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Introduction.
“Diffusion-Driven Instability” found by A. M. Turing in 1952:

When two chemicals with different diffusion rates interact
and diffuse, the spatially homogeneous state may become

unstable, and as a result spatially nontrivial structure can

be formed autonomously.

Gierer and Meinhardt in 1972 developed Turing’s idea and
devised the following reaction-diffusion system which consists of
a slowly diffusing activator and a rapidly diffusing inhibitor in order

to simulate the transplantation experiment on hydra:
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Activator-Inhibitor System with Different Sources ([GM])
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where D, Dy, ¢, ¢, po are positive constants; u(x), v(x), p(x), p'(x)
are positive functions. The unknowns a = a(z,t) and h = h(x,t)
denote the concentrations at point x and time ¢ of chemicals called an
activator and an inhibitor, respectively. It is postulated that a change

in cells occurs at the place where the activator concentration is high.

Let's take a look at two simulations.



moviel: covergence to a steady-state
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movie2: covergence to a limit cycle (1/3)
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movie2: covergence to a limit cycle (2/3)
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movie2: covergence to a limit cycle (3/3)

t- 450467 t- 475117 t- 500250 t- 525383
umin - 1.11785¢-07 umin - 1.16909¢-07 umin - 891992008 umin - 1.08248e-07
vmin= 474433 vmin= 423791 vmin= 456878
umax- 143702 umax- 404248 x 364 umax- 154101
vmax= 118560 Vi 508496 vmax= 124362

t- 600300
umin = 101714e-07
in- 296213
179974
118252

t- 575167

vmax= 121802




oQ

* ) is a bounded domain in R™ with smooth boundary 0€2; v =

(1,...,Vy,) is the unit outer normal to 0f2.
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* Here, A, and Aj, are uniformly strongly elliptic operators in (2.




* The coefficients ¢, 7, D are positive constantsl] whereas k is a

nonnegative constant.

x The basic production terms o, = o4(x), on = on(x) are non-
negative, and the cross-reaction rates p, = pq(z, A, H), pp =

pn(z, A, H) are sufficiently smooth positive functions:

0<p,<Cs, 0<ch<pn<Cy forzeQ, AcR, HER.

x The decomposition rates g, = po(x), pp = pr(x) are positive
functions: 0 < k@ < g () < kéa), 0 < k%h) < pp(z) < kéh).

% The initial data ug(z), vo(x) are positive on €.



Introduction

The exponents p, q, r, s are assumed to satisfy

p—1 r
A >1,qg>0, r>0, s >0, — < :
(4) p>1,¢>0,r>0, s — <33




Nullclines in the Case of Homogeneous Media

o, >0, 04 =0
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1. Existence of Solutions of the Initial-Boundary Value Problem

To begin with, let us summarize the known results on the existence of
solutions of the initial-boundary value problem (GM), to which many

people contributed:
e F. Rothe [Rf]|, K. Masuda and K. Takahashi [MT] in 1980's

e M. Lin, S. Chen and Y. Qin [LCQ] in 1990’s
e W.-M. Ni, K. Suzuki and I.T. [NST], H. Jiang [J], K. Suzuki and
|.T. [ST] in 2000's

In the following Theorems A—C, we assume
(1.1) p—1<r

in addition to (A).



Existence and Boundedness of Solutions/Theorem A

Theorem A. ([MT]+[LCQ]) If o4(x) # O, then the initial-
boundary value problem (GM) has a unique solution for allt > 0
and there exist positive constants r,, Ry, mh, Rn (ra < Ra,
ry, < Ry ) independent of the initial value (Ag(x), Ho(x)) such
that
ro < liminf min A(x,t) < limsupmax A(x,t) < R,
t—=+00 2 t——+oo z€Q

rp, < liminf min H(z,t) < limsupmax H(z,t) < Ry.
t=400 2c t—+oo xeQ




Existence and Boundedness of Solutions /Theorem B

Theorem B. ([J], [ST]) If o4(x) = 0 and o, (x) # 0, then
there exist positive constants R,, r,, Ry independent of the

initial value such that

(a)
e %2 ' min Ay(x) < min A(z,t) for all t > 0,
r€Q TN

and limsupmax A(z,t) < Ry,
t——+oo xe)

rp, < liminf min H(z,t) < limsup max H (x,t) < Ry,.
t— 400 reQ t—+oco e




Existence and Boundedness of Solutions / Theorem C

Theorem C. ([J], [ST]) lIfou(x) = 0 and o (x) = 0, then
there exist positive constants A, u depending only on p, q, 7, s,
T and a positive constant C depending on the initial value such

that

(a)
e~ 'min Ag(x) < A(z,t) < Ce,
e

@
ek /T min Hy(z) < H(z,t) < CeH?
xel

hold for all t > 0, x € €.




