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Abstract Active diagnosis of a discrete-event system consists in controlling the system such
that faults can be detected. Here we extend the framework of active diagnosis
by introducing modalities for actions and states and a new capability for the con-
troller, namely observing that the system is quiescent. We design a game-based
construction for both the decision and the synthesis problems that is computation-
ally optimal. Furthermore we prove that the size and the delay provided by the
active diagnoser (when it exists) are almost optimal.

1 Introduction

Diagnosis and control are important tasks in managing discrete-event systems (DES). In this
paper, we contribute to the study of active diagnosis, which combines the two aspects: In a
system whose events are partially observable, a controller observing an ongoing execution
is charged with diagnosing whether a certain event, usually called fault and not directly
observable, has happened or not. To this end, the controller may intervene and restrict
the behaviour of the system in precisely defined ways. The active-diagnosis problem is to
determine whether it is possible to control the system in such a way that diagnosis is always
possible and, if so, synthesize a corresponding controller.

The active-diagnosis problem for DES was first studied in [8]. More recently, [6] proposed
a new construction for active diagnosers based on automata and game theory that is provably
optimal w.r.t. the size of the computed controller and the computational complexity for
building it. Moreover, a number of variations have been studied. They range from the
selection of minimal sets of observable labels that make the system diagnosable [3], to online
aspects that either turn on and off sensors [9, 3] or modify an action plan [4] in order to
reduce the amount of ambiguity, and to the case of probabilistic systems [1]. See also [2] for
an extensive survey of DES problems.

In this work, we extend the frameworks of [8, 6]. Most importantly, we consider the case
where the controller is able to observe that the system is quiescent and to exploit such obser-
vations for active diagnosis. While we believe that such an extension is natural and worth
studying, it has a surprisingly large effect on the formal framework for active diagnosis.
Notably, one of the tasks of the controller is, given the stream of observations σ, to decide
whether σ indicates that a fault has happened. In [8, 6], this decision depends on σ alone,
whereas in our framework it also depends on the control exercised during the execution that
produced σ.
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Figure 1: Examples of LTS. In (c), lazy events are indicated by dashed arrows and idle states
by a double boundary.

We will present details of the model together with motivating examples in Section 2. Sec-
tion 3 presents our framework for active diagnosis, while in Section 4 we show how to solve
the active-diagnosis problem with the aforementioned additions, and Section 5 establishes
worst-case lower bounds for certain aspects.

2 The Model

Before giving a formal definition of our framework, we discuss some motivating examples
for active diagnosis and our extensions. As in [8, 6], we consider systems whose events can
be observable or unobservable; a controller observing an ongoing execution of the system will
only see its observable events. Consider Figure 1 (a). As in all examples that follow and
unless mentioned otherwise, all events except f and u are observable, where f represents
the fault. In a purely passive diagnosis setting, that system is considered undiagnosable: an
observer seeing only a stream of bs cannot decide whether f has happened or not. However,
suppose that event b is controllable, meaning that the observer can enable or disable it. Then,
after seeing a number of bs, the observer may temporarily disable b, and the next observable
action of the system must be a or c, revealing whether the fault has happened or not.

Quiescence

The first of our extensions w.r.t. [8, 6] concerns the ability of the diagnoser to deal with
temporary quiescence of the system. The concept of quiescence is well-established and used
in conformance testing, see e.g. Tretmans [10, 11, 12], where it is used to observe that the
system under test will not produce any output unless provided with additional input.

We shall construct controllers with the capacity to observe that the system is quiescent
and react by re-enabling some events. Quiescence can be exploited in active diagnosis, as
the example in Figure 1 (b) shows, where only c is controllable. That system is considered
non-actively-diagnosable in the frameworks of [8, 6], which are language-based: the upper
half of the system can only do (a prefix of) fbc, which is undistinguishable from a sequence
possible in the lower half; yet, a controller cannot prevent the system from entering the upper
half with uncontrollable actions fb. Slightly more formally, a finite execution prefix is called
ambiguous in [8, 6] if it contains a fault (resp. does not contain one) and is observationally
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Figure 2: Example that is undiagnosable for previous frameworks even with arbitrary addi-
tional δ-loops.

equivalent to a prefix that does not contain a fault (resp. contains one). Then, a system
is called actively diagnosable if it can be controlled so as to remain in a non-ambiguous
sublanguage of the system. The reader can easily see that the only unambiguous execution
prefixes of Figure 1 (b) are of the form ubdmcan, m ≥ 1, n ≥ 0; however, the uncontrollable
action f in the beginning makes it impossible to remain in this set.

Suppose now another approach in which a controller blocks c after seeing b and then
has the capacity to observe that either d happens (i.e. the system is in q′) or that the system
is quiescent (i.e. the current state is q). The controller can then issue the corresponding
diagnosis verdict and, e.g., re-enable c to let the system continue.

Semantics of Quiescence

We remark that quiescence is semantically different from extending the system with some
event δ symbolising “passage of time”. While, e.g., Figure 1 (b) can be made actively diag-
nosable in the sense of [8, 6] by adding a δ-loop to q, our method has at least two advantages:
First, it does not require the designer of a system to add artefacts that are merely required
by deficiencies of some analysis method. Secondly, such a transformation is not always pos-
sible. Consider the system shown in Figure 2, where a, b, c, d, e, l, r are observable and c, d, l, r
controllable. We shall see that this system is (i) diagnosable in our framework, (ii) undiag-
nosable in the frameworks of [8, 6], and (iii) no addition of δ-loops can render the system
diagnosable for [8, 6].

As for (i), the first observation will be either a or b, without any possibility of intervention
for the controller. Also, note that if the first two observations are one of al, ar, bl, or br,
then the controller will be forever unable to decide whether a fault has happened. Let
us first suppose that the first observation is a, then the system is known to be in one of
{L1, R1, L2, R2}. The controller must now block both l and r. If the next observation is c, then
the set of possible states shrinks to {L2, R2}; if the next observation is quiescence, then to
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{L1, R1}. (Note that here we implicitly assume that c necessarily happens when it is the only
available event. Later we will introduce the notion of lazy and eager events to let the designer
specify this aspect of the system’s behaviour.) Having observed either c or quiescence, the
controller can then disable c and re-allow l and r, and after the next observation, knows
precisely which path the system has taken. Likewise, if the first observation is b; then the
system is known to be in {L2, R2, L3, R3}. The controller then blocks c, which is possible in
all these states, as well as l and r. Now the next observation will be either d or quiescence;
the controller then proceeds by blocking c, d and has complete information about the path
taken by the system after observing either l or r.

Concerning (ii), the only unambiguous sequences possible in the system are u2xacmyen

and u3xbdmyen, for any choice of x ∈ { f , u}, y ∈ {l, r} and m ≥ 1, n ≥ 0. However, the
controller cannot prevent the system from beginning with, e.g., u1xa or u2xb, so the system
is undiagnosable in the sense of [8, 6].

