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Purpose of this talk

Diffusion-driven instability

Turing’s idea(1952): “Diffusion-Driven Instability”

When two chemicals with different diffusion rates interact and dif-
fuse, the spatially homogeneous state may become unstable, as a
result spatially nontrivial structure can be formed autonomously.

Dissution Diffusion-Driven Instability

Questions

What kind of reaction should be considered?

What kind of spatially pattern is caused by the reaction?
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1D Gierer-Meinhardt system
Activator-inhibitor system with different sources

Gierer and Meinhardt in 1972 developed Turing ’s idea and
proposed a reaction-diffusion system in order to simulate the
transplantation experiment on hydra.

∂a
∂t
= ε2
∂2a

∂x2
− µa+ cρ

a2

h
+ ρ0ρ for 0 < x < l, t > 0,

∂h
∂t
= D
∂2h

∂x2
− νh+ c′ρ′a2 for 0 < x < l, t > 0.

ε, D, c, c′, ρ0 are positive constants;

µ(x), ν(x), ρ(x), ρ′(x) are positive functions;

a = a(x, t) and h = h(x, t): the concentrations at point x and time t of
chemicals called an activator and an inhibitor, respectively;
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It is suspected that the head-activating substance is present in
hydra as a gradient from the head to the foot, which is high in the
head, and low toward the food.
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Starting from almost homogeneous state, we would like to obtain a
strongly localized pattern of the activator concentration.
=⇒ Head regenerates in the region where the activator

concentration is high.
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Mechanism


∂a
∂t
= ε2
∂2a

∂x2
− µa+ cρ

a2

h
+ ρ0ρ,

∂h
∂t
= D
∂2h

∂x2
− νh+ c′ρ′a2.

Promotes 

the produc�on 

Self-enhancement 

Suppresses 

the produc�on

The inhibitor diffuses much faster than the activator;

The reaction terms have good relation;

We can obtain a pattern.
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∂a
∂t
= ε2
∂2a

∂x2
− µa+ cρ

a2

h
+ ρ0ρ for 0 < x < l, t > 0,

∂h
∂t
= D
∂2h

∂x2
− νh+ c′ρ′a2 for 0 < x < l, t > 0.
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It must depend on a choice of exponents and parameters to obtain
a typical pattern.
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∂A
∂t
= ε2
∂2A

∂x2
− A+

Ap

Hq + σa(x) for 0 < x < l, t > 0,

τ
∂H
∂t
= D
∂2H

∂x2
− H +

Ar

Hs + σh(x) for 0 < x < l, t > 0,

∂A
∂x

(0, t) =
∂A
∂x

(l, t) =
∂H
∂x

(0, t) =
∂H
∂x

(l, t) = 0 for t > 0.

(GM)

ε, τ, D are positive constants;

σa(x) ≥ 0, σh(x) ≥ 0: basic production terms;

p > 1, q > 0, r > 0, s≥ 0 satisfy 0 <
p− 1

r
<

q
s+ 1

.

K. Suzuki Steady-state patterns of the shadow system



. . . . . .

Introduction
Steady-state patterns for 1D shadow system

Remark

1D Gierer-Meinhardt system
Purpose of this talk

Purpose of this talk

We study the role of basic production terms σa(x) and σh(x).

the amount of the activator and the inhibitor produced by cells in a
unit time;

they are independent of the interaction;

1 The effect of basic production terms on the dynamics of (GM).
Collapse of patterns

σa(x) ≡ 0 =⇒ collapse of patterns occurs.

To avoid the collapse of patterns, is it sufficient to set σa(x) . 0?
No.

When σh(x) . 0, the collapse of patterns occurs in some sense.
The dynamics of (GM) becomes more complicated when
σh(x) . 0.
The simplest way to avoid the collapse of patterns is to take
σa(x) . 0 and σh(x) ≡ 0.
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2 The effect of basic production terms σa(x) and σh(x) on the
shape of stationary solutions.

We consider the stationary problem for 1D shadow system.
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Note H(x, t)→ ξ(t) as D→ +∞. The equation satisfied by the limit
(A(x, t), ξ(t)) is called the shadow system:

∂A
∂t
= ε2
∂2A

∂x2
− A+

Ap

ξq
+ σa(x) for 0 < x < l, t > 0,

τ
dξ
dt
= −ξ + 1

l

∫ l

0

Ar

ξs
dx+

1
l

∫ l

0
σh(x) dx for t > 0,

∂A
∂x

(0, t) =
∂A
∂x

(l, t) = 0, for t > 0,

(SS)
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Known results

When σh(x) ≡ 0 and σa is a nonnegative constant, there are
several results:

Existence of stationary solutions with boundary spikes
Takagi(1986), Lin-Ni-Takagi(1988), Ni-Takagi(1986, 1991,
1993, 1995), Wei(1997), Ni-Takagi-Yanagida(preprint),...

