The radially symmetric case

The moving boundary problem

Conclusions

Analysis of a mathematical model describing necrotic tumor growth

(joint work with J. Escher and B. Matioc)

Anca-Voichiţa Matioc

Institute for Applied Mathematics Leibniz University Hanover

PDE's in Mathematical Biology

Bedlewo, September 12-17, 2010

The radially symmetric case

The moving boundary problem

Conclusions

Outline

- Motivation
- The mathematical model
- 2 The radially symmetric case
 - Radially symmetric stationary solutions
- 3 The moving boundary problem
 - The well-posedness result
 - The transformed problem

The	model
•oc	0

The moving boundary problem

Conclusions

Introduction

 We study the growth of a necrotic tumor in different regimes of vascularisation.

Т	he	m	od	el
0	OC			

Conclusions

- We study the growth of a necrotic tumor in different regimes of vascularisation.
- The tumor consists of a core of death cells (necrotic core) and a shell of life-proliferating cells surrounding the core (surrounding shell).

Т	he	moo	del
0	OC		

Conclusions

- We study the growth of a necrotic tumor in different regimes of vascularisation.
- The tumor consists of a core of death cells (necrotic core) and a shell of life-proliferating cells surrounding the core (surrounding shell).
- The blood supply provides the nonnecrotic region with nutrients.

Т	he	model
0	OC	

- We study the growth of a necrotic tumor in different regimes of vascularisation.
- The tumor consists of a core of death cells (necrotic core) and a shell of life-proliferating cells surrounding the core (surrounding shell).
- The blood supply provides the nonnecrotic region with nutrients.
- The concentration of nutrient in the necrotic core is at a constant level which cannot sustain cell proliferation.

Т	he	m	od	el
0	OC			

- We study the growth of a necrotic tumor in different regimes of vascularisation.
- The tumor consists of a core of death cells (necrotic core) and a shell of life-proliferating cells surrounding the core (surrounding shell).
- The blood supply provides the nonnecrotic region with nutrients.
- The concentration of nutrient in the necrotic core is at a constant level which cannot sustain cell proliferation.
- The necrotic region is not vascularised.

Т	he	m	od	el
0	OC			

Conclusions

- We study the growth of a necrotic tumor in different regimes of vascularisation.
- The tumor consists of a core of death cells (necrotic core) and a shell of life-proliferating cells surrounding the core (surrounding shell).
- The blood supply provides the nonnecrotic region with nutrients.
- The concentration of nutrient in the necrotic core is at a constant level which cannot sustain cell proliferation.
- The necrotic region is not vascularised.
- Moreover, no inhibitor chemical species are present

The moving boundary problem

- $\Omega(t)$ -the domain occupied by the nonnecrotic shell
- $\Gamma_1(t)$ outer boundary of the tumor
- $\Gamma_2(t)$ the interior boundary enclosing the necrotic core

The model

0000

The evolution of the tumor is described by the coupled problem:

•	$\Delta\psi$	=	ψ	in $\Omega(t)$,	
	Δp	=	0	in $\Omega(t)$,	
	ψ	=	G	on $\Gamma_1(t)$,	
	ψ	=	$oldsymbol{G}-\psi_{oldsymbol{0}}$	on $\Gamma_2(t)$,	
	p	=	$\kappa_{\Gamma_1(t)} - AG rac{ \mathbf{x} ^2}{4}$	on $\Gamma_1(t)$,	(1
	p	=	$\kappa_{\Gamma_2(t)} - AG rac{ \mathbf{x} ^2}{4} - \psi_0$	on $\Gamma_2(t)$,	
	V_i	=	$\partial_{\nu_i}\psi - \partial_{\nu_i}p - AG \frac{\nu_i \cdot X}{2}$	on $\Gamma_i(t)$,	
	Ω(0)	=	Ω ₀ ,		

The moving boundary problem

for $t \ge 0$ and i = 1, 2.

Leibniz Universität

Hannover

- ψ-the rate at which nutrient is added to Ω(t) over the Γ₁(t) by the vascularization
- p-the pressure inside the tumor

- ψ-the rate at which nutrient is added to Ω(t) over the Γ₁(t) by the vascularization
- p-the pressure inside the tumor
- ν_i-the restriction of the outward orientated normal at ∂Ω(t) to Γ_i(t),
- κ_{Γ_i} the curvature of $\Gamma_i(t)$
- V_i the normal velocity of Γ_i
- x-position vector in R²

- ψ-the rate at which nutrient is added to Ω(t) over the Γ₁(t) by the vascularization
- p-the pressure inside the tumor
- ν_i-the restriction of the outward orientated normal at ∂Ω(t) to Γ_i(t),
- κ_{Γ_i} the curvature of $\Gamma_i(t)$
- V_i the normal velocity of Γ_i
- x-position vector in R²
- G-the rate of mitosis
- A-describes the balance between the rate of mitosis and apoptosis

- ψ-the rate at which nutrient is added to Ω(t) over the Γ₁(t) by the vascularization
- p-the pressure inside the tumor
- ν_i-the restriction of the outward orientated normal at ∂Ω(t) to Γ_i(t),
- κ_{Γ_i} the curvature of $\Gamma_i(t)$
- V_i- the normal velocity of Γ_i
- x-position vector in ℝ²
- G-the rate of mitosis
- A-describes the balance between the rate of mitosis and apoptosis
- $\psi_0 > 0$ -corresponds to the nutrient concentration assumed constant within the necrotic region
- Ω_0 -the initial tumor domain.

The radially symmetric case

The moving boundary problem

Conclusions

Iniversität

Radially symmetric stationary solutions

Theorem (J. Escher, B. Matioc & A. Matioc '10)

Given $(R_1, R_2) \in (0, \infty)^2$ with $R_2 < R_1$, let ψ_0^c be the constant defined by $\psi_0^c :=$

$$(b_1/R_1 - b_2/R_2) rac{1/R_1 + 1/R_2}{\ln(R_1/R_2)}$$

 $\frac{K_0(R_1)(b_1I_1(R_2)-b_2I_1(R_1))+I_0(R_1)(b_1K_1(R_2)-b_2K_1(R_1))}{I_0(R_1)K_0(R_2)-I_0(R_2)K_0(R_1)}+\frac{R_1^2-R_2^2}{2R_1R_2\ln(R_1/R_2)}$

There exists $A \in \mathbb{R}$ and $G \in \mathbb{R} \setminus \{0\}$, such that the annulus

 $A(R_1, R_2) := \{ x \in \mathbb{R}^2 : R_2 < |x| < R_1 \},\$

is a stationary solution of problem (1) provided $\psi_0 \neq \psi_0^c$. Moreover, A and G are uniquely determined by R_1, R_2 , and ψ_0 . If G = 0, then problem (1) has **no** radially symmetric stationary solutions.