Concerning (iii), we shall show the following: Let S be a subset of the states in Figure 2,
and AS the system where every state in S has an additional loop with an observable event
δ. Then, for any choice of S, AS remains non-actively diagnosable for [8, 6], independently
of whether δ is controllable or not. We prove this claim by contradiction: suppose that for
some set S, AS is actively diagnosable. To begin with, we can easily see that the choice for
S can be limited to a subset of {L1, R1, L2, R2, L3, R3}; all other states contain at least one
uncontrollable action and can therefore choose to never use the δ-loop. Now suppose that S
does not contain state L1. Then every execution starting with the uncontrollable prefix u1 f a
is ambiguous, notably u1 f al is observationally equivalent to u2ual. The cases for states R1,
L2, and R2 are analogous, for the uncontrollable prefixes u1ua, u2ub, and u2 f b, respectively.
Thus, AS must have δ-loops in all four states. But then AS is again non-actively diagnosable:
if the first observation is a, then δ is available in any possible state, and after l or r the system
remains forever undiagnosable.

Put simply, Figure 2 exhibits a fundamental semantic difference between quiescence
(which only happens when no other action is available), and a loop signifying “passage
of time”, which is otherwise treated like any other action. Treating quiescence directly thus
genuinely extends the power of active diagnosers.

Lazy actions and idle states

Moreover, quiescence allows us to meaningfully distinguish two types of events that we call
eager and lazy. An eager event enabled in some state eventually happens unless another
event pre-empts it; typically, eager events are those happening during the normal course of
the system. By contrast, a lazy event represents an entirely non-deterministic action, e.g. a
fault or input from the environment. Thus, quiescence can be observed in a state even when
one or more lazy actions are enabled.

Figure 1 (c) represents a three-stage production process with actions a, b, c, all controllable.
The fault f is lazy, indicated by dashed arcs. If all goes well, the system proceeds from state 1
to state 4 with abc. However, steps a and b can be erroneous, which must be tested for before
proceeding with b resp. c. E.g., after seeing a, the system could be in states 2 or 6, and the
controller will temporarily disable b to see whether it observes a′ or quiescence. However, if
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the system is in state 2, this temporary disabling does not necessarily provoke the lazy event
f . In our framework, the system can reach state 4 without fault while enabling a controlling
observer to verify that the execution was fault-free. By contrast, [8, 6] consider all events
to be eager; for them, the system is actively diagnosable but at the price of eliminating all
non-faulty executions.

Finally, notice that state 4 in Figure 1 (c) has a double boundary. We use this to indicate
so-called idle states, and we forbid controllers to observe quiescence forever unless the system
is in such an idle state. In the example, this allows the designer of the system to formulate
the requirement that an active diagnoser either detect a fault or allow the production to
run to completion. This concept generalizes the liveness requirement made in [6], where all
runs must be infinite. We remark that a similar concept called marked states is discussed for
controllability problems in [2]. However, in our case quiescence may be a temporary state
of the system from which it may re-awaken, e.g. following a lazy event triggered by the
environment.

3 Definitions

This section serves to provide formal notations related to discrete-event systems and active
diagnosis. As mentioned in Section 2, we shall study discrete-event systems whose events,
here called actions, have additional properties, such as being observable, controllable, or
eager, and we will successively introduce the notions related to these concepts. Given a set
X, we use the standard notations X∗ (resp. X+, Xω) to denote the finite (resp. non empty
finite, infinite) sequences over X; the empty sequence is denoted ε, and the length of a finite
sequence σ by |σ|. Given a sequence σ = a1 · · · an ∈ X+, last(σ) denotes an. Given a sequence
σ = a1 · · · ∈ X∗ ∪ Xω and 1 ≤ i ≤ j ≤ |σ|, σ[i] denotes ai and σ[i, j] denotes ai · · · aj.

Labeled transition systems

Our main model will be an extension of labeled transition systems:

Definition 1 A labeled transition system (LTS) is a tuple A = 〈Q, q0, Σ, T〉 where Q is a set
of states with initial state q0 ∈ Q, Σ is a finite set of actions, and T ⊆ Q × Σ × Q is the set of
transitions. An LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ there is at most one q′ such that
〈q, a, q′〉 ∈ T.

If 〈q, a, q′〉 ∈ T, we write q a−→ q′ and say that a is enabled in q; for a deterministic
automaton we also write T(q, a) = q′. The set of enabled actions in state q is denoted
en(q). An infinite run over the word σ = a1a2 . . . ∈ Σω is an alternating sequence of states
and actions (qiai+1)i≥0 such that qi

ai+1−−→ qi+1 for all i ≥ 0, and we write q0
σ
=⇒ if such a run

exists. A finite run over w ∈ Σ∗ is defined analogously, and we write q w
=⇒ q′ if such a run

ends at state q′. A state q is reachable if there exists a run q0
w
=⇒ q for some w.

Definition 2 (languages) Let A = 〈Q, q0, Σ, T〉 be an LTS. The finite and infinite language of A
are defined by L∗(A) = {w ∈ Σ∗ | ∃q : q0

w
=⇒ q } and Lω(A) = { σ ∈ Σω | q0

σ
=⇒}.
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Partially observable controllable systems

We now define partially observable controllable systems (POCS) on which we shall perform
active diagnosis. Syntactically, a POCS S is an LTS A enlarged with three binary partitions:
an action may be (1) observable (in Σo) or unobservable (in Σuo), (2) controllable (in Σc) or
uncontrollable (in Σuc), and (3) eager (in Σe) or lazy (in Σ`). We require that unobservable
actions are uncontrollable. Below, we shall define the semantics of a POCS as a new LTS Scont

depending on a controller cont. Intuitively, during an execution of systemA, a controller may
forbid a subset of the controllable actions based on the observable actions seen so far, thereby
restricting the behaviour of A. This implies that A must be convergent, i.e. there is no infinite
run with a suffix of unobservable actions: Lω(A) ∩ Σ∗Σω

uo = ∅. Occasionally, the control
may lead to a situation in which the system reaches a state where all non-blocked actions
are lazy. In this situation, either one such action occurs or the controller sees that “nothing
is happening”, represented by a special observation symbol δ. We say that the system is in a
quiescent state (not to be confused with a deadlock state). The controller may then once again
change the set of allowed actions. The set Idle indicates the states in which the system may
legitimately remain quiescent forever; in particular, a correct controller should not block all
eager actions indefinitely when A is in a state q /∈ Idle. The next two definitions formalize
POCS and their semantics.

Definition 3 A partially observable controllable system (POCS) is a tuple
S = 〈A, Σo, Σc, Σe, f , Idle〉, where A = 〈Q, q0, Σ, T〉 is a convergent LTS with Σo, Σe ⊆ Σ such that
Idle ⊆ Q, Σc ⊆ Σo, and f ∈ Σ \ Σo is a distinguished action called fault.

As previously discussed, we write Σuo, Σuc, Σ` for the complements of Σo, Σc, Σe. Let us
denote Ξ := Σ ∪ {δ} and Ξo := Σo ∪ {δ} the set of (observable) actions extended with δ, and
let σ ∈ Ξ∗. The projection P(σ) erases all letters not from Ξo, more precisely P(ε) = ε, and
P(σa) equals P(σ)a if a ∈ Ξo and P(σ) otherwise. For σ ∈ Ξω, its projection is the limit of
the projections of its finite prefixes. When using the projection to another subset X, we write
PX.

A controller for S is a mapping cont : Ξ∗o → 2Σc .

