Critical mass in a parabolic-elliptic Patlak-Keller-Segel equation with nonlinear diffusion

Philippe Laurençot

CNRS, Institut de Mathématiques de Toulouse
September 2010

Joint works with:
Adrien Blanchet (Toulouse) José Antonio Carrillo (Barcelona)

The generalized Patlak-Keller-Segel (PKS) equation I

$$
\begin{aligned}
\partial_{t} u & =\operatorname{div}(\nabla A(u)-u \nabla \varphi), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d}, \\
\varphi & =E_{d} * u, \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d},
\end{aligned}
$$

with

- $d \geq 2$,
- $A(u):=u^{m}$ with $m \geq 1$,
- E_{d} is the Poisson kernel

$$
E_{2}(x):=-\frac{1}{2 \pi} \ln |x| \quad \text { or } \quad E_{d}:=c_{d}|x|^{-(d-2)} \quad \text { if } \quad d \geq 3
$$

(so that $-\Delta \varphi=u$).

The generalized PKS equation II

- Self-gravitating particles (in astrophysics).
- Parabolic-elliptic Keller-Segel model for chemotaxis.
$\rightarrow d=2, m=1$: classical parabolic-elliptic PKS equation,
\rightarrow Derivation from a Vlasov-Poisson-Fokker-Planck kinetic equation (with non-gaussian equilibria if $m>1$) as a diffusion limit,
\rightarrow Prevention of crowding if $m>1$ (diffusion coefficient $u^{m-1} \rightarrow \infty$ as $u \rightarrow \infty)$.

Properties of u

$$
\partial_{t} u=\operatorname{div}\left(\nabla u^{m}-u \nabla\left(E_{d} * u\right)\right), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d}
$$

- Non-negativity: $u \geq 0$ (if $u_{0} \geq 0$).

Properties of u

$$
\partial_{t} u=\operatorname{div}\left(\nabla u^{m}-u \nabla\left(E_{d} * u\right)\right), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d}
$$

- Non-negativity: $u \geq 0$ (if $u_{0} \geq 0$).
- Conservation of mass: $\|u(t)\|_{1}=M_{0}:=\left\|u_{0}\right\|_{1}$.

Properties of u

$$
\partial_{t} u=\operatorname{div}\left(\nabla u^{m}-u \nabla\left(E_{d} * u\right)\right), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d}
$$

- Non-negativity: $u \geq 0$ (if $u_{0} \geq 0$).
- Conservation of mass: $\|u(t)\|_{1}=M_{0}:=\left\|u_{0}\right\|_{1}$.
- Competition between the diffusive term Δu^{m} (spreading) and the drift term (concentrating) div $\left(u \nabla\left(E_{d} * u\right)\right)$: global existence or finite time blowup.

$$
\partial_{t} u=\Delta u^{m}-\nabla u \cdot \nabla\left(E_{d} * u\right)+u^{2}, \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d}
$$

A Liapunov functional I

The functional

$$
\mathcal{F}[u(t)]:=\int_{\mathbb{R}^{d}} \mathcal{A}(u(t, x)) d x-\frac{1}{2} \int_{\mathbb{R}^{d}}\left(E_{d} * u\right)(t, x) u(t, x) d x
$$

with

- $\mathcal{A}(r)=r \ln r-r \geq-1$ if $m=1$,
- $\mathcal{A}(r)=r^{m} /(m-1) \geq 0$ if $m>1$.

Two competing terms in \mathcal{F}

A Liapunov functional II

Liapunov functional:

$$
\mathcal{F}[u(t)]:=\int_{\mathbb{R}^{d}} \mathcal{A}(u(t, x)) d x-\frac{1}{2} \int_{\mathbb{R}^{d}}\left(E_{d} * u\right)(t, x) u(t, x) d x
$$

At first glance, the "negative" term is quadratic in u and the positive term might dominate it if \mathcal{A} increases faster than quadratically $(m>2)$. In fact,

$$
m>m_{d}:=\frac{2(d-1)}{d} \quad\left(m_{2}=1\right)
$$

guarantees global existence while there are solutions blowing up in finite time if

$$
1<m \leq m_{d}:=\frac{2(d-1)}{d}
$$

[Sugiyama \& Kunii (2006), Sugiyama (2007), Cieślak \& Winkler (2008)]

Virial identity

$$
M_{2}(t):=\int_{\mathbb{R}^{d}}|x|^{2} u(t, x) d x
$$

- $d=2$ and $m=m_{2}=1\left(M_{0}=\left\|u_{0}\right\|_{1}\right)$:

$$
\frac{d M_{2}}{d t}(t)=-\frac{M_{0}}{4 \pi}\left(M_{0}-8 \pi\right)
$$

\longrightarrow non-existence of global solutions for $M_{0}>8 \pi$.