Т	he	m	od	le	
0	oc	0			

The moving boundary problem

Conclusions

The case G = 0

The annulus A(R₁, R₂) centred in zero with radii R₁ > R₂, is a stationary solution of system (1) iff

$$p'(R_i) = \psi'(R_i), \qquad i = 1, 2,$$

where *p* is the solution of the problem

 $\begin{cases} p'' + \frac{1}{r}p' = 0, & R_2 < r < R_1, \\ p(R_1) = R_1^{-1} - AGR_1^2/4, \\ p(R_2) = -R_2^{-1} - AGR_2^2/4 - \psi_0, \end{cases}$ (2)

when G = 0.

• Given $G \in \mathbb{R}$, the solution of (2) is given by the relation $p(r) = a_{R_1R_2} \ln(r) + b_{R_1R_2}$, $R_2 \le |r| \le R_1$, with

$$a_{R_1R_2} = \frac{R_1^{-1} + R_2^{-1} + AG(R_2^2 - R_1^2)/4 + \psi_0}{\ln(R_1/R_2)},$$

 $b_{R_1R_2} = R_1^{-1} - AGR_1^2/4 - a_{R_1R_2}\ln(R_1).$

9/31

• Given $G \in \mathbb{R}$, the solution of (2) is given by the relation $p(r) = a_{R_1R_2} \ln(r) + b_{R_1R_2}, R_2 \le |r| \le R_1$, with

$$a_{R_1R_2} = \frac{R_1^{-1} + R_2^{-1} + AG(R_2^2 - R_1^2)/4 + \psi_0}{\ln(R_1/R_2)},$$

$$b_{R_1R_2} = R_1^{-1} - AGR_1^2/4 - a_{R_1R_2}\ln(R_1).$$

• Furthermore, ψ is the solution of the problem

$$\begin{cases} \psi'' + \frac{1}{r}\psi' - \psi &= 0, \qquad R_2 < r < R_1, \\ \psi(R_1) &= G, \\ \psi(R_2) &= G - \psi_0, \end{cases}$$
(3)

when G = 0.

Т	he	m	0	d	е	
	oc					

The moving boundary problem

Conclusions

For fixed $G \in \mathbb{R}$, the solution of (3) can be written as linear combination of modified Bessel functions of first and second kind

$$\psi = c_{R_1R_2}^1 I_0 + c_{R_1R_2}^2 K_0,$$

with scalars

$$c_{R_1R_2}^1 = \frac{GK_0(R_2) + (\psi_0 - G)K_0(R_1)}{I_0(R_1)K_0(R_2) - I_0(R_2)K_0(R_1)},$$

$$c_{R_1R_2}^2 = \frac{-GI_0(R_2) - (\psi_0 - G)I_0(R_1)}{I_0(R_1)K_0(R_2) - I_0(R_2)K_0(R_1)}.$$

10/31

The radially symmetric case

The moving boundary problem

NO rad. symm. stat. sol. for G = 0

• Consequently, $A(R_1, R_2)$ is a steady-state solution of (1) when G = 0 if and only if

$$\frac{\frac{1}{R_1} + \frac{1}{R_2} + \psi_0}{\ln(R_1/R_2)} \frac{1}{R_i} = \psi_0 \frac{K_0(R_1)I_1(R_i) + I_0(R_1)K_1(R_i)}{I_0(R_1)K_0(R_2) - I_0(R_2)K_0(R_1)}, i = 1, 2,$$
(4)

where we used the relations $I'_0 = I_1$ and $K'_0 = -K_1$.

The radially symmetric case

The moving boundary problem

NO rad. symm. stat. sol. for G = 0

• Consequently, $A(R_1, R_2)$ is a steady-state solution of (1) when G = 0 if and only if

$$\frac{\frac{1}{R_1} + \frac{1}{R_2} + \psi_0}{\ln(R_1/R_2)} \frac{1}{R_i} = \psi_0 \frac{K_0(R_1)I_1(R_i) + I_0(R_1)K_1(R_i)}{I_0(R_1)K_0(R_2) - I_0(R_2)K_0(R_1)}, i = 1, 2,$$
(4)

where we used the relations $I'_0 = I_1$ and $K'_0 = -K_1$.

• It follows then the system (4) has solutions (R_1, R_2) with $R_1 > R_2$ exactly when

$$\frac{R_2}{R_1} = \frac{K_0(R_1)I_1(R_1) + I_0(R_1)K_1(R_1)}{K_0(R_1)I_1(R_2) + I_0(R_1)K_1(R_2)}.$$
(5)

• We shown that equality holds in the relation above only when $R_1 = R_2$ (contradiction).

The radially symmetric case

The moving boundary problem

The case $G \neq 0$

In this case $A(R_1, R_2)$ is a steady-state solution of (1) exactly when

$$\psi'(R_i) - p'(R_i) - AG\frac{R_i}{2} = 0, \ i = 1, 2.$$

$$\Leftrightarrow c_{R_1R_2}^1 I_1(R_i) - c_{R_1R_2}^2 K_1(R_i) - a_{R_1R_2}\frac{1}{R_i} - AG\frac{R_i}{2} = 0, \ i = 1, 2,$$

$$\Leftrightarrow a_iG + b_iAG = c_i, \ i = 1, 2, \text{ with}$$

The radially symmetric case

The moving boundary problem

Conclusions

The case $G \neq 0$

In this case $A(R_1, R_2)$ is a steady-state solution of (1) exactly when

$$\psi'(R_i) - p'(R_i) - AG\frac{R_i}{2} = 0, \ i = 1, 2.$$

$$\Leftrightarrow c_{R_1R_2}^1 I_1(R_i) - c_{R_1R_2}^2 K_1(R_i) - a_{R_1R_2}\frac{1}{R_i} - AG\frac{R_i}{2} = 0, \ i = 1, 2,$$