Definition 4 (Controlled system) Let S be a POCS and cont a controller.
Then Scont := 〈Qcont, q0cont, Ξ, Tcont〉 is defined as the smallest LTS satisfying:

(i) q0cont := 〈ε, q0〉 ∈ Qcont;

(ii) if 〈σ, q〉 ∈ Qcont, a ∈ cont(σ) ∪ Σuc, and q a−→ q′, then 〈σP(a), q′〉 ∈ Qcont

and 〈〈σ, q〉, a, 〈σP(a), q′〉〉 ∈ Tcont;

(iii) if 〈σ, q〉 ∈ Qcont and cont(σ) ∩ en(q) ⊆ Σ` then 〈σδ, q〉 ∈ Qcont

and 〈〈σ, q〉, δ, 〈σδ, q〉〉 ∈ Tcont.

An observable sequence is an item of Ξ∗o . An observed sequence is an item of Λ(cont) := { σ |
〈σ, q〉 ∈ Qcont }.

6



Ambiguity

A finite or infinite word σ over Σ (resp. Ξ) is faulty if it contains an occurrence of f ; otherwise
it is called correct. Given an observed sequence σ, the aim of diagnosis is to determine
whether a fault has surely occurred. The ambiguous sequences are exactly the observed
sequences where diagnosis is not yet possible.

Definition 5 (ambiguous and surely faulty sequence) Let Scont be a controlled system, σ1, σ2 ∈
Lω(Scont) be two sequences and σ ∈ Ξω

o such that: (i) P(σ1) = P(σ2) = σ, (ii) σ1 is correct, and
(iii) σ2 is faulty. Then σ is called ambiguous in Scont, and the pair 〈σ1, σ2〉 is a witness for the
ambiguity of σ. Ambiguous finite sequences are defined analogously. A sequence σ′ ∈ Ξ∗o is surely
faulty in Scont for all σ ∈ L∗(Scont) such that P(σ) = σ′, σ is faulty.

Active diagnosability

In the diagnosis framework, the goal of the controller is to make the system diagnosable,
and to perform diagnosis. Thus, an active diagnoser is a controller equipped with a diagnosis
function. The active dignoser must (1) eliminate ambiguity, (2) detect fault and (3) does not
leave the system stuck forever in a non-idle quiescent state.

Definition 6 (Active Diagnoser) Let S be a POCS and h = 〈cont, diag〉, where cont is a controller
and diag a mapping from Λ(cont) to {⊥,>}. We call h active diagnoser for S iff:

1. Scont does not contain any infinite ambiguous sequence;

2. diag(σ) = > if and only if σ is surely faulty in Scont;

3. For all infinite runs (siai+1)i≥0 of Scont, if there exists i0 with ai = δ for all i ≥ i0 then
si0 = 〈σ′, q〉 for some σ′ and q ∈ Idle.

For k ≥ 1, h is called a k-active diagnoser if for all σ = σ′ f σ′′ ∈ L∗(Scont) with |P(σ′′)| ≥ k,
diag(P(σ)) = >, i.e. every fault is diagnosed after at most k observations. The minimal k s.t. h
is a k-active diagnoser is called the delay of h. We call S (k-)actively diagnosable if a (k-)active
diagnoser exists, and the minimal such k the minimal delay of the language recognized by S .

An active diagnoser does not necessarily have a finite delay [6]. However, we will see
that if S is actively diagnosable, there does exist a k-active diagnoser for some k.

We are now in a position to formally state the relevant problems for active diagnosis. Let
S be a POCS with finitely many states. We are interested in:

– the active diagnosis decision problem, i.e. decide whether S is actively diagnosable;

– the synthesis problem, i.e. decide whether S is actively diagnosable and in the positive
case build an active diagnoser.

– the minimal-delay synthesis problem, i.e. decide whether S is actively diagnosable and in
the positive case build an active diagnoser with minimal delay.

We introduce the notion of pilot as a finite representation of an active diagnoser.

7



Definition 7 (pilot) Let S be a POCS. Then C = 〈BC , contC , diagC〉 is called pilot for S if BC =

〈Qc, qc
0, Ξo, Tc〉 is a deterministic LTS, 〈contC , diagC〉 : Qc → 2Σc × {⊥,>}, are labellings such that

for all q ∈ Qc, and for all a ∈ contC(q) ∪ {δ} ∪ Σuc \ Σuo, there is an outgoing edge labelled by a.
Let hC = 〈cont, diag〉 associated with C be defined by cont(σ) = contC(q) and diag(σ) = diagC(q)
for all σ ∈ Λ(cont), where q is the unique state such that qc

0
σ
=⇒ q. Then C is a (k-)active diagnoser

for S if hC is one.

4 Diagnoser construction

We simultaneously solve the decision and synthesis problems. We shall try to construct
a pilot-based active diagnoser for a POCS S . The construction succeeds iff S is actively
diagnosable. According to Definition 6, the main challenges in building an active diagnoser
are to ensure that (i) the controlled system does not get stuck forever in a non-idle quiescent
state, (ii) the controller excludes the ambiguous sequences, and (iii) diagnosis information is
provided.

The approach in [6] consisted of two stages. First one builds a Büchi automaton that
accepts the infinite unambiguous observed sequences of A. Then using this automaton,
one builds a Büchi game where the Control player chooses the allowed controllable actions
and then the Environment player selects the next observable action. The correctness of this
approach partly relies on the fact that given two controls cont and cont′ and an observed
sequence σ of both Scont and Scont′ , σ is ambiguous in Scont iff it is ambiguous in Scont′ . This
is no longer the case here. For instance, suppose that in Figure 1 (b) both c, d are controllable.
Then bδ is ambiguous if the controller blocks both c and d, and unambiguous if the controller
blocks only c.

Here, our solution consists in directly building a generalized Büchi game and taking into
account the control that has already been performed to specify the relevant information that
must be memorized to define the winning states.

Definition 8 (game) A game (between two players called Control and Environment) is a tuple
G = 〈VC, VE, E, v0,PF〉, where VC are the vertices owned by Control, VE are the vertices owned
by Environment; VG = VC ]VE denotes all vertices, and v0 ∈ VC is an initial vertex. E ⊆ VG ×VG
is a set of directed edges such that for all v ∈ VC there exists (v, w) ∈ E, and PF ⊆ 2VG is a winning
condition.
A play ρ is a sequence of Vω

G such that ρ[0] = v0 and 〈ρ[i], ρ[i + 1]〉 ∈ E for all i ≥ 0; we call ρ[0, k],
for some k ≥ 0, a partial play if ρ[k] ∈ VC, and define state(ρ[0, k]) := ρ[k]. We write Play∗(G) for
the set of partial plays of G. A play ρ is called winning (for Control) if, for all V ∈ PF, ρ[i] ∈ V for
infinitely many i.

Definition 9 (strategy) Let G = 〈VC, VE, E, v0,PF〉 be a game. A strategy (for Control) is a
function θ : Play∗(G) → VG such that 〈state(ξ), θ(ξ)〉 ∈ E for all ξ ∈ Play∗(G). A play ρ adheres
to θ if ρ[i] ∈ VC implies ρ[i + 1] = θ(ρ[0, i]) for all i ≥ 0. A strategy is called winning if every play
ρ that adheres to θ is winning.

