (1.1) can be rewritten

Pµ(X0 = x0, X1 = x1, ..., Xn = xn) = µ(x0)P (x0, x1)P (x1, x2)...P (xn−1, xn). (1.2)

or equivalently in terms of the conditional probabilities of the process X,

Pµ(Xn+1 = xn+1|Xn = xn, ..., X0 = x0) = P (xn, xn+1).

In applications we almost always define Px0 for a fixed x0 by defining the one step transition probabilities
for the process and building the overall distribution using (1.2). This is done by using the Transition
Probability matrix.

Definition 2 The matrix P = {P (x, y), x, y ∈ X} is called a Markov transition matrix if

P (x, y) > 0,
∑
z∈X

P (x, z) = 1, x, y ∈ X (1.3)

We define the usual matrix iterates Pn = {Pn(x, y), x, y ∈ X} by setting P 0 = Id, the identity matrix
and then taking inductively

Pn(x, y) =
∑
y∈X

P (x, y)Pn−1(y, z).

Theorem 1 If X is countable, and

µ = {µ(x), x ∈ X}, P = {P (x, y), x, y ∈ X}

are an initial measure on X and a Markov transition matrix satisfying (1.3) then there exists a Markov
chain X on (Ω,F) with probability law Pµ satisfying

Pµ(Xn+1 = y|Xn = x, ...,X0 = x0) = P (x, y).

1.3 General State space Definition

We let X be a general set and B(X ) denote a countably generated σ-field on X : when X is topological,
then B(X ) will be taken as the Borel σ-field, but otherwise it may be arbitrary.

Definition 3 If P = {P (x,A), x ∈ X , A ∈ B(X )} is such that
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1. for each A ∈ B(X), P (·, A) is a non negative measurable function on X

2. for each x ∈ X, P (x, ·) is a probability measure on B(X )

then we call P a transition probability or Markov transition function.

To extend the definition from the countable space case to the general one we first define a finite sequence
{X0, X1, ..., Xn} of random variables on the product space Xn+1 =

∏n
i=0 Xi equipped with the product

σ-field Fn generated by B(Xi). For any measurable sets Ai ⊂ Xi we develop the set function Pn
x(·) on

Xn+1 by setting, for a fixed point x ∈ X and for the ’cylinder sets’ A1 × ...×An

P1
x(A1) = P (x,A1),

P2
x(A1 ×A2) =

∫
A1

P (x, dy1)P (y1, A2), ...

Pn
x(A1 × ...×An) =

∫
A1

P (x, dy1)
∫
A2

P (y1, dy2)...P (yn−1, An).

These are well-defined by the this procedure for increasing n, we find

Theorem 2 For any initial measure µ on B(X ), and any transition probability kernel P = {P (x,A), x ∈
X , A ∈ B(X )}, there exists a stochastic process X = {X0, X1, ...} on Ω =

∏∞
i=0 measurable with respect

to F (generated by B(Xi)) and a probability measure Pµ on F such that Pµ(B) is the probability of the
event {X ∈ B} for B ∈ F , and for measurable Ai ⊂ Xi, i = 0, ..., n and any n

Pµ(X0 ∈ A0, X1 ∈ A1, ..., Xn ∈ An) =
∫
A0

...

∫
An

µ(dy0)P (y0, dy1)...P (yn−1, An). (1.4)

Definition 4 The stochastic process X defined on (Ω,F) is called a time-homogeneous Markov chain
with transition probability kernel P (x,A) and initial distribution µ if the finite dimensional distributions
of X satisfy (1.4).

As on countable spaces the n-step transition probability kernel is defined iteratively. We set P 0(x,A)−
δx(A), the Dirac measure defined by

δx(A) =

{
1 x ∈ A
0 x 6∈ A,

and for n > 1, we define inductively

Pn(x,A) =
∫
X
P (x, dy)Pn−1(y,A), x ∈ X , A ∈ B(X ),

We write Pn for the n-step transition probability kernel {Pn(x,A), x ∈ X , A ∈ B(X )}, note that Pn is
defined analogously to the n-step transition probability matrix for the countable space case.

Theorem 3 Chapman-Kolmogorov equations. For any m with 0 6 m 6 n,

Pn(x,A) =
∫
X
Pm(x, dy)Pn−m(y,A), x ∈ X , A ∈ B(X ). (1.5)

We interpret (1.5) as saying that, as X moves from x into A is n steps, at any intermediate time m it
must take some value y ∈ X and that being a Markov chain it forgets the past at that time m and moves
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the succeeding (n −m) steps with the law appropriate to starting afresh at y. We can write equation
(1.5) alternatively as

Px(Xn ∈ A) =
∫
X
Px(Xm ∈ dy)Py(Xn−m).

Exactly as the one-step transition probability kernel describes a chain X, the m-step kernel satisfies
the definition of a transition kernel, and thus defines a Markov chain Xm = {Xm

n } with transition
probabilities

Px(xmn ∈ A) = Pnm(x,A). (1.6)

Definition 5 The chain Xm with transition law (1.6) is called the m-skeleton of the chain X. The
resolvent Ka is defined for 0 < ε < 1 by

Kε(x,A) = (1− ε)
∞∑
i=0

εiP i(x,A), x ∈ X, A ∈ B(X ).

The Markov chain with transition function Kε is called the Kε-chain.

1.4 Semigroup

In the general case the kernel Pn operates on quite different entities from the left and the right. As an
operator Pn acts on both bounded measurable functions f on X and on σ-finite measures µ on B(X )
via

Pnf(x) =
∫
X
Pn(x, dy)f(y), µPn(A) =

∫
X
µ(dx)Pn(x,A),

and we shall use the notation Pnf , µPn to denote these operations. We shall also write

Pn(x, f) :=
∫
X
Pn(x, dy)f(f) := δxP

nf

if it is notationally convenient. In general, the functional notation is more compact: for example we can
rewrite the Chapman-Kolmogorov equations as

Pm+n = PnPm, m, n ∈ Z+.

