Transport inequalities for Poisson point processes

Ronan Herry with Nathael Gozlan and Giovanni Peccati

Bonn University

Będlewo (virtually) June 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Goal

Show you some transport-entropy inequalities Poisson point processes (and convince you they are true!).

Motivation

- Functional inequalities are a powerful tool to understand in an analytic way the geometric properties of a space.
- Concentration of measure is one instance of these geometric-functional inequalities (books by M. Ledoux, M. Gromov).
- But lacks one crucial feature: concentration of measure does not scale well with dimension.
- In the 1990s, K. Marton and M. Talagrand invent transport-entropy inequalities and study connection with dimension-free concentration of measure.
- Understanding the geometry of infinite-dimensional (non-product) spaces is an active field of research.
- Here we study the space of discrete measures equipped with the law of a Poisson point process.

Optimal transport

 \triangleright (*E*, τ) Polish space. • $\omega: E \times E \to [0, \infty]$ lower semi-continuous: $T_{\omega}(\nu_1,\nu_2) = \inf \left\{ \int \omega(x,y) q(\mathrm{d} x \mathrm{d} x), \ q \in Cpl(\nu_1,\nu_2) \right\}.$ ▶ $c: E \times \mathcal{P}(E) \rightarrow [0, \infty]$ lower semi-continuous: $T_c(\nu_2|\nu_1) = \inf \left\{ \int c(x, p_x)\nu_1(\mathrm{d} x), \ p_x(\mathrm{d} y)\nu_1(\mathrm{d} x) \in Cpl(\nu_1, \nu_2) \right\}.$ • $\alpha: [0,\infty] \to [0,\infty], \rho: E \times E \to [0,\infty]$ lsc:

$$\widetilde{T}_{\alpha,\rho}(\nu_2|\nu_1) = \inf\left\{\int \alpha\left(\int \rho(x,y)p_x(\mathrm{d}y)\right)\nu_1(\mathrm{d}x)\right\}.$$

Transport inequalities

• (c, γ) satisfies a transport-entropy inequality if $T_c(\nu_2|\nu_1) \leq a_1 H(\nu_1|\gamma) + a_2 H(\nu_2|\gamma).$

 Equivalent to dimension free concentration of measure, Nathael and GRST:

$$\begin{aligned} &\mu^{n}(E^{n} \setminus A_{t}^{n})^{a_{2}} \mu^{n}(A)^{a_{1}} \leq K e^{-t}, \\ &A_{t}^{n} = \{c_{A}^{n} \leq t\}, \\ &c_{A}^{n}(x) = \inf\{\sum c(x_{i}, p_{i}) : p(A) = 1\} \end{aligned}$$

Formally equivalent to Maurey

 $\gamma(\exp(Q_c\phi))\gamma(\exp(-\phi)) \leq 1,$

$$Q_c\phi(x) = \inf_{p \in \mathcal{P}(E)} \left\{ p(\phi) + c(x, p) \right\}.$$

Examples

- Talagrand: ω(x, y) = 4|x y|², γ ~ N(0, id) satisfies a transport-entropy inequality.
- ▶ Marton, Dembo: for all $t \in [0, 1]$, for some α_t explicit, $\forall \gamma \in \mathcal{P}(E)$:

$$\widetilde{\mathcal{T}}_{lpha_t, d_H}(
u_2|
u_1) \leq rac{1}{t}H(
u_1|\gamma) + rac{1}{1-t}H(
u_2|\gamma).$$

One can take $\alpha_{\frac{1}{2}}(u) = \frac{u^2}{2}$, in which case

$$\widetilde{T}_{\alpha_{\frac{1}{2}},d_{H}}(\nu_{2}|\nu_{1})=\frac{1}{2}\int\left[1-\frac{\mathrm{d}\nu_{1}}{\mathrm{d}\nu_{2}}\right]_{+}^{2}\nu_{2}.$$

By Jensen, this yields an improvement of Pinsker's inequality.

Stability of transport-entropy inequalities

- ► If (ν, c) satisfies a transport-entropy inequality, so does (ν^n, c^n) ; $c^n((x_1, ..., x_n), p) = \sum c(x_i, p_i).$
- ► $S: E \to E'$, if (ν, c) satisfies a transport-entropy inequality then so does $(S_{\#}\nu, S_{\#}c)$;

$$S_{\#}c(y,q) = \inf\{c(x,p) : S(x) = y, S_{\#}p = q\}.$$

If c is lower semi-continuous, ν_n(A) → ν(A), and (ν_n, c) satisfies a transport-entropy inequality, so does (ν, c).
 In all cases, the constants are preserved.

