Steady-state patterns of the shadow system with nontrivial basic production terms

Kanako Suzuki¹ Izumi Takagi²

¹Institute for International Advanced Interdisciplinary Research, Tohoku University

²Mathematical Institute, Tohoku University

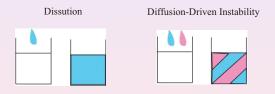
September 13, 2010

1D Gierer-Meinhardt system Purpose of this talk

Diffusion-driven instability

Turing's idea(1952): "Diffusion-Driven Instability"

When two chemicals with different diffusion rates interact and diffuse, the spatially homogeneous state may become unstable, as a result spatially nontrivial structure can be formed autonomously.



Questions

- What kind of reaction should be considered?
- What kind of spatially pattern is caused by the reaction?

1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system

Activator-inhibitor system with different sources

Gierer and Meinhardt in 1972 developed Turing 's idea and proposed a reaction-diffusion system in order to simulate the transplantation experiment on *hydra*.

$$\begin{cases} \frac{\partial a}{\partial t} = \varepsilon^2 \frac{\partial^2 a}{\partial x^2} - \mu a + c\rho \frac{a^2}{h} + \rho_0 \rho & \text{for } 0 < x < l, \ t > 0, \\ \frac{\partial h}{\partial t} = D \frac{\partial^2 h}{\partial x^2} - vh + c'\rho' a^2 & \text{for } 0 < x < l, \ t > 0. \end{cases}$$

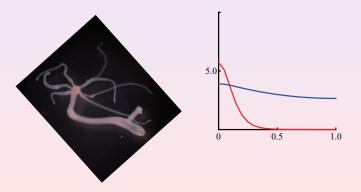
• ε , *D*, *c*, *c'*, ρ_0 are positive constants;

- $\mu(x)$, $\nu(x)$, $\rho(x)$, $\rho'(x)$ are positive functions;
- a = a(x, t) and h = h(x, t): the concentrations at point x and time t of chemicals called an activator and an inhibitor, respectively;

1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system

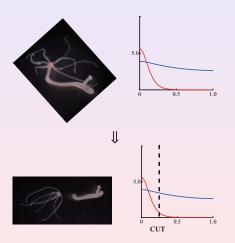
It is suspected that the head-activating substance is present in hydra as a gradient from the head to the foot, which is high in the head, and low toward the food.



.

1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system



イロト イロト イヨト イヨト

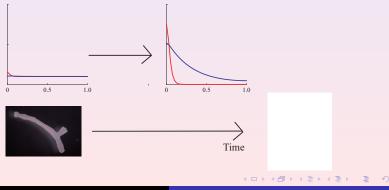
æ

1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system

Starting from almost homogeneous state, we would like to obtain a strongly localized pattern of the activator concentration.

Head regenerates in the region where the activator concentration is high.

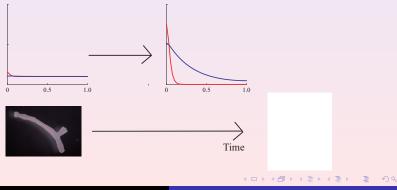


1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system

Starting from almost homogeneous state, we would like to obtain a strongly localized pattern of the activator concentration.

⇒ Head regenerates in the region where the activator concentration is high.

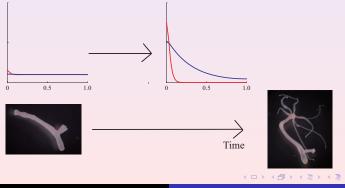


1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system

Starting from almost homogeneous state, we would like to obtain a strongly localized pattern of the activator concentration.

⇒ Head regenerates in the region where the activator concentration is high.



1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system Mechanism

 $\begin{cases} \frac{\partial a}{\partial t} = \varepsilon^2 \frac{\partial^2 a}{\partial x^2} - \mu a + c\rho \frac{a^2}{h} + \rho_0 \rho, \\ \frac{\partial h}{\partial t} = D \frac{\partial^2 h}{\partial x^2} - \nu h + c'\rho' a^2. \end{cases}$ Self-enhancement ρ_0 Suppresses the production h

The inhibitor diffuses much faster than the activator;

The reaction terms have good relation;

We can obtain a pattern.

1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system Mechanism

 $\begin{cases} \frac{\partial a}{\partial t} = \varepsilon^2 \frac{\partial^2 a}{\partial x^2} - \mu a + c\rho \frac{a^2}{h} + \rho_0 \rho, \\ \frac{\partial h}{\partial t} = D \frac{\partial^2 h}{\partial x^2} - \nu h + c'\rho' a^2. \end{cases}$ Self-enhancement ρ_0 Suppresses the production h

The inhibitor diffuses much faster than the activator;

The reaction terms have good relation;

We can obtain a pattern.