$$\Leftrightarrow a_i G + b_i AG = c_i, \ i = 1, 2, \text{ with}$$

$$a_{i} := \frac{(K_{0}(R_{2}) - K_{0}(R_{1}))I_{1}(R_{i}) - (I_{0}(R_{1}) - I_{0}(R_{2}))K_{1}(R_{i})}{I_{0}(R_{1})K_{0}(R_{2}) - I_{0}(R_{2})K_{0}(R_{1})},$$

$$b_i := rac{R_1^2 - R_2^2}{4 \ln(R_1/R_2)} rac{1}{R_i} - rac{R_i}{2},$$

 $c_i := -\psi_0 \frac{K_0(R_1)I_1(R_i) + I_0(R_1)K_1(R_i)}{I_0(R_1)K_0(R_2) - I_0(R_2)K_0(R_1)} + \frac{R_1^{-1} + R_2^{-1} + \psi_0}{\ln(R_1/R_2)} \frac{1}{R_i}.$

The radially symmetric case

The moving boundary problem

Conclusions

(6)

The case $G \neq 0$

Lemma

The system $a_iG + b_iAG = c_i$, i = 1, 2, has a (unique) solution (A, G) with $G \neq 0$ provided that

 $a_1b_2 - a_2b_1 \neq 0,$ $c_1b_2 - c_2b_1 \neq 0,$ and $c_1 \neq 0$ or $c_2 \neq 0.$

Т	he	m	od	le	

The radially symmetric case ○○○○○●○ The moving boundary problem

Conclusions

(6)

The case $G \neq 0$

Lemma

The system $a_iG + b_iAG = c_i$, i = 1, 2, has a (unique) solution (A, G) with $G \neq 0$ provided that

 $a_1b_2 - a_2b_1 \neq 0,$ $c_1b_2 - c_2b_1 \neq 0,$ and $c_1 \neq 0$ or $c_2 \neq 0.$

 The computation done for the case G = 0 shows that c₁ and c₂ cannot be simultaneously zero when R₂ < R₁.

The moving boundary problem

Conclusions

(6)

The case $G \neq 0$

Lemma

The system $a_iG + b_iAG = c_i$, i = 1, 2, has a (unique) solution (A, G) with $G \neq 0$ provided that

 $a_1b_2 - a_2b_1 \neq 0,$ $c_1b_2 - c_2b_1 \neq 0,$ and $c_1 \neq 0$ or $c_2 \neq 0.$

- The computation done for the case G = 0 shows that c₁ and c₂ cannot be simultaneously zero when R₂ < R₁.
- For fixed $R_1 > 0$ we may see the expression $a_1b_2 a_2b_1$ as a function of $R_2 \in (0, R_1)$. This function is strictly decreasing with respect to R_2 , thus $a_1b_2 = a_2b_1$ only when $R_1 = R_2$.

• $b_1c_2 = b_2c_1$ if and only if $\psi_0 = \psi_0^c$, where

$$\psi_0^c := \frac{(b_1/R_1 - b_2/R_2) \frac{1/R_1 + 1/R_2}{\ln(R_1/R_2)}}{\frac{K_0(R_1)(b_1l_1(R_2) - b_2l_1(R_1)) + l_0(R_1)(b_1K_1(R_2) - b_2K_1(R_1))}{l_0(R_1)K_0(R_2) - l_0(R_2)K_0(R_1)} + \frac{R_1^2 - R_2^2}{2R_1R_2\ln(R_1/R_2)}}{R_1R_2}.$$

• $b_1c_2 = b_2c_1$ if and only if $\psi_0 = \psi_0^c$, where

$$\psi_0^c := \frac{(b_1/R_1 - b_2/R_2) \frac{1/R_1 + 1/R_2}{\ln(R_1/R_2)}}{\frac{K_0(R_1)(b_1I_1(R_2) - b_2I_1(R_1)) + I_0(R_1)(b_1K_1(R_2) - b_2K_1(R_1))}{I_0(R_1)K_0(R_2) - I_0(R_2)K_0(R_1)} + \frac{R_1^2 - R_2^2}{2R_1R_2\ln(R_1/R_2)}}{R_1R_2}.$$

• $A(R_1, R_2)$ is a stationary solution of (1) if and only if $\psi \neq \psi_0^c$ and

$$A = \frac{a_1c_2 - a_2c_1}{c_1b_2 - c_2b_1}, \qquad G = \frac{c_1b_2 - c_2b_1}{a_1b_2 - a_2b_1}$$

14/31

The radially symmetric case

The moving boundary problem

Conclusions

Leibniz

Universität Hannover

The mathematical settings

 We introduce first a parametrisation for the interfaces Γ₁(t) and Γ₂(t),

The radially symmetric case

The moving boundary problem

Conclusions

Leibniz

Universität Hannover

The mathematical settings

- Let $0 < R_2 < R_1$ be given and fix $\alpha \in (0, 1)$.
- We set $\mathcal{V} := \{ \rho \in h^{4+\alpha}(\mathbb{S}) : \|\rho\|_{\mathcal{C}(\mathbb{S})} < a \}$, where

$$a<\frac{R_1-R_2}{R_1+R_2}.$$

The radially symmetric case

The moving boundary problem

Conclusions

Universität Hannover

The mathematical settings

- Let $0 < R_2 < R_1$ be given and fix $\alpha \in (0, 1)$.
- We set $\mathcal{V} := \{ \rho \in h^{4+\alpha}(\mathbb{S}) : \|\rho\|_{\mathcal{C}(\mathbb{S})} < a \}$, where

$$a<\frac{R_1-R_2}{R_1+R_2}.$$

• Each pair $(\rho_1, \rho_2) \in \mathcal{V}^2$ parametrises a $C^{4+\alpha}$ -domain $\Omega(\rho_1, \rho_2) := \left\{ y \in \mathbb{R}^2 : R_2(1 + \rho_2(y/|y|)) < |y| < R_1(1 + \rho_1(y/|y|)) \right\}$

The radially symmetric case

The moving boundary problem

Conclusions

Iniversität

The mathematical settings

- Let $0 < R_2 < R_1$ be given and fix $\alpha \in (0, 1)$.
- We set $\mathcal{V} := \{ \rho \in h^{4+\alpha}(\mathbb{S}) : \|\rho\|_{\mathcal{C}(\mathbb{S})} < a \}$, where

$$a<\frac{R_1-R_2}{R_1+R_2}.$$

• Each pair $(\rho_1, \rho_2) \in \mathcal{V}^2$ parametrises a $C^{4+\alpha}$ -domain $\Omega(\rho_1, \rho_2) := \left\{ y \in \mathbb{R}^2 : R_2(1 + \rho_2(y/|y|)) < |y| < R_1(1 + \rho_1(y/|y|)) \right\}$

• The condition on *a* ensures that the boundary portions of $\Omega(\rho_1, \rho_2)$

$$\Gamma(\rho_i) := \{ x : |x| = R_i(1 + \rho_i(x/|x|)) \},\$$

i = 1, 2, are disjoint for any choice of $(\rho_1, \rho_2) \in \mathcal{V}^2$.