- $d \geq 3$ and $m=m_{d}$:

$$
\frac{d M_{2}}{d t}(t)=2(d-2) \mathcal{F}[u(t)] \leq 2(d-2) \mathcal{F}\left[u_{0}\right]
$$

\longrightarrow non-existence of global solutions for u_{0} such that $\mathcal{F}\left[u_{0}\right]<0$.

The generalized PKS equation with $m=1$ in \mathbb{R}^{2}

$$
\partial_{t} u=\operatorname{div}\left(\nabla u-u \nabla\left(E_{2} * u\right)\right), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{2} .
$$

The Liapunov functional:

$$
\begin{aligned}
\mathcal{F}[u(t)]:= & \int_{\mathbb{R}^{2}}(u(t, x) \ln u(t, x)-u(t, x)) d x \\
& -\frac{1}{2} \int_{\mathbb{R}^{2}}\left(E_{2} * u\right)(t, x) u(t, x) d x .
\end{aligned}
$$

Global existence: $m=1$ and $d=2$

- Finite time blow-up if $\left\|u_{0}\right\|_{1}>8 \pi$ (virial identity).
- Global existence if $\left\|u_{0}\right\|_{1}<M_{*}<8 \pi$ by Gagliardo-Nirenberg inequalities. [Jäger \& Luckhaus (1992)]
- Global existence if $\left\|u_{0}\right\|_{1}<8 \pi$ by symmetrization techniques.
[Diaz, Nagai \& Rakotoson (1998)]
- Global existence if $\left\|u_{0}\right\|_{1}<8 \pi$ by the logarithmic Hardy-Littlewood-Sobolev inequality. [Dolbeault \& Perthame (2004)]

The logarithmic Hardy-Littlewood-Sobolev inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} h \ln h d x & -\frac{4 \pi}{\|h\|_{1}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} E_{2}(x-y) h(x) h(y) d y d x \\
& \geq-\|h\|_{1}\left(1+\ln \pi-\ln \|h\|_{1}\right)
\end{aligned}
$$

[Carlen \& Loss (1992), Beckner (2003)]
Then

$$
\begin{aligned}
\mathcal{F}[u] \geq & \left(1-\frac{\left\|u_{0}\right\|_{1}}{8 \pi}\right) \int_{\mathbb{R}^{2}} u \ln u d x \\
& -\frac{\left\|u_{0}\right\|_{1}^{2}}{8 \pi}\left(1+\ln \pi-\ln \left\|u_{0}\right\|_{1}\right)
\end{aligned}
$$

hence a control of $u \ln u$ in $L^{1} \longrightarrow$ global existence.

The generalized PKS equation with $m=m_{d}$ in \mathbb{R}^{d}, $d \geq 3$

$$
\begin{gathered}
m=m_{d}=\frac{2(d-1)}{d} \\
\partial_{t} u=\operatorname{div}\left(\nabla u^{m}-u \nabla\left(E_{d} * u\right)\right), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d} .
\end{gathered}
$$

The Liapunov functional:

$$
\left.\mathcal{F}[u(t)]:=\int_{\mathbb{R}^{d}} \frac{u^{m}(t, x)}{m-1}\right) d x-\frac{1}{2} \int_{\mathbb{R}^{d}}\left(E_{d} * u\right)(t, x) u(t, x) d x
$$

Global existence and blowup I

- Global existence if $\left\|u_{0}\right\|_{1}<M_{1}$ by Gagliardo-Nirenberg inequalities.
- Finite time blowup if $\left\|u_{0}\right\|_{1}>M_{2}>M_{1}$.
[Sugiyama (2007)]

A modified Hardy-Littlewood-Sobolev inequality

Approach: find a functional inequality characterizing the critical mass.
Combining Hölder and Hardy-Littlewood-Sobolev inequalities, there exists $C_{*}>0$ such that

$$
\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{h(x) h(y)}{|x-y|^{d-2}} d x d y\right| \leq C_{*}\|h\|_{m}^{m}\|h\|_{1}^{2 / d}
$$

for all $h \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{m}\left(\mathbb{R}^{d}\right)$.
[Blanchet, Carrillo \& L. (2009)]

A bound from below for \mathcal{F}

Introducing the critical mass

$$
M_{c}:=\left[\frac{2}{(m-1) C_{*} c_{d}}\right]^{d / 2}
$$

we have

$$
\frac{C_{*} c_{d}}{2}\left(M_{c}^{2 / d}-\|h\|_{1}^{2 / d}\right)\|h\|_{m}^{m} \leq \mathcal{F}[h]
$$

for all $h \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{m}\left(\mathbb{R}^{d}\right)$.