Stability
Nishiura(1994), Ni-Poláčik-Yanagida(2001), Miyamoto(2005),
Ni-Takagi-Yanagida(preprint),...

In 1D case, if σa(x) ≡ σh(x) ≡ 0, then for ε sufficiently small there
are no other stable stationary solutions except for constant solution
and monotone solutions.
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We consider the following:

the case where σa(x) and σh(x) are functions of x;

the existence of stationary solutions of (SS);

the influence of σa(x) and σh(x) upon the shape of stationary
solutions, especially solutions with boundary spike.
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Let (A(x), ξ) be a stationary solution of (SS). Put A(x) = ξq/(p−1)u(x).
The stationary problem for (SS) is equivalent to the following
problem:

ε2u′′ − u+ up + ξ−q/(p−1)σa(x) = 0, (1)

−1+
ξα

l

∫ l

0
ur dx+

1
ξ
σh = 0, (2)

u′(0) = u′(l) = 0, (3)

where

α =
qr

p− 1
− (s+ 1) > 0, σh =

1
l

∫ l

0
σh(x) dx.

Idea for existence of solutions to (1)–(3): the perturbation theory
K. Suzuki Steady-state patterns of the shadow system
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(2) =⇒

f (ξ) = ξ−α−1(ξ−σh) =
1
l

∫ l

0
ur dx

f (ξ) attains the maximum

Mα(σh) =
(
α
σh

)α · ( 1
α+1

)α+1

at ξ = σh(α + 1)/α.

The equation f (ξ) =
1
l

∫ l

0
ur dx has exactly two positive roots if

0 <
1
l

∫ l

0
ur dx< Mα(σh).
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The case where ξ is large

ε2u′′ − u+ up + ξ−q/(p−1)σa(x) = 0, (1)

−1+
ξα

l

∫ l

0
ur dx+

1
ξ
σh = 0, (2)

u′(0) = u′(l) = 0. (3)

Consider the perturbation theory for the boundary value problemε2u′′0 − u0 + up
0 = 0 for 0 < x < l,

u′0(0) = u′0(l) = 0,
(4)

(4) has a unique strictly decreasing solution for ε sufficiently small;

u0(εy)→ w(y) uniformly on [0, 1/ε] as ε ↓ 0.
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Here w is a solution ofw′′ − w+ wp = 0 and w > 0 for 0 < y < +∞,
w′(0) = 0, limy→+∞w(y) = 0.

w is unique and decays
exponentially as y ↑ +∞:
sup0<y<+∞ eyw(y) < +∞.

Let φ(y) be a solution ofΦ′′ − Φ + pwp−1Φ + pwp−1 = 0 for 0 < y < +∞,
Φ′(0) = 0, limy→+∞Φ(y) = 0.

the solution φ is unique.
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Theorem

Assume that (i) max0≤x≤lσa(x) > 0 and (ii) min0≤x≤lσa(x) > 0 if 0 < r < 1.
There exists an ε0 > 0 such that for each ε ∈ (0, ε0) (SS)has a pair of
stationary solutions (A1,ε, ξ1,ε) and (A2,ε, ξ2,ε) satisfying

A1,ε(x) = ξq/(p−1)
1,ε

{
w

(x
ε

)
+ o(1)

}
+ σa(x) + σa(0)Φ

(x
ε

)
+ o(1),

ξ1,ε =

{
ε

(
1
l

∫ ∞

0
w(z)r dz+ o(1)

)}−(p−1)/[qr−(p−1)(s+1)]

,

A2,ε(x) = ξq/(p−1)
2,ε

{
w

(
l − x
ε

)
+ o(1)

}
+ σa(x) + σa(l)Φ

(
l − x
ε

)
+ o(1),

ξ2,ε =

{
ε

(
1
l

∫ ∞

0
w(z)r dz+ o(1)

)}−(p−1)/[qr−(p−1)(s+1)]

,

as ε ↓ 0. Here, the terms o(1) are uniform in x ∈ [0, l].
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Stability of solutions with a boundary spike

Theorem

Let r = 2 and 1 < p < 5. For each α ∈ (0, α0) and ε ∈ (0, ε0) there
exist τ1 > 0 and τ2 such that

(i) if 0 < τ < τ1, then (A1,ε, ξ1,ε) is asymptotically stable, and if
0 < τ < τ2, then (A2,ε, ξ2,ε) is asymptotically stable.

