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SQUARE COMPLEXES AND SIMPLICIAL NONPOSITIVE

CURVATURE

TOMASZ ELSNER AND PIOTR PRZYTYCKI

(Communicated by Alexander N. Dranishnikov)

Abstract. We prove that each nonpositively curved square VH-complex can
be turned functorially into a locally 6-large simplicial complex of the same
homotopy type. It follows that any group acting properly and cocompactly
on a CAT(0) square VH-complex is systolic. In particular, the product of two
finitely generated free groups is systolic, which answers a question of Daniel
Wise. On the other hand, we exhibit an example of a non-VH nonpositively

curved square complex whose fundamental group is neither systolic nor even
virtually systolic.

1. Introduction

In this note we compare nonpositively curved square VH-complexes (introduced

in [Wis96]) and locally 6-large simplical complexes (introduced in [JŚ06]).
The paper is divided into two parts. In Section 3 we provide a functorial con-

struction turning a nonpositively curved square VH-complex into a locally 6-large
simplicial complex of the same homotopy type (in particular, turning a CAT(0)
VH-complex into a systolic complex). The main application of the construction is:

Theorem 1.1 (see Corollary 3.6). The fundamental group of a compact nonposi-
tively curved VH-complex is systolic.

The first application of Theorem 1.1 is the answer to a question posed by Daniel
Wise in [Wis05]:

Corollary 1.2. The product of two finitely generated free groups is systolic.

We also obtain a series of consequences of Theorem 1.1 by applying it to the
examples of nonpositively curved VH-complexes (some with exotic properties) given
by Daniel Wise in [Wis96] and [Wis07].

Corollary 1.3 (cf. [Wis96, Corollary 2.8]). The fundamental group of an alter-
nating knot complement is systolic.

Corollary 1.4 (cf. [Wis07, Theorem 7.5]). There exists a systolic group which is
not residually finite.

One can arrange for an even stronger property:
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2998 TOMASZ ELSNER AND PIOTR PRZYTYCKI

Corollary 1.5 (cf. [Wis07, Theorem 8.10]). There exists an infinite systolic group
which has no finite-index subgroups.

Corollary 1.6 (cf. [BM00, Section 6]). There exists an infinite simple systolic
group.

In Section 4 we show that the VH-hypothesis in Theorem 1.1 is necessary:

Theorem 1.7 (see Theorem 4.2). There exists a compact nonpositively curved
square complex whose fundamental group is not systolic or even virtually systolic.

2. Square complexes and simplex complexes

First we describe locally 6-large and systolic complexes. For the sake of generality
we use the notion of a simplex complex in place of a simplicial complex. A simplex
complex is essentially a complex built from simplices by gluing them together along
subsimplices. The notion arises quite naturally, as the quotient X/G of a simplicial
complex X by a group G acting freely on X is not always a simplicial complex but
of course is a simplex complex.

Definition 2.1. A simplex complex is a set S of affine simplices together with a set
E (closed under compositions) of affine embeddings of simplices of S onto the faces
of simplices of S (attaching maps) such that for any proper face τ of any simplex
σ ∈ S there is precisely one attaching map onto τ .

The link of a vertex v in a simplex complex X = (S, E) is the simplex complex
Xv = (Sv, Ev) where the set Sv is obtained by taking for each attaching map
φv,τ : v → τ the facet of τ opposite to the image of v and Ev is the set of restrictions
of the maps in E .

Definition 2.2. A simplicial complex X is flag if the vertices of any complete
subgraph (a clique) in X(1) span a simplex of X.

A cycle without diagonals in a simplicial complex X is an embedded closed com-
binatorial path γ such that no edge in X connects nonconsecutive vertices of γ.

A simplex complex is locally 6-large if all of its vertex links are flag (in particular,
simplicial) and do not contain cycles of length 4 or 5 without diagonals.

A simply connected locally 6-large simplex complex is called systolic (i.e. systolic
complexes are the universal coverings of connected locally 6-large complexes).

A group admitting a proper and cocompact action on a systolic complex is
systolic.

The original definition of local 6-largeness in [JŚ07] requires that we check the
flagness and the absence of short cycles without diagonals for the link of every
simplex. However, for higher-dimensional simplices it is a direct consequence of
those properties for the links of the vertices.

Notice that a locally 6-large simplex complex is a simplicial complex unless it
contains a loop (an edge joining a vertex to itself) or a double edge. Thus the
above definition of a locally 6-large complex is slightly more general than the one
in [JŚ07]; nevertheless the definition of a systolic complex fully coincides with the

one in [JŚ07].
Having defined nonpositively curved simplex complexes, we now define nonpos-

itively curved square complexes. Similarly as for simplex complexes, we allow cells
in square complexes not to be embedded. The formal definition of a square complex
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SQUARE COMPLEXES AND SIMPLICIAL NONPOSITIVE CURVATURE 2999

is the same as of a simplex complex except for putting vertices, edges and squares
in place of simplices. The only thing that needs to be rephrased is the definition of
the link.