Introduction

Steady-state patterns for 1D shadow system Remark 1D Gierer-Meinhardt system Purpose of this talk

1D Gierer-Meinhardt system

$$\frac{\partial a}{\partial t} = \varepsilon^2 \frac{\partial^2 a}{\partial x^2} - \mu a + c\rho \frac{a^2}{h} + \rho_0 \rho \quad \text{for } 0 < x < l, \ t > 0,$$
$$\frac{\partial h}{\partial t} = D \frac{\partial^2 h}{\partial x^2} - \nu h + c'\rho' a^2 \quad \text{for } 0 < x < l, \ t > 0.$$

It must depend on a choice of exponents and parameters to obtain a typical pattern.

Introduction

1D Gierer-Meinhardt system Purpose of this talk

Steady-state patterns for 1D shadow system Remark

Generalized Gierer-Meinhardt system

$$\begin{cases} \frac{\partial A}{\partial t} = \varepsilon^2 \frac{\partial^2 A}{\partial x^2} - A + \frac{A^p}{H^q} + \sigma_a(x) & \text{for } 0 < x < l, \ t > 0, \\ \tau \frac{\partial H}{\partial t} = D \frac{\partial^2 H}{\partial x^2} - H + \frac{A^r}{H^s} + \sigma_h(x) & \text{for } 0 < x < l, \ t > 0, \\ \frac{\partial A}{\partial x}(0, t) = \frac{\partial A}{\partial x}(l, t) = \frac{\partial H}{\partial x}(0, t) = \frac{\partial H}{\partial x}(l, t) = 0 & \text{for } t > 0. \end{cases}$$
(GM)

 \bullet ε , τ , *D* are positive constants;

• $\sigma_a(x) \ge 0$, $\sigma_h(x) \ge 0$: basic production terms;

■
$$p > 1, q > 0, r > 0, s \ge 0$$
 satisfy $0 < \frac{p-1}{r} < \frac{q}{s+1}$.

1D Gierer-Meinhardt system Purpose of this talk

Purpose of this talk

We study the role of basic production terms $\sigma_a(x)$ and $\sigma_h(x)$.

- the amount of the activator and the inhibitor produced by cells in a unit time;
- they are independent of the interaction;
- The effect of basic production terms on the dynamics of (GM). Collapse of patterns
 - $\sigma_a(x) \equiv 0 \implies$ collapse of patterns occurs.

To avoid the collapse of patterns, is it sufficient to set $\sigma_a(x) \neq 0$? No.

When $\sigma_h(x) \neq 0$, the collapse of patterns occurs in some sense.

- The dynamics of (GM) becomes more complicated when $\sigma_h(x) \neq 0$.
- The simplest way to avoid the collapse of patterns is to take $\sigma_a(x) \neq 0$ and $\sigma_h(x) \equiv 0$.

1D Gierer-Meinhardt system Purpose of this talk

Purpose of this talk

We study the role of basic production terms $\sigma_a(x)$ and $\sigma_h(x)$.

- the amount of the activator and the inhibitor produced by cells in a unit time;
- they are independent of the interaction;
- 1 The effect of basic production terms on the dynamics of (GM). Collapse of patterns

• $\sigma_a(x) \equiv 0 \implies$ collapse of patterns occurs. To avoid the collapse of patterns, is it sufficient to set $\sigma_a(x) \neq 0$? No.

When $\sigma_h(x) \neq 0$, the collapse of patterns occurs in some sense.

- The dynamics of (GM) becomes more complicated when $\sigma_h(x) \neq 0$.
- The simplest way to avoid the collapse of patterns is to take $\sigma_a(x) \neq 0$ and $\sigma_h(x) \equiv 0$.

1D Gierer-Meinhardt system Purpose of this talk

Purpose of this talk

We study the role of basic production terms $\sigma_a(x)$ and $\sigma_h(x)$.

- the amount of the activator and the inhibitor produced by cells in a unit time;
- they are independent of the interaction;
- The effect of basic production terms on the dynamics of (GM). Collapse of patterns

• $\sigma_a(x) \equiv 0 \implies$ collapse of patterns occurs.

To avoid the collapse of patterns, is it sufficient to set $\sigma_a(x) \neq 0$?

No.

When $\sigma_h(x) \neq 0$, the collapse of patterns occurs in some sense.

- The dynamics of (GM) becomes more complicated when $\sigma_h(x) \neq 0$.
- The simplest way to avoid the collapse of patterns is to take $\sigma_a(x) \neq 0$ and $\sigma_h(x) \equiv 0$.