On many occasions, though where we feel that the argument is more transparent when written in full
form we shall revert to the more detailed presentation.

1.5 Some basic properties

Proposition 1 If X is a Markov chain on (Ω,F), with initial measure µ, and h : Ω → R is bounded
and measurable, then

Eµ(h(Xn+1, Xn+2, ...)|X0, ..., Xn;Xn = x) = Exh(X1, X2, ...).

The formulation of the Markov concept is made much simpler if we develop more systematic notation
for the information encompassed in the past of the process, and if we introduce the shift operator on
the space Ω. For a given initial distribution, define the σ-field

FX
n := σ(X0, ..., Xn) ⊂ B(Xn+1).
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which is the smallest σ-field for which the random variable {X0, ..., Xn} is measurable. In many cases,
FX
n will coincide with B(Xn), although this depends in particular on the initial measure µ chosen for a

particular chain. the shift operator θ is defined to be the mapping on Ω defined by

θ({x0, x1, ...}) = {x1, x2, ...}.

We write θk for the k-th iterate of the mapping θ, defined inductively by

θ1 = θ, θk+1 = θ · θk, k > 1.

The shifts θk define operators on random variables H on (Ω,F ,Pµ) by

(θkH)(ω) = H · θk(ω).

It is obvious that Xn · θk(ω) = Xn+k. Hence if the random variable H is of the form H = h(X0, X1, ...)
for a measurable function h on the sequence Ω then

θkH = h(Xk, Xk+1, ...).

Since the expectation ExH is a measurable function on X, it follows that EXn is a random variable on
(Ω,F ,P) for any initial distribution. With this notation the equation

Eµ(θnH|FX
n ) = EXnH, a.s. Pµ

valid for any bounded measurable h and fixed n ∈ Z+, describes the the time homogeneous Markov
property in a succinct way.

It is not always the case that FX
n is complete (contains every set of Pµ-measure zero). For any initial

measure µ we say that an event A occurs Pµ-a.s. to indicate that Ac is a set contained in an element of
FX
n which is of Pµ-measure zero. If A occurs Px-a.s. for all x ∈ X then we write that A occurs P∗-a.s.

Definition 6 For any set A ∈ B(X ) the occupation time ηA is the number of visits by X to A after
times zero and is given by

ηA :=
∞∑
n=1

1{Xn∈A}.

For any set A ∈ B(X ), the variables

τA := min{n > 1 : Xn ∈ A},

σA := min{n > 0 : Xn ∈ A}

are called first return and first hitting times on A respectively.

We also refer to the kernel U defined as

U(x,A) :=
∞∑
n=1

Pn(x,A) = ExηA,

which maps X × B(X) to R ∪ {∞}, and the return time probabilities

L(x,A) := Px(τA <∞) = Px(X ever enters A).

A function ζ : Ω ∈ Z+ ∪ {∞} is a stopping time for X if for any initial distribution µ the event
{ζ = n} ∈ FX

n for all n ∈ Z+.
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Proposition 2 For any A ∈ B(X), the variables τA and σA are stopping times for X.

Proposition 3 For all x ∈ A, A ∈ B(X )

Px(τA = 1) = P (x,A),

and inductively for n > 1

Px(τA = n) =
∫
Ac
P (x, dy)Py(τA = n−1) =

∫
Ac
P (x, dy1)

∫
Ac
P (y1, dy2)...

∫
Ac
P (yn−2, dyn−1)P (yn−1, A).

For all x ∈ X , a ∈ B(X )
Px(σA = 0) = 1A(x)

and for n > 1, x ∈ Ac

Px(σA = n) = Px(τA = n).

The simple Markov property (1.5) holds for any bounded measurable h and fixed n ∈ Z+. We now
extend (1.5) to stopping times. If ζ is an arbitrary stopping time, then the fact that our time-set is Z+

enables us to define the random variable Xζ = Xn on the event {ζ = n}. For a stopping time ζ the
property which tells us that the future evolution of X after the stopping time depends only on the value
Xζ , rather then on any other past values, is called the Strong Markov Property.

To describe this formally, we need to define the σ-field

FX
ζ := {A ∈ F : {ζ = n} ∩A ∈ FX

n , n ∈ Z+},

which describes events which happen up to time ζ. For a stopping time ζ and a random variable
H = h(X0, X1, ...) the shift θζ is defined as

θζ = h(Xζ , Xζ+1, ...),

on the set {ζ <∞}. The required extension of (1.5) is then

Definition 7 We say that X has the Strong Markov Property if for any initial distribution µ, any
real-valued bounded measurable function h on Ω, and any stopping time ζ,

Eµ(θζH|FX
ζ ) = EXζH a.s. Pµ

on the set {ζ <∞}.

Proposition 4 For a Markov chain X with discrete time parameter, the Strong Markov Property always
holds.
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Chapter 2

Irreducibility

2.1 Communicating classes and irreducibility

The idea of a Markov chain X reaching sets or points is much simplified when X is countable and the
behavior of the chain is governed by a transition probability matrix P = P (x, y), x, y ∈ X. There are
then number of essential equivalent ways of defining the operation of communication between states.

The simplest is to say that state x leads to state y which we write as x→ y, if L(x, y) > 0, and that two
distinct states x and y in X when L(x, y) > 0 and L(y, x) > 0. By convention we also define x→ x. The
relation x ↔ y is often defined equivalently by requiring that there exists n(x, y) > 0 and m(y, x) > 0
such that Pn(x, y) > 0, and Pm(y, x) > 0 i.e.