Let M = 〈QM, qM, VG , TM〉 be a complete deterministic LTS, where FM(ξ) denotes the state

q ∈ QM such that qM
ξ
=⇒ q, and let α : QM × VC → VG such that for all q ∈ QM and v ∈ VC
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we have 〈q, α(q, v)〉 ∈ E. The strategy θM,α defined by θ(ξ) = α(FM(ξ), state(ξ)) is called finite-
memory strategy if QM is finite; it is called one-bit strategy if QM = {0, 1}.

In the games that we have defined, a play can only be stuck in a state of Environment
and considered as losing for this player. Thus we do not consider finite maximal plays for
defining the winning strategies of Control.

The controller we are looking for will memorize a tuple of subsets of states 〈U, V, W, X〉
with the following meaning. Whatever the subset, it represents possible states that have
been reached after the last observable action or that corresponds to a quiescent state w.r.t. the
current control. U represents the possible states reached by a correct run, and V ]W represent
the possible states reached by a faulty run. Among the latter, W represents the states for
which the controller tries to solve the ambiguity with U, while V is some “waiting room”;
the ambiguity between U and V will be resolved later. X represents a subset of the possible
non-idle states reached by a run for which no action has been performed between the two
last observations. The controller tries to discard these states either by observing that they
could not occur or by allowing an urgent action. The other states with the same features will
be handled later. We denote S = {〈U, V, W, X〉 | U, V, W ⊆ Q ∧ X ⊆ (U ∪ V ∪W) \ Idle ∧
U ∪ V ∪W 6= ∅ ∧ V ∩W = ∅}, Solved1 = {〈U, V, W, X〉 ∈ S | U = ∅ ∨W = ∅}, Solved2 =

{〈U, V, W, X〉 ∈ S | X = ∅}, and Reach(〈U, V, W, X〉) = U ∪ V ∪W. The next definition
describes how the controller updates its tuple once an observed action occurs (including the
quiescent signal δ). The range of this function also includes the tuple 〈∅, ∅, ∅, ∅〉 in order to
capture the impossible observations.

Definition 10 (Knowledge update) Let S be a POCS. Then ∆, the knowledge transition partial
function from S× 2Σc × (Σo ∪ {δ}) to S ∪ {〈∅, ∅, ∅, ∅〉}, is defined for s = 〈U, V, W, X〉, Σ′ ∈
2Σc , a ∈ Σ′ ∪ {δ} ∪ Σuc \ Σuo by ∆(s, Σ′, a) := 〈U′, V ′, W ′, X′〉 as follows.
• When a 6= δ, let Va = { q′ | q ∈ V, q σa

=⇒ q′, σ ∈ Σ∗uo } ∪ { q′ | q ∈ U, q σa
=⇒ q′, σ ∈ Σ∗uo f Σ∗uo }.

Then:

– U′ = { q′ | q ∈ U, q σa
=⇒ q′, σ ∈ (Σuo \ { f })∗ };

– If W = ∅ then W ′ = Va

else W ′ = { q′ | q ∈W, q σa
=⇒ q′, σ ∈ Σ∗uo };

– If W = ∅ then V ′ = ∅ else V ′ = Va \W ′;

– X′ = ∅.

• When a = δ, let QuietΣ′ = { q ∈ Q | en(q) ∩ Σe ⊆ Σc \ Σ′ } and Vδ = { q′ ∈ QuietΣ′ | q ∈
V, q σ

=⇒ q′, σ ∈ Σ∗uo } ∪ { q′ ∈ QuietΣ′ | q ∈ U, q σ
=⇒ q′, σ ∈ Σ∗uo f Σ∗uo }. Then:

– U′ = { q′ ∈ QuietΣ′ | q ∈ U, q σ
=⇒ q′, σ ∈ (Σuo \ { f })∗ };

– If W = ∅ then W ′ = Vδ

else W ′ = { q′ ∈ QuietΣ′ | q ∈W, q σ
=⇒ q′, σ ∈ Σ∗uo };

– If W = ∅ then V ′ = ∅ else V ′ = Vδ \W ′;

– If X = ∅ then X′ = (QuietΣ′ ∩ Reach(s)) \ Idle
else X′ = QuietΣ′ ∩ X.
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s1 s1, {a} s1, {a}, a s26

s15 s1, {a}, δs1, ∅ s1, ∅, δ

Figure 3: Excerpt of the Büchi game for the POCS of Figure 1 (c). Environment states are
shown with dashed boundary. We use s1 := 〈{1}, ∅, ∅, ∅〉, s15 := 〈{1}, ∅, {5}, {1}〉, and
s26 := 〈{2}, ∅, {6}, ∅〉.

Before formally defining the game, we discuss its intuition: Control and Environment
play alternatingly; the Control chooses the allowed controllable actions based on its knowl-
edge of the possible states, and the Environment chooses an action among those permitted
by the Control. The controller states VC are the tuples 〈U, V, W, X〉. Once the controller
chooses a set of actions, the play moves to a state in VC × 2Σc ⊆ VE, where Environment
selects an allowed observable action in Ξo and reaches a game state in VC × 2Σc × Ξo ⊆ VE.
This state has (1) either a single successor, a controller state whose tuple is given by the above
update function when the tuple is not empty, (2) or none at all, when the action leads to an
empty tuple, meaning that the behaviour was not possible. The generalized Büchi condition
is given by {Solved1, Solved2}.

Definition 11 (controller-synthesis game) Let S be a POCS. Then G(S) := 〈VC, VE, E, v0,PF〉
denotes a game, where VC = S, v0 = 〈{q0}, ∅, ∅, ∅〉, VE = (VC × 2Σc) ∪ (VC × 2Σc × Ξo), and
E = E1 ∪ E2 ∪ E3 with

– E1 = { 〈s, 〈s, Σ′〉〉 | s ∈ S, Σ′ ∈ 2Σc };
– E2 = { 〈〈s, Σ′〉, 〈s, Σ′, a〉〉 | s ∈ S,

Σ′ ∈ 2Σc , a ∈ Σ′ ∪ {δ} ∪ Σuc \ Σuo};
– E3 = { 〈〈s, Σ′, a〉, s′〉 | s′ = ∆(s, Σ′, a)}.

and PF = {Solved1, Solved2}.

Example 1 Figure 3 depicts an excerpt of the game for for POCS of Figure 1 (c). From the initial
state, we have represented two control decisions: either Control allows {a} or disallows all controllable
actions. If Control chooses {a}, and Environment chooses action δ, the next state has no successor,
since under this control, a is the single observable action, so Environment loses immediately. If Control
chooses ∅ and Environment chooses action δ, the tuple of the reached state is 〈{1}, ∅, {5}, {1}〉 as f
is lazy and may have occurred or not.

We can now address the decision and synthesis problems. To this aim, we shall mainly
exploit the following facts: (1) Generalized Büchi games can be solved in polynomial time
(see, e.g., [5]), (2) a one-bit winning strategy (when the number of winning conditions is two)
can always be chosen for Control if it wins and (3) there is a tight correspondence between
winning strategies and active diagnosers.

Let ξ ∈ Play∗(G(S)) be a partial play. We define word(ξ) as the observable actions played
along ξ, i.e. word(ε) = ε, word(ξv) = word(ξ) if v /∈ VC × 2Σc × Ξo, and word(ξ〈v, Σ′, a〉) =
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word(ξ)a. In a similar way, states(ξ) are the states of VC touched along ξ, formally states(ξ) =
PVC(ξ). We naturally extend these notions to plays ρ.