Introduction

Steady-state patterns for 1D shadow system Remark 1D Gierer-Meinhardt system Purpose of this talk

Purpose of this talk

2 The effect of basic production terms $\sigma_a(x)$ and $\sigma_h(x)$ on the shape of stationary solutions.

We consider the stationary problem for 1D shadow system.

Shadow system Known results Main Results Summary

1D shadow system

$$\begin{cases} \frac{\partial A}{\partial t} = \varepsilon^2 \frac{\partial^2 A}{\partial x^2} - A + \frac{A^p}{H^q} + \sigma_a(x) & \text{for } 0 < x < l, \ t > 0, \\ \tau \frac{\partial H}{\partial t} = D \frac{\partial^2 H}{\partial x^2} - H + \frac{A^r}{H^s} + \sigma_h(x) & \text{for } 0 < x < l, \ t > 0, \\ \frac{\partial A}{\partial x}(0, t) = \frac{\partial A}{\partial x}(l, t) = \frac{\partial H}{\partial x}(0, t) = \frac{\partial H}{\partial x}(l, t) = 0 & \text{for } t > 0. \end{cases}$$
(GM)

 \bullet ε , τ , *D* are positive constants;

• $\sigma_a(x) \ge 0$, $\sigma_h(x) \ge 0$: basic production terms;

■
$$p > 1, q > 0, r > 0, s \ge 0$$
 satisfy $0 < \frac{p-1}{r} < \frac{q}{s+1}$.

Ξ.

Shadow system Known results Main Results Summary

1D shadow system

Note $H(x, t) \rightarrow \xi(t)$ as $D \rightarrow +\infty$. The equation satisfied by the limit $(A(x, t), \xi(t))$ is called the *shadow system*:

$$\begin{cases} \frac{\partial A}{\partial t} = \varepsilon^2 \frac{\partial^2 A}{\partial x^2} - A + \frac{A^p}{\xi^q} + \sigma_a(x) & \text{for } 0 < x < l, \ t > 0, \\ \tau \frac{d\xi}{dt} = -\xi + \frac{1}{l} \int_0^l \frac{A^r}{\xi^s} dx + \frac{1}{l} \int_0^l \sigma_h(x) dx & \text{for } t > 0, \\ \frac{\partial A}{\partial x}(0, t) = \frac{\partial A}{\partial x}(l, t) = 0, & \text{for } t > 0, \end{cases}$$
(SS)

Shadow system Known results Main Results Summary

1D shadow system

Known results

When $\sigma_h(x) \equiv 0$ and σ_a is a nonnegative constant, there are several results:

Existence of stationary solutions with boundary spikes Takagi(1986), Lin-Ni-Takagi(1988), Ni-Takagi(1986, 1991, 1993, 1995), Wei(1997), Ni-Takagi-Yanagida(preprint),...

Stability

Nishiura(1994), Ni-Poláčik-Yanagida(2001), Miyamoto(2005), Ni-Takagi-Yanagida(preprint),...

In 1D case, if $\sigma_a(x) \equiv \sigma_h(x) \equiv 0$, then for ε sufficiently small there are no other stable stationary solutions except for constant solution and monotone solutions.

Shadow system Known results Main Results Summary

1D shadow system

Known results

When $\sigma_h(x) \equiv 0$ and σ_a is a nonnegative constant, there are several results:

Existence of stationary solutions with boundary spikes Takagi(1986), Lin-Ni-Takagi(1988), Ni-Takagi(1986, 1991, 1993, 1995), Wei(1997), Ni-Takagi-Yanagida(preprint),...

Stability

Nishiura(1994), Ni-Poláčik-Yanagida(2001), Miyamoto(2005), Ni-Takagi-Yanagida(preprint),...

In 1D case, if $\sigma_a(x) \equiv \sigma_h(x) \equiv 0$, then for ε sufficiently small there are no other stable stationary solutions except for constant solution and monotone solutions.

Shadow system Known results Main Results Summary

1D shadow system

We consider the following:

- the case where $\sigma_a(x)$ and $\sigma_h(x)$ are functions of *x*;
- the existence of stationary solutions of (SS);
- the influence of $\sigma_a(x)$ and $\sigma_h(x)$ upon the shape of stationary solutions, especially solutions with boundary spike.

