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MOTIVATION

• Famous Adler experiment for E. Coli

• Time scale is too short for cell multiplication

• Medium contains various nutrients

• Explain this pattern ; its asymmetry



METHOD

• The Keller-Segel model does not sustain such solutions

• Even the many variants introduced for other patterns

• Use improved K.-S. models from kinetic theory

• Based on refined experimental measurements on run-tumble

phenomena
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CHEMOTAXIS : Keller-Segel model

n(t, x) = density of cells at time t and position x,

c(t, x) = concentration of chemoattractant,

∂

∂t
n(t, x)− ∆n(t, x)︸ ︷︷ ︸

brownian motion

+ div(nχ∇c)︸ ︷︷ ︸
oriented drift

= 0,

τ
∂c

∂t
−∆c(t, x) + rc(t, x) = n(t, x),

The parameter χ is the sensitivity of cells to the chemoattractant.



CHEMOTAXIS : Keller-Segel model

Biologists and biomathematicians have proposed variants as Maini,

Murray, Budrene and Berg, Brenner et al...

∂n

∂t
= ∆n−∇ · (nχ∇c)

−∆c = nf − rc,
∂f

∂t
= −nf.

See analysis in Calvez and Perthame, BIT Num. Math 2006

These models do not exhibit robust Traveling Pulses



. From A. Marrocco (INRIA, BANG)



KINETIC MODELS

E. Coli is known (since the 80’s) to move by run and tumble
depending on the coordination of motors that control the flagella

See Alt, Dunbar, Othmer, Stevens, Hillen....



KINETIC MODELS

Denote by f(t, x, ξ) the density of cells moving with the velocity ξ.

∂

∂t
f(t, x, ξ) + ξ · ∇xf︸ ︷︷ ︸

run

= K[c, f ]︸ ︷︷ ︸
tumble

,

K[c, f ] =
∫
B
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
B
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
B
f(t, x, ξ)dξ,

• Various forms of the tumbling kernel have been proposed

• Most probably K only depends on ξ



KINETIC MODELS

Simplest example

∂

∂t
f(t, x, ξ) + ξ · ∇xf︸ ︷︷ ︸

run

= K[f ]︸ ︷︷ ︸
tumble

,

K[f ] =
∫
B
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
B
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
B
f(t, x, ξ)dξ,

K(c; ξ, ξ′) = k−(c(x− εξ′)) + k+(c(x+ εξ)).

Related to linear scatering with a changing background.



KINETIC MODELS

Theorem (Chalub, Markowich, P., Schmeiser)

For 0 ≤ k±(c; ξ, ξ′) ≤ C(1 + c), there is a GLOBAL solution to the

kinetic model and

‖f(t)‖L∞ ≤ C(t)[ ‖f0‖L1 + ‖f0‖L∞]

-) Situation better for a hyperbolic model !

-) Open question : Is it possible to prove a bound in L∞ when we

replace the specific form of K by

0 ≤ K(c; ξ, ξ′) ≤ ‖c(t)‖L∞loc
?

-) Related questions Internal variables (Erban, Othmer, Hwang,

Dolak, Schmeiser), quorum sensing, mesenchymal (Hillen)



KINETIC MODELS

Idea of the proof

Use dispersive effects and change of variable

ξ 7→ x− εξ = y



KINETIC MODELS

Another class of turning kernels

-) Hwang, Kang, Stevens : k
(
∇c(x− εξ′)

)
or k

(
∇c(x+ εξ)

)

k
(
∇c(x− εξ′)

)
+ k

(
∇c(x+ εξ)

)
.

Theorem (Bournaveas, Calvez, Gutierrez, P.)

For SMALL initial data, there is a GLOBAL solution.

Based on Strichartz inequalities

Blow-up

can occur with spherically symmetric data (Bournaveas, Calvez)

Numerics indicates different type of blow-up (Vauchelet)



KINETIC MODELS : diffusion limit

One can perform a parabolic rescaling based on the memory scale
K[f ] =

∫
K(c; ξ, ξ′)f ′dξ′ −

∫
K(c; ξ′, ξ)dξ′ f,

K(c; ξ, ξ′) = k−
(
c(x− εξ′)

)
+ k+

(
c(x+ εξ)

)
.


∂
∂tf(t, x, ξ) + ξ·∇xf

ε = K[c,f ]
ε2 ,

−∆c(t, x) = n(t, x) :=
∫
f(t, x, ξ)dξ.

Mathematical structure : K = symmetric + ε anti-symmetric



KINETIC MODELS : diffusion limit

Theorem (Chalub, Markowich, P., Schmeiser) With the same

assumptions, as ε→ 0, then locally in time,

fε(t, x, ξ)→ n(t, x), cε(t, x)→ c(t, x),


∂
∂tn(t, x)− div[D∇n(t, x)] + div(nχ∇c) = 0,

−∆c(t, x) = n(t, x).



KINETIC MODELS : diffusion limit

and the transport coefficients are given by

D(n, c) = D0
1

k−(c) + k+(c)
,

χ(n, c) = χ0
k′−(c) + k′+(c)

k−(c) + k+(c)
.

The drift (sensibility) term χ(n, c) comes from the memory term.

Interpretation in terms of random walk : memory is fundamental.



KINETIC MODELS : hyperbolic limit

Mathematical structure : K = symmetric + O(1) anti-symmetric.

Then the scaling is different
∂
∂tf(t, x, ξ) + ξ · ∇xf = K[c,f ]

ε ,

−∆c(t, x) = n(t, x) :=
∫
f(t, x, ξ)dξ.


∂
∂tn(t, x) + div[n U(c)] = 0,

−∆c(t, x) = n(t, x).



Pulse waves

Asymmetric pulse wave of E. Coli A. Buguin, P. Silberzan, J. Saragosti (Curie

Institute)



Pulse waves

                                                                  

When c increases, jumps are longer



Pulse waves

∂

∂t
f(t, x, ξ) + ξ · ∇xf =

∫
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
f(t, x, ξ)dξ,

This lead Dolak and Schmeiser to choose

K(c; ξ, ξ′) = k
(∂c
∂t

+ ξ.∇c
)
.

With (stiff response)

k(z) =


k− for z < 0,

k+ < k− for z > 0.

or k(·) a decreasing function



Pulse waves

The diffusion limit is the Flux Limited Keller-Segel system
∂
∂tn(t, x)−∆n(t, x) + div(nU) = 0,

U = χ(ct, cx) ∇c|∇c|

And the nonlinear sensitivity χ depends on k(·).

With a nutrient and a chemoattractant and in one dimension

u = χc
(
1− (ε

ct

cx
)2
)

+
sgn(cx) + χN

(
1− (ε

Nt

Nx
)2
)

+
sgn(Nx)

See also Bellomo, Bellouquid, Nieto and Soler



Pulse waves

Theorem There are asymmetric traveling pulses to the FLKS model

with

• stiff response

• both chemoattaction and nutrient.
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Conclusion

• Modulation of tumbling frequency arises by longer run with

increasing concentration attractant

• It was propsed (Dolak-Schmeiser) to include this effect in a kinetic

model

• This generates a (Flux Limited’ Keller-Segel system

• FLKS admits robust traveling pulses compatible with experiments


