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Goal

I Show you some transport-entropy inequalities Poisson point
processes (and convince you they are true!).



Motivation

I Functional inequalities are a powerful tool to understand in an
analytic way the geometric properties of a space.

I Concentration of measure is one instance of these
geometric-functional inequalities (books by M. Ledoux, M.
Gromov).

I But lacks one crucial feature: concentration of measure does
not scale well with dimension.

I In the 1990s, K. Marton and M. Talagrand invent
transport-entropy inequalities and study connection with
dimension-free concentration of measure.

I Understanding the geometry of infinite-dimensional
(non-product) spaces is an active field of research.

I Here we study the space of discrete measures equipped with
the law of a Poisson point process.



Optimal transport

I (E , τ) Polish space.
I ω : E × E → [0,∞] lower semi-continuous:

Tω(ν1, ν2) = inf
{∫

ω(x , y)q(dxdx), q ∈ Cpl(ν1, ν2)
}
.

I c : E × P(E )→ [0,∞] lower semi-continuous:

Tc(ν2|ν1) = inf
{∫

c(x , px )ν1(dx), px (dy)ν1(dx) ∈ Cpl(ν1, ν2)
}
.

I α : [0,∞]→ [0,∞], ρ : E × E → [0,∞] lsc:

T̃α,ρ(ν2|ν1) = inf
{∫

α

(∫
ρ(x , y)px (dy)

)
ν1(dx)

}
.



Transport inequalities

I (c, γ) satisfies a transport-entropy inequality if
Tc(ν2|ν1) ≤ a1H(ν1|γ) + a2H(ν2|γ).

I Equivalent to dimension free concentration of measure,
Nathael and GRST:

µn(En \ An
t )a2µn(A)a1 ≤ K e−t ,

An
t = {cn

A ≤ t},
cn

A(x) = inf{
∑

c(xi , pi ) : p(A) = 1}.

I Formally equivalent to Maurey
γ(exp(Qcφ))γ(exp(−φ)) ≤ 1,

Qcφ(x) = inf
p∈P(E)

{p(φ) + c(x , p)} .



Examples

I Talagrand: ω(x , y) = 4|x − y |2, γ ∼ N(0, id) satisfies a
transport-entropy inequality.

I Marton, Dembo: for all t ∈ [0, 1], for some αt explicit,
∀γ ∈ P(E ):

T̃αt ,dH (ν2|ν1) ≤ 1
t H(ν1|γ) + 1

1− t H(ν2|γ).

One can take α 1
2
(u) = u2

2 , in which case

T̃α 1
2
,dH (ν2|ν1) = 1

2

∫ [
1− dν1

dν2

]2

+
ν2.

By Jensen, this yields an improvement of Pinsker’s inequality.



Stability of transport-entropy inequalities

I If (ν, c) satisfies a transport-entropy inequality, so does
(νn, cn);

cn((x1, . . . , xn), p) =
∑

c(xi , pi ).

I S : E → E ′, if (ν, c) satisfies a transport-entropy inequality
then so does (S#ν, S#c);

S#c(y , q) = inf{c(x , p) : S(x) = y , S#p = q}.

I If c is lower semi-continuous, νn(A)→ ν(A), and (νn, c)
satisfies a transport-entropy inequality, so does (ν, c).

In all cases, the constants are preserved.



Configuration space

I (Z , d) separable complete metric space.
I MN(Z ) = {

∑l
i=1 δxi}.

I η ∈MN̄(Z ) if and only if η|B ∈MN(B) for all balls B.
I A point process is any random variable with value inMN(Z ).
I A point process η is a Poisson point process with σ-finite

intensity ν if
E e−η(u) = exp(ν(e−u −1)).

I Write Πν for its law.



Universal transport-entropy inequality for Πν

Theorem
For all t ∈ [0, 1], ξ ∈MN̄(Z ), Π ∈ P(MN̄(Z )),

ct(ξ,Π) =
∫
αt

(∫ [
1− χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx).

For all ν ∈ P(Z ), for all Π1,Π2 ∈ P(MN̄(Z )):

Tct (Π2|Π1) ≤ 1
t H(Π1|Πν) + 1

1− t H(Π2|Πν).



Idea of the proof

I Lift Dembo’s inequality to the Poisson point process.
I First proof it for ν(Z ) = 1 and for Bn,ν = (

∑n
i=1 δxi )#ν

n. Ok
since transport-entropy inequalities are closed under taking
tensor product and push forward.

I Via a thinning procedure one can strongly approximate Πν by
a binomial process. Transport-entropy inequalities are also
stable under approximation.

I Case ν(Z ) =∞ also by strong approximation.



Applications

I General concentration of measure Reitzner.
I Concentration of measure for U-statistics Reitzner &

Bachmann.
I Modified logarithmic Sobolev inequality (next slide).



Modified logarithmic Sobolev inequality

I F : MN̄(Z )→ R, D+
x F (ξ) = F (ξ + δx )− F (ξ).

I F is non-decreasing if D+
x F ≥ 0 and convex if D+

x D+
y F ≥ 0.

Theorem
Let φ(u) = s − log(1 + s) and F non-decreasing convex, η ∼ Πν .

Ent eF (η) ≤ E eF (η)
∫
φ

(F (η)− F (η − δx )
2

)
η(dx).

Doe not improve upon another modified logarithmic Sobolev
inequality by Wu (but of same order).



Geometric transport-entropy inequality for Πν

Theorem
If (ν, ω) satisfies Talagrand, then (Πν ,Tω) satisfies Talagrand.
That is: if Tω(ν1, ν2) ≤ a1H(ν1|ν) + a2H(ν2|ν) then Πν satisfies

TTω (Π1,Π2) ≤ a1H(Π1|Πν) + a2H(Π2|Πν),
TTω (Π1,Π2) = inf{Tω(ξ1, ξ2) : ξ1 ∼ Π1, ξ2 ∼ Π2}.

I Not clear how to interpret / apply this inequality: even on
Z = Rd , ω(x , y) = |x − y |2, ν = Gaussian, MN̄(Z ) equipped
with W2 = T

1
2
ω has bad properties. It is only an extended

metric space . Reminiscent of a result by Erbar & Huesmann:
they show that the RCD condition lifts from a manifold to the
configuration space with Πvol but not clear what are the
consequences in this extended setting.



Open questions

I Deeper links with modified logarithmic Sobolev inequalities in
the spirit Otto & Villani; Bobkov, Gentil & Ledoux; Gozlan,
Roberto & Samson.

I Links with discrete displacement convexity GRST?
I Links with semigroup methods?
I What about interacting particles system?
I What about other random measures?


