Transport inequalities for Poisson point processes

Ronan Herry
with Nathael Gozlan and Giovanni Peccati

Bonn University

Bedlewo (virtually)
June 2020



Goal

» Show you some transport-entropy inequalities Poisson point
processes (and convince you they are true!).




Motivation

Functional inequalities are a powerful tool to understand in an
analytic way the geometric properties of a space.

Concentration of measure is one instance of these
geometric-functional inequalities (books by M. Ledoux, M.
Gromov).

But lacks one crucial feature: concentration of measure does
not scale well with dimension.

In the 1990s, K. Marton and M. Talagrand invent
transport-entropy inequalities and study connection with
dimension-free concentration of measure.

Understanding the geometry of infinite-dimensional
(non-product) spaces is an active field of research.

Here we study the space of discrete measures equipped with
the law of a Poisson point process.
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Optimal transport

» (E, ) Polish space.

» w: E x E — [0, 00] lower semi-continuous:

To(v1,12) = inf {/w(x,y)q(dxdx), g e Cp/(ul,yz)} )

» c: E x P(E) — [0, 0] lower semi-continuous:

T.(voln) = inf {/c(x,px)l/l(dx), el e Cp/(ul,yg)} .

» «a: [0,00] = [0,00], p: E x E — [0, 0] Isc:

?a,p(l/2|7/1) = inf {/a (/ p(x,y)px(dy)) Vl(dx)} .



Transport inequalities

» (c,7y) satisfies a transport-entropy inequality if
Te(v2lr1) < arH(v|y) + a2H(v2|y).

» Equivalent to dimension free concentration of measure,
Nathael and GRST:

(En\An)az n(A)al S Ke*t,
— {CA < t},

mf{z c(xi, pi) : p(A) = 1}.

» Formally equivalent to Maurey

V(exp(Qc9))y(exp(—9)) <1

Qecp(x) = peigl(‘E) {p(®) + c(x,p)}.



Examples

> Talagrand: w(x,y) = 4|x — y|>, v ~ N(0, id) satisfies a
transport-entropy inequality.

» Marton, Dembo: for all t € [0, 1], for some «; explicit,
Vv € P(E):

= 1 1
Tac,dy(valvr) < ZH(ly) + 7= H(v2ly).

> . )
One can take a1(u) = %, in which case
2

va|v1) /{ dyl]
al,dH 211 2 dl/2

By Jensen, this yields an improvement of Pinsker's inequality.



Stability of transport-entropy inequalities

» If (v, c) satisfies a transport-entropy inequality, so does
(v",c");

c"((xa,---yxn), p) = Zc(x,—,p,-).

> S: E— E' if (v, c) satisfies a transport-entropy inequality
then so does (Sxv, Sxc);

Syc(y,q) = inf{c(x,p) : S(x) =y, Syp = q}.

» If ¢ is lower semi-continuous, v,(A) — v(A), and (vp, ¢)
satisfies a transport-entropy inequality, so does (v, ¢).

In all cases, the constants are preserved.
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Configuration space

(Z, d) separable complete metric space.

Mn(Z) = {Si=1 x}-

n € Mx(Z) if and only if 5 g € Mn(B) for all balls B.

A point process is any random variable with value in My(2).

A point process 7 is a Poisson point process with o-finite
intensity v if
Ee ") = exp(v(e™¥ —1)).

Write I, for its law.



Universal transport-entropy inequality for 1,

Theorem
For all t € [0,1], £ € Mx(Z), N € P(Mg(2)).

c(&,N) = /at </ {1 = m]+|—|(dx)> &(dx).

For all v € P(Z), for all Ny, My € P(Mg(2)):

1

T, (Mo]Mp) <
c(M2M1) < 1—;

~ | 4=



|dea of the proof

Lift Dembo's inequality to the Poisson point process.

First proof it for v(Z) =1 and for B, = (371 0x) 42" Ok
since transport-entropy inequalities are closed under taking
tensor product and push forward.

Via a thinning procedure one can strongly approximate I, by
a binomial process. Transport-entropy inequalities are also
stable under approximation.

Case v(Z) = oo also by strong approximation.



Applications

» General concentration of measure Reitzner.

» Concentration of measure for U-statistics Reitzner &
Bachmann.

» Modified logarithmic Sobolev inequality (next slide).



Modified logarithmic Sobolev inequality
> F: Mg(Z) = R, DFF(&) = F(§+ 6x) — F(&).
> F is non-decreasing if D F > 0 and convex if Df D} F > 0.

Theorem
Let ¢(u) = s — log(1 + s) and F non-decreasing convex, n ~ I1,,.

Entef(M < EeF() /¢ (F(ﬁ) - /;(77 - 5x)) n(dx).

Doe not improve upon another modified logarithmic Sobolev
inequality by Wu (but of same order).



Geometric transport-entropy inequality for I1,

Theorem
If (v,w) satisfies Talagrand, then (N, T, ) satisfies Talagrand.
That is: if T, (v1,v2) < atH(v1|v) + axH(v»|v) then T, satisfies

T1, (Mg, M) < ayH(N1|M,) 4+ axH(M2|M,),
T7,(Mq, M) =inf{Ty, (&1, &) : & ~ My, & ~ Mo}

» Not clear how to interpret / apply this inequality: even on
Z =R w(x,y) = |x — y|?, v = Gaussian, Mg (Z) equipped

1
with Ws = T2 has bad properties. It is only an extended
metric space . Reminiscent of a result by Erbar & Huesmann:
they show that the RCD condition lifts from a manifold to the
configuration space with [1,,; but not clear what are the
consequences in this extended setting.
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Open questions

Deeper links with modified logarithmic Sobolev inequalities in
the spirit Otto & Villani; Bobkov, Gentil & Ledoux; Gozlan,
Roberto & Samson.

Links with discrete displacement convexity GRST?
Links with semigroup methods?
What about interacting particles system?

What about other random measures?