(ii) (A1,ε, ξ1,ε) is unstable if τ > τ1 and (A2,ε, ξ2,ε) is unstable if
τ > τ2.

For a proof, we investigate the spectrum of the linearized operator

Lε,∞ =

 ε2 d2

dx2 − 1+ pξ−q
ε Aε(x)p−1 −qξ−(q+1)

ε Aε(x)p

τ−1rξ−s
ε

∫ l

0
Aε(x)r−1 · dx τ−1

(
−1− sξ−(s+1)

ε

∫ l

0
Aε(x)r dx

)  .
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The case where ξ ∼ σh

ε2u′′ − u+ up + ξ−q/(p−1)σa(x) = 0,

−1+
ξα

l

∫ l

0
ur dx+

1
ξ
σh = 0,

u′(0) = u′(l) = 0.

From (2) =⇒ 1
l

∫ l

0
ur dx∼ 0

We can find a solution in a neighborhood of u ≡ 0.
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Existence of minimal positive solution

GENERAL THEORY: There exists a κ∗ > 0 such that for 0 < κ < κ∗
a boundary value problemε2u′′ − u+ up + κσa(x) = 0,

u′(0) = u′(l) = 0.

has a minimal positive solution u(x; κ).

If κ is sufficiently small, we see the minimal solution satisfies

sup
0<x<l
|u(x; κ) − κΣa,ε(x)| ≤ Cκp,

where C > 0 is a constant and Σa,ε is the unique solution ofε2Σ′′a,ε − Σa,ε + κσa(x) = 0,

Σ′a,ε(0) = Σ′a,ε(l) = 0.
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Existence of minimal positive solution

Finding a solution of (1)–(3) is equivalent to finding a κ > 0
satisfying

κ = ξ−q/(p−1), (4)

f (ξ) =
1
l

∫ l

0
u(x; κ)r dx, (5)

where f (ξ) = ξ−α−1(ξ − σh).

(5) =⇒ 1
l

∫ l

0
u(x; κ)r dx≤ 1

l
κr

∫ l

0

{
Σa,ε(x) +O(κp−1)

}r
dx ≤ C0κ

r .

We see

f (κ−(p−1)/q) − 1
l

∫ l

0
u(x; κ)r dx> 0 if κ > 0 is sufficiently small.
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Existence of minimal positive solution

f (κ−(p−1)/q) − 1
l

∫ l

0
u(x; κ)r dx> 0

If σh is large, then there exists a root κ1 of the equation

f (κ−(p−1)/q) =
1
l

∫ l

0
u(x; κ)r dx.
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The case σa(x) ≥ 0 and σh(x) ≥ 0:

There exist stationary solutions with boundary spike.

The contribution of σa(x) is relatively small.

The minimal stationary solution can exist.

When σh(x) ≡ 0, it cannot exist.

Under certain condition, both stationary solutions can be stable.
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Assume σa(x) ≡ σh(x) ≡ 0:

ε2u′′ − u+ ρa(x)up = 0, (6)

−1+
ξα

l

∫ l

0
ρh(x)ur dx= 0, (7)

u′(0) = u′(l) = 0. (8)

Here the interaction coefficients ρa(x) and ρh(x) are continuous and
positive for 0 ≤ x ≤ l.
Least-energy solution: u(x) is a critical point corresponding to the
minimal positive critical value of the functional

Jε(v) =
∫ l

0

(
1
2

{
ε2(v′)2 + v2

}
− ρa(x)

p+ 1
vp+1
+

)
dx,

where v+(x) = max{v(x),0}.
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Known Results: Assume ρa(x) ≡ 1. the least-energy solution has a
boundary spike as ε ↓ 0.

Theorem

The least-energy solution (Aε(x), ξε) concentrates at a single point
in 0 ≤ x ≤ l:

(i) if max0≤x≤l ρa(x) > 2(p−1)/2 max{ρa(0), ρa(l)}, then Aε(x)
concentrates around the interior maximum point of ρa(x);

(ii) if max0≤x≤l ρa(x) < 2(p−1)/2 max{ρa(0), ρa(l)}, then Aε(x)
concentrates around the boundary point that attains
max{ρa(0), ρa(l)}.

See X. Ren(1993).
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The interior maximum need to be significantly larger than the
boundary value of the coefficient ρa(x) in order to generate a head
at an interior point.

K. Suzuki Steady-state patterns of the shadow system


	Introduction
	1D Gierer-Meinhardt system
	Purpose of this talk

	Steady-state patterns for 1D shadow system
	Shadow system
	Known results
	Main Results
	Summary

	Remark
	Least-energy solutions