16/31

The radially symmetric case

The moving boundary problem

The mathematical settings

• $\Gamma(\rho_i) = N_{\rho_i}^{-1}(0)$, where $N_{\rho_i} : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, i = 1, 2$, are defined by

 $N_{
ho_i}(x) = |x| - R_i - R_i
ho_i (x/|x|), \qquad x \neq 0.$

The radially symmetric case

The moving boundary problem

Conclusions

l l I o 2 I o o 4 Leibniz Universität Hannover

The mathematical settings

• $\Gamma(\rho_i) = N_{\rho_i}^{-1}(0)$, where $N_{\rho_i} : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, i = 1, 2$, are defined by

$$N_{
ho_i}(x) = |x| - R_i - R_i
ho_i \left(x/|x|
ight), \qquad x
eq 0.$$

• The outward unit normal at $\partial \Omega(\rho_1, \rho_2)$ is given by

$$u_{\rho_1} = \frac{\nabla N_{\rho_1}}{|\nabla N_{\rho_1}|} \text{ on } \Gamma(\rho_1), \text{ and } \nu_{\rho_2} = -\frac{\nabla N_{\rho_2}}{|\nabla N_{\rho_2}|} \text{ on } \Gamma(\rho_2).$$

The radially symmetric case

The moving boundary problem

Conclusions

The mathematical settings

• $\Gamma(\rho_i) = N_{\rho_i}^{-1}(0)$, where $N_{\rho_i} : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, i = 1, 2$, are defined by

$$N_{
ho_i}(x) = |x| - R_i - R_i
ho_i \left(x/|x|
ight), \qquad x
eq 0.$$

• The outward unit normal at $\partial \Omega(\rho_1, \rho_2)$ is given by

$$u_{\rho_1} = \frac{\nabla N_{\rho_1}}{|\nabla N_{\rho_1}|} \text{ on } \Gamma(\rho_1), \text{ and } \nu_{\rho_2} = -\frac{\nabla N_{\rho_2}}{|\nabla N_{\rho_2}|} \text{ on } \Gamma(\rho_2).$$

 If the function (ρ₁, ρ₂) : [0, T] → V² describes the motion of the tumor boundaries, then the normal velocity of both boundary components in terms of ρ_i is given by the formula

$$V_1(t) = -\frac{\partial_t N_{\rho_1}}{|\nabla N_{\rho_1}|}$$
 on $\Gamma(\rho_1(t))$, and $V_2(t) = \frac{\partial_t N_{\rho_2}}{|\nabla N_{\rho_2}|}$ on $\Gamma(\rho_2(t))$

The model	Tł 00	ne radially symmetric case	The moving boundary problem ○○○●○○○○○○○○○○	Conclusions
The sys	ten	n of equations		l l i e 2 L o s 4
$\Delta\psi$	=	ψ	in $\Omega(\rho_1, \rho_2)$,	$t \ge 0,$
Δp	=	0	in $\Omega(\rho_1, \rho_2)$,	$t \ge 0,$
ψ	=	G	on $\Gamma(\rho_1)$,	$t \ge 0,$
ψ	=	$oldsymbol{G}-\psi_{oldsymbol{0}}$	on $\Gamma(\rho_2)$,	$t \ge 0,$
p	=	$\kappa_{\Gamma(\rho_1)} - AG \frac{ x ^2}{4}$	<i>on</i> Γ(ρ ₁),	$t \ge 0,$
p	=	$\kappa_{\Gamma(ho_2)} - AG rac{ x ^2}{4} - \psi_0$	on Γ(ρ ₂),	$t \ge 0,$
$\partial_t N_{ ho_i}$	=	$-\langle abla \psi - abla p - AGrac{x}{2} abla$	$\langle N_{ ho_i} \rangle$ on $\Gamma(ho_i)$,	<i>t</i> > 0, <i>i</i> = 1, 2,
ρ ₁ (0)	=	ρ ₀₁ ,		
ρ ₂ (0)	=	ρ02,		(7)

with $(\rho_1(0), \rho_2(0))$ describing the initial shape of the tumor.

The radially symmetric case

The moving boundary problem

Conclusions

The well-posedness result

Classical solution

A pair $(\rho_1, \rho_2, \psi, p)$ is called *classical solution* of (1) on [0, T], T > 0, if

 $\rho_i \in C([0, T], \mathcal{V}) \cap C^1([0, T], h^{1+\alpha}(\mathbb{S})), i = 1, 2,$ $\psi(t, \cdot), \rho(t, \cdot) \in buc^{2+\alpha}(\Omega(\rho_1(t), \rho_2(t))), t \in [0, T],$

and if $(\rho_1, \rho_2, \psi, p)$ solves (7) pointwise.

The radially symmetric case

The moving boundary problem

Conclusions

The well-posedness result

Classical solution

A pair $(\rho_1, \rho_2, \psi, p)$ is called *classical solution* of (1) on [0, T], T > 0, if

 $\rho_i \in C([0, T], \mathcal{V}) \cap C^1([0, T], h^{1+\alpha}(\mathbb{S})), i = 1, 2,$ $\psi(t, \cdot), \rho(t, \cdot) \in buc^{2+\alpha}(\Omega(\rho_1(t), \rho_2(t))), t \in [0, T],$

and if $(\rho_1, \rho_2, \psi, p)$ solves (7) pointwise.