Definition 12 (from control to strategy and play) Let cont be a controller for S . The strategy
θcont of the game G(S) is defined as follows. Let ξ ∈ Play∗(G(S)) be a partial play ending in a state
of the controller. Then θcont(ξ) = cont(word(ξ)). Let σ be an observed sequence of Scont. Then the
play ξcont(σ) is inductively defined by:
• If σ = ε then ξcont(σ) = 〈{q0}, ∅, ∅, ∅〉.
• If σ = σ′a, then ξcont(σ) = ξcont(σ′)〈l, Σ′〉〈l, Σ′, a〉s′, where l := last(ξcont(σ′)), Σ′ := cont(σ′),
and s′ is the single successor of 〈l, Σ′, a〉 in G(S).

The following observation is straightforward. Let ξ be an infinite play that adheres to
strategy θcont. Then word(ξ) is an observed sequence of Scont.

Proposition 1 If cont is a controller for S and σ an observed sequence of Scont, the following are
equivalent:

1. the play ξcont(σ) is winning for the controller;

2. σ is unambiguous and for all σ′ = q0a1 · · · an(qnδ)ω such that P(a1 · · · ) = σ, qn ∈ Idle.

Proof. Fix an observed sequence σ of Scont and note:
states(ξcont(σ)) = 〈U0, V0, W0, X0〉) · · · 〈Ui, Vi, Wi, Xi〉 · · · .

To prove that (1) implies (2), assume first that σ is ambiguous; we show that the play
is losing. Let (σ′, σ′′) be a pair of witnesses for σ. Because of σ′, we have Ui 6= ∅ for
all i ≥ 0. Moreover, we will show that σ′′ implies the existence of some i0 such that for
all i ≥ i0 we have Wi 6= ∅. These two facts together mean that the play is losing, since
〈Ui, Vi, Wi, Xi〉 /∈ Solved1 for all i ≥ i0. So, let w be the minimal prefix of σ′′ containing f , and
let |w|Ξo = j. Then clearly, Vi ∪Wi 6= ∅ for all i > j.

– Either Wj = ∅, i.e. the watchlist is empty after j observations; then the faulty run of
Scont for σ′′ will be recorded in the watchlist after the next observation, and remain
there; we take i0 := j + 1.

– Or Wj 6= ∅; then the possibility of a fault will be recorded in the “waiting room”. Then
either the watchlist becomes empty at a later time, i.e. Wj′ = ∅ for some j′ > j, in
which case the state associated with the faulty run for σ′′ is transferred to the watchlist
in the next step, and we take i0 := j′ + 1; or the watchlist never becomes empty (in
which case there exists another faulty sequence with same observation), and we take
i0 := j.

Assume now that there is σ′ = q0a1 · · · an(qnδ)ω such that P(a1 · · · ) = σ and qn /∈ Idle.
Consider 〈Ui0 , Vi0 , Wi0 , Xi0〉 reached in the game after the partial play such that its word is
P(a1 · · · anδ). Now if for all i ≥ i0, Xi 6= ∅ then 〈Ui, Vi, Wi, Xi〉 /∈ Solved2 and so the play is
losing. Otherwise let i1 ≥ i0 such that Xi1 = ∅, then for all i > i1, qn ∈ Xi and the play is
losing.
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For the other direction, assume that this play is losing. Let us note: word(ξcont(σ)) =

a1 · · · ai · · · . Since the play is losing there exists an i0 such that either (1) for all i ≥ i0,
〈Ui, Vi, Wi, Xi〉 /∈ Solved1 or (2) for all i ≥ i0, 〈Ui, Vi, Wi, Xi〉 /∈ Solved2 meaning that Xi 6= ∅.

In the first case, the specification of ∆ implies (using König’s lemma) (i) the existence of
some non-faulty prefix that can reach a state of Ui0 and continue from there (without faults),
and (ii) the existence of a faulty prefix that can reach a state from Wi0 that can continue
forever (with or without faults). Thus σ is ambiguous.

In the second case, since {Xi}i≥i0 is a decreasing sequence of finite non empty sets, it
must stabilize to a non empty set meaning that there is some non-idle state q ∈ ⋂

i≥i0 Xi. In
addition σ = a1 · · · ai0−1δω. So q is reached by a run whose observation sequence is a1 · · · ai0−1

such that the controller never allows an urgent action from q after the ith
o observation. This

concludes the proof.
�

Lemma 1 Let h = 〈cont, diag〉 be an active diagnoser for S . Then there exists a winning strategy θh

in the game G(S). Moreover, there also exists a winning one-bit strategy θ in G(S).

Proof. Suppose that h = 〈cont, diag〉 is any active diagnoser for S . Then, cont defines a
(not necessarily finite memory) strategy θh in G = G(S): for ξ ∈ Play∗(G), let θh(ξ) =

〈state(ξ), cont(word(ξ))〉.
Now, for any play ρ that adheres to θh we have that word(ρ) ∈ P(Lω(Scont)), thus by

Definition 6, word(ρ) is not ambiguous and if word(ρ) ∈ Σ∗o δω any sequence σ with P(σ) =
word(ρ) ends in an idle state. Hence by Proposition 1, ρ is winning, which means that θh is
a winning strategy.

Finally, the existence of θh implies the existence of a winning one-bit strategy (due to
well-known results of game theory, see, e.g., [5], as in this case the generalized Büchi game
has two winning conditions). �

For the reverse direction, we show how to define a pilot from a one-bit strategy and we
prove that this pilot is an active diagnoser if the strategy is winning. State useless is added
only to stick to Definition 7.

Definition 13 Let θM,α be a one-bit strategy in G(S). Then C(θM,α) := 〈BC , contC , diagC〉 denotes
a pilot where BC = 〈Qc, qc

0, Ξo, Tc〉 with Qc = {0, 1} ×VC ∪ {useless} and qc
0 = 〈b0, v0〉, where b0

is the initial state of M. Moreover, for any 〈b, s〉 ∈ {0, 1} ×VC, if 〈s, Σ′〉 = α(b, s) then:

– Tc((b, s), a) is either 〈b′, s′〉 where s′ is the single state reached from 〈s, Σ′, a〉 when a ∈
Σ′ ∪ {δ} ∪ Σuc \ Σuo and b

〈s,Σ′〉〈s,Σ′,a〉s′
=======⇒ b′ in M, or useless if such a state does not exist;

– contC(b, s) := Σ′ where 〈s, Σ′〉 = α(b, s);

– diagC(b, s) := > iff s has the form 〈∅, V, W, X〉.

Finally, Tc(useless, a) = useless for a ∈ {δ} ∪ Σuc \ Σuo; moreover contC(useless) := ∅ and
diagC(useless) := ⊥.
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Lemma 2 Let θM,α be a winning one-bit strategy in G(S). Then C = C(θM,α) is an active diagnoser
for S .

Proof. We show that hC fulfills the three conditions of Definition 6, which shows that S is
actively diagnosable.

1. Let σ ∈ P(Lω(Scont)), let ρ = (siai+1)i≥0 its unique run in BC , and denote by wi =

σ[1, i], for i ≥ 0. By construction of Scont, we have that wi+1 = wiai+1 implies ai+1 ∈
cont(si) ∪ {δ} ∪ Σuc \ Σuo. Let si = 〈bi, vi〉. By construction of BC , α(si) = 〈vi, contC(si)〉
and vi+1 = ∆(vi, contC(si), a). Therefore v0, 〈v0, contC(s0)〉, 〈v0, contC(s0), a1〉, v1, . . . is a
play of G(S) that adheres to θM,α. Since by assumption any such play is winning,
vi ∈ Solved1 for infinitely many i, so by Proposition (1), σ is unambiguous.

