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Introduction.
“Diffusion-Driven Instability” found by A. M. Turing in 1952:

When two chemicals with different diffusion rates interact

and diffuse, the spatially homogeneous state may become

unstable, and as a result spatially nontrivial structure can

be formed autonomously.

Gierer and Meinhardt in 1972 developed Turing’s idea and

devised the following reaction-diffusion system which consists of

a slowly diffusing activator and a rapidly diffusing inhibitor in order

to simulate the transplantation experiment on hydra:
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activator vs inhibitor
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Activator-Inhibitor System with Different Sources ([GM])


∂a

∂t
= Da

∂2a

∂x2
− µa + cρ

a2

h
+ ρ0ρ

∂h

∂t
= Dh

∂2h

∂x2
− νh + c′ρ′a2

where Da, Dh, c, c′, ρ0 are positive constants; µ(x), ν(x), ρ(x), ρ′(x)
are positive functions. The unknowns a = a(x, t) and h = h(x, t)
denote the concentrations at point x and time t of chemicals called an

activator and an inhibitor, respectively. It is postulated that a change

in cells occurs at the place where the activator concentration is high.

Let’s take a look at two simulations.
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movie1: covergence to a steady-state

→ → →

→ → →
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movie2: covergence to a limit cycle (1/3)

→ → →
→

→ → →
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movie2: covergence to a limit cycle (2/3)

→ → →
→

→ → →
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movie2: covergence to a limit cycle (3/3)

→ → →
→

→ → →
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⋆ Ω is a bounded domain in Rn with smooth boundary ∂Ω; ν =
(ν1, . . . , νn) is the unit outer normal to ∂Ω.
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(GM)

∂A

∂t
= ε2ΛaA − µaA + ρa

Ap

Hq(1 + κAp)
+ σa in Ω,

τ
∂H

∂t
= DΛhH − µhH + ρh

Ar

Hs
+ σh in Ω,

BaA = BhH = 0, on ∂Ω

A(x, 0) = A0(x), H(x, 0) = H0(x) in Ω.

Λa =
∑n

i,j=1
∂

∂xi

(
d
(a)
ij

∂
∂xj

)
, Λh =

∑n
i,j=1

∂
∂xi

(
d
(h)
ij

∂
∂xj

)
,

Ba =
∑n

i,j=1 νid
(a)
ij

∂
∂xj

, Bh =
∑n

i,j=1 νjd
(h)
ij

∂
∂xj

.

⋆ Here, Λa and Λh are uniformly strongly elliptic operators in Ω.
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⋆ The coefficients ε, τ , D are positive constants，whereas κ is a

nonnegative constant.

⋆ The basic production terms σa = σa(x), σh = σh(x) are non-

negative, and the cross-reaction rates ρa = ρa(x,A,H), ρh =
ρh(x,A,H) are sufficiently smooth positive functions:

0 < ρa 6 Ca, 0 < ch 6 ρh 6 Ch for x ∈ Ω, A ∈ R, H ∈ R.

⋆ The decomposition rates µa = µa(x), µh = µh(x) are positive

functions: 0 < k
(a)
1 6 µa(x) 6 k

(a)
2 , 0 < k

(h)
1 6 µh(x) 6 k

(h)
2 .

⋆ The initial data u0(x), v0(x) are positive on Ω.
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The exponents p, q, r, s are assumed to satisfy

(A) p > 1, q > 0, r > 0, s > 0,
p − 1

q
<

r

s + 1
.
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Nullclines in the Case of Homogeneous Media

σa > 0, σh = 0 σa = σh = 0

f(A,H) = −A +
Ap

Hq
+ σa = 0, g(A,H) = −H +

Ar

Hs
+ σh = 0
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σa > 0. σh > 0 f(A,H) = −A+ Ap

Hq(1+κAp) +σa
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1. Existence of Solutions of the Initial-Boundary Value Problem

To begin with, let us summarize the known results on the existence of

solutions of the initial-boundary value problem (GM), to which many

people contributed:

• F. Rothe [Rf], K. Masuda and K. Takahashi [MT] in 1980’s

• M. Lin, S. Chen and Y. Qin [LCQ] in 1990’s

• W.-M. Ni, K. Suzuki and I.T. [NST], H. Jiang [J], K. Suzuki and

I.T. [ST] in 2000’s

In the following Theorems A–C, we assume

(1.1) p − 1 < r

in addition to (A).
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Theorem A. ([MT]+[LCQ]) If σa(x) ̸≡ 0, then the initial-

boundary value problem (GM) has a unique solution for all t > 0
and there exist positive constants ra, Ra, rh, Rh (ra < Ra,

rh < Rh) independent of the initial value (A0(x),H0(x)) such

that

ra 6 lim inf
t→+∞

min
x∈Ω

A(x, t) 6 lim sup
t→+∞

max
x∈Ω

A(x, t) 6 Ra,

rh 6 lim inf
t→+∞

min
x∈Ω

H(x, t) 6 lim sup
t→+∞

max
x∈Ω

H(x, t) 6 Rh.
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Theorem B. ([J], [ST]) If σa(x) ≡ 0 and σh(x) ̸≡ 0, then

there exist positive constants Ra, rh, Rh independent of the

initial value such that

e−k
(a)
2 t min

x∈Ω
A0(x) 6 min

x∈Ω
A(x, t) for all t > 0,

and lim sup
t→+∞

max
x∈Ω

A(x, t) 6 Ra,

rh 6 lim inf
t→+∞

min
x∈Ω

H(x, t) 6 lim sup
t→+∞

max
x∈Ω

H(x, t) 6 Rh.
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Theorem C. ([J], [ST]) If σa(x) ≡ 0 and σh(x) ≡ 0, then

there exist positive constants λ, µ depending only on p, q, r, s,

τ and a positive constant C depending on the initial value such

that
e−k

(a)
2 t min

x∈Ω
A0(x) 6 A(x, t) 6 Ceλt,

e−k
(h)
2 t/τ min

x∈Ω
H0(x) 6 H(x, t) 6 Ceµt

hold for all t > 0, x ∈ Ω.
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Results on the existence of global solutions appeared more than

twenty years ago; see, e.g., [Rf], [MT]. In particular, [MT] proved the

assertion of Theorem A under the condition (p − 1)/r < N/(N + 2).
It was [LCQ] that proved Theorem A, while Theorems B and C were

obtained recently by [J], [S], [ST].

On the other hand, in the case of p − 1 > r we have the

following result.

Proposition D. ([LCQ], [NST]) Assume that µa, µh, ρa, ρh are

all positive constants and σa(x) ≡ σh(x) ≡ 0. If

(1.2) p − 1 > r

then (GM) has solutions which blow up in finite time．
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The case p − 1 < r

Basic production terms Solutions

σa(x) ̸≡ 0 are ultimately uniformly bounded.
σa(x) ≡ 0, σh(x) ̸≡ 0 are ultimately uniformly bounded.
σa(x) ≡ 0, σh(x) ≡ 0 may become unbounded.

The case p − 1 > r

Some solutions blow up in finite time.

• p − 1 is the self-activation index of the activator, whereas

• r is the cross-activation index of the activator.
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Obviously, for the systematic study of global behavior of solutions

of (GM), it is important to know the behavior of solutions of the

following kinetic system:

(K)


du

dt
= −u +

up

vq
+ σa,

τ
dv

dt
= −v +

ur

vs
+ σh.

Here we assume that σa, σh are both nonnegative constants. In this

aspect, [NST] classified all the behavior of solution orbits in the case

of σa = 0 and σh = 0 The case σa > 0 is treated in an on-going

project [NS].
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2. Breakdown of Pattern Formation

In some numerical simulations, it is observed that a solution starting

from an almost uniform initial value develops localization in the activa-

tor concentration for a while, but it begins to oscillate and eventually

converges uniformly to the trivial state u ≡ 0. We call this kind of

phenomenon the collapse of patterns. In this section we would like

to understand the mechanism behind the collapse of patterns and to

know when it occurs. This section is based on the paper [ST4].