∑∞
n=0 P

n(x, y) > 0 and
∑∞
n=0 P

n(y, x) > 0.

Proposition 5 The relation ↔ is an equivalence relation, and so the equivalence classes C(x) = {y :
x↔ y} cover X, with x ∈ C(x).

Definition 8 If C(x) = X for some x, then we say that X is irreducible. We say C(x) is absorbing if
P (y, C(x)) = 1 for all y ∈ C(x).

When states do not all communicate, then although each state in C(x) communicates with every other
state in C(x), it is possible that there are states y ∈ C(x)c such that x→ y. This happens if and only
if C(x) is not absorbing.

Suppose that X is not irreducible for X. If we reorder that states according to the equivalence classes
defined by the communication operation, an if we further order the classes with absorbing classes coming
first, then we have a decomposition of P such as

X = (
∑
x∈I

C(x)) ∪D,

where I is the set of indicators of each different absorbing class.

Proposition 6 Suppose that C := C(x) is an absorbing communicating class for some x ∈ X . Let PC
denote the matrix P restricted to the states in C. Then there exists an irreducible Markov chain XC

whose state space is restricted to C and whose transition matrix is given by PC .
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2.2 ψ-Irreducibility

Definition 9 We call X ϕ-irreducible if there exists a measure ϕ on B(X ) such that, whenever ϕ(A) > 0,
we have L(x,A) > 0 for all x ∈ X .

Proposition 7 The following are equivalent formulation of ϕ-irreducibility

1. for all x ∈ X, whenever ϕ(A) > 0, U(x,A) > 0;

2. for all x ∈ X, whenever ϕ(A) > 0, there exists some n > 0, possibly depending on both A and x

such that Pn(x,A) > 0;

3. for all x ∈ X, whenever ϕ(A) > 0 then K1/2(x,A) > 0.

Proposition 8 If X is ϕ-irreducible for some measure ϕ, then there exists a probability measure ψ on
B(X ) such that

1. X is ψ-irreducible

2. for any other measure ψ′, the chain X is ϕ′-irreducible if and only if ψ � ϕ′;

3. if ψ(A) = 0, then ψ({y : L(y,A) > 0}) = 0;

4. the probability measure ψ is equivalent to

ψ′(A) :=
∫
X
ϕ′(dy)K1/2(y,A),

for any finite irreducible measure ϕ′.

Definition 10 1. The Markov chain is called ψ-irreducible if it is ϕ-irreducible for some ϕ and the
measure ψ is a maximal irreducibility measure satisfying conditions of Proposition 8.

2. We write
B+(X ) := {A ∈ B(X ) : ψ(A) > 0}

for the sets of positive ψ-measure; the equivalence of maximal irreducibility measures means that
B+ is uniquely defined.

3. We call a set A ∈ B(X ), full if ψ(Ac) = 0.

4. We call a set A ∈ B(X ) absorbing if P (x,A) = 1, for x ∈ A.

Proposition 9 Suppose that X is ψ=irreducible. Then

1. every absorbing set is full,

2. every full contains a non-empty, absorbing set.

If a set C is absorbing and with there is a measure ψ for which

ψ(B) > 0⇒ L(x,B) > 0, x ∈ C

then we will call C an absorbing ψ-irreducible set.

Proposition 10 Suppose that A is an absorbing set. Let PA denote the kernel P restricted to the states
in A. Then there exists a Markov chain XA whose state space is A and whose transition matrix is given
by PA. Moreover, if X is ψ-irreducible then XA is ψ-irreducible.
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2.3 Accessible Sets

Definition 11 We say that a set B ∈ B(X ) is accessible from another set A ∈ B(X ) if L(x,B) > 0 for
every x ∈ A;
We say that a set B ∈ B(X ) is uniformly accessible from another set A ∈ B(X ) if there exists a δ > 0
such that

inf
x∈A

L(x,B) > δ; (2.1)

and when (2.1) holds we write A 7→ B

Let us define taboo probabilities

PnA(x,B) = Px(Xn ∈ B, τA > n)

and

UA(x,B) =
∞∑
n=1

Pn(x,B).

Lemma 1 If A 7→ B and B 7→ C then A 7→ C.

Definition 12 The set Ā := {x ∈ X : L(x,A) > 0} is the set of points from which A is accessible.
The set Ā := {x ∈ X :

∑m
n=1 P

n(x,A) > m−1}.
The set A0 := {x ∈ X : L(x,A) = 0} = Āc is the set of points from which A is not accessible.

Lemma 2 The set Ā =
⋃
m Ā(m), and for each m we have Ā(m) 7→ A.
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Chapter 3

Pseudo Atoms

3.1 Minorization Condition

Definition 13 A set α ∈ B(X ) is called an atom for X if there exists measure ν on B(X ) such that

P (x,A) = ν(A), x ∈ α.

If X is ψ-irreducible and ψ(α) > 0 then α is called an accessible atom.

Proposition 11 Suppose there is an atom α in X such that
∑
n P

n(x, α) > 0 for all x ∈ X . Then α

is an accessible atom and X is ν-irreducible with ν = P (α, ·).

Proposition 12 If L(x,A) > 0 for some state x ∈ α, where α is an atom, then α 7→ A.