2. For v = 〈U, V, W, X〉 such that v0
σ−→ v for some observed sequence of Scont, we have by

construction of G(S) that (a) q ∈ U iff there exists w ∈ P−1(σ) ∩L∗(Scont) ∩ (Σ \ { f })∗
and (b) q ∈ V ∪W iff there exists w ∈ P−1(σ) ∩ L∗(Scont) ∩ Σ∗ f Σ∗. Now, diag(σ) =

diagC(v) = > iff U = ∅, which by the above and Definition 5 is equivalent to saying
that σ is surely faulty.

3. Let σ′ ∈ Ξ∗δω be a sequence of Scont. Since the strategy θM,α is winning, the play in
G(S) corresponding to this sequence is winning. Applying Proposition (1), any run of
Scont that corresponds to σ′ ends up in an idle state.

�

We can now state the main result of this section:

Theorem 1 Let S be a POCS with n states and m controllable actions. The active-diagnosis decision
and synthesis problems for S can be solved in 2O(n+m) time. If S is actively diagnosable, then one
can synthesize a pilot C with at most 2 · 11n states, where C is an active diagnoser for S .

Proof. Lemma 1 and Lemma 2 imply that S is actively diagnosable iff there is a winning
one-bit strategy for s0 in G(B), and the second part of the theorem follows from Lemma 2.
As for the complexity statement, we note that the game G(S) has O(11n · 2m) vertices and
edges, and a winning strategy can be computed in polynomial time in the size of the game
[5], which gives the result. �

By a straightforward adaptation of the proof of Theorem 1 in [7], we can prove EXPTIME-
hardness of the decision problem. So we get the following corollary.

Corollary 1 The active diagnosis decision problem is EXPTIME-complete.

Observe that in any play of a winning one-bit strategy, one can visit at most twice (one
per bit value) the same state while U and W remain non empty since otherwise, a losing
play could be built ending with a loop. So once a fault has occurred, there are two possible
situations: (1) either W remains non empty and after at most 2|VC|+ 1 observations, U be-
comes empty, or (2) while U remains non empty, W becomes empty after at most 2|VC|+ 1
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observations and filled again by at least the state in V that corresponds to the faulty run and
then after at most 2|VC| additional observations U becomes empty. Summarizing, the delay
achieved by our active diagnoser is at most 4|VC|+ 1 ≤ 4 · 11n + 1 = 2O(n). The active diag-
noser that we synthesize does not necessarily have minimal delay. However Theorem 6 of the
next section shows that 2O(n) states are not enough for obtaining such an active diagnoser,
and Theorem 4 shows that for some systems, the minimal achievable delay is indeed expo-
nential. The following result provides a construction of an active diagnoser with minimal
delay.

Theorem 2 Let S be an actively diagnosable POCS with n states. One can construct a pilot C with
2O(n

2) states such that C is an active diagnoser for S with minimal delay.

Proof. One iteratively builds a Büchi game Gi(S) parametrized by increasing values of i.
A controller state of this game is defined by (U, d, X) where U is the set of states reached
by a correct sequence while d (defined when U 6= ∅) associates with every state s reached
by a faulty sequence a duration d(s) ≤ i + 1 since the occurrence of the earliest fault that
would lead to s, and X is defined as previously. As in G(S) the controller selects a subset
of observable actions letting the environment select an action among them. There is a single
winning condition X = ∅. Furthermore the controller has to avoid states with some d(s) =
i + 1 for which one artificially fix X to some non empty set and define themselves are their
single successors. The first i for which Gi(S) has a winning strategy is the minimal delay
for S and the winning strategy yields an active diagnoser with minimal delay. Observe that
since the minimal delay is bounded by 2O(n), in the worst case the final game has 2O(n

2)

states. �

5 Lower bounds

In this section, we establish that the active diagnoser built in the proof of Theorem 1 is
almost optimal w.r.t. the number of states and the delay before fault detection provided by
any diagnoser (both in 2O(n) for our construction). We remark that the lower bounds in this
section match those shown in [6], despite the extended capabilities of our diagnosers here.
The examples demonstrating the lower bounds are inspired by those in [6] but had to be
carefully adapted to deal with the capacity of our controllers to detect quiescence.

Definition 14 For an observation sequence σ, let us denote by U(σ) (uncertainty set) the set of
states that POCS can be in after observing σ.

In the figures that follow (see Figure 5 for an example), we annotate certain states with
[X], for some X ⊆ Σc. Remark that this annotation is used exclusively on states that are
reachable only without committing a fault. Let v be such a state. Then [X] is a shorthand
notation for saying that for every x ∈ X, v possesses an outgoing transition with x to some
special state z, which can go with either f or u to another special state z′, which in turn can
loop with any observable action. Thus, when a controller cannot exclude the possibility that
the system is currently in v, then it must disallow all actions in X, otherwise the controlled
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system may become non-diagnosable. We say also say for short that the controller will be
punished for X in v.

5.1 Size of minimal active-diagnoser

Theorem 3 (lower bound for active-diagnoser) For a fixed alphabet Σ = {a, b, c, d, u, f } there
exists a family (An)n≥1 of actively diagnosable POCS such that the size of An is in O(n) and the
LTS of any state-based active diagnoser C for An has at least 2n states.

· · ·

q0

r1 rn

qn

r0

a, b

b a, b

c, d
q

r
bc

d

d
a

a, b

f

a, b

· · ·l1l0 ln l
c

b
f

a a, b a, b

Figure 4: A POCS with Σo = {a, b, c, d}, Σc = {c, d}, Σ` = Idle = ∅.

Proof. The family of POCS (An)n≥1 is depicted in Figure 4. A possible active diagnoser
memorizes the last n observations. Before the nth observation, it allows both c and d. When n
observations have been memorized, the diagnoser allows c (resp. d) if the oldest memorized
observation is a (resp. b). It detects a fault when it observes b after either c or d. One deduces
the correctness of this diagnoser from the fact that no run can go from ln or rn to q with this
control.

Assume there exist an active diagnoser with fewer than 2n states. So there are two words
v, w ∈ {a, b}n such that after observing them the diagnoser is in the same state. Let i be
the first position on which v and w differ with v[i] = a and w[i] = b. Consider the cor-
rect run ρ = (q0v[i])i≤n(q0a)i−1qn and the faulty runs ρl = q0v[1]q0 . . . v[i− 1]q0 f l0v[i]l1v[i +
1] . . . v[n]ln−i+1a . . . aln and ρr = q0w[1]q0 . . . w[i − 1]q0 f l0w[i]r1w[i + 1] . . . w[n]rn−i+1a . . . arn.
The diagnoser is in the same state after these runs. If it always blocks c and d, the (possible)
fault is never detected. So consider the first instant when it allows one of these actions, say c
(resp. d). Then ρr (resp. ρl) and ρ can reach q and the fault will never be detected. Therefore,
such an active diagnoser cannot exist. �

Thus an active diagnoser with 2Ω(n) states may be required for a POCS of size n.