It is convenient to classify the basic production terms into four

cases:

Case I: σa ≡ σh ≡ 0; Case II: σa ≡ 0 and σh ̸≡ 0;

Case III: σa ̸≡ 0 and σh ̸≡ 0; Case IV: σa ̸≡ 0 and σh ≡ 0.
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movie3: collapse of patterns (1/3)

→ → → → →

→ → → → →

→ → → → →
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movie3: collapse of patterns (2/3)

→ → → → →

→ → → → →

→ → → → →
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movie3: collapse of patterns (3/3)

→ → → → →

→ → → → →

→ → → →
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Theorem 2.1. (Cases I and II) Assume that σa(x) ≡ 0. If

τ >
k

(h)
2 q

k
(a)
1 (p − 1)

, and(2.1) (
min
x∈Ω

H0(x)
)q

>
Ca(p − 1)

k
(a)
1 (p − 1) − k

(h)
2 q

τ

(
max
x∈Ω

A0(x)
)p−1

,(2.2)

then the solution (A(x, t), H(x, t)) of (GM) satisfies

0 < max
x∈Ω

A(x, t) 6 Ce−µ
(a)
1 t, max

x∈Ω
|H(x, t)−Σh,D(x)| 6 Ce−µ

(h)
1 t/τ ,

in which C is a positive constant depending on (A0(x),H0(x)), and

u = Σh,D(x) is the solution of the boundary value problem

(2.3) DΛhu − µhu + σh(x) = 0 (x ∈ Ω), Bhu = 0 (x ∈ ∂Ω).
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τ >
k

(h)
2 q

k
(a)
1 (p − 1)

Collapse occurs for initial data contained in the gray region.
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Theorem 2.2. (Case II) Assume that σa ≡ 0 and σh ̸≡ 0. Let

δh = minx∈Ω Σh,D(x), Γh = maxx∈Ω Σh,D(x). If the initial data

(A0(x),H0(x)) satisfies

min
{(

(δh/Γh)k
(h)
2 /k

(h)
1 min

x∈Ω
H0(x)

)q

,
(
δhk

(h)
1 /k

(h)
2

)q
}

>
Ca

k
(a)
1

(
max
x∈Ω

A0(x)
)p−1

,

then (A(x, t), H(x, t)) converges exponentially to (0, Σh,D(x)) uni-

formly on Ω as t → +∞.
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Theorem 2.3. (Almost decoupled stationary patterns) Assume

that σa(x) ̸≡ 0, σh(x) ̸≡ 0. Let minx∈Ω σa(x) > γa

(
maxx∈Ω σa(x)

)p

for some positive constant γa if 0 < r < 1. If maxx∈Ω σa(x) is suf-

ficiently small, then there exists a stationary solution (A∗(x),H∗(x))
of (GM) which satisfies

∥A∗ − Σa,ε∥∞ 6 C∥σa∥∞p
, ∥H∗ − Σh,D∥∞ 6 C∥σa∥∞r

,

where C is a positive constant and Σa,ε, Σh,D are solutions of

ε2ΛaΣa,ε − µaΣa,ε + σa = 0, and DΛhΣh,D − µhΣh,D + σh = 0

subject to the boundary conditions BaΣa,ε = 0, BhΣh,D = 0, respec-

tively. Furthermore, this stationary solution is asymptotically stable.
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To treat the case σa ̸≡ 0 and σh ̸≡ 0, we need an algebraic

observation: Consider the equation

−k
(a)
1 ξ +

Ca

(minx∈Ω Σh,D(x))q
ξp + ∥σa∥∞ = 0.

If ∥σa∥∞ > 0 is sufficiently small (depending on min Σh,D), then this

equation has exactly two positive roots 0 < κ∗ < K∗ and they satisfy

κ∗ =
∥σa∥∞
k

(a)
1

+ O(∥σa∥p
∞),

K∗ =

{
k

(a)
1 (minx∈Ω Σh,D(x))q

Ca

}1/(p−1)

− ∥σa∥∞(1 + o(1))