Theorem (J. Escher, B. Matioc & A. Matioc '10)

Let $0 < R_2 < R_1$ and $(A, G, \psi_0) \in \mathbb{R}^3$ be given. There exists an open neighbourhood $\mathcal{O} \subset \mathcal{V}$ such that for all $(\rho_1, \rho_2) \in \mathcal{O}^2$, problem (7) possesses a unique classical solution defined on a maximal time interval $[0, T(\rho_{01}, \rho_{02}))$ and which satisfies $(\rho_1, \rho_2)(t) \in \mathcal{O}^2$ for all $t \in [0, T(\rho_{01}, \rho_{02}))$.

The radially symmetric case

The moving boundary problem

The problem on the fixed domain

We transform the problem on the fixed domain
 Ω := Ω(0, 0), with boundary Γ₁ := R₁S and Γ₂ := R₂S.

20/31

The model

The moving boundary problem

Leibniz

Universität Hannover

The problem on the fixed domain

- Pick $0 < R_2 < R_1$, $(A, G, \psi_0) \in \mathbb{R}^3$, and $\alpha \in (0, 1)$.
- Given $(\rho_1, \rho_2) \in \mathcal{V}^2$, we define $\Theta_{\rho_1, \rho_2} : \Omega \to \Omega(\rho_1, \rho_2)$ by

$$\Theta_{\rho_1,\rho_2}(x) = \frac{(R_1 - |x|)R_2(1 + \rho_2(x/|x|))}{R_1 - R_2} \frac{x}{|x|} + \frac{(|x| - R_2)R_1(1 + \rho_1(x/|x|))}{R_1 - R_2} \frac{x}{|x|}$$

for $x \in \Omega$.

•
$$\Theta_{\rho_1,\rho_2} \in Diff^{4+\alpha}(\Omega, \Omega(\rho_1, \rho_2))$$

The radially symmetric case

The moving boundary problem

Conclusions

The transformed operators

• $\mathcal{A}(\rho_1, \rho_2) : buc^{2+\alpha}(\Omega) \to buc^{\alpha}(\Omega)$ $\mathcal{A}(\rho_1, \rho_2)\mathbf{v} := \Delta(\mathbf{v} \circ \Theta_{\rho_1, \rho_2}^{-1}) \circ \Theta_{\rho_1, \rho_2}.$

The radially symmetric case

The moving boundary problem

Conclusions

The transformed operators

•
$$\mathcal{A}(\rho_1, \rho_2) : buc^{2+\alpha}(\Omega) \to buc^{\alpha}(\Omega)$$

 $\mathcal{A}(\rho_1, \rho_2)\mathbf{v} := \Delta(\mathbf{v} \circ \Theta_{\rho_1, \rho_2}^{-1}) \circ \Theta_{\rho_1, \rho_2}.$

•
$$\mathcal{B}_i: \mathcal{V}^2 \times (buc^{2+lpha}(\Omega))^2 \to h^{1+lpha}(\mathbb{S})$$

 $\mathcal{B}_i(\rho_1, \rho_2, \mathbf{v}, \mathbf{q}) := \frac{1}{R_i} \mathcal{C}_i(\rho_1, \rho_2) \mathbf{v} - \frac{1}{R_i} \mathcal{C}_i(\rho_1, \rho_2) \mathbf{q} - \mathcal{D}_i(\rho_1, \rho_2),$

The radially symmetric case

The moving boundary problem

Conclusions

The transformed operators

•
$$\mathcal{A}(\rho_1, \rho_2) : buc^{2+\alpha}(\Omega) \to buc^{\alpha}(\Omega)$$

 $\mathcal{A}(\rho_1, \rho_2)\mathbf{v} := \Delta(\mathbf{v} \circ \Theta_{\rho_1, \rho_2}^{-1}) \circ \Theta_{\rho_1, \rho_2}.$

• $\mathcal{B}_i: \mathcal{V}^2 \times (buc^{2+\alpha}(\Omega))^2 \to h^{1+\alpha}(\mathbb{S})$ $\mathcal{B}_i(\rho_1, \rho_2, \mathbf{v}, \mathbf{q}) := \frac{1}{R_i} \mathcal{C}_i(\rho_1, \rho_2) \mathbf{v} - \frac{1}{R_i} \mathcal{C}_i(\rho_1, \rho_2) \mathbf{q} - \mathcal{D}_i(\rho_1, \rho_2),$ where for $(\rho_1, \rho_2) \in \mathcal{V}^2$ the linear operators $\mathcal{C}_i(\rho_1, \rho_2) \in \mathcal{L}(buc^{2+\alpha}(\Omega), h^{1+\alpha}(\mathbb{S})), i = 1, 2, \text{ are given by}$ $\mathcal{C}_i(\rho_1, \rho_2) \mathbf{v}(\mathbf{y}) := \langle \nabla(\mathbf{v} \circ \Theta_{\rho_1, \rho_2}^{-1}) | \nabla \mathbf{N}_{\rho_i} \rangle \circ \Theta_{\rho_1, \rho_2}(R_i \mathbf{y})$ for $\mathbf{v} \in buc^{2+\alpha}(\Omega)$ and $\mathbf{y} \in \mathbb{S}.$

The radially symmetric case

The moving boundary problem

Conclusions

The transformed operators

•
$$\mathcal{A}(\rho_1, \rho_2) : buc^{2+\alpha}(\Omega) \to buc^{\alpha}(\Omega)$$

 $\mathcal{A}(\rho_1, \rho_2)\mathbf{v} := \Delta(\mathbf{v} \circ \Theta_{\rho_1, \rho_2}^{-1}) \circ \Theta_{\rho_1, \rho_2}.$