Results on the existence of global solutions appeared more than
twenty years ago; see, e.g., [Rf], [MT]. In particular, [MT] proved the
assertion of Theorem A under the condition (p —1)/r < N/(N + 2).
It was [LCQ] that proved Theorem A, while Theorems B and C were
obtained recently by [J], [S], [ST].

On the other hand, in the case of p — 1 > r we have the
following result.

Proposition D. ([LCQ], [NST]) Assume that ji,, (th, Pa, Pr are

all positive constants and o,(x) = op(x) = 0. If

(1.2) p—1>r

then (GM) has solutions which blow up in finite timell



Existence and Boundedness of Solutions / Summary

Thecasep—1<r

Basic production terms

Solutions

gq(x) £ 0
oq(x) =0, op(x) Z0
oq(x) =0, op(z) =0

are ultimately uniformly bounded.
are ultimately uniformly bounded.
may become unbounded.

Thecase p—1>r

Some solutions blow up in finite time.

e p — 1 is the self-activation index of the activator, whereas

e 1 is the cross-activation index of the activator.




Obviously, for the systematic study of global behavior of solutions

of (GM), it is important to know the behavior of solutions of the

following kinetic system:

du_ uP

(K) E—— —|—v——|—0'aa
dv u”
TE g e

Here we assume that o,, o are both nonnegative constants. In this
aspect, [NST] classified all the behavior of solution orbits in the case

of 0, = 0 and o5, = 0 The case g, > 0 is treated in an on-going

project [NS].



2. Breakdown of Pattern Formation

In some numerical simulations, it is observed that a solution starting
from an almost uniform initial value develops localization in the activa-
tor concentration for a while, but it begins to oscillate and eventually
converges uniformly to the trivial state © = 0. We call this kind of
phenomenon the collapse of patterns. In this section we would like
to understand the mechanism behind the collapse of patterns and to
know when it occurs. This section is based on the paper [ST4].

It is convenient to classify the basic production terms into four
cases:

Casel: o,=0, =0: Case ll: 0, =0 and o, Z 0;

Case lll: 0, %20 and o5, 20; Case IV: g, #0 and o, = 0.



movie3: collapse of patterns (1/3)




movie3: collapse of patterns (2/3)




movie3: collapse of patterns (3/3)




Theorem 2.1. (Cases | and Il) Assume that o,(x) = 0. If
ks" g
By (p— 1)

q (p—1 p—1
(2.2) (migHMx)) p Calp = 1) o (macho(:I;)) :
e kga) (p . 1) . kQT q e

then the solution (A(x,t), H(x,t)) of (GM) satisfies

(2.1) 7 > , and

(a) (h)
0 < max A(x,t) < Ce " ' max|H(z,t)— Xy, p(z)] < CeHi' b
xgﬁ ZCE@

in which C is a positive constant depending on (Ag(x), Hy(x)), and

u = Xy, p(x) is the solution of the boundary value problem

(2.3) DApu—ppu+op(x) =0 (xe€Q), Bpru=0(xred).



Collapse occurs for initial data contained in the gray region.



Theorem 2.2. (Case IlI) Assume that o, = 0 and o, # 0. Let
0p = min__g Yrwp(z), T = max,_ g Ywp(x). If the initial data
(Ao(x), Ho(x)) satisfies

. q
min { ((5h/I’h)kéh)/’f§ : min Ho(x)> : (5hk§h)//€§h))q}

xel)

p—1
> Lo max Ag(x) :
k(a)
1

meﬁ

then (A(x,t), H(x,t)) converges exponentially to (0,X} p(x)) uni-

formly on Q as t — +oo0.



Theorem 2.3. (Almost decoupled stationary patterns) Assume
that o4(x) # 0, op(2x) # 0. Letmin g oq(x) > 7, (max_ g oa(7))”
for some positive constant v, if 0 < r < 1. Ifmax __qo.(x) is suf-

ficiently small, then there exists a stationary solution (A (x), H.(x))
of (GM) which satisfies

HA* - Za,,s

oo = CHUCL”oopa | Hy — Eh,DHoo < CHUaHoorv
where C is a positive constant and X, ., Xy, p are solutions of
82/1&2&,5 — ,uaﬂa,e + o0, =0, and DAhEh’D — ,uhEh’D + o5, =0

subject to the boundary conditions B, %, . = 0, By 2} p = 0, respec-

tively. Furthermore, this stationary solution is asymptotically stable.