Definition 14 (Minorization Condition) For some δ > 0, some C ∈ B(X ) and some probability
measure ν with ν(Cc) = 0 and ν(C) = 1

P(x,A) > δ1C(x)ν(A), A ∈ B(X ), x ∈ X . (3.1)

The concept of splitting can be described as follows. Instead of X we write X̄ = X × {0, 1}, where
X0 = X × {0} and X1 = X × {1} are copies of X equipped with copies B(X0), B(X1) of B(X )

We will write xi, i = 0, 1 for elements of X̄ , with x0 denoting members of the upper level X0 and x1

denoting members of the lower level X1. In order to describe more easily the calculation associated with
moving between the original an the split chain, we will also sometimes call X0 the copy of X and will
say that A ∈ B(X ) is a copy of the corresponding set A0 ⊂ X0.

If λ is any measure on B(X ), then the next step in the construction is to split the measure λ∗ on B(X )
trough

λ∗(A0) = (1− δ)λ(A ∩ C) + λ(A ∩ Cc), (3.2)

λ∗(A1) = δλ(A ∩ C),

where δ and C are the constant and the set in (3.1). Note that in this sense the splitting is dependent
on the choice of the set C, and although in general the set chosen is not relevant, we will on occasion
need to make explicit the set in (3.1) when we use the split chain.
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Note that λ is the marginal measure induced by λ∗, in the sense that for any A ∈ B(X ) we have

λ∗(A0 ∪A1) = λ(A).

In the case when A ⊂ Cc, we have λ∗(A0) = λ(A); only subsets of C are really effectively split by this
construction.

Now the third, and the most subtle step in the construction is to split the chain X to form a chain X̄

which lives on (X̄ ,B(X̄ )). Define the split kernel P̄ (xi, A) for xi ∈ X̄ and A ∈ B(X̄ ) by

P̄ (x0, ·) = P (x, ·)∗, x0 ∈ X0\C0; (3.3)

P̄ (x0, ·) = (1− δ)−1(P (x, ·)∗ − δν∗(·)), x0 ∈ C0 (3.4)

P̄ (x1, ·) = ν∗(·), x1 ∈ X1. (3.5)

where C, δ and ν are the set, the constant and the measure in the Minorization Condition.

Outside C the chain {X̄n} behaves just like {Xn}, moving on the top half X0 of the split chain space.
Each time it arrives in C, it is split: with probability 1− δ it remains in C0, with probability δ it drops
to C1. We can think of this splitting of the chain as tossing a δ-weighted coin to decide which level to
choose on each arrival in the set C where the split takes place.

When the chain remains on the top level its next step has the modified law (3.4). That (3.4) is always
nonnegative follows from (3.1). This is sole use of the Minorization Condition, although without it the
chain cannot be defined.

Note here the whole point of the construction the bottom level of X1 is an atom, with ϕ∗(X1) = δϕ(C) >
0 whenever the chain X is ϕ-irreducible. By (3.2) we have P̄n(x1,X1\X1) = 0 for all n > 1 and all
x1 ∈ X̄ , so that the atom C1 ⊂ X1 is the only part of the bottom level which is reached with positive
probability. We will use the notation ᾱ := C1 when we wish to emphasize the fact that all transition
out of C1 are identical, so that C1 is an atom in X̄ .

3.2 Connecting the Split and Original Chains

Theorem 4 The chain X is the marginal chain of {X̄n}: that is for any initial distribution λ on B(X )
and any A ∈ B(X ), ∫

X
P k(x,A)λ(dx) =

∫
X̄
P̄ k(yi, A0 ∪A1)λ∗(dyi). (3.6)

The chain X is ϕ-irreducible if X̄ is ϕ∗-irreducible and if X is ϕ-irreducible with ϕ(C) > 0 then X̄ is
ν∗-irreducible, and ᾱ is an accessible atom for the split chain.

Note that for any measure µ on B(X ) we have µ∗P̄ = (µP )∗ that is∫
X̄

µ(dxi)P (xi, ·) = (
∫
X
µ(dx)P (xi, ·))∗.

Since it is only the marginal chain X which is really of interest, we will usually consider only sets of the
form Ā = A0∪A1, where A ∈ B(X ), and we will largely restrict ourselves to functions on X̄ of the form
f̄(xi) = f(xi), where f is some function on X ; that is f̄ is identical on the two copies of X . By (3.6)
we have for any k, any initial distribution λ and any function f̄ identical on X0 and X1

Eλf(Xk) = Ēf̄(X̄k).

To emphasize the identity we will henceforth denote f̄ by f and Ā by A in these special instances. The
context should make clear whether A is a subset of X or X̄ and whether the domain of f is X or X̄ .
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3.3 Small Sets

Definition 15 A set C ∈ B(X ) is called a small set if there exists an m > 0, and a non trivial measure
νm on B(X ), such that for all x ∈ C, B ∈ B(X ),

Pm(x,B) > νm(B). (3.7)

When (3.7) holds we say that C is νm-small.

Theorem 5 Suppose ϕ is a σ-finite measure on (X ,B(X )). Suppose A is any set in B(X ) with ϕ(A) > 0
such that

ϕ(B) > 0, B ⊂ A ⇒
∞∑
k=1

P k(x,B) > 0, x ∈ A.

Then for every n the function pn defined in the decomposition

Pn(x)(x,B) =
∫
B

pn(x, y)ϕ(dy) + P⊥(x,B),

can be chosen to be a measurable function on X × X , and there exists C ⊂ A, m > 1, and δ > 0 such
that ϕ(C) > 0 and

pm(x, y) > δ, x, y ∈ C.

Theorem 6 If X is ψ-irreducible, then for every A ∈ B+(X ), there exists m > 1 and a νm-small set
C ⊂ A such that C ∈ B+(X ) and νm(C) > 0.

Theorem 7 If X is ψ-irreducible, then the Minorization Condition holds for some m-skeleton, and for
every Kε-chain, 0 < ε < 1.