• $\mathcal{B}_i: \mathcal{V}^2 \times (buc^{2+\alpha}(\Omega))^2 \to h^{1+\alpha}(\mathbb{S})$ $\mathcal{B}_i(\rho_1, \rho_2, \mathbf{v}, \mathbf{q}) := \frac{1}{R_i} \mathcal{C}_i(\rho_1, \rho_2) \mathbf{v} - \frac{1}{R_i} \mathcal{C}_i(\rho_1, \rho_2) \mathbf{q} - \mathcal{D}_i(\rho_1, \rho_2),$ where for $(\rho_1, \rho_2) \in \mathcal{V}^2$ the linear operators $\mathcal{C}_i(\rho_1, \rho_2) \in \mathcal{L}(buc^{2+\alpha}(\Omega), h^{1+\alpha}(\mathbb{S})), i = 1, 2, \text{ are given by}$ $\mathcal{C}_i(\rho_1, \rho_2) \mathbf{v}(\mathbf{y}) := \langle \nabla(\mathbf{v} \circ \Theta_{\rho_1, \rho_2}^{-1}) | \nabla N_{\rho_i} \rangle \circ \Theta_{\rho_1, \rho_2}(R_i \mathbf{y})$

for $v \in buc^{2+\alpha}(\Omega)$ and $y \in S$. Moreover,

$$\mathcal{D}_i(
ho_1,
ho_2):=-rac{AG}{R_i}\langlerac{x}{2}|
abla N_{
ho_i}
angle\circ\Theta_{
ho_1,
ho_2}(R_iy).$$

22/31

The model	The radi	ally syl	nmetric case	The moving boundary problem ○○○○○○○●○○○○○○		Conclusions
The [·]	transform	ned	problem		1 1 1 0 2 10 0 4	Leibniz Universität Hannover
ſ	$\mathcal{A}(\rho_1,\rho_2)\mathbf{v}$	=	V		in Ω ,	$t \ge 0$,
	$\mathcal{A}(\rho_1,\rho_2)\boldsymbol{q}$	=	0		<i>in</i> Ω,	$t \ge 0,$
	V	=	G		on Γ_1 ,	$t \ge 0,$
	V	=	$m{G}-\psi_{0}$		on Γ_2 ,	$t \ge 0,$
{	q	=	$\frac{1}{R_1}\kappa(\rho_1)-\frac{AGR}{4}$	$\frac{q_1^2}{2}(1+ ho_1)^2$	on Γ_1 ,	$t \ge 0,$
	q	=	$-\frac{1}{R_2}\kappa(\rho_2)-\frac{A}{2}$	$rac{GR_2^2}{4}(1+ ho_2)^2-\psi_0$	on Γ ₂ ,	$t \ge 0,$
	$\partial_t \rho_i$	=	$\mathcal{B}_i(\rho_1,\rho_2,\boldsymbol{v},\boldsymbol{q})$)	on ₿,	<i>t</i> > 0,
	ρ ₁ (0)	=	$ ho_{01},$			
l	ρ ₂ (0)	=	$\rho_{02},$			(8)

where $\mathbf{v} := \psi \circ \Theta_{\rho_1, \rho_2}$, and $\mathbf{q} := \mathbf{p} \circ \Theta_{\rho_1, \rho_2}$,

23/31

The	model
000	

The moving boundary problem

Conclusions

Solution operators

Lemma

 $(\rho_1, \rho_2).$

Given $(\rho_1, \rho_2) \in \mathcal{V}^2$, we let $\mathcal{T}(\rho_1, \rho_2), \mathcal{S}(\rho_1, \rho_2) \in buc^{2+\alpha}(\Omega)$ denote the unique solution of the Dirichlet problem $\begin{cases} \mathcal{A}(\rho_1, \rho_2) \mathbf{v} = \mathbf{v} & \text{in } \Omega, \\ \mathbf{v} = \mathbf{G} & \text{on } \Gamma_1, \\ \mathbf{v} = \mathbf{G} - \psi_0 & \text{on } \Gamma_2, \end{cases}$ and $\begin{cases} \mathbf{A}(\rho_{1},\rho_{2})\mathbf{q} = \mathbf{0} \\ \mathbf{q} = \frac{1}{B_{1}}\kappa(\rho_{1}) - \frac{AGR_{1}^{2}}{4}(1+\rho_{1})^{2} \end{cases}$ in Ω , on Γ₁. $q = -\frac{1}{B_2}\kappa(\rho_2) - \frac{AGR_2^2}{4}(1+\rho_2)^2 - \psi_0$ on Γ_2 , respectively. The operators \mathcal{T} and \mathcal{S} depend analytically on

The	m	od	el
000	0		

The moving boundary problem

The evolution equation

• The system (8) reduces to the following evolution equation

 $\partial_t X = \Phi(X) \qquad X(0) = X_0,$ (9)

where $X := (\rho_1, \rho_2), X_0 := (\rho_{01}, \rho_{02})$, and $\Phi := (\Phi_1, \Phi_2)$.

Т	he	ma	bd	e	
	00				

The moving boundary problem

The evolution equation

• The system (8) reduces to the following evolution equation

$$\partial_t X = \Phi(X) \qquad X(0) = X_0,$$
 (9)

where $X := (\rho_1, \rho_2), X_0 := (\rho_{01}, \rho_{02})$, and $\Phi := (\Phi_1, \Phi_2)$.

 The components of the nonlocal and nonlinear operator Φ are defined as follows

 $\Phi_i(\rho_1,\rho_2) := \mathcal{B}_i(\rho_i,\mathcal{T}(\rho_1,\rho_2),\mathcal{S}(\rho_1,\rho_2)), \qquad i=1,2.$

Т	he	ma	bd	e	
	00				

The evolution equation

• The system (8) reduces to the following evolution equation

$$\partial_t X = \Phi(X) \qquad X(0) = X_0,$$
 (9)

where $X := (\rho_1, \rho_2), X_0 := (\rho_{01}, \rho_{02})$, and $\Phi := (\Phi_1, \Phi_2)$.

 The components of the nonlocal and nonlinear operator Φ are defined as follows

 $\Phi_i(\rho_1,\rho_2) := \mathcal{B}_i(\rho_i,\mathcal{T}(\rho_1,\rho_2),\mathcal{S}(\rho_1,\rho_2)), \qquad i=1,2.$

 In order to prove well-posedness of problem (9) it suffices to show that

$$\partial \Phi(0) = \left[egin{array}{cc} \partial_{
ho_1} \Phi_1(0) & \partial_{
ho_2} \Phi_1(0) \ \partial_{
ho_1} \Phi_2(0) & \partial_{
ho_2} \Phi_2(0) \end{array}
ight]$$

generates a strongly continuous and analytic semigroup.

