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A simple model for the sorting at the mound stage

• Two-dimensional model

• Propagation of cAMP along a train of spiral waves with
constant angular speed −ω0

• Two type of cells, both with positive chemotactic sensitivity
but different reaction strengths

• Continuos cell distribution in the whole plane with densities m
and n, m + n = N0

• Ω0: constant angular speed of cell rotation

• No influence of cell motion / differentiation on propagation of
the chemical signal

• Very thin action range of the chemical

Chemical waves with moderately increasing wavelength =⇒
Trapped cell states with most of the more sensitive cells in a
bounded region
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Model derivation from the assumptions

∂m
∂t + div(jm) = 0, ∂n

∂t + div(jn) = 0 with div(jm + jn) = 0

Fluxes: jm = −D∇m + m b + Jchem jn = −D∇n + n b− Jchem

b(x1, x2) = (−Ω0x2,Ω0x1)

Choice of a coordinate system rotating with the spiral wave
⇒ wave at rest & cell rotation at speed Ω := Ω0 + ω0

→ b(x1, x2) := (−Ωx2,Ωx1)
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Form of Jchem

Jchem = χ(m+, n+) δΓN = χ(m+,N0 −m+) δΓN with

• N = N(x): outer normal unit vector to the spiral at point
x ∈ Γ;

• δΓ: measure concentrated on the spiral Γ;

• χ(0, n) = χ(m, 0) = 0;

• (·)+ , (·)−: limit values from outer, inner side respectively.

Ansatz: χ(m, n) = Amn, A : Γ −→ R,

=⇒ ∂m

∂t
− D∆m + div(m b) + div(Am+(N −m+)δΓN) = 0

with (simplification) A = Const. < 0, |A| � 1.

In our first investigation Jchem = Am+δΓN
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The evolutive problem

Γ : ρ = ρ(θ)


∂m
∂t = D∆m − div(b(x)m) t > 0, x = (x1, x2) ∈ R2 \ Γ

m+ −m− = Am+ t > 0, x ∈ Γ
∂m
∂N

+ − ∂m
∂N

−
= Bm+ t > 0, x ∈ Γ

b(x) = (−Ωx2,Ωx1), Ω : angular speed

d

dt

(∫
R2\Γ

m(x , t)dx

)
= 0 ⇒ B =

A

D
b(x) ·N

Up to time-rescale D = 1 ⇒ B = Ab(x) ·N
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Stationary problem and its approximation


−∆m + div(b(x)m) = 0 x = (x1, x2) ∈ R2 \ Γ

m+ −m− = Am+ x ∈ Γ
∂m
∂N

+ − ∂m
∂N

−
= Bm+ x ∈ Γ

m > 0,
∫

R2 m(x) dx < ∞

Ω∂p
∂θ = ∂2p

∂ρ2 + 1
ρ

∂p
∂ρ + 1

ρ2
∂2p
∂θ2

ρ→∞
≈ Ω∂p

∂θ = ∂2p
∂ρ2

(
p(ρ, θ) := m(ρe iθ)

)


Ωpθ = pρρ (ρ, θ) ∈ S

p(ρ(θ), θ + 2π)− p(ρ(θ), θ) = Ap(ρ(θ), θ + 2π) θ ≥ 0

Second boundary condition in polar coordinates

S = {(θ, ρ) | θ > 0, max(ρ(θ − 2π), 0) < ρ < ρ(θ)} (polar domain)

p > 0,
∫
S p(ρ, θ) ρ dρ dθ < ∞
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Distributional formulation

A < 0, |A| � 1 & ρ(θ) = θ ⇒ ∃ positive solution p(ρ, θ)
θ→∞∼ e

Aθ
2π

Since now on ρ(θ) = θ

Distributional formulation of s.s. problem

−∆m + div(b(x)m) + div(Am+(x)δΓ(x)N(x)) = 0

Superposition principle ⇒

m(x) = C+A

∫
Γ
m+(y)∇yG (x , y)·N(y) dσ(y) , C ∈ R+, x 6∈ Γ

with
−∆xG + divx(b(x)G ) = δy (x) x ∈ R2 \ {y}
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Reduction to an integral equation

G (x , y) = H(x , y)− 1

2π
log ‖x − y‖+

1

2π
log ‖y‖

with ( q ∈ [1, 2) )

x 7→ H(x , y) ∈ W 2,q
loc (R2), and y 7→ ‖H(·, y)‖

W 2,q
loc
∈ C 0(R2)

y 7→ H(x , y) ∈ W 2,q
loc (R2), and x 7→ ‖H(x , ·)‖

W 2,q
loc
∈ C 0(R2)

m+(x) = C +
A

2
m+(x) + A

∫
Γ
m+(y)∇yG (x , y) ·N(y) dσ(y)