Definition 2.3. The link of a vertex v in a square complex X = (S, E) is a 1-
dimensional simplex complex Xv = (Sv, Ev) (a graph), where Sv is obtained by
taking for each attaching map φv,σ : v → σ the vertex of σ opposite to v (if σ is
an edge) or the diagonal of σ opposite to v (if σ is a square) and Ev is the set of
restrictions of the maps in E .

A square complex is called a VH-complex if its 1-cells can be partitioned into
two classes V and H called vertical and horizontal edges, respectively, and the
attaching map of each square alternates between the edges of V and H. In other
words, the link of each vertex is a bipartite graph with independent sets of vertices
coming from edges of V and H.

Note that the link of a vertex in a VH-complex may have double edges.

Definition 2.4. A square complex is nonpositively curved (or locally CAT(0)) if
the link of any vertex does not contain an embedded combinatorial cycle of length
less than 4. For a VH-complex this reduces to the property that there are no double
edges in the links of vertices.

Example 2.5. The product of two trees is a CAT(0) VH-complex. If a group acts
freely by isometries on the product of two trees and preserves the coordinates, then
the quotient square complex is a nonpositively curved VH-complex.

3. Nonpositively curved VH-complexes are systolic

Our main construction yields a way of turning a nonpositively curved VH-
complex into a locally 6-large simplex complex.

Construction 3.1. Let X be a VH-complex with the sets EV and EH of vertical
and horizontal edges, respectively. Denote by V and S the sets of vertices and
squares of X, respectively. We construct an associated simplex complex X∗, called
the simplexification of X, which has the same homotopy type as X.

First we divide each vertical edge e ∈ EV in two and subdivide each square
s ∈ S into six triangles, as in Figure 1(a), obtaining a simplex complex X̂ (a

triangulation of X). The vertices of X̂ (which will correspond to the vertices of
X∗) are in bijective correspondence with the elements of V ∪ EV ∪ S. We denote
those vertices by v∗, e∗, s∗, for v ∈ V , e ∈ EV , s ∈ S, respectively.

Figure 1. (a) the triangulation of X (b) Ŷe ⊂ X̂ (c) Y ∗
e ⊂ X∗
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The link of e∗ in X̂ is isomorphic to the suspension of a set of n = deg(e) points,
where deg(e) is the number of squares s ∈ S with a vertical edge e (counted with
multiplicities; i.e. a square with both vertical edges equal to e is counted twice).

The union Ŷe of all the simplices of X̂ containing the vertex e∗ is isomorphic to the
suspension of an n-pod, where some pairs of vertices may be identified.

The complex X∗ is obtained from X̂ by attaching (n + 1)-simplices σ+
v =

(v∗+, e
∗, s∗1, . . . , s

∗
n) and σ−

v = (v∗−, e
∗, s∗1, . . . , s

∗
n) for each vertex e∗, where v+ and

v− are the endpoints of the edge e ∈ EV and s1, . . . , sn are the squares adjacent to
the vertical edge e ∈ EV (counted with multiplicities).

The link of e∗ in X∗ is the suspension of an (n− 1)-simplex, and the union Y ∗
e

of all the simplices of X∗ containing the vertex e∗ is isomorphic to the suspension
of an n-simplex, where some pairs of vertices may be identified: v∗+ and v∗− are
identified if the edge e ∈ EV is a loop, and si and sj are identified if there is a
square s ∈ S with both vertical edges equal to e. Notice that Y ∗

ep and Y ∗
eq for

different ep, eq ∈ EV are disjoint except possibly at v∗± and s∗i .

Proposition 3.2. A VH-complex X and its simplexification X∗ have the same
homotopy type.

Proof. As the triangulation X̂ of X embeds into X∗, we only need to prove that
X∗ deformation retracts onto X̂. The deformation retraction arises from collapsing
along free faces, and this is possible because of the essential disjointness of the
various Y ∗

ei in X as elaborated above. Precisely since for distinct e0, e1 ∈ EV we

have Y ∗
e0 ∩ Y ∗

e1 ⊂ X̂, it is enough to show that for any e ∈ EV the complex Y ∗
e

deformation retracts onto Y ∗
e ∩ X̂ = Ŷe.