Shadow system Known results Main Results Summary

1D shadow system

Let $(A(x), \xi)$ be a stationary solution of (SS). Put $A(x) = \xi^{q/(p-1)}u(x)$. The stationary problem for (SS) is equivalent to the following problem:

$$\varepsilon^2 u'' - u + u^p + \xi^{-q/(p-1)} \sigma_a(x) = 0,$$
(1)

$$-1 + \frac{\xi^{\alpha}}{l} \int_0^l u^r \, dx + \frac{1}{\xi} \overline{\sigma}_h = 0, \tag{2}$$

$$u'(0) = u'(l) = 0,$$
 (3)

where

$$\alpha = \frac{qr}{p-1} - (s+1) > 0, \quad \overline{\sigma}_h = \frac{1}{l} \int_0^l \sigma_h(x) \, dx.$$

Idea for existence of solutions to (1)-(3): the porturbation theory one

Shadow system Known results Main Results Summary

1D shadow system

Let $(A(x), \xi)$ be a stationary solution of (SS). Put $A(x) = \xi^{q/(p-1)}u(x)$. The stationary problem for (SS) is equivalent to the following problem:

$$\varepsilon^2 u'' - u + u^p + \xi^{-q/(p-1)} \sigma_a(x) = 0,$$
(1)

$$-1 + \frac{\xi^{\alpha}}{l} \int_0^l u^r \, dx + \frac{1}{\xi} \overline{\sigma}_h = 0, \tag{2}$$

$$u'(0) = u'(l) = 0,$$
 (3)

where

$$\alpha = \frac{qr}{p-1} - (s+1) > 0, \quad \overline{\sigma}_h = \frac{1}{l} \int_0^l \sigma_h(x) \, dx.$$

Idea for existence of solutions to (1)–(3): the perturbation theory = -> ⊲

Shadow system Known results Main Results Summary

 $f(\xi)$

 $M_{\alpha}(\sigma_h) \cdots \gamma$

1D shadow system Existence

(2)
$$\Longrightarrow$$

 $f(\xi) = \xi^{-\alpha - 1}(\xi - \overline{\sigma}_h) = \frac{1}{l} \int_0^l u^r \, dx$

 $f(\xi)$ attains the maximum

$$M_{\alpha}(\sigma_h) = \left(\frac{\alpha}{\overline{\sigma}_h}\right)^{\alpha} \cdot \left(\frac{1}{\alpha+1}\right)^{\alpha+1}$$

at $\xi = \overline{\sigma}_h(\alpha + 1)/\alpha$.

The equation $f(\xi) = \frac{1}{l} \int_0^l u^r dx$ has exactly two positive roots if $0 < \frac{1}{l} \int_0^l u^r \, dx < M_\alpha(\sigma_h).$

$$\overline{\sigma}_h$$
 ξ

Steady-state patterns of the shadow system

Shadow system Known results Main Results Summary

1D shadow system Existence

(2)
$$\Longrightarrow$$

 $f(\xi) = \xi^{-\alpha - 1}(\xi - \overline{\sigma}_h) = \frac{1}{l} \int_0^l u^r \, dx$

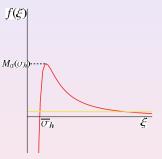
 $f(\xi)$ attains the maximum

$$M_{\alpha}(\sigma_h) = \left(\frac{\alpha}{\overline{\sigma}_h}\right)^{\alpha} \cdot \left(\frac{1}{\alpha+1}\right)^{\alpha+1}$$

at $\xi = \overline{\sigma}_h(\alpha + 1)/\alpha$.

The equation $f(\xi) = \frac{1}{l} \int_0^l u^r$ $0 < \frac{1}{2}$

$$dx$$
 has exactly two positive roots if
 $\int^{l} u^{r} dx < M_{\alpha}(\sigma_{h}).$



Shadow system Known results Main Results Summary

1D shadow system Existence of boundary spike

The case where ξ is large

$$\varepsilon^2 u'' - u + u^p + \xi^{-q/(p-1)} \sigma_a(x) = 0,$$
 (1)

$$-1 + \frac{\xi^{\alpha}}{l} \int_0^l u^r \, dx + \frac{1}{\xi} \overline{\sigma}_h = 0, \tag{2}$$

$$u'(0) = u'(l) = 0.$$
 (3)

Consider the perturbation theory for the boundary value problem

$$\begin{cases} \varepsilon^2 u_0'' - u_0 + u_0^p = 0 & \text{for } 0 < x < l, \\ u_0'(0) = u_0'(l) = 0, \end{cases}$$
(4)

(4) has a unique strictly decreasing solution for ε sufficiently small;
 u₀(εy) → w(y) uniformly on [0, 1/ε] as ε ↓ 0.