To treat the case g, Z# 0 and o, % 0, we need an algebraic

observation: Consider the equation

C

(minweﬁ Eh,D (ZIZ‘))

_kga)g‘i‘ q€p+ ||‘7a”oo = 0.

If ||04]|occ > O is sufficiently small (depending on min X}, p), then this

equation has exactly two positive roots 0 < k, < K, and they satisfy

el
Ry = (a) +O(H0'aHgo)7
kl
a . 1/(p—1)
K. - {’f§ (min, Eh,mx))‘f}  loalloed + 0(1))
Ce (p— 1)k

as ||0a|lcoc — O.



Theorem 2.4. (Case Ill) Under the same assumptions as in The-
orem 2.3, if the initial data (Aq(x), Ho(x)) satisfies

max Ap(x) < K, and  Hy(z) > max X, p(x),
xe) x el

then

max(|A(z,t) — A.(2)| + [H(z,t) — Hi(z)]) < Ce™

xe)
for all t > 0. Here, (Ay(x),H.(x)) is the almost decoupled station-
ary pattern given by Theorem 2.3; C' and ~y are positive constants

depending also on (Ag(x), Ho(x)).



Remarks.

(i) A precise definition of the almost decoupled pattern: A
stationary solution (A(x), H(x)) is called an almost decoupled pattern
if

- ale) + pul ), H @), 0) ol <0,

() + pu(A), H ), ) o e < 0

s for all z € Q.

/

(ii) If o, £ 0 and o5, = 0, then there is no almost decoupled

pattern. Hence, patterns never collapse in Case IV.



(iii) In the case where o, (x) # 0, the condition on the initial data

does not contain 7. On the other hand, we have

Lemma. Let o,(z) = op(x) = 0. If a solution (A(x,t), H(x,t)) of
(GM) converges to (0,0) as t — -+oo uniformly on Q and satisfies
AP

— Az, t) + PaTrq <0 forall z€Q, t>0,

then 7 > [k q]/ [k (p — 1)].

(iv) It was Professor Niro Yanagihara who, more than thirty years
ago, found a solution of (GM) such that u(x,t) — 0, v(x,t) — 0 as
t — 400 in the case where both of p,, pn are constants, o,(x) = 0,
on(x) =0, k=0, and (p,q,7,s) = (2,1,2,0).



Collapse of Patterns / Remarks

From a view point of the possibility of collapse, the results may

be summarized as in the table below:

Cases Basic production terms Collapse

Case | go(x) =0, op(x) =0 | occurs for 7 > q/(p — 1).

Case Il go(x) =0, op(x) £0 | occurs (for any 7 > 0).

Case Il oq(x) Z0, op(x) 20 | occurs (if o, is small)
for any 7 > 0.

Case IV oo(x) Z0, op(x) =0 | never occurs.




Activator-Inhibitor System with Different Sources
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Inhibitor-Dominant Strips: a) Case |, b) Case lll, c¢) Case Il
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3. Possible Scenario.

Summing up, the breakdown of pattern formation seems to con-

tain the following three ingredients:

e Destabilization of the constant stationary solution by diffusion-
induced instability (Turing instability) — local property

e Existence of an unstable periodic solution (or a “spiral-out mech-
anism” ) that amplifies disturbances — global property

e Existence of an (almost) decoupled stationary pattern

Or, more precisely, it is an orbit connecting the unstable constant
stationary solution with the almsot decoupled stationary pattern (in

the case o}, £ 0).



4. ldea of Proof. To prove the theorems we follow the approach

due to Wu and Li [WL] and make use of the following two lemmas:
Lemma 4.1. /f Hy(z) > Xy p(x), then

_ k) t/T
H(x,t) > max{min Hy(x)e "2 , Yn.p(x)}.
x ()

Lemma 4.2. Let w(t) = min_ g Ho(x)e_kéh) /7 and let U(t) be
the solution of the initial value problem

dU (a)
dt . w(t)q HO H ( g ) ( ) :céaé{ 0($)
Then A(x,t) < U(t) forall z € Q and t > 0 in the maximal existence

interval of U(t).

p
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