If Y ∗
e is a simplicial complex (i.e. the suspension of the simplex σ(s∗1, . . . , s

∗
n,e

∗)),
then denoting by S the suspension and by C the cone operator, we have

Ŷe = S(C({s∗1, . . . , s∗n})) ⊂ S(C(σ(s∗1, . . . , s
∗
n))) = Y ∗

e ,

where σ(s∗1, . . . , s
∗
n) is the simplex with vertices s∗1, . . . , s

∗
n.

Consider the retraction r : C(σ(s∗1, . . . , s
∗
n)) → C({s∗1, . . . , s∗n}) defined to be the

affine extension of the map from the first barycentric subdivision, which preserves
the subcomplex C({s∗1, . . . , s∗n}) and maps the barycentres of the remaining sim-
plices to the cone vertex. It is easy to see that r can be extended to a deformation
retraction. By suspending the deformation retraction, we obtain a deformation
retraction from Y ∗

e onto Ŷe.
If Y ∗

e is a simplex complex which is not simplicial, then it is a quotient space
of the suspension of a simplex obtained by identifying some pairs of vertices. In
that case the deformation retraction from Y ∗

e onto Ŷe is the quotient of the map
described above. �
Remark 3.3. Note that Construction 3.1 is functorial. Namely, let f : X → Y be a
combinatorial map between VH-complexes (i.e. mapping cells onto cells of the same
dimension, in our case mapping edges to edges and squares to squares). Assume
also that f preserves the sets of vertical and horizontal edges. Then f induces a
canonical combinatorial map f∗ : X∗ → Y ∗. Moreover, we have (f ◦ g)∗ = f∗ ◦ g∗
and id∗ = id.

In particular, if f is a combinatorial isomorphism, then so is f∗. Finally, note
that if a group G acts properly and/or cocompactly on X, then its induced action
on X∗ is proper and/or cocompact.
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We are now ready for our main result.

Theorem 3.4. If X is a nonpositively curved VH-complex, then its simplexification
X∗ is locally 6-large.

Before giving the proof, we list a few consequences, obtained by applying Propo-
sition 3.2 and Remark 3.3.

Corollary 3.5. If X is a CAT(0) VH-complex, then its simplexification X∗ is
systolic. If G acts properly and cocompactly on X, then G is systolic.

There are two notable applications of Corollary 3.5.

Corollary 3.6 (Theorem 1.1). The fundamental group of a compact nonpositively
curved VH-complex is systolic.

The second application promotes Wise’s aperiodic flat construction ([Wis03,
Theorem 3.2]) into the systolic setting.

Definition 3.7. A flat in a systolic complex X is a subcomplex E
2
� ⊂ X which is

isomorphic to the equilaterally triangulated plane (the triangulation with 6 triangles
adjacent to each vertex) and whose 1-skeleton is isometrically embedded into X(1)

(with the combinatorial metric).

Corollary 3.8. There exists a compact locally 6-large simplex complex whose (sys-
tolic) universal cover contains a flat that is not the limit of a sequence of periodic
flats.

It remains to prove our main result.

Proof of Theorem 3.4. We need to check that the link of any vertex in X∗ is flag
and does not contain cycles of length 4 or 5 without diagonals.

For e ∈ EV , the link of e∗ is the suspension of a simplex, so it is flag and contains
no cycle without diagonals.

For s ∈ S, the link of s∗ is isomorphic to the union of two suspensions of simplices,
S(σn0−1) and S(σn1−1), together with edges joining their top and bottom vertices.
Here ni = deg(ei), where e0 and e1 are the vertical edges of s (the case n0 = 3,
n1 = 2 is depicted in Figure 2(b)). It is clear that it is flag and any cycle without
diagonals in that link has length at least 6.

Figure 2. Sample link of a vertex (a) e∗ (b) s∗ (c) v∗

For v ∈ V , the link of v∗ is the union of ne-simplices for all vertical edges
e ∈ EV issuing from v and ne-pods for all horizontal edges e ∈ EH issuing from v
(ne = deg(e)), with each endpoint of each ne-pod identified with a different vertex
of one of the simplices. It is clear that such a link is flag and any cycle without
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3002 TOMASZ ELSNER AND PIOTR PRZYTYCKI

diagonals in that link passes through at least two ne-pods and two simplices, which
makes its length at least 6 (Figure 2(c) depicts the link of v∗ in the case when the
neighbourhood of v ∈ V in X is the product of two tripods). �

4. Examples of nonpositively curved square complexes

which are not systolic

In the next part of the paper we show that Theorem 3.4 cannot be improved to
include all nonpositively curved square complexes. Namely, we construct an exam-
ple of a compact nonpositively curved square complex whose fundamental group is
not systolic. Later, we use that example to provide a compact nonpositively curved
square complex whose fundamental group is neither systolic nor even virtually sys-
tolic (Theorem 1.7).