5.2 Languages with exponential minimal delay.

Theorem 4 There exists a family (An)n≥1 of actively diagnosable POCS such that the number of
states of An belongs to O(n) and the minimal delay of the language recognized by An is ≥ 2n + 2.

Proof. Consider the POCS of Figure 5.
After observing a, the current state is q in case of a faulty run; otherwise it belongs to

to {p, r0 . . . rn−1}. The sets of actions enabled from q, p, r0 . . . rn−1 are all equal to Γn. One
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Figure 5: A system whose delay is 2n + 2. The observable actions are Σo = {a, b, 0, . . . , n}, the
controllable actions Σc = {0, . . . , n}, and we denote Σi := {i, . . . , n} and Γi := {0, . . . , i}, Σ` =

Idle = ∅.

observes b if and only if the run reaches state t. So an active diagnoser must enforce either
(1) all the possible faulty runs to reach t while none of the correct runs reaches t or (2) vice
versa; but a straightforward examination shows that a correct run can not reach t. So the
active diagnoser has to obtain situation (1). To enforce such a situation, at some moment
the controller has to enforce a move via action n, as this is the only observation which
guarantees that a faulty run ends in t. On the other hand, since from states r0, . . . , rn action
n is punished, the diagnoser must first ensure that all possible correct runs are in state p.
Associate a counter count of n bits to the current uncertainty set of the diagnoser. Bit i is set
if the uncertainty set includes state ri. After the observation of a, all bits are set and so count
is equal to 2n − 1. The intermediate goal of the controller consists in resetting count to zero.

Consider a situation when bit i of count is set and all bits j with j < i are zero. Since
there is a possible correct run in ri, the diagnoser must forbid all actions in Σi+1 since they
would be punished. If the controller allows an action in Γi−1 the correct runs that are in state
rj with j ≥ i may stay in their state, so count will not decrease. If the controller only allows
action i, the correct runs in state ri must go to p, while the correct runs in p may go to any
rj with j < i, and the correct runs in rj with j > i stay in their state, thus decrementing count
by 1. So we have simultaneously established that there is a strategy that resets the count
after 2n − 1 observations and that it is the optimal strategy w.r.t. the delay. Afterwards the
controller only allows n, and then only allows b, observing δ if the actual run was correct
and b if the actual run was faulty. �

Thus an active diagnoser achieving delay 2Ω(n) may be required for a POCS of size n.
In Theorem 4, the POCS An has O(n) states and O(n2) transitions, seeing as the size of

the alphabet depends on n. Thus, strictly speaking, the size of An is quadratic. However,
this result can be improved to the case where the alphabet is independent of n while the
number of states remains in O(n), as shown by Theorem 5.

Theorem 5 There exists a family (An)n≥1 of actively diagnosable POCS such that the size of An

belongs to O(n) and the minimal delay of the language recognized by An is ≥ 2n + 2.
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Figure 6: An LTS A′n with Σo = Σc = {0, 1, a, b, c} with delay Ω(2n).

Proof. Consider the POCS of Figure 6, whose alphabet is Σ′ = {0, 1, a, b, c, d, f , u}, hence
independent of n.

Let An denote the system from Theorem 4 with variable-size alphabet Σ. Consider the
system A′n in Figure 6, which has O(n) states. We now prove that any controller performing
active diagnosis for A′n has a delay of Ω(2n).

1. Let us denote by Q the states of An. Then Q is a subset of the states in A′n. In Figure 6,
the states in Q are marked with a thick border. A′n works mostly like An, but with
observable letters encoded in unary. Let code(a) = a, code(b) = b, and code(i) = 1i0n−ic,
for i = 0, . . . , n. The reader can convince himself that, modulo this encoding, A′n
“simulates” An in the following sense: Let v, v′ ∈ Q and x an observable action in An.

17



Then there exists a sequence σ with PΣ(σ) = x and v σ
=⇒ v′ in An if and only if there

exists a sequence σ′ with PΣ′(σ
′) = code(x) such that v σ′

=⇒ v′ in A′n and moreover, σ is
faulty iff σ′ is faulty.

2. For any sequence σ such that {p, rk, q} ⊆ U(σ) for some k = 0, . . . , n− 1, we see that the
punishments on states p1, p′1, . . . , pn, p′n oblige the controller to enforce a valid encoding
of code(i), for some i = 0, . . . , n. Moreover, the punishment of 1 on r0 punishes code(i),
for i > k. Finally, the controller never gains any insight from trying to lead the system
into a deadlock because pj (resp. p′j) has the same available actions as qj (resp. q′j) for
all j = 1, . . . , n.

The facts proved in 1. and 2. imply that the optimal strategy of the controller is the same
as in An, modulo the encoding given by code, hence the minimal delay is Ω(2n). �

5.3 Diagnoser which guaranties minimal delay.

ds

C \ {cn}r1 r2 rn· · ·C \ {c2}

c1 c2
cn

b b b
Aq1 q2 A qn· · ·A

tC
a2 an

f
bf

· · ·
A A A A

p1 p2 pn t′

a1

f

C \ {c1}

Figure 7: A POCS An whose minimal-delay active diagnoser requires at least n! states. In
the figure, A := {a1, . . . , an}, C := {c1, . . . , cn}, Σo = A ∪ C ∪ {b, d}, Σc = C, Σ` = Idle = ∅.

Theorem 6 (minimal-delay diagnoser) There exists a family (An)n≥1 of f (n)-actively diagnos-
able POCS (for some function f ) with O(n) states such that the LTS of any state-based active diag-
noser C that achieves the minimal delay f (n) has at least n! states.

Proof. Consider the POCS of Figure 7. First we show that f (n) ≥ n + 3. Consider an
observed uncontrollable sequence an

1 b. It corresponds either to a correct run that is in state
t, or wlog to a run that started with f and is in state r1 (there may be other faulty runs
with the same observation). States t and r1 have the same set of enabled actions; therefore,
the diagnoser needs at least two additional observations to decide whether the run is faulty.
This provides the claimed lower bound for the minimal delay of the language recognized by
An .

Let us provide an active diagnoser that achieves delay n + 3. This diagnoser memorizes
the first n observations. If b occurs in these observations, then the active diagnoser immedi-
ately concludes that the run is faulty. If the (n + 1)-th observation is not b (i.e. some ak) then
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it immediately detects a fault. Otherwise after this occurrence of b, it successively checks
whether a fault has occurred just before any of the first n observations. Let us denote the
observations aα(1) . . . aα(n). To check whether a fault has occurred before aα(1), the diagnoser
only allows cα(1). The possible earliest faulty run must go to s, while the other possible faulty
runs either remain in their state (in case a fault occurred just before aα(i) with α(i) 6= α(1))
or also go to s (in the other case). So one observes cα(1) and then d if the actual run is this
earliest faulty run. Any other control would achieve a longer delay. So as long as the di-
agnoser does not observe d, it only allows cα(i), for i ranging from 2 to n. After observing
aα(1) . . . aα(n)cα(1) . . . cα(n)x with x 6= d, the diagnoser concludes that no fault has occurred. By
the previous reasoning, its delay is at worst n + 3.

