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Introduction

We study the growth of a necrotic tumor in different
regimes of vascularisation.

The tumor consists of a core of death cells (necrotic core)
and a shell of life-proliferating cells surrounding the core
(surrounding shell).

The blood supply provides the nonnecrotic region with
nutrients.

The concentration of nutrient in the necrotic core is at a
constant level which cannot sustain cell proliferation.

The necrotic region is not vascularised.

Moreover, no inhibitor chemical species are present
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The tumor domain

Ω(t)

Γ1(t)

Γ2(t)

Ω(t)-the domain occupied by the nonnecrotic shell
Γ1(t)- outer boundary of the tumor
Γ2(t)- the interior boundary enclosing the necrotic core
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The mathematical model

The evolution of the tumor is described by the coupled problem:

∆ψ = ψ in Ω(t),

∆p = 0 in Ω(t),

ψ = G on Γ1(t),

ψ = G − ψ0 on Γ2(t),

p = κΓ1(t) − AG |x|
2

4 on Γ1(t),

p = κΓ2(t) − AG |x|
2

4 − ψ0 on Γ2(t),

Vi = ∂νiψ − ∂νi p − AG
νi · x

2
on Γi(t),

Ω(0) = Ω0,

(1)

for t ≥ 0 and i = 1,2.
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Parameter legend

ψ-the rate at which nutrient is added to Ω(t) over the Γ1(t)
by the vascularization
p-the pressure inside the tumor

νi -the restriction of the outward orientated normal at ∂Ω(t)
to Γi(t),
κΓi - the curvature of Γi(t)
Vi - the normal velocity of Γi

x-position vector in R2

G-the rate of mitosis
A-describes the balance between the rate of mitosis and
apoptosis
ψ0 > 0-corresponds to the nutrient concentration assumed
constant within the necrotic region
Ω0-the initial tumor domain.
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Radially symmetric stationary solutions
Theorem (J. Escher, B. Matioc & A. Matioc ’10)

Given (R1,R2) ∈ (0,∞)2 with R2 < R1, let ψc
0 be the constant

defined by ψc
0 :=

=
(b1/R1 − b2/R2) 1/R1+1/R2

ln(R1/R2)

K0(R1)(b1I1(R2)−b2I1(R1))+I0(R1)(b1K1(R2)−b2K1(R1))
I0(R1)K0(R2)−I0(R2)K0(R1) +

R2
1−R2

2
2R1R2 ln(R1/R2)

.

There exists A ∈ R and G ∈ R \ {0}, such that the annulus

A(R1,R2) := {x ∈ R2 : R2 < |x | < R1},

is a stationary solution of problem (1) provided ψ0 6= ψc
0.

Moreover, A and G are uniquely determined by R1,R2, and ψ0.
If G = 0, then problem (1) has no radially symmetric stationary
solutions.
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The case G = 0

The annulus A(R1,R2) centred in zero with radii R1 > R2,
is a stationary solution of system (1) iff

p′(Ri) = ψ′(Ri), i = 1,2,

where p is the solution of the problem
p′′ +

1
r

p′ = 0, R2 < r < R1,

p(R1) = R1
−1 − AGR2

1/4,

p(R2) = −R2
−1 − AGR2

2/4− ψ0,
(2)

when G = 0.
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p(r)

• Given G ∈ R, the solution of (2) is given by the relation
p(r) = aR1R2 ln(r) + bR1R2 , R2 ≤ |r | ≤ R1, with

aR1R2 =
R1
−1 + R2

−1 + AG
(
R2

2 − R2
1
)
/4 + ψ0

ln(R1/R2)
,

bR1R2 = R1
−1 − AGR2

1/4− aR1R2 ln(R1).

• Furthermore, ψ is the solution of the problem
ψ′′ +

1
r
ψ′ − ψ = 0, R2 < r < R1,

ψ(R1) = G,

ψ(R2) = G − ψ0,

(3)

when G = 0.
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ψ(r)

For fixed G ∈ R, the solution of (3) can be written as linear
combination of modified Bessel functions of first and second
kind

ψ = c1
R1R2

I0 + c2
R1R2

K0,

with scalars

c1
R1R2

=
GK0(R2) + (ψ0 −G)K0(R1)

I0(R1)K0(R2)− I0(R2)K0(R1)
,

c2
R1R2

=
−GI0(R2)− (ψ0 −G)I0(R1)

I0(R1)K0(R2)− I0(R2)K0(R1)
.
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NO rad. symm. stat. sol. for G = 0
Consequently, A(R1,R2) is a steady-state solution of (1)
when G = 0 if and only if

1
R1

+
1

R2
+ ψ0

ln(R1/R2)

1
Ri

= ψ0
K0(R1)I1(Ri) + I0(R1)K1(Ri)

I0(R1)K0(R2)− I0(R2)K0(R1)
, i = 1,2,

(4)

where we used the relations I′0 = I1 and K ′0 = −K1.