The moving boundary problem

Conclusions

Theorem

The operator Φ is analytic, i.e. $\Phi \in C^{\omega}(\mathcal{V}^2, (h^{1+\alpha}(\mathbb{S}))^2)$. The Fréchet derivative $\partial \Phi(0)$, seen as an unbounded operator in $(h^{1+\alpha}(\mathbb{S}))^2$ with domain $(h^{4+\alpha}(\mathbb{S}))^2$ generates a strongly continuous and analytic semigroup in $\mathcal{L}((h^{1+\alpha}(\mathbb{S}))^2)$, i.e.

 $-\partial \Phi(\mathbf{0}) \in \mathcal{H}((h^{4+\alpha}(\mathbb{S}))^2, (h^{1+\alpha}(\mathbb{S}))^2).$

Theorem

The operator Φ is analytic, i.e. $\Phi \in C^{\omega}(\mathcal{V}^2, (h^{1+\alpha}(\mathbb{S}))^2)$. The Fréchet derivative $\partial \Phi(0)$, seen as an unbounded operator in $(h^{1+\alpha}(\mathbb{S}))^2$ with domain $(h^{4+\alpha}(\mathbb{S}))^2$ generates a strongly continuous and analytic semigroup in $\mathcal{L}((h^{1+\alpha}(\mathbb{S}))^2)$, i.e.

 $-\partial \Phi(\mathbf{0}) \in \mathcal{H}((h^{4+\alpha}(\mathbb{S}))^2, (h^{1+\alpha}(\mathbb{S}))^2).$

Proof

•
$$\partial_{\rho_1} \Phi_1(0)[\rho_1] = A_{11} + B_{11}$$
, where
 $B_{11} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S}))$
 $A_{11\rho_1} := \frac{1}{R_1^2} C_1(0)(\Delta, \operatorname{tr}_1, \operatorname{tr}_2)^{-1}(0, \rho_1'', 0), \quad \forall \rho_1 \in h^{4+\alpha}(\mathbb{S})$
 $A_{11\rho_1}(y) = -\frac{1}{R_1^3} \sum_{m \in \mathbb{Z} \setminus \{0\}} \frac{R_1^{|m|} R_2^{-|m|} + R_1^{-|m|} R_2^{|m|}}{R_1^{|m|} R_2^{-|m|} - R_1^{-|m|} R_2^{|m|}} |m|^3 \widehat{\rho}_1(m) y^m,$
for $\rho_1(y) = \sum_m \widehat{\rho}_1(m) y^m.$

р

The radially symmetric case

The moving boundary problem

•
$$\partial_{\rho_2} \Phi_1(0) = A_{12} + B_{12}$$
, where
 $B_{12} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S}))$
 $A_{12}\rho_2 := -\frac{1}{R_1R_2}C_1(0)(\Delta, \operatorname{tr}_1, \operatorname{tr}_2)^{-1}(0, 0, \rho_2') \quad \forall \rho_2 \in h^{4+\alpha}(\mathbb{S})$
 $A_{12}\rho_2(y) = -\frac{1}{R_1^2R_2}\sum_{m \in \mathbb{Z} \setminus \{0\}} \frac{2}{R_1^{|m|}R_2^{-|m|} - R_1^{-|m|}R_2^{|m|}} |m|^3 \widehat{\rho}_2(m) y^m$,
rovided that $\rho_2 = \sum_{m \in \mathbb{Z}} \widehat{\rho}_2(m) y^m$.

р

The radially symmetric case

The moving boundary problem

•
$$\partial_{\rho_2} \Phi_1(0) = A_{12} + B_{12}$$
, where
 $B_{12} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S}))$
 $A_{12\rho_2} := -\frac{1}{R_1R_2}C_1(0)(\Delta, \operatorname{tr}_1, \operatorname{tr}_2)^{-1}(0, 0, \rho_2'') \quad \forall \rho_2 \in h^{4+\alpha}(\mathbb{S})$
 $A_{12\rho_2}(y) = -\frac{1}{R_1^2R_2}\sum_{m \in \mathbb{Z} \setminus \{0\}} \frac{2}{R_1^{|m|}R_2^{-|m|} - R_1^{-|m|}R_2^{|m|}} |m|^3 \widehat{\rho}_2(m) y^m$,
rovided that $\rho_2 = \sum_{m \in \mathbb{Z}} \widehat{\rho}_2(m) y^m$.
• $\partial_{\rho_2} \Phi_2(0) = A_{22} + B_{22}$, with
 $B_{22} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S}))$
 $A_{22\rho_2} := -\frac{1}{R_2^2} C_2(0)(\Delta, \operatorname{tr}_1, \operatorname{tr}_2)^{-1}(0, 0, \rho_2'') \quad \forall \rho_2 \in h^{4+\alpha}(\mathbb{S})$
 $A_{22\rho_2}(y) = -\frac{1}{R_2^3} \sum_{m \in \mathbb{Z} \setminus \{0\}} \frac{R_1^{|m|}R_2^{-|m|} + R_1^{-|m|}R_2^{|m|}}{R_1^{|m|}R_2^{-|m|} - R_1^{-|m|}R_2^{|m|}} |m|^3 \widehat{\rho}_2(m) y^m$

The radially symmetric case

The moving boundary problem

Conclusions

•
$$\partial_{\rho_1} \Phi_2(0) = A_{21} + B_{21}$$
, where

$$\begin{split} B_{21} &\in \mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})) \\ A_{21}\rho_1 &:= \frac{1}{R_1R_2}C_2(0)(\Delta, \mathrm{tr}_1, \mathrm{tr}_2)^{-1}(0, \rho_1'', 0) \quad \forall \rho_2 \in h^{4+\alpha}(\mathbb{S}) \\ A_{21}\rho_1(y) &= -\frac{1}{R_1R_2^2}\sum_{m \in \mathbb{Z}\setminus\{0\}} \frac{2}{R_1^{|m|}R_2^{-|m|} - R_1^{-|m|}R_2^{|m|}} |m|^3 \widehat{\rho}_1(m) y^m, \end{split}$$

for all functions $\rho_1 = \sum_{m \in \mathbb{Z}} \widehat{\rho}_1(m) y^m$ in $h^{4+\alpha}(\mathbb{S})$.