Shadow system Known results Main Results Summary

1D shadow system Existence of boundary spike

The case where ξ is large

$$\varepsilon^2 u'' - u + u^p + \xi^{-q/(p-1)} \sigma_a(x) = 0,$$
 (1)

$$-1 + \frac{\xi^{\alpha}}{l} \int_0^l u^r \, dx + \frac{1}{\xi} \overline{\sigma}_h = 0, \tag{2}$$

$$u'(0) = u'(l) = 0.$$
 (3)

Consider the perturbation theory for the boundary value problem

$$\begin{cases} \varepsilon^2 u_0'' - u_0 + u_0^p = 0 & \text{for } 0 < x < l, \\ u_0'(0) = u_0'(l) = 0, \end{cases}$$
(4)

(4) has a unique strictly decreasing solution for *ɛ* sufficiently small;

• $u_0(\varepsilon y) \to w(y)$ uniformly on $[0, 1/\varepsilon]$ as $\varepsilon \downarrow 0$.

Shadow system Known results Main Results Summary

1D shadow system Existence of boundary spike

Here *w* is a solution of $\begin{cases}
w'' - w + w^p = 0 \text{ and } w > 0 \text{ for } 0 < y < +\infty, \\
w'(0) = 0, \lim_{y \to +\infty} w(y) = 0.
\end{cases}$

■ *w* is unique and decays exponentially as $y \uparrow +\infty$: $\sup_{0 < y < +\infty} e^{y}w(y) < +\infty$.

Let $\phi(y)$ be a solution of

$$\begin{cases} \Phi^{\prime\prime} - \Phi + pw^{p-1}\Phi + pw^{p-1} = 0 & \text{for } 0 < y < +\infty, \\ \Phi^{\prime}(0) = 0, \quad \lim_{y \to +\infty} \Phi(y) = 0. \end{cases}$$

• the solution ϕ is unique.

Shadow system Known results Main Results Summary

1D shadow system Existence of boundary spike

Here *w* is a solution of $\begin{cases}
w'' - w + w^p = 0 \text{ and } w > 0 \text{ for } 0 < y < +\infty, \\
w'(0) = 0, \lim_{y \to +\infty} w(y) = 0.
\end{cases}$ w is unique and decays

exponentially as $y \uparrow +\infty$: $\sup_{0 < y < +\infty} e^{y}w(y) < +\infty$.

Let $\phi(y)$ be a solution of

$$\begin{cases} \Phi'' - \Phi + pw^{p-1}\Phi + pw^{p-1} = 0 & \text{for } 0 < y < +\infty, \\ \Phi'(0) = 0, & \lim_{y \to +\infty} \Phi(y) = 0. \end{cases}$$

• the solution ϕ is unique.

イロト イロト イヨト イヨト

Shadow system Known results Main Results Summary

1D shadow system

Theorem

Assume that (i) $\max_{0 \le x \le l} \sigma_a(x) > 0$ and (ii) $\min_{0 \le x \le l} \sigma_a(x) > 0$ if 0 < r < 1. There exists an $\varepsilon_0 > 0$ such that for each $\varepsilon \in (0, \varepsilon_0)$ (SS) has a pair of stationary solutions $(A_{1,\varepsilon}, \xi_{1,\varepsilon})$ and $(A_{2,\varepsilon}, \xi_{2,\varepsilon})$ satisfying

$$\begin{split} A_{1,\varepsilon}(x) &= \xi_{1,\varepsilon}^{q/(p-1)} \left\{ w\left(\frac{x}{\varepsilon}\right) + o(1) \right\} + \sigma_a(x) + \sigma_a(0) \Phi\left(\frac{x}{\varepsilon}\right) + o(1), \\ \xi_{1,\varepsilon} &= \left\{ \varepsilon \left(\frac{1}{l} \int_0^\infty w(z)^r \, dz + o(1) \right) \right\}^{-(p-1)/[qr-(p-1)(s+1)]}, \\ A_{2,\varepsilon}(x) &= \xi_{2,\varepsilon}^{q/(p-1)} \left\{ w\left(\frac{l-x}{\varepsilon}\right) + o(1) \right\} + \sigma_a(x) + \sigma_a(l) \Phi\left(\frac{l-x}{\varepsilon}\right) + o(1), \\ \xi_{2,\varepsilon} &= \left\{ \varepsilon \left(\frac{1}{l} \int_0^\infty w(z)^r \, dz + o(1) \right) \right\}^{-(p-1)/[qr-(p-1)(s+1)]}, \end{split}$$

as $\varepsilon \downarrow 0$. Here, the terms o(1) are uniform in $x \in [0, l]$.