It follows then the system (4) has solutions (R1,R2) with
R1 > R2 exactly when

R2

R1
=

K0(R1)I1(R1) + I0(R1)K1(R1)

K0(R1)I1(R2) + I0(R1)K1(R2)
. (5)

We shown that equality holds in the relation above only
when R1 = R2 (contradiction).
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The case G 6= 0
In this case A(R1,R2) is a steady-state solution of (1) exactly
when

ψ′(Ri)− p′(Ri)− AG
Ri

2
= 0, i = 1,2.

⇔ c1
R1R2

I1(Ri)− c2
R1R2

K1(Ri)− aR1R2

1
Ri
− AG

Ri

2
= 0, i = 1,2,

⇔ aiG + biAG = ci , i = 1,2,with

ai :=
(K0(R2)− K0(R1))I1(Ri)− (I0(R1)− I0(R2))K1(Ri)

I0(R1)K0(R2)− I0(R2)K0(R1)
,

bi :=
R2

1 − R2
2

4 ln(R1/R2)

1
Ri
− Ri

2
,

ci := −ψ0
K0(R1)I1(Ri) + I0(R1)K1(Ri)

I0(R1)K0(R2)− I0(R2)K0(R1)
+

R1
−1 + R2

−1 + ψ0

ln(R1/R2)

1
Ri
.
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The case G 6= 0

Lemma
The system aiG + biAG = ci , i = 1,2, has a (unique) solution
(A,G) with G 6= 0 provided that

a1b2 − a2b1 6= 0, c1b2 − c2b1 6= 0,
and c1 6= 0 or c2 6= 0.

(6)

The computation done for the case G = 0 shows that c1
and c2 cannot be simultaneously zero when R2 < R1.

For fixed R1 > 0 we may see the expression a1b2 − a2b1
as a function of R2 ∈ (0,R1). This function is strictly
decreasing with respect to R2, thus a1b2 = a2b1 only when
R1 = R2.
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R1 R1

• •R2 R2
0 0

b1c2 = b2c1 if and only if ψ0 = ψc
0, where

ψc
0 :=

(b1/R1 − b2/R2) 1/R1+1/R2
ln(R1/R2)

K0(R1)(b1I1(R2)−b2I1(R1))+I0(R1)(b1K1(R2)−b2K1(R1))
I0(R1)K0(R2)−I0(R2)K0(R1) +

R2
1−R2

2
2R1R2 ln(R1/R2)

.

A(R1,R2) is a stationary solution of (1) if and only if ψ 6= ψc
0

and
A =

a1c2 − a2c1

c1b2 − c2b1
, G =

c1b2 − c2b1

a1b2 − a2b1
.
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The mathematical settings

We introduce first a parametrisation for the interfaces Γ1(t)
and Γ2(t),

Ω(ρ1, ρ2)

Γ(ρ1)

Γ(ρ2)

R2S

R1S

0.
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The mathematical settings
Let 0 < R2 < R1 be given and fix α ∈ (0,1).

We set V := {ρ ∈ h4+α(S) : ‖ρ‖C(S) < a}, where

a <
R1 − R2

R1 + R2
.

Each pair (ρ1, ρ2) ∈ V2 parametrises a C4+α-domain

Ω(ρ1, ρ2) :=
{

y ∈ R2 : R2(1 + ρ2 (y/|y |)) < |y | < R1(1 + ρ1 (y/|y |))
}
.

The condition on a ensures that the boundary portions of
Ω(ρ1, ρ2)

Γ(ρi) := {x : |x | = Ri(1 + ρi(x/|x |))},

i = 1,2, are disjoint for any choice of (ρ1, ρ2) ∈ V2.
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The mathematical settings
Γ(ρi) = Nρi

−1(0), where Nρi : R2 \ {0} → R, i = 1,2, are
defined by

Nρi (x) = |x | − Ri − Riρi (x/|x |) , x 6= 0.