Proposition 13 1. If C ∈ B(X ) is νm-small, and for any x ∈ D we have Pm(x,C) > δ, then D is
νn+m-small, where νn+m is a multiple of νn.

2. Suppose X is ψ-irreducible. Then there exists a countable collection of sets Ci of small sets in
B(X ) such that

X =
∞⋃
i=0

Ci

3. Suppose X is ψ-irreducible. If C ∈ B+(X ) is νn-small, then we may find M ∈ Z+ and a measure
νM such that C is νM -small, and νM (C) > 0.
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Chapter 4

Cyclic Behavior

4.1 Cycles for a Countable Space Chain

We first discuss the question for a countable space X . Let α be a specific state in X , and write

d(α) = G.C.D{n > 1 : Pn(α, α) > 0}.

We call d(α) the period of α. We recall that C(α) = {y : α↔ α}.

Proposition 14 Suppose α has period d(α): then for any y ∈ C(α), d(α) = d(y).

Proposition 15 Let X be an irreducible Markov chain on a countable space, and let d denote the
common period of the states in X . Then there exists disjoint sets D1, D2, ..., Dd ⊂ X such that

X =
d⋃
i=1

Dk,

and
P (x,Dk+1) = 1, x ∈ Dk, k = 0, ..., d− 1 ( mod d)

Definition 16 An irreducible chain on a countable space X is called

1. aperiodic, if d(x) = 1, x ∈ X ;

2. strongly aperiodic, if P (x, x), for some x ∈ X .

Proposition 16 Suppose X is an irreducible chain on a countable space X , with period d and cyclic
classes {D1, ..., Dd}. Then for the Markov chain Xd = {Xd, X2d, ...} with transition matrix P d, each Di

is an irreducible absorbing set of aperiodic states.

4.2 Cycles for a General Space Chain

The existence of small sets enables us to show that, even on a general space, we still have a finite periodic
breakup into cyclic sets for ψ-irreducible chains.

Suppose that C is any νM -small set, and assume that νM (C) > 0, as we may without loss of generality
by Proposition 13. To simplify the notation we will suppress the subscript on ν. Hence we have

13



PM (x, ·) > ν(·), x ∈ C, and ν(C) > 0, so that, when the chain starts in C, there is a positive
probability that the chain will return to C at time M . Let

EC = {n > 1 : the set C is νn-small, with νn = δnν for somedeltan > 0.}

Notice that for B ⊂ C, n,m ∈ EC implies

Pn+m(x,B) >
∫
C

Pm(x, dy)Pn(y,B) > [δmδnν(C)]ν(B), x ∈ C,

so that EC is closed under addition. Thus there is a natural period for the set C, given by the greatest
common divisor of EC .

Lemma 3 The set C is νnd-small for large enough n.

Theorem 8 Suppose X is a ψ-irreducible chain on X . Let C ∈ B+(X ) be a νM -small set and let d be
the greatest common divisor of the set EC . Then there exists disjoint sets D1, ..., Dd ∈ B(X ) (a d-cycle)
such that

1. for x ∈ Di, P (x,Di+1) = 1, i = 0, ..., d− 1, ( mod d);

2. the set N = (
⋃d
i=1Di)c is ψ-null.

The d-cycle {Di} is maximal in the sense that for any other collection {d′, D′k, k = 1, ..., d′} satisfying
(8), (1), we have d′ dividing d; whilst if d = d′, then by reordering the indices if necessary D′i = Di

ψ-a.s.

Definition 17 Suppose that X is an ϕ-irreducible Markov chain.

1. The largest d for which a d-cycle occurs for X is called the period of X.

2. When d = 1, the chain X is called aperiodic.

3. When there exists a ν1-small set A, with ν1(A) > 0, then the chain is called strongly aperiodic.

Proposition 17 1. If X is strongly aperiodic, then the Minorization Condition holds.

2. The resolvent Kε chain is strongly aperiodic for all 0 < ε < 1.

3. If X is aperiodic then every skeleton is ψ-irreducible and aperiodic, and some m-skeleton is strongly
aperiodic.

Proposition 18 Suppose X is a ψ-irreducible chain with period d and d-cycle {Di, i = 1, ..., d}. Then
each of the sets Di is absorbing ψ-irreducible set for the chain Xd corresponding to the transition prob-
ability kernel P d, and Xd on each Di is aperiodic.

4.3 Petite sets

Let a = {a(n)} be a distribution on Z+, and consider the Markov chain

Ka(x,A) :=
∞∑
n=0

Pn(x,A)a(n), x ∈ X , A ∈ B(X ).

14



It is obvious that Ka is a transition kernel, so that Xa is a well-defined by Theorem 2. We will call
Xa the Ka-chain, with sampling distribution a. Probabistically, Xa has the interpretation of being the
chain X sampled at times-points drawn successively according to the distribution a, or more accurately,
at time-points of an independent renewal process with increment distribution a.

There are two specific sampled chains which we have already invoked, and which will be used frequently
in the sequel. If a = δm then the Kδm -chain is the m-skeleton with transition kernel Pm. If aε(n) =
(1−ε)εn, n = 1, 2, ... then the kernel Kaε is the resolvent Kε. The concept of sampled chains immediately
enables to develop conditions under which one set is uniformly accessible form another. We say that a
set B ∈ B(X ) is uniformly accessible using a from another set A ∈ B(X ) if there exists δ > 0 such that

inf
x∈A

Ka(x,B) > δ (4.1)

and when (4.1) holds we write A a7→ B.

Lemma 4 If A a7→ B for some distribution a then A 7→ B.