The radially symmetric case

The moving boundary problem

Conclusions

•
$$\partial_{\rho_1} \Phi_2(0) = A_{21} + B_{21}$$
, where

$$\begin{split} B_{21} &\in \mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})) \\ A_{21}\rho_1 &:= \frac{1}{R_1R_2}C_2(0)(\Delta, \mathrm{tr}_1, \mathrm{tr}_2)^{-1}(0, \rho_1'', 0) \quad \forall \rho_2 \in h^{4+\alpha}(\mathbb{S}) \\ A_{21}\rho_1(y) &= -\frac{1}{R_1R_2^2}\sum_{m \in \mathbb{Z} \setminus \{0\}} \frac{2}{R_1^{|m|}R_2^{-|m|} - R_1^{-|m|}R_2^{|m|}} |m|^3 \widehat{\rho}_1(m) y^m, \end{split}$$

for all functions $\rho_1 = \sum_{m \in \mathbb{Z}} \widehat{\rho}_1(m) y^m$ in $h^{4+\alpha}(\mathbb{S})$.

 The operators A_{ij}, 1 ≤ i, j ≤ 2, found above are all Fourier multipliers, since they are of the form

$$\sum_{m\in\mathbb{Z}}\widehat{\rho}(m)y^m\mapsto\sum_{m\in\mathbb{Z}}M_k\widehat{\rho}(m)y^m$$

with symbol $(M_k)_{k \in \mathbb{Z}} \subset \mathbb{C}$.

The radially symmetric case

The moving boundary problem

The matrix $\partial \Phi(0)$ is a generator

• $-A_{ii} \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), i = 1, 2.$

The radially symmetric case

The moving boundary problem

The matrix $\partial \Phi(0)$ is a generator

•
$$-A_{ii} \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), i = 1, 2.$$

• $A_{12}, A_{21} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S})).$

The radially symmetric case

The moving boundary problem

The matrix $\partial \Phi(0)$ is a generator

- $-A_{ii} \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), i = 1, 2.$
- $A_{12}, A_{21} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S})).$
- $h^{2+\alpha}(\mathbb{S}) = (h^{1+\alpha}(\mathbb{S}), h^{4+\alpha}(\mathbb{S}))_{1/3}.$

The radially symmetric case

The moving boundary problem

The matrix $\partial \Phi(0)$ is a generator

- $-A_{ii} \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), i = 1, 2.$
- $A_{12}, A_{21} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S})).$
- $h^{2+\alpha}(\mathbb{S}) = (h^{1+\alpha}(\mathbb{S}), h^{4+\alpha}(\mathbb{S}))_{1/3}.$
- $-\partial_{\rho_i}\Phi_i(0) \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), i = 1, 2,$

while the elements on the secondary diagonal belong to $\mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S}))$, and having thus lower order.

The radially symmetric case

The moving boundary problem

Conclusions

The matrix $\partial \Phi(0)$ is a generator

- $-A_{ii} \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), i = 1, 2.$
- $A_{12}, A_{21} \in \mathcal{L}(h^{2+\alpha}(\mathbb{S})).$
- $h^{2+\alpha}(\mathbb{S}) = (h^{1+\alpha}(\mathbb{S}), h^{4+\alpha}(\mathbb{S}))_{1/3}.$
- $-\partial_{\rho_i}\Phi_i(\mathbf{0})\in\mathcal{H}(h^{4+lpha}(\mathbb{S}),h^{1+lpha}(\mathbb{S})),i=1,2,$

while the elements on the secondary diagonal belong to $\mathcal{L}(h^{2+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S}))$, and having thus lower order.

Thus the matrix

$$\partial \Phi(\mathbf{0}) = \left[egin{array}{cc} \partial_{
ho_1} \Phi_1(\mathbf{0}) & \partial_{
ho_2} \Phi_1(\mathbf{0}) \ \partial_{
ho_1} \Phi_2(\mathbf{0}) & \partial_{
ho_2} \Phi_2(\mathbf{0}) \end{array}
ight]$$

generates a strongly continuous and analytic semigroup, which completes the proof.

Т	he	m	od	el
	oc			

- - We study a model describing the growth of necrotic tumors in different regimes of vascularisation.

- We study a model describing the growth of necrotic tumors in different regimes of vascularisation.
- We determine all radially symmetric stationary solutions and reduce the moving boundary problem into a nonlinear evolution equation for the functions parameterising the boundaries of the shell.

- We study a model describing the growth of necrotic tumors in different regimes of vascularisation.
- We determine all radially symmetric stationary solutions and reduce the moving boundary problem into a nonlinear evolution equation for the functions parameterising the boundaries of the shell.
- Parabolic theory provides a suitable context for proving local well-posedness of the problem for small initial data.

Conclusions

References

- V. CRISTINI, J. LOWENGRUB & Q. NIE: *Nonlinear simulation of tumor growth*, Journal of Mathematical Biology, **46**, 191–224 (2003).
- J. ESCHER, A-V. MATIOC & B-V. MATIOC: *Analysis of a mathematical model describing necrotic tumor growth*, Lecture Notes in Applied and Computational Mechanics, Springer Verlag (2010).
- J. ESCHER & A-V. MATIOC: *Radially symmetric growth of nonnecrotic tumors*, Nonlinear Differential Equations and Applications, **17**, 1–20 (2010).
- J. ESCHER & A.-V. MATIOC: *Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors*, to appear in Discrete and Continuous Dynamical System–B (2010).
- J. ESCHER & A.-V. MATIOC: *Bifurcation analysis for a free boundary problem modeling tumor growth*, **arXiv:1003.1216** [math.AP] (2010).

The moving boundary problem

Conclusions

References

- V. CRISTINI, J. LOWENGRUB & Q. NIE: *Nonlinear simulation of tumor growth*, Journal of Mathematical Biology, **46**, 191–224 (2003).
- J. ESCHER, A-V. MATIOC & B-V. MATIOC: *Analysis of a mathematical model describing necrotic tumor growth*, Lecture Notes in Applied and Computational Mechanics, Springer Verlag (2010).
- J. ESCHER & A-V. MATIOC: *Radially symmetric growth of nonnecrotic tumors*, Nonlinear Differential Equations and Applications, **17**, 1–20 (2010).
- J. ESCHER & A.-V. MATIOC: *Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors*, to appear in Discrete and Continuous Dynamical System–B (2010).
- J. ESCHER & A.-V. MATIOC: *Bifurcation analysis for a free boundary problem modeling tumor growth*, **arXiv:1003.1216** [math.AP] (2010).

Thank you for your attention!