The outward unit normal at ∂Ω(ρ1, ρ2) is given by

νρ1 =
∇Nρ1

|∇Nρ1 |
on Γ(ρ1), and νρ2 = − ∇Nρ2

|∇Nρ2 |
on Γ(ρ2).

If the function (ρ1, ρ2) : [0,T ]→ V2 describes the motion of
the tumor boundaries, then the normal velocity of both
boundary components in terms of ρi is given by the
formula

V1(t) = − ∂tNρ1

|∇Nρ1 |
on Γ(ρ1(t)), and V2(t) =

∂tNρ2

|∇Nρ2 |
on Γ(ρ2(t)).
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|∇Nρ1 |
on Γ(ρ1), and νρ2 = − ∇Nρ2

|∇Nρ2 |
on Γ(ρ2).

If the function (ρ1, ρ2) : [0,T ]→ V2 describes the motion of
the tumor boundaries, then the normal velocity of both
boundary components in terms of ρi is given by the
formula

V1(t) = − ∂tNρ1

|∇Nρ1 |
on Γ(ρ1(t)), and V2(t) =

∂tNρ2

|∇Nρ2 |
on Γ(ρ2(t)).
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The system of equations
∆ψ = ψ in Ω(ρ1, ρ2), t ≥ 0,

∆p = 0 in Ω(ρ1, ρ2), t ≥ 0,

ψ = G on Γ(ρ1), t ≥ 0,

ψ = G − ψ0 on Γ(ρ2), t ≥ 0,

p = κΓ(ρ1) − AG
|x |2

4
on Γ(ρ1), t ≥ 0,

p = κΓ(ρ2) − AG
|x |2

4
− ψ0 on Γ(ρ2), t ≥ 0,

∂tNρi = −〈∇ψ −∇p − AG
x
2
|∇Nρi 〉 on Γ(ρi), t > 0, i = 1,2,

ρ1(0) = ρ01,

ρ2(0) = ρ02,
(7)

with (ρ1(0), ρ2(0)) describing the initial shape of the tumor.
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The well-posedness result
Classical solution
A pair (ρ1, ρ2, ψ,p) is called classical solution of (1) on
[0,T ],T > 0, if

ρi ∈ C([0,T ],V) ∩ C1([0,T ],h1+α(S)), i = 1,2,

ψ(t , ·),p(t , ·) ∈ buc2+α(Ω(ρ1(t), ρ2(t))), t ∈ [0,T ],

and if (ρ1, ρ2, ψ,p) solves (7) pointwise.

Theorem (J. Escher, B. Matioc & A. Matioc ’10)

Let 0 < R2 < R1 and (A,G, ψ0) ∈ R3 be given. There exists an
open neighbourhood O ⊂ V such that for all (ρ1, ρ2) ∈ O2,
problem (7) possesses a unique classical solution defined on a
maximal time interval [0,T (ρ01, ρ02)) and which satisfies
(ρ1, ρ2)(t) ∈ O2 for all t ∈ [0,T (ρ01, ρ02)).
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The problem on the fixed domain

We transform the problem on the fixed domain
Ω := Ω(0,0), with boundary Γ1 := R1S and Γ2 := R2S.

R1S

0

R2S

Ω(ρ1, ρ2)Ω(0, 0)

Γ(ρ1)

Γ(ρ2)

Θρ1,ρ2

Θρ1,ρ2
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The problem on the fixed domain

Pick 0 < R2 < R1, (A,G, ψ0) ∈ R3, and α ∈ (0,1).

Given (ρ1, ρ2) ∈ V2, we define Θρ1,ρ2 : Ω→ Ω(ρ1, ρ2) by

Θρ1,ρ2(x) =
(R1 − |x |)R2(1 + ρ2(x/|x |))

R1 − R2

x
|x |

+

+
(|x | − R2)R1(1 + ρ1(x/|x |))

R1 − R2

x
|x |

for x ∈ Ω.

Θρ1,ρ2 ∈ Diff 4+α(Ω,Ω(ρ1, ρ2))
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The transformed operators
A(ρ1, ρ2) : buc2+α(Ω)→ bucα(Ω)

A(ρ1, ρ2)v := ∆(v ◦Θ−1
ρ1,ρ2

) ◦Θρ1,ρ2 .