Lemma 5 1. If a and b are distributions on Z+ then the sampled chains with transitions laws Ka

and Kb satisfy the generalized Chapman-Kolmogorov equations

Ka∗b(x,A) =
∫
Ka(x, dy)Kb(y,A).

2. If A a7→ B and B b7→ C, then A
a∗b7→ C.

3. If a is a distribution on Z+ then the sampled chain with transition law Ka satisfies the relation

U(x,A) >
∫
U(x, dy)Ka(y,A).

Definition 18 We will call a set C ∈ B(X ) εa-petite if the sampled chain satisfies the bound

Ka(x,B) > νa(B),

for all x ∈ C, B ∈ B(X ), where νa is a non trivial measure on B(X ).

Proposition 19 If C ∈ B(X ) is νm-small then C is νδm-petite.

Proposition 20 1. If A ∈ B(X ) is νa-petite, and D
b7→ A then D is νb∗a-petite, where νb∗a can be

chosen as a multiple of νa.

2. If X is ψ-irreducible and if A ∈ B+(X ) is νa-petite, then νa is an irreducibility measure for X.

Proposition 21 Suppose X is ψ-irreducible.

1. If A is νa-petite, then there exists a sampling measure b such that A is also ψb-petite where ψb is
a maximal irreducibility measure.

2. The union of two petite sets is petite.
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3. There exists a sampling measure c, an everywhere positive, measurable function s : X → R, and a
maximal irreducibility measure ψc such that

Kc(x,B) > s(x)ψc(B), x ∈ X , B ∈ B(X ).

Thus there is an increasing sequence {Ci} of ψc-petite sets, all with the same sampling distribution
c and minorizing measure equivalent to ψ, with

⋃
Ci = X .

Proposition 22 Suppose that X is ψ-irreducible and C is νa-petite.

1. Without loss of generality we can take a to be either a uniform sampling distribution am(i) = 1/m,
1 6 i 6 m, or a to be the geometric sampling distribution aε. In either case, there is a finite mean
sampling time

ma =
∑
i

ia(i).

2. If X is strongly aperiodic then the set C0 ∪ C1 ⊂ X̄ corresponding to C is ν∗a-petite for the split
chain X̄.

Theorem 9 If X is irreducible and aperiodic then every petite set is small.
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Chapter 5

Topology

5.1 Weak Feller Chains

Here we assume that X is equipped with a locally compact, separable, metrizable topology with B(X )
as the Borel σ-field. Recall that a function h from X to R is lower semicontinuous if

lim inf
y→x

h(y) > h(x), x ∈ X ,

a typical, and frequently used, lower semicontinuous function is the indicator function 1G(x) of an open
set G ∈ B(X ).

Definition 19 1. If P (·, G) is a lower semicontinuous function for any open set G ∈ B(X ), then P

is called a weak Feller chain.

2. If a is a sampling distribution and there exists a substochastic transition kernel T satisfying

Ka(x,A) > T (x,A), x ∈ X , A ∈ B(X ),

where T (·, A) is a lower semicontinuous function for any A ∈ B(X ), then T is called a continuous
component of Ka.

3. If X is a Markov chain for which there exists a sampling measure a such that Ka possesses a
continuous component T with T (x,X ) > 0 for all x, then X is called T -chain.

Recall that the transition probability kernel P acts on bounded functions through the mapping

Ph(x) =
∫
P (d, dy)h(y), , x ∈ X .

Suppose that X is a topological space and let us denote the class of bounded continuous function form
X to R by C(X ).

Definition 20 The weak Feller property is frequently defined by requiring that the transition probabil-
ity kernel P maps C(X ) to C(X ). If the transition probability kernel P maps all bounded measurable
functions to C(X ) then P (and also X) is called strong Feller.

Proposition 23 1. The transition kernel P1G is lower semicontinuous for every open set G ∈ B(X )
if and only if P maps C(X ) to C(X ) and P maps all bounded measurable functions to C(X ) if and
only if the function P1A is lower semicontinuous for every set A ∈ B(X ).
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2. If the chain weak Feller then for any closed set C ⊂ X and any non-decreasing function m : Z+ →
Z+ the function Ex(m(τC)) is lower semicontinuous in x. Hence for any closed set C ⊂ X , r > 1
and n ∈ Z+ the functions

Px(τC > n), Ex(τC), and Exr
τC

are lower semicontinuous.

3. If the chain is weak Feller then for any open set G ⊂ X , the function Px(τG 6 n) and hence also
the functions Ka(x,G) and L(x,G) are lower semicontinuous.

5.2 Strong Feller Chains

Definition 21 1. A point x ∈ X is called reachable if for every open set G ∈ B(X ) containing x∑
n

Pn(y,G) > 0, y ∈ X .

2. The chain X is called open set irreducible if every point is reachable.

Lemma 6 If X is ψ-irreducible then x∗ is reachable if and only if x∗ ∈ supp(ψ).

Proposition 24 If X is a strong Feller chain, and X contains one reachable point x∗, then X is
ψ=irreducible, with ψ(·) = P (x∗, ·).

Proposition 25 If X is an open set irreducible strong Feller chain, then X is a ψ-irreducible chain.

5.3 T -chains

Proposition 26 If X is a T -chain, and X contains one reachable point x∗, then X is ψ-irreducible, with
ψ = T (x∗, ·).

Proposition 27 If X is an open set irreducible T -chain, then X is a ψ-irreducible T -chain.

Proposition 28 If an open νa-petite set A exists, then Ka possesses a continuous component non trivial
on all A.

Proposition 29 Suppose that for each x ∈ X there exists a probability distribution ax on Z+ such that
Kax possesses a continuous component Tx which is non trivial at x. Then X is a T -chain.