Shadow system Known results Main Results Summary

1D shadow system Stability of solutions with a boundary spike

Theorem

Let r = 2 and $1 . For each <math>\alpha \in (0, \alpha_0)$ and $\varepsilon \in (0, \varepsilon_0)$ there exist $\tau_1 > 0$ and τ_2 such that

- (i) if $0 < \tau < \tau_1$, then $(A_{1,\varepsilon}, \xi_{1,\varepsilon})$ is asymptotically stable, and if $0 < \tau < \tau_2$, then $(A_{2,\varepsilon}, \xi_{2,\varepsilon})$ is asymptotically stable.
- (ii) $(A_{1,\varepsilon}, \xi_{1,\varepsilon})$ is unstable if $\tau > \tau_1$ and $(A_{2,\varepsilon}, \xi_{2,\varepsilon})$ is unstable if $\tau > \tau_2$.

For a proof, we investigate the spectrum of the linearized operator

$$\mathcal{L}_{\varepsilon,\infty} = \begin{pmatrix} \varepsilon^2 \frac{d^2}{dx^2} - 1 + p\xi_{\varepsilon}^{-q} A_{\varepsilon}(x)^{p-1} & -q\xi_{\varepsilon}^{-(q+1)} A_{\varepsilon}(x)^p \\ \tau^{-1} r\xi_{\varepsilon}^{-s} \int_0^l A_{\varepsilon}(x)^{r-1} \cdot dx & \tau^{-1} \left(-1 - s\xi_{\varepsilon}^{-(s+1)} \int_0^l A_{\varepsilon}(x)^r dx \right) \end{pmatrix}.$$

Shadow system Known results Main Results Summary

1D shadow system Existence of minimal positive solution

The case where $\xi \sim \overline{\sigma}_h$ $\varepsilon^2 u'' - u + u^p + \xi^{-q/(p-1)} \sigma_a(x) = 0,$ $-1 + \frac{\xi^{\alpha}}{l} \int_0^l u^r dx + \frac{1}{\xi} \overline{\sigma}_h = 0,$ u'(0) = u'(l) = 0. $f(\xi)$ $M_3(\sigma_h) \cdots$

From (2)
$$\implies \frac{1}{l} \int_0^l u^r dx \sim 0$$

We can find a solution in a neighborhood of $u \equiv 0$

< < >>

A B F A B F

Shadow system Known results Main Results Summary

1D shadow system Existence of minimal positive solution

 $f(\xi)$ The case where $\xi \sim \overline{\sigma}_h$ $M_{\alpha}(\sigma_h)$ $\varepsilon^2 u'' - u + u^p + \varepsilon^{-q/(p-1)} \sigma_q(x) = 0,$ $-1 + \frac{\xi^{\alpha}}{l} \int_{0}^{l} u^{r} dx + \frac{1}{\xi} \overline{\sigma}_{h} = 0,$ $\overline{\sigma}_h$ ξ u'(0) = u'(l) = 0.From (2) $\implies \frac{1}{l} \int_{0}^{l} u^{r} dx \sim 0$

We can find a solution in a neighborhood of $u \equiv 0$.

A B M A B M

Shadow system Known results Main Results Summary

1D shadow system Existence of minimal positive solution

The case where $\xi \sim \overline{\sigma}_h$ $\varepsilon^2 u'' - u + u^p + \xi^{-q/(p-1)} \sigma_a(x) = 0,$ $-1 + \frac{\xi^{\alpha}}{l} \int_0^l u^r dx + \frac{1}{\xi} \overline{\sigma}_h = 0,$ u'(0) = u'(l) = 0. $f(\xi)$ $M_3(\sigma_h) \cdots$ $\overline{\sigma}_h$

From (2)
$$\implies \frac{1}{l} \int_0^l u^r \, dx \sim 0$$

We can find a solution in a neighborhood of $u \equiv 0$.

Shadow system Known results Main Results Summary

1D shadow system

Existence of minimal positive solution

GENERAL THEORY: There exists a $\kappa_* > 0$ such that for $0 < \kappa < \kappa_*$ a boundary value problem

$$\begin{cases} \varepsilon^2 u^{\prime\prime} - u + u^p + \kappa \sigma_a(x) = 0, \\ u^{\prime}(0) = u^{\prime}(l) = 0. \end{cases}$$

has a minimal positive solution $u(x; \kappa)$.

If κ is sufficiently small, we see the minimal solution satisfies

 $\sup_{0 < x < l} |u(x; \kappa) - \kappa \Sigma_{a, \varepsilon}(x)| \le C \kappa^p,$

where C > 0 is a constant and $\Sigma_{a,\varepsilon}$ is the unique solution of

 $\begin{cases} \varepsilon^2 \Sigma_{a,\varepsilon}'' - \Sigma_{a,\varepsilon} + \kappa \sigma_a(x) = 0, \\ \Sigma_{a,\varepsilon}'(0) = \Sigma_{a,\varepsilon}'(l) = 0. \end{cases}$

Shadow system Known results Main Results Summary

1D shadow system

Existence of minimal positive solution

GENERAL THEORY: There exists a $\kappa_* > 0$ such that for $0 < \kappa < \kappa_*$ a boundary value problem

$$\begin{cases} \varepsilon^2 u^{\prime\prime} - u + u^p + \kappa \sigma_a(x) = 0, \\ u^{\prime}(0) = u^{\prime}(l) = 0. \end{cases}$$

has a minimal positive solution $u(x; \kappa)$.