Bi : V2 × (buc2+α(Ω))2 → h1+α(S)

Bi(ρ1, ρ2, v ,q) :=
1
Ri
Ci(ρ1, ρ2)v − 1

Ri
Ci(ρ1, ρ2)q −Di(ρ1, ρ2),

where for (ρ1, ρ2) ∈ V2 the linear operators Ci(ρ1, ρ2) ∈
L(buc2+α(Ω),h1+α(S)), i = 1,2, are given by

Ci(ρ1, ρ2)v(y) := 〈∇(v ◦Θ−1
ρ1,ρ2

)|∇Nρi 〉 ◦Θρ1,ρ2(Riy)

for v ∈ buc2+α(Ω) and y ∈ S. Moreover,

Di(ρ1, ρ2) := −AG
Ri
〈x
2
|∇Nρi 〉 ◦Θρ1,ρ2(Riy).
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The transformed problem

A(ρ1, ρ2)v = v in Ω, t ≥ 0,

A(ρ1, ρ2)q = 0 in Ω, t ≥ 0,

v = G on Γ1, t ≥ 0,

v = G − ψ0 on Γ2, t ≥ 0,

q = 1
R1
κ(ρ1)− AGR2

1
4 (1 + ρ1)2 on Γ1, t ≥ 0,

q = − 1
R2
κ(ρ2)− AGR2

2
4 (1 + ρ2)2 − ψ0 on Γ2, t ≥ 0,

∂tρi = Bi(ρ1, ρ2, v ,q) on S, t > 0,

ρ1(0) = ρ01,

ρ2(0) = ρ02,

(8)
where v := ψ ◦Θρ1,ρ2 , and q := p ◦Θρ1,ρ2 ,
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Solution operators
Lemma

Given (ρ1, ρ2) ∈ V2, we let T (ρ1, ρ2), S(ρ1, ρ2) ∈ buc2+α(Ω)
denote the unique solution of the Dirichlet problem

A(ρ1, ρ2)v = v in Ω,

v = G on Γ1,

v = G − ψ0 on Γ2,

and
A(ρ1, ρ2)q = 0 in Ω,

q = 1
R1
κ(ρ1)− AGR2

1
4 (1 + ρ1)2 on Γ1,

q = − 1
R2
κ(ρ2)− AGR2

2
4 (1 + ρ2)2 − ψ0 on Γ2,

respectively. The operators T and S depend analytically on
(ρ1, ρ2).
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The evolution equation
The system (8) reduces to the following evolution equation

∂tX = Φ(X ) X (0) = X0, (9)

where X := (ρ1, ρ2), X0 := (ρ01, ρ02), and Φ := (Φ1,Φ2).

The components of the nonlocal and nonlinear operator Φ
are defined as follows

Φi(ρ1, ρ2) := Bi(ρi , T (ρ1, ρ2),S(ρ1, ρ2)), i = 1,2.

In order to prove well-posedness of problem (9) it suffices
to show that

∂Φ(0) =

[
∂ρ1Φ1(0) ∂ρ2Φ1(0)

∂ρ1Φ2(0) ∂ρ2Φ2(0)

]
generates a strongly continuous and analytic semigroup.
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Theorem

The operator Φ is analytic, i.e. Φ ∈ Cω(V2, (h1+α(S))2). The
Fréchet derivative ∂Φ(0), seen as an unbounded operator in
(h1+α(S))2 with domain (h4+α(S))2 generates a strongly
continuous and analytic semigroup in L((h1+α(S))2), i.e.

−∂Φ(0) ∈ H((h4+α(S))2, (h1+α(S))2).

Proof
∂ρ1Φ1(0)[ρ1] = A11 + B11, where

B11 ∈ L(h2+α(S),h1+α(S))

A11ρ1 :=
1

R2
1

C1(0)(∆, tr1, tr2)−1(0, ρ′′1,0), ∀ρ1 ∈ h4+α(S)

A11ρ1(y) = − 1
R3

1

∑
m∈Z\{0}

R|m|1 R−|m|2 + R−|m|1 R|m|2

R|m|1 R−|m|2 − R−|m|1 R|m|2

|m|3ρ̂1(m)ym,

for ρ1(y) =
∑

m ρ̂1(m)ym.
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∂ρ2Φ1(0) = A12 + B12, where

B12 ∈ L(h2+α(S),h1+α(S))

A12ρ2 := − 1
R1R2

C1(0)(∆, tr1, tr2)−1(0,0, ρ′′2) ∀ρ2 ∈ h4+α(S)

A12ρ2(y) = − 1
R2

1R2

∑
m∈Z\{0}

2

R|m|1 R−|m|2 − R−|m|1 R|m|2

|m|3ρ̂2(m)ym,

provided that ρ2 =
∑

m∈Z ρ̂2(m)ym.