Theorem 10 If every compact set is petite, then X is T -chain. Conversely, if X is a ψ-irreducible
T -chain then every compact set is petite, and consequently if X is an open set irreducible T -chain then
every compact set is petite.

Proposition 30 If X is a ψ-irreducible T -chain, then there is a sampling distribution b, an everywhere
strictly positive, continuous function s′ : X → R, and a maximal irreducibility measure ψb such that

Kb(x, a) > s′(x)ψb(B), x ∈ X , B ∈ B(X ).

Lemma 7 If X is a ψ-irreducible Feller chain, then the closure of every petite set is petite.
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Proposition 31 Suppose that X is ψ-irreducible. Then all compact subsets of X are petite if either:

1. X has the Feller property and open ψ-positive petite set exists; or

2. X has the Feller property and supp(ψ) has non-empty interior.

Theorem 11 If a ψ-irreducible chain X is weak Feller and if supp(ψ) has nonempty interior then X is
a T -chain.

5.4 e-Chains

One possible way to think of Markov chain is that the transition function P gives rise to a deterministic
map fromM the space of probability measures on B(X ), to itself, and we can construct on this basis a
dynamical system (P,M, d), provided we specify a metric d, and hence also topology on M

We recall that a sequence of probability measures {µk : k ∈ Z+} ⊂ M converges weakly to µ∞ ∈ M
(denoted µk

w→ µ∞) if

lim
k→∞

∫
fdµk =

∫
fdµ∞

for every f ∈ C(X ). Due to our restrictions on the state space X , the topology of weak convergence is
induced by a number of metrics on M. One such metric may be expressed

dm(µ, ν) =
∞∑
k=0

|
∫
fkdµ−

∫
fkdν|2−k, µ, ν ∈M

where {fk} is an appropriate set of functions in Cc(X ), the set of continuous functions on X with
compact support.

For (P,M, dm) to be a dynamical system we require that P be a continuous map on M. If P is
continuous, then we must have in particular that if a sequence of point masses {δxk : k ∈ Z+} ⊂ M
converge to some point mass δx∞ ∈M, then

δxkP
w→ δx∞P as k →∞

or equivalently limk→∞ Pf(xk) = Pf(x∞) for all f ∈ C(X ). That is, if the Markov transition function
induces a continuous map on M then Pf must be continuous of any bounded continuous function f .
Conversely it is clear that for any weak feller Markov transition function P , the associated operator P
on M is continuous.

Proposition 32 The triple (P,M, dm) is a dynamical system if and only if the Markov transition
function P has the weak Feller property.

Definition 22 We say that X is an e-chain if for any f ∈ Cc(X ) the sequence of functions {P kf : k ∈
Z+} is equicontinuous on compact sets.

Proposition 33 Suppose that the Markov chain X has the Feller property, and that there exists a unique
probability measure π such that for every x

Pn(x, ·) w→ π.

Then X is an e-chain.

19



We say that the dynamical system (P,M, dm) is called stable in the sense of Lyapunov if for each
measure µ ∈M,

lim
ν→µ

sup
k>0

dm(νP k, µP k) = 0.

Proposition 34 The Markov is an e-chain if and only if the dynamical system (P,M, dm) is stable in
the sense of Lyapunov.

Stability in the sense of Lyapunov is a useful concept when a stationary point for the dynamical system
exists. If x∗ is stationary point and the dynamical systems is stable in the sense of Lyapunov, the
trajectories which start near x∗ will stay near x∗, and this turns out to be a useful notion of stability.
For the dynamical system (P,M, dm), a stationary point is an invariant probability: that is, a probability
satisfying

π(A) =
∫
π(dx)P (x,A), A ∈ B(X ).

We say that (P,M, dm) is Lagrange stable if, for every µ ∈M, the orbit of measures µP k is a precompact
subset of M.

Definition 23 The Markov chain X is called bounded in probability if for each initial condition x ∈ X
and each ε > 0, there exists a compact subset C ⊂ X such that

lim inf
k→∞

Px(Xk ∈ C) > 1− ε.

Equivalently the family of measures {P (x, ·) : k > 1} is tight.

Proposition 35 The chain X is bounded in probability if and only if the dynamical system (P,M, dm)
is Lagrange stable.

Note that the space C(X ) can be viewed as a normed linear space, where we take the norm | · |c to be
defined for f ∈ C(X ) as

|f |c :=
∞∑
k=0

∞∑
k=0

2−k( sup
x∈Ck

|f(x)|)

where {Ck} is a sequence of open precompact sets whose union is equal to X . The associated metric
dc generates the topology of uniform convergence on compact subsets of X . If P is a weak Feller
kernel, then the mapping P on C(X ) is continuous with respect to this norm and in this case the triple
(P, C(X ), dc) is a dynamical system.

Proposition 36 Suppose that X is bounded in probability. Then X is an e-chain if and only if the
dynamical system (P, C(X ), dc) is Lagrange stable.
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Chapter 6

Transience and Recurrence

The idea is that for irreducible chains two sorts of behavior are expected: either samples eventually
leave any bounded set with probability one or they will return infinitely many times to sets of positive
measure.

Definition 24 1. We say that a set A is uniformly transient if for there exists M < ∞ such that
Ex(ηA) 6 M for all x ∈ A.

2. The set A is called recurrent if Ex(ηA) =∞ for all x ∈ A.

We say that X is recurrent if every set in B+(X ) is recurrent. If there is a countable covering of X with
uniformly transient sets then we say that X is transient.

6.1 Transience and recurrence on countable state space

Definition 25 The state α is called transient if Eα(ηα) <∞, and recurrent if Eα(ηα) =∞.