Let us suppose that there exists an active diagnoser with fewer than n! states. Then there
exist two permutations α and β of {1, . . . , n} such that the diagnoser is in the same state
after observed sequences aα(1) . . . aα(n) and aβ(1) . . . aβ(n). Let i be the first position on which
α and β differ. Consider the correct run ρ ending in t after observation aα(1) . . . aα(n)b and
the faulty run ρα (resp. ρβ) ending in rα(i) (resp. rβ(i)). after observation aα(1) . . . aα(n)b (resp.
aβ(1) . . . aβ(n)b). The diagnoser is in the same state after these runs. In order to achieve the
minimal delay w.r.t. the first possible fault it has no other choice than only allowing cα(1)
and then for the second possible fault cα(2), etc. Thus the faulty run ρβ will not be detected
in at most n + 3 observations when observing aβ(1) . . . aβ(n)bcα(1) . . . cα(i). So the delay of this
active diagnoser is not minimal. �

Thus an active diagnoser with 2Ω(n log(n)) states may be required for a POCS of size n for
achieving minimal delay. As in Section 5.2, this result can be improved to an example whose
alphabet size is fixed.

Theorem 7 (minimal-delay diagnoser) There exists a family (An)n≥1 of f (n)-actively diagnos-
able POCS (for some function f ) of size O(n) such that the LTS of any state-based active diagnoser
C that achieves the minimal delay f (n) has at least n! states.

Proof. Let An denote the system from Theorem 6 with variable-size alphabet Σ. Consider
the system A′n in Figure 8, which has alphabet Σ′ = {0, 1, a, b, c, d, f , u} (independently of n)
and O(n) states. We now prove that any controller performing active diagnosis for A′n needs
Ω(n!) states.

1. Let us denote by Q the states of An. Then Q is a subset of the states in A′n. In Figure 8,
the states in Q are marked with a thick border. Moreover, some states in Figure 8 are
drawn with a light or a dark shade, and we call these sets Q1 and Q0, respectively.
Observe that all states of Q1 ∪Q0 can do an a, either punishing the controller or going
to a state in Q ∪ {o}. Moreover, states in Q1 can do 1, with a choice of going to a state
in Q1 or Q0, and states in Q0 will stay in Q0 with 0.

2. A′n works mostly likeAn, but with observable letters encoded in unary. For i = 1, . . . , n,
let code(ai) = 1i0n−ia, code(b) = b, code(ci) = 1i0n−ic, and code(d) = d. The reader
can convince himself that, modulo this encoding, A′n “simulates” An in the following
sense: Let v, v′ ∈ Q and x an observable action in An. Then there exists a sequence
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Figure 8: An LTS A′n with Σ′ = {0, 1, a, b, c, d, f , u}, Σ′o = Σ′c = {0, 1, a, b, c, d} and all actions
are eager (it is also possible to declare either f or u to be lazy, but not for both). . An LTS
A′n requires Ω(n!) states for optimal-delay diagnosis.

σ with PΣ(σ) = x and v σ
=⇒ v′ in An if and only if there exists a sequence σ′ with

PΣ′(σ
′) = code(x) such that v σ′

=⇒ v′ in A′n and moreover, σ is faulty iff σ′ is faulty.

Additionally, A′n has some behaviours that do not correspond to a valid encoding, but
as we shall see, such behaviours are either punishing (and must be avoided) or will lead
to an immediate diagnosis result (but cannot be enforced). Therefore, the strategy of
the controller is closely related to the strategy in An, and the minimal delay achievable
in A′n is the same as in An, modulo a factor of O(n) for the unary encoding.

We shall also see that the controller never benefits from blocking all available actions in
any state, so in the interest of delivering a diagnosis verdict as quickly as possible, the
controller should never attempt to induce a deadlock. (As a side effect, this makes A′n
also a valid example for the same lower bound in settings where inducing deadlocks
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is not permitted [6].)

3. We first prove (by induction of n) that after observing σ = code(ai1) · · · code(aik), for
0 ≤ k ≤ n, {pk+1, o} ⊂ U(σ) ⊆ {pk+1, q1, . . . , qn, o} (with pn+1 := t′), more precisely
U(ε) = {p1}, and U(σ) = {pi+1, qi1 , . . . , qik , o} otherwise. Certainly the claim holds for
k = 0 and σ = ε. Then, thanks to the simulation property mentioned above, it is easy
to see that the claim also holds for k > 0.

Additionally, let us show that for all k < n, the controller must admit code(ai) for any
i ∈ 1, . . . , n. To begin with, the possible actions in states {pi+1, qi1 , . . . , qik , o} are 0, 1, b,
and b is punished in pi+1, so the controller must disallow it. Action 0 is only possible in
state o, so seeing 0 would allow to conclude that no fault has happened (and none will
happen in the future), therefore blocking it is unproductive for the controller. However,
if A′n is in a state different from o and the controller blocks 1, then it will merely cause
a deadlock without gaining any information because the only unobservable moves are
with u and f from pi+1, and b remains punished. So the only reasonable course of
action for the controller is to allow 0, 1 and block b.

Let us assume that A′n is not in state o. Then our next observation is 1 and U(σ1) ⊆
Q1 ∪ Q0, including one of o1, o′1, which will punish a. The only allowable actions are
therefore 0, 1. Blocking either of them will merely introduce an unnecessary delay, e.g.,
blocking 1 but allowing 0 will either lead us to observing 0 or a deadlock; in the latter
case U(σ1) shrinks to a subset of Q1, but the only possibility to progress is to allow 1 in
the next move; the situation for 0 is symmetric. Thus, while 0, 1 are both controllable,
the controller has nothing to gain from exercising control over them.

This situation is repeated n times (with states from Q1 eventually excluded from the
uncertainty set after observing some 0). After n observations, the uncertainty set in-
cludes at least one of on, o′n. At this point 0, 1 are punished, so the controller must block
them and allow a. Note that whatever state of U(σ) the automaton was in initially, the
observation was of the form code(ai), for some ai ∈ A.

4. Now, let the sequence σ observed so far be code(aπ(1)) · · · code(aπ(n)), for some permu-
tation π, so U(σ) = {t′, o, q1, . . . , qn}. (Recall that a permutation is the worst case for
the controller, otherwise U(σ) will be smaller.) Since t′ punishes 1, the controller will
allow 0 and b, which allows to distinguish between o and the other states. In the first
case, as before, the controller can diagnose ‘no fault’ (for past and future), otherwise
U(σb) becomes {t, ri1 , . . . , qin}, as it would be in An for the observation ai1 · · · ain b.

5. At this point, the controller can, like in An, begin to successively eliminate states from
its uncertainty set. The punishments of c respectively 0, 1 in r1, . . . , rn, r′n force the
controller to admit some sequence code(ci), however this time the controller may freely
choose the value of i. In analogy to An, the controller’s best course of action to obtain
a minimal delay is to enforce code(cπ(1)) · · · code(cπ(n)), which concludes our proof of
the theorem.

�
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6 Conclusion

We have extended the scope of active diagnosis in two directions: (1) enlarging the behaviour
of the system with modalities for actions and (2) allowing the controller to observe quies-
cence of the system. We have addressed this problem by modeling it by a Büchi game
and obtained almost optimal decision and synthesis procedures. We plan to study other
extensions like action priorities and multiple faults. We also want to analyze the safe active
diagnosis introduced in a probabilistic framework [1], where the active diagnoser is required
to preserve correct behaviours as most as possible.
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