Let K be the square complex presented in Figure 3, built from two squares. It
has only one vertex, and the link at this vertex is shown in Figure 4. Thus we see
that K is a nonpositively curved square complex but not a VH-complex. We will
show that π1(K) is not a systolic group.

Figure 3. The nonpositively curved square complex K

Figure 4. The link of K at the only vertex

Theorem 4.1. The group π1(K) is not systolic.

Proof. The group

π1(K) =
〈
a, b, c | ba = ab−1, a = cbc−1

〉

is an HNN-extension of the fundamental group of a Klein bottle, so it has a subgroup
H = 〈a, b〉 which is isomorphic to the fundamental group of a Klein bottle, and in
particular H is virtually Z

2.
Suppose π1(K) is systolic, i.e. acts properly and cocompactly on some systolic

simplicial complex X. As a corollary from the systolic flat torus theorem (precisely
by Corollary 6.2(1) together with Theorem 5.4 in [Els09]) we have that H, as a
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torsion free virtually Z
2 group, acts properly on a systolic flat in X (see Defini-

tion 3.7). If the fundamental group of a Klein bottle
〈
a, b | ba = ab−1

〉
acts properly

by isometries on the Euclidean plane, then a acts as a glide reflection and b as a
translation in the direction perpendicular to the glide reflection axis. In our case
the plane has the additional combinatorial structure of E2

�. There are only two (up

to an isomorphism of E2
�) possible axes for a glide reflection acting on E

2
�: k and

l. If the axis of the glide reflection a is l, then the direction of the translation b is
k, and vice versa.

Figure 5. E
2
�

The elements a2 and b2 act by translations on E
2
� (with axes k and l). The

1-skeleton of E2
� with the combinatorial metric is isometrically embedded into the

1-skeleton of X (by Definition 3.7), so the lines k̂ and l (indicated in Figure 5) are
invariant combinatorial geodesics for a2 and b2. By [Els10, Proposition 3.11] the
geodesic l is quasi-convex in the 1-skeleton of X equipped with the combinatorial
metric (i.e. any geodesic in X(1) with both endpoints on l is contained in the δ-

neighbourhood of l, for some universal δ). However, the geodesic k̂ is clearly not

quasi-convex, as every vertex of E2
� lies on some geodesic with both endpoints on k̂.

Since a2 = cb2c−1, the translation a2 has both k̂ and c·l as invariant geodesics (or
perhaps l and c · k̂). Two invariant geodesics of an isometry acting by a translation
on both of them are at finite Hausdorff distance. Within a systolic complex this

implies that either both k̂ and c · l are quasi-convex or neither of them is ([Els10,

Proposition 3.12]). That contradicts the fact that l is quasi-convex while k̂ is
not. �

As we have just shown, the fundamental group of K is not systolic; however, it is
virtually systolic (there is a double covering K̄, which is a VH-complex, so π1(K̄)
is systolic by Theorem 3.4). Now we use the complex K to construct a square
complex S whose fundamental group is not even virtually systolic.

Let E be the compact nonpositively curved VH-complex which has no connected
finite coverings, constructed by Wise in [Wis07, Theorem 8.10]. Let σ be any loop
in E consisting entirely of horizontal edges. We can subdivide the complex K such
that all loops a, b and c have the same combinatorial length as the loop σ. Now we

define Ē and ¯̄E to be two copies of E and let

S = (E ∪ Ē ∪ ¯̄E) ∪K/ ∼,
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where ∼ is the identification of σ, σ̄ and ¯̄σ with a, b and c, respectively. Then S is
a nonpositively curved square complex.

Theorem 4.2. The group π1(S) is not virtually systolic.

Proof. We first argue that π1(S) is not systolic. Since

π1(S) = π1(K) ∗a=σ π1(E) ∗b=σ̄ π1(Ē) ∗c=¯̄σ π1(
¯̄E)

is an amalgam product, the inclusion K ⊂ S induces an injection π1(K) → π1(S).
To conclude that π1(S) is not systolic, we can recall the fact that a finitely presented
subgroup of a torsion-free systolic group is systolic itself ([Wis05]), while π1(K) is
not systolic (Theorem 4.1). An equivalent way of arriving at that conclusion is to
repeat for S the argument used for K in the proof of Theorem 4.1.

To prove that π1(S) is not virtually systolic, we show that it has no finite-index

subgroups (i.e. S has no connected nontrivial finite coverings). Let p : S̃ → S be a
connected finite covering. Since E ⊂ S has no connected nontrivial finite coverings,
p−1(E) is a disjoint union of copies of E. In particular, any lift ã of the loop a
has the same length as a. The same holds for the loops b and c. As a, b and c,
together with the three copies of π1(E), generate π1(S), this implies that p is a
trivial covering. �
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