∂ρ2Φ2(0) = A22 + B22, with

B22 ∈ L(h2+α(S),h1+α(S))

A22ρ2 := − 1
R2

2
C2(0)(∆, tr1, tr2)−1(0,0, ρ′′2) ∀ρ2 ∈ h4+α(S)

A22ρ2(y) = − 1
R3

2

∑
m∈Z\{0}

R|m|1 R−|m|2 + R−|m|1 R|m|2

R|m|1 R−|m|2 − R−|m|1 R|m|2

|m|3ρ̂2(m)ym,
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∂ρ1Φ2(0) = A21 + B21, where

B21 ∈ L(h2+α(S),h1+α(S))

A21ρ1 :=
1

R1R2
C2(0)(∆, tr1, tr2)−1(0, ρ′′1,0) ∀ρ2 ∈ h4+α(S)

A21ρ1(y) = − 1
R1R2

2

∑
m∈Z\{0}

2

R|m|1 R−|m|2 − R−|m|1 R|m|2

|m|3ρ̂1(m)ym,

for all functions ρ1 =
∑

m∈Z ρ̂1(m)ym in h4+α(S).

The operators Aij ,1 ≤ i , j ≤ 2, found above are all Fourier
multipliers, since they are of the form∑

m∈Z
ρ̂(m)ym 7→

∑
m∈Z

Mk ρ̂(m)ym

with symbol (Mk )k∈Z ⊂ C.
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The matrix ∂Φ(0) is a generator

−Aii ∈ H(h4+α(S),h1+α(S)), i = 1,2.

A12,A21 ∈ L(h2+α(S)).

h2+α(S) = (h1+α(S),h4+α(S))1/3.

−∂ρi Φi(0) ∈ H(h4+α(S),h1+α(S)), i = 1,2,

while the elements on the secondary diagonal belong to
L(h2+α(S),h1+α(S)), and having thus lower order.

Thus the matrix

∂Φ(0) =

[
∂ρ1Φ1(0) ∂ρ2Φ1(0)

∂ρ1Φ2(0) ∂ρ2Φ2(0)

]

generates a strongly continuous and analytic semigroup, which
completes the proof.
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Anca-Voichiţa Matioc Analysis of a necrotic tumor growth model 29 / 31



The model The radially symmetric case The moving boundary problem Conclusions

The matrix ∂Φ(0) is a generator

−Aii ∈ H(h4+α(S),h1+α(S)), i = 1,2.

A12,A21 ∈ L(h2+α(S)).

h2+α(S) = (h1+α(S),h4+α(S))1/3.

−∂ρi Φi(0) ∈ H(h4+α(S),h1+α(S)), i = 1,2,

while the elements on the secondary diagonal belong to
L(h2+α(S),h1+α(S)), and having thus lower order.

Thus the matrix

∂Φ(0) =

[
∂ρ1Φ1(0) ∂ρ2Φ1(0)

∂ρ1Φ2(0) ∂ρ2Φ2(0)

]

generates a strongly continuous and analytic semigroup, which
completes the proof.
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−Aii ∈ H(h4+α(S),h1+α(S)), i = 1,2.

A12,A21 ∈ L(h2+α(S)).

h2+α(S) = (h1+α(S),h4+α(S))1/3.

−∂ρi Φi(0) ∈ H(h4+α(S),h1+α(S)), i = 1,2,

while the elements on the secondary diagonal belong to
L(h2+α(S),h1+α(S)), and having thus lower order.

Thus the matrix

∂Φ(0) =

[
∂ρ1Φ1(0) ∂ρ2Φ1(0)

∂ρ1Φ2(0) ∂ρ2Φ2(0)

]

generates a strongly continuous and analytic semigroup, which
completes the proof.
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Conclusions

We study a model describing the growth of necrotic tumors
in different regimes of vascularisation.

We determine all radially symmetric stationary solutions
and reduce the moving boundary problem into a nonlinear
evolution equation for the functions parameterising the
boundaries of the shell.

Parabolic theory provides a suitable context for proving
local well-posedness of the problem for small initial data.
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