Configuration space

• (Z, d) separable complete metric space.

$$\blacktriangleright \mathcal{M}_{\mathbb{N}}(Z) = \{\sum_{i=1}^{l} \delta_{x_i}\}.$$

- ▶ $\eta \in \mathcal{M}_{\overline{\mathbb{N}}}(Z)$ if and only if $\eta_{|B} \in \mathcal{M}_{\mathbb{N}}(B)$ for all balls *B*.
- A point process is any random variable with value in $\mathcal{M}_{\mathbb{N}}(Z)$.
- A point process η is a Poisson point process with σ-finite intensity ν if

$$\mathbb{E} \operatorname{e}^{-\eta(u)} = \exp(\nu(\operatorname{e}^{-u} - 1)).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 シの(~

• Write Π_{ν} for its law.

Universal transport-entropy inequality for Π_{ν}

Theorem For all $t \in [0, 1]$, $\xi \in \mathcal{M}_{\mathbb{N}}(Z)$, $\Pi \in \mathcal{P}(\mathcal{M}_{\mathbb{N}}(Z))$, $c_t(\xi, \Pi) = \int \alpha_t \left(\int \left[1 - \frac{\chi(x)}{\xi(x)} \right]_+ \Pi(\mathrm{d}\chi) \right) \xi(\mathrm{d}x).$

For all $\nu \in \mathcal{P}(Z)$, for all $\Pi_1, \Pi_2 \in \mathcal{P}(\mathcal{M}_{\bar{\mathbb{N}}}(Z))$:

$$T_{c_t}(\Pi_2|\Pi_1) \leq rac{1}{t} H(\Pi_1|\Pi_{
u}) + rac{1}{1-t} H(\Pi_2|\Pi_{
u}).$$

A D > A 目 > A 目 > A 目 > A D < O < O</p>

Idea of the proof

- Lift Dembo's inequality to the Poisson point process.
- First proof it for ν(Z) = 1 and for B_{n,ν} = (∑_{i=1}ⁿ δ_{xi})_#νⁿ. Ok since transport-entropy inequalities are closed under taking tensor product and push forward.
- Via a thinning procedure one can strongly approximate Π_ν by a binomial process. Transport-entropy inequalities are also stable under approximation.

• Case $\nu(Z) = \infty$ also by strong approximation.

Applications

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- General concentration of measure Reitzner.
- Concentration of measure for U-statistics Reitzner & Bachmann.
- Modified logarithmic Sobolev inequality (next slide).

Modified logarithmic Sobolev inequality

$$\blacktriangleright F: \mathcal{M}_{\bar{\mathbb{N}}}(Z) \to \mathbb{R}, \ D_x^+ F(\xi) = F(\xi + \delta_x) - F(\xi).$$

▶ *F* is non-decreasing if $D_x^+ F \ge 0$ and convex if $D_x^+ D_y^+ F \ge 0$.

Theorem

Let $\phi(u) = s - \log(1 + s)$ and F non-decreasing convex, $\eta \sim \Pi_{\nu}$.

Ent
$$e^{F(\eta)} \leq \mathbb{E} e^{F(\eta)} \int \phi\left(\frac{F(\eta) - F(\eta - \delta_x)}{2}\right) \eta(\mathrm{d}x).$$

Doe not improve upon another modified logarithmic Sobolev inequality by Wu (but of same order).

Geometric transport-entropy inequality for Π_{ν}

Theorem

If (ν, ω) satisfies Talagrand, then (Π_{ν}, T_{ω}) satisfies Talagrand. That is: if $T_{\omega}(\nu_1, \nu_2) \leq a_1 H(\nu_1 | \nu) + a_2 H(\nu_2 | \nu)$ then Π_{ν} satisfies

$$T_{\mathcal{T}_{\omega}}(\Pi_1,\Pi_2) \leq a_1 H(\Pi_1|\Pi_{\nu}) + a_2 H(\Pi_2|\Pi_{\nu}),$$

$$T_{\mathcal{T}_{\omega}}(\Pi_1,\Pi_2) = \inf\{T_{\omega}(\xi_1,\xi_2) : \xi_1 \sim \Pi_1, \xi_2 \sim \Pi_2\}.$$

Not clear how to interpret / apply this inequality: even on $Z = \mathbb{R}^d$, $\omega(x, y) = |x - y|^2$, $\nu = \text{Gaussian}$, $M_{\overline{\mathbb{N}}}(Z)$ equipped with $W_2 = T_{\omega}^{\frac{1}{2}}$ has bad properties. It is only an extended metric space. Reminiscent of a result by Erbar & Huesmann: they show that the RCD condition lifts from a manifold to the configuration space with Π_{vol} but not clear what are the consequences in this extended setting.

Open questions

Deeper links with modified logarithmic Sobolev inequalities in the spirit Otto & Villani; Bobkov, Gentil & Ledoux; Gozlan, Roberto & Samson.

・ロト・日本・モート モー うへで

- Links with discrete displacement convexity GRST?
- Links with semigroup methods?
- What about interacting particles system?
- What about other random measures?