If κ is sufficiently small, we see the minimal solution satisfies

$$\sup_{0 < x < l} |u(x; \kappa) - \kappa \Sigma_{a, \varepsilon}(x)| \le C \kappa^p,$$

where C > 0 is a constant and $\Sigma_{a,\varepsilon}$ is the unique solution of

$$\begin{cases} \varepsilon^2 \Sigma_{a,\varepsilon}^{\prime\prime} - \Sigma_{a,\varepsilon} + \kappa \sigma_a(x) = 0, \\ \Sigma_{a,\varepsilon}^{\prime}(0) = \Sigma_{a,\varepsilon}^{\prime}(l) = 0. \end{cases}$$

Shadow system Known results Main Results Summary

1-D Shadow system

Existence of minimal positive solution

Finding a solution of (1)–(3) is equivalent to finding a $\kappa > 0$ satisfying

$$\kappa = \xi^{-q/(p-1)},\tag{4}$$

$$f(\xi) = \frac{1}{l} \int_0^l u(x;\kappa)^r \, dx,\tag{5}$$

where $f(\xi) = \xi^{-\alpha - 1}(\xi - \overline{\sigma}_h)$. (5) $\Longrightarrow \frac{1}{l} \int_0^l u(x;\kappa)^r dx \le \frac{1}{l} \kappa^r \int_0^l \left\{ \Sigma_{a,\varepsilon}(x) + O(\kappa^{p-1}) \right\}^r dx \le C_0 \kappa^r$.

We see

$$f(\kappa^{-(p-1)/q}) - \frac{1}{l} \int_0^l u(x;\kappa)^r \, dx > 0 \quad \text{if } \kappa > 0 \text{ is sufficiently small.}$$

Shadow system Known results Main Results Summary

1-D Shadow system

Existence of minimal positive solution

Finding a solution of (1)–(3) is equivalent to finding a $\kappa > 0$ satisfying

$$\kappa = \xi^{-q/(p-1)},\tag{4}$$

$$f(\xi) = \frac{1}{l} \int_0^l u(x;\kappa)^r \, dx,\tag{5}$$

where $f(\xi) = \xi^{-\alpha - 1} (\xi - \overline{\sigma}_h)$.

(5)
$$\Longrightarrow \frac{1}{l} \int_0^l u(x;\kappa)^r dx \le \frac{1}{l} \kappa^r \int_0^l \left\{ \Sigma_{a,\varepsilon}(x) + O(\kappa^{p-1}) \right\}^r dx \le C_0 \kappa^r.$$

We see

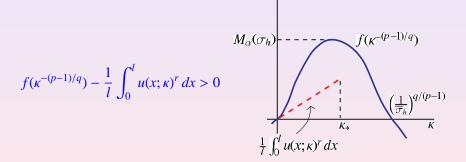
$$f(\kappa^{-(p-1)/q}) - \frac{1}{l} \int_0^l u(x;\kappa)^r \, dx > 0 \quad \text{if } \kappa > 0 \text{ is sufficiently small.}$$

э

Shadow system Known results Main Results Summary

1-D Shadow system

Existence of minimal positive solution



If $\overline{\sigma}_h$ is large, then there exists a root κ_1 of the equation

$$f(\kappa^{-(p-1)/q}) = \frac{1}{l} \int_0^l u(x;\kappa)^r \, dx.$$

.⊒ . ▶

Shadow system Known results Main Results Summary

1-D Shadow system

The case $\sigma_a(x) \ge 0$ and $\sigma_h(x) \ge 0$:

There exist stationary solutions with boundary spike.

The contribution of $\sigma_a(x)$ is relatively small.

The minimal stationary solution can exist.

When $\sigma_h(x) \equiv 0$, it cannot exist.

Under certain condition, both stationary solutions can be stable.

Shadow system Known results Main Results Summary

1-D Shadow system

The case $\sigma_a(x) \ge 0$ and $\sigma_h(x) \ge 0$:

There exist stationary solutions with boundary spike.

The contribution of $\sigma_a(x)$ is relatively small.

The minimal stationary solution can exist.