(p − 1)k(a)
1

as ∥σa∥∞ → 0.
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Theorem 2.4. (Case III) Under the same assumptions as in The-

orem 2.3, if the initial data (A0(x),H0(x)) satisfies

max
x∈Ω

A0(x) < K∗ and H0(x) > max
x∈Ω

Σh,D(x),

then

max
x∈Ω

(|A(x, t) − A∗(x)| + |H(x, t) − H∗(x)|) 6 Ce−γt

for all t > 0. Here, (A∗(x),H∗(x)) is the almost decoupled station-

ary pattern given by Theorem 2.3; C and γ are positive constants

depending also on (A0(x),H0(x)).
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Remarks.
(i) A precise definition of the almost decoupled pattern: A

stationary solution (A(x),H(x)) is called an almost decoupled pattern

if

− µa(x) + ρa(A(x),H(x), x)
A(x)p−1

H(x)q
< 0,

− µh(x) + ρh(A(x),H(x), x)
A(x)r

H(x)s+1
< 0

 for all x ∈ Ω.

(ii) If σa ̸≡ 0 and σh ≡ 0, then there is no almost decoupled

pattern. Hence, patterns never collapse in Case IV.
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(iii) In the case where σh(x) ̸≡ 0, the condition on the initial data

does not contain τ . On the other hand, we have

Lemma. Let σa(x) ≡ σh(x) ≡ 0. If a solution (A(x, t), H(x, t)) of

(GM) converges to (0, 0) as t → +∞ uniformly on Ω and satisfies

−µaA(x, t) + ρa
Ap

Hq
6 0 for all x ∈ Ω, t > 0,

then τ > [k(h)
1 q]/[k(a)

1 (p − 1)].

(iv) It was Professor Niro Yanagihara who, more than thirty years

ago, found a solution of (GM) such that u(x, t) → 0, v(x, t) → 0 as

t → +∞ in the case where both of ρa, ρh are constants, σa(x) ≡ 0,

σh(x) ≡ 0, κ = 0, and (p, q, r, s) = (2, 1, 2, 0).
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From a view point of the possibility of collapse, the results may

be summarized as in the table below:

Cases Basic production terms Collapse

Case I σa(x) ≡ 0, σh(x) ≡ 0 occurs for τ > q/(p − 1).

Case II σa(x) ≡ 0, σh(x) ̸≡ 0 occurs (for any τ > 0).

Case III σa(x) ̸≡ 0, σh(x) ̸≡ 0 occurs (if σa is small)
for any τ > 0.

Case IV σa(x) ̸≡ 0, σh(x) ≡ 0 never occurs.
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Activator-Inhibitor System with Different Sources

∂A

∂t
= ε2∆A − A +

A2

H
+ σa

τ
∂H

∂t
= D∆H − H + A2 + σh

∂A

∂ν
=

∂H

∂ν
= 0 on ∂Ω

A(x, 0) = A0(x), H(x, 0) = H0(x)

f(A, H) = −A +
A2

H
+ σa, g(A, H) = −H + A2 + σh.
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Inhibitor-Dominant Strips: a) Case I, b) Case III, c) Case II

n

a) b)

n

n

c1) c2)

n
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3. Possible Scenario.
Summing up, the breakdown of pattern formation seems to con-

tain the following three ingredients:

• Destabilization of the constant stationary solution by diffusion-

induced instability (Turing instability) — local property

• Existence of an unstable periodic solution (or a “spiral-out mech-

anism”) that amplifies disturbances — global property

• Existence of an (almost) decoupled stationary pattern

Or, more precisely, it is an orbit connecting the unstable constant

stationary solution with the almsot decoupled stationary pattern (in

the case σh ̸≡ 0).
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4. Idea of Proof. To prove the theorems we follow the approach

due to Wu and Li [WL] and make use of the following two lemmas:

Lemma 4.1. If H0(x) > Σh,D(x), then

H(x, t) > max{min
x∈Ω

H0(x)e−k
(h)
2 t/τ , Σh,D(x)}.

Lemma 4.2. Let w(t) = minx∈Ω H0(x)e−k
(h)
2 t/τ , and let U(t) be

the solution of the initial value problem

dU

dt
= −k

(a)
1 U + Ca

Up

w(t)q
+ ∥σa∥∞ (t > 0), U(0) = max

x∈Ω
A0(x).

Then A(x, t) 6 U(t) for all x ∈ Ω and t > 0 in the maximal existence

interval of U(t).
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