Proposition 37 When X is countable and X is irreducible, either U(x, y) = ∞ for all x, y ∈ X or
U(x, y) <∞ for all x, y ∈ X .

Definition 26 1. If every state is transient the chain is called transient.

2. If every state is recurrent the chain is called recurrent.

Proposition 38 For any x ∈ X , U(x, x) =∞, if and only if L(x, x) = 1.

Proposition 39 When X is irreducible, either L(x, y) = 1 for all x, y ∈ X or L(x, x) < 1 for all x ∈ X .

6.2 Transience and recurrence for individual sets

We recall that for general A,B ∈ B(X ) the taboo probabilities are of the form

PnA(x,B) = Px(Xn ∈ B, τA > n),

and by convention P 0
A(x,A) = 0.
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Remark 1 There are two basic decompositions of Pn(x, ·) over the first return to A ∈ B(X ):

1. first entrance decomposition

Pn(x,B) = PnA(x,B) +
n−1∑
j=1

∫
A

P jA(x, dw)Pn−j(w,B).

2. last exit decomposition

Pn(x,B) = PnA(x,B) +
n−1∑
j=1

∫
A

P j(x, dw)Pn−jA (w,B),

To analyze the transience and recurrence behavior we need

U (z)(x,B) :=
∞∑
n=1

Pn(x,B)zn, |z| < 1;

U
(z)
A (x,B) :=

∞∑
n=1

PnA(x,B)zn, |z| < 1.

Th kernel U has the property

U(x,A) =
∞∑
n=1

Pn(x,A) = lim
z→1

U (z)(x,A)

and as in the countable case, for any x ∈ X , A ∈ B(X )

Ex(ηA) = U(x,A).

The return probabilities L(x,A) = Px(τA <∞) satisfy

L(x,A) =
∞∑
n=1

PnA(x,A)− lim
z→1

U
(z)
A (x,A).

Exploiting the convolution forms in first entrance last exit decompositions we obtain

U (z)(x,B) = U
(z)
A (x,B) +

∫
A

U
(z)
A (x, dw)U (z)(w,B),

U (z)(x,B) = U
(z)
A (x,B) +

∫
A

U (z)(x, dw)U (z)
A (w,B).

6.3 The recurrence and transience for chains with an atom

Theorem 12 Suppose that X is ψ-irreducible and admits an atom α α ∈ B+(X ). Then

1. if α is recurrent then every set in B+(X ) is recurrent.

2. if α is transient, then there is a countable covering of X by uniformly transient sets.

Definition 27 If A ∈ B(X ) can be covered with a countable number of uniformly transient sets, then
we call A transient.

22



6.4 The general recurrence/transience dichotomy

Definition 28 1. The chain X is called recurrent if it is ψ-irreducible and U(x,A) = ∞ for every
A ∈ B+(X ).

2. The chain X is called transient if it is ψ-irreducible and X is transient.

Proposition 40 Suppose that X is ψ-irreducible and strongly aperiodic.Then either both X, X̄ are re-
current, or both X and X̄ are transient.

Lemma 8 For any 0 < ε < 1 the following identity holds:

∞∑
n=1

Kn
ε =

1− ε
ε

∞∑
n=0

Pn.

Theorem 13 If X is ψ-irreducible, then X is either recurrent or transient.

Theorem 14 Suppose that X is ψ-irreducible and aperiodic.

1. The chain X is transient if and only if one and then very m-skeleton is transient.

2. The chain X is recurrent if and only if one and there very m-skeleton is recurrent.

6.5 Transience and recurrence

Proposition 41 Suppose that X is a Markov chain (not necessarily irreducible)

1. If any set A ∈ B(X ) is uniformly transient with U(x,A) 6 M for x ∈ A, then U(x,A) 6 1 + M

for every x ∈ X .

2. If any set A ∈ B(X ) satisfies L(x,A) = 1 for all x ∈ A, then A is recurrent. If X is ψ irreducible,
then A ∈ B+(X ) and we have U(x,A) ≡ ∞ for x ∈ X .

3. If any set A ∈ B(X ) satisfies L(x,A) 6 ε < 1, x ∈ A, then we have U(x,A) 6 1/(1−ε) for x ∈ X ,
so that in particular A is uniformly transient.

4. Let τA(k) denote the k-th return time to A, and suppose that for some m

Px(τA(m) <∞) 6 ε < 1, x ∈ A;

then U(x,A) 6 1 +m/(1− ε) for very x ∈ X .

Proposition 42 If A is uniformly transient and B
a7→ A for some a, then B is uniformly transient.

Hence if A is uniformly transient, there is a countable covering of Ā by uniformly transient sets.

Proposition 43 Suppose Dc is absorbing and L(x,Dc) > 0 for all x ∈ D. Then D is transient.
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6.6 Transient sets

We recall that

Theorem 15 If X is ψ-irreducible, then X is either recurrent or transient.

Theorem 16 If X is ψ-irreducible and transient then every petite set is uniformly transient.

Theorem 17 Suppose that X is ψ-irreducible. Then

1. X is recurrent if there exists some petite set C ∈ B(X ) such that L(x,C) = 1, for all x ∈ C.

2. X is transient if and only if there exist two sets D,C ∈ B+(X ) with L(x,C) < 1 for all x ∈ D.

Proposition 44 If X is ψ-irreducible then every ψ-null set is transient.

Proposition 45 Suppose that X is a ψ-irreducible Markov chain on (X ,B(X ). Then there exists sets
D1, ..., Dd ∈ B(X ) such that

1. for x ∈ Di, P (x,Di) = 1, i = 0, ..., d− 1 ( mod d)

2. the set N = (
⋃d
i=1Di)c is ψ-null and transient.
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