• When $\sigma_h(x) \equiv 0$, it cannot exist.

Under certain condition, both stationary solutions can be stable.

Shadow system Known results Main Results Summary

1-D Shadow system

The case $\sigma_a(x) \ge 0$ and $\sigma_h(x) \ge 0$:

There exist stationary solutions with boundary spike.

The contribution of $\sigma_a(x)$ is relatively small.

The minimal stationary solution can exist.

• When $\sigma_h(x) \equiv 0$, it cannot exist.

Under certain condition, both stationary solutions can be stable.

Least-energy solutions

1D shadow system

Least-energy solutions

Assume $\sigma_a(x) \equiv \sigma_h(x) \equiv 0$:

$$\varepsilon^2 u^{\prime\prime} - u + \rho_a(x)u^p = 0, \tag{6}$$

$$-1 + \frac{\xi^{\alpha}}{l} \int_{0}^{l} \rho_{h}(x) u^{r} dx = 0,$$
 (7)

$$u'(0) = u'(l) = 0.$$
 (8)

Here the interaction coefficients $\rho_a(x)$ and $\rho_h(x)$ are continuous and positive for $0 \le x \le l$.

Least-energy solution: u(x) is a critical point corresponding to the minimal positive critical value of the functional

$$J_{\varepsilon}(v) = \int_{0}^{l} \left(\frac{1}{2} \left\{ \varepsilon^{2} (v')^{2} + v^{2} \right\} - \frac{\rho_{a}(x)}{p+1} v_{+}^{p+1} \right) dx,$$

where $v_{+}(x) = \max\{v(x), 0\}$

Least-energy solutions

1D shadow system

Least-energy solutions

Assume $\sigma_a(x) \equiv \sigma_h(x) \equiv 0$:

$$\varepsilon^2 u^{\prime\prime} - u + \rho_a(x)u^p = 0, \tag{6}$$

$$-1 + \frac{\xi^{\alpha}}{l} \int_{0}^{l} \rho_{h}(x) u^{r} dx = 0,$$
 (7)

$$u'(0) = u'(l) = 0.$$
 (8)

Here the interaction coefficients $\rho_a(x)$ and $\rho_h(x)$ are continuous and positive for $0 \le x \le l$.

Least-energy solution: u(x) is a critical point corresponding to the minimal positive critical value of the functional

$$J_{\varepsilon}(v) = \int_0^l \left(\frac{1}{2} \left\{ \varepsilon^2 (v')^2 + v^2 \right\} - \frac{\rho_a(x)}{p+1} v_+^{p+1} \right) dx,$$

where $v_+(x) = \max\{v(x), 0\}$.

Least-energy solutions

1D shadow system

Least-energy solutions

Known Results: Assume $\rho_a(x) \equiv 1$. the least-energy solution has a boundary spike as $\varepsilon \downarrow 0$.

Theorem

The least-energy solution $(A_{\varepsilon}(x), \xi_{\varepsilon})$ concentrates at a single point in $0 \le x \le l$:

- (i) if $\max_{0 \le x \le l} \rho_a(x) > 2^{(p-1)/2} \max\{\rho_a(0), \rho_a(l)\}$, then $A_{\varepsilon}(x)$ concentrates around the interior maximum point of $\rho_a(x)$;
- (ii) if max_{0≤x≤l} ρ_a(x) < 2^{(p-1)/2} max{ρ_a(0), ρ_a(l)}, then A_ε(x) concentrates around the boundary point that attains max{ρ_a(0), ρ_a(l)}.

See X. Ren(1993).

Least-energy solutions

1D shadow system

Least-energy solutions

Known Results: Assume $\rho_a(x) \equiv 1$. the least-energy solution has a boundary spike as $\varepsilon \downarrow 0$.

Theorem

The least-energy solution $(A_{\varepsilon}(x), \xi_{\varepsilon})$ concentrates at a single point in $0 \le x \le l$:

- (i) if $\max_{0 \le x \le l} \rho_a(x) > 2^{(p-1)/2} \max\{\rho_a(0), \rho_a(l)\}$, then $A_{\varepsilon}(x)$ concentrates around the interior maximum point of $\rho_a(x)$;
- (ii) if max_{0≤x≤l} ρ_a(x) < 2^{(p-1)/2} max{ρ_a(0), ρ_a(l)}, then A_ε(x) concentrates around the boundary point that attains max{ρ_a(0), ρ_a(l)}.

See X. Ren(1993).

э.

Least-energy solutions

1D shadow system Least-energy solutions

The interior maximum need to be significantly larger than the boundary value of the coefficient $\rho_a(x)$ in order to generate a head at an interior point.

A (1) > A (2) > A (2) >