−→ Existence problem for this integral equation with

m+(θ cos θ, θ sin θ) ∼ e−µθ µ ∈
(

0,
|A|
2π

)
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Sometimes polar coordinates are better

G (ρ, θ;R, ξ) := G (ρe iθ,Re iξ) = −
χ[0,∞)(ρ− R)

2π
log
( ρ

R

)
+W (ρ, θ;R, ξ) ,

W (ρ, θ;R, ξ) =


∑

n∈Z\{0}
Kn(

√
iΩnR)e in(θ−ξ)

2π In(
√

iΩnρ) ρ ≤ R∑
n∈Z\{0}

In(
√

iΩnR)e in(θ−ξ)

2π Kn(
√

iΩnρ) ρ > R ,

In,Kn: modified Bessel functions of integer order n

m+(θ) = C +
A

2
m+(θ)+

A

2π

∫ θ
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∣∣∣
(θ,θ;ξ,ξ)

− 1
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∂W
∂ξ

∣∣∣
(θ,θ;ξ,ξ)

Formal computation:

m+(θ)
θ→∞∼ e−µθ ⇒

∫ ∞

0
fΓ(θ, ξ)m

+(ξ)dξ
θ→∞∼ e−µθ (µ > 0)
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Fundamental properties of the kernel fΓ

Xµ :=

{
λ ∈ C 0([0,∞))

∣∣ ‖λ‖µ := sup
θ≥0

|λ(θ)eµθ| < ∞

}
(µ > 0)

N. C. for existence of a solution in Xµ: C + A
2π

∫∞
0 m+(ξ)dξ = 0

Lemma:

• fΓ is regular outside {θ = ξ}, and fΓ(0, ξ) ≡ 0,

• ∃MΩ > 0 s.t. ∀µ ∈ (0,MΩ]

T : Xµ −→ Xµ

λ 7→ T (λ)(θ) :=
∫∞
0 fΓ(θ, ξ)λ(ξ)dξ

well defined, and T ∈ L(Xµ) with ‖T‖ ≤ CΩ

Consequences:
m+ > 0 ⇒ (1− A/2)m+(0) = C ⇒ C > 0

A
2π

∫∞
0 m+(ξ)dξ = −C ⇒ A < 0
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Statement of the main theorem

Let C = 1

Theorem: There exists AΩ > 0 s.t. for every A ∈ (−AΩ, 0) the
integral equation has a positive solution m+ ∈ Xµ(A) with

µ(A) ∈
(
0, |A|2π

)
Sketch of the Proof:
If m+ in Xµ with µ < |A|

π(2−A) ≤ MΩ ⇒ |A|
2π

∫∞
0 m+(ξ)dξ = 1, and

polar integral equation equivalent to{
m+(θ) = A

2 m+(θ)− A
2π

∫∞
θ m+(ξ)dξ + AT (m+)(θ) θ ≥ 0

|A|
2π

∫∞
0 m+(ξ)dξ = 1

Construction of sequence {λn}n∈N0 of approximate solutions:

λ0(θ) =
2

2− A
exp

(
− |A|θ

π(2− A)

)
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Sketch of the proof

{
λn+1(θ) = A

2 λn+1(θ)− A
2π

∫∞
θ λn+1(ξ)dξ + AT (λn)(θ) θ ≥ 0

|A|
2π

∫∞
0 λn+1(ξ)dξ = 1

Variation of constants formula: λn+1(θ) =

2
2−A

(
e−

|A|
π

θ
2−A − |A|T (λn)(θ) + |A|2

π(2−A)

∫ θ
0 T (λn)(σ)e

|A|
π

σ−θ
2−A dσ

)
∀n ∈ N0 : λn ∈ Xµ ⇒ λn+1 ∈ Xµ and

‖λn+1 − λn‖ ≤ 2|A|CΩ

2−A

(
1 + |A|

π(2−A)
1

|A|
π(2−A)

−µ

)
‖λn − λn−1‖

µ(fixed) < |A|
π(2−A) ⇒ λ0 ∈ Xµ and, up to choose AΩ smaller,

∀n ∈ N0 : λn ∈ Xµ and ‖λn+1−λn‖ ≤
1

2
‖λn−λn−1‖ (λ−1 := 0)

m+(θ) := lim
n→∞

λn
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