- If $\left\|u_{0}\right\|_{1} \leq M_{c}$ then $\mathcal{F}\left[u_{0}\right] \geq 0$,

A bound from below for \mathcal{F}

Introducing the critical mass

$$
M_{c}:=\left[\frac{2}{(m-1) C_{*} c_{d}}\right]^{d / 2}
$$

we have

$$
\frac{C_{*} c_{d}}{2}\left(M_{c}^{2 / d}-\|h\|_{1}^{2 / d}\right)\|h\|_{m}^{m} \leq \mathcal{F}[h]
$$

for all $h \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{m}\left(\mathbb{R}^{d}\right)$.

- If $\left\|u_{0}\right\|_{1} \leq M_{c}$ then $\mathcal{F}\left[u_{0}\right] \geq 0$,
- If $\left\|u_{0}\right\|_{1}<M_{c}$ then control on the L^{m}-norm \longrightarrow global existence.

Global existence and blowup II

- Global existence if $\left\|u_{0}\right\|_{1}<M_{c}$ by the modified Hardy-Littlewood-Sobolev inequality.
- If $M>M_{c}$, then an argument from Weinstein (1986) gives

$$
\mu_{M}:=\inf \left\{\mathcal{F}[h]: h \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{m}\left(\mathbb{R}^{d}\right),\|h\|_{1}=M\right\}=-\infty
$$

and thus finite time blowup if $\mathcal{F}\left[u_{0}\right]<0$ by the virial identity.
[Blanchet, Carrillo \& L. (2009), Suzuki \& Takahashi (2009)]

$$
\text { What happens if }\left\|u_{0}\right\|_{1}=M_{c} \text { ? }
$$

Stationary solutions

There is a two-parameter family $\left\{V_{z, R}\right\}$ of non-negative and compactly supported stationary solutions such that

$$
\left\|V_{z, R}\right\|_{1}=M_{c}, \quad z \in \mathbb{R}^{d}, R>0
$$

Minimisers of \mathcal{F} in $\left\{h \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{m}\left(\mathbb{R}^{d}\right):\|h\|_{1}=M_{c}\right\}$. [Chavanis \& Sire (2008), Blanchet, Carrillo \& L. (2009)]

Recall that, if $d=2$ and $m=1$, existence of a two-parameter family of stationary solutions:

$$
\frac{8 b}{\left(b+|x-z|^{2}\right)^{2}} \in L^{1}\left(\mathbb{R}^{2}\right) \backslash L^{1}\left(\mathbb{R}^{2} ;|x|^{2} d x\right), \quad z \in \mathbb{R}^{d}, b>0
$$

Global existence: $\left\|u_{0}\right\|_{1}=M_{c}$

If $\left\|u_{0}\right\|_{1}=M_{c}$, there is a global solution u.
[Blanchet, Carrillo \& L. (2009)]
Open question: If $\left\|u_{0}\right\|_{1}=M_{c}$, what is the large time behaviour of the global solution:

- Convergence to a steady state?
- Blowup in infinite time and concentration to a Dirac mass?

Recall that, if $d=2, m=1$, and $\left\|u_{0}\right\|_{1}=8 \pi$, there is a global solution u and $u(t) \rightharpoonup 8 \pi \delta_{x_{m}}$ as $t \rightarrow \infty, x_{m}$ being the center of mass of u_{0}. [Biler, Karch, L. \& Nadzieja (2006), Blanchet, Carrillo \& Masmoudi (2008)] .

Self-similar blowing-up solutions I

Look for (radially symmetric) solutions of the form

$$
u(t, x)=\frac{1}{s(t)^{d}} U\left(\frac{|x|}{s(t)}\right) \quad \text { and } \quad \varphi(t, x)=\frac{1}{s(t)^{d-2}} \Phi\left(\frac{|x|}{s(t)}\right)
$$

for $(t, x) \in[0, T) \times \mathbb{R}^{d}$ with $s(t):=[d(T-t)]^{1 / d}, T>0$. Then

$$
U(r) \frac{d J}{d r}(r)=0, \quad J(r):=\frac{2(d-1)}{d-2} U^{(d-2) / d}(r)-\Phi(r)-\frac{r^{2}}{2}
$$

$\longrightarrow J$ is constant on connected components of

$$
\mathcal{P}:=\{r>0: U(r)>0\} .
$$

Self-similar blowing-up solutions II

Assume further that U is non-increasing so that

$$
\mathcal{P}=\{r>0: U(r)>0\}=\left[0, R_{s}\right), \quad R_{s} \in(0, \infty]
$$

Then

- J is constant in $\left[0, R_{s}\right)$,

Self-similar blowing-up solutions II

Assume further that U is non-increasing so that

$$
\mathcal{P}=\{r>0: U(r)>0\}=\left[0, R_{s}\right), \quad R_{s} \in(0, \infty]
$$

Then

- J is constant in $\left[0, R_{s}\right)$,
- $J^{\prime \prime}=0$ in $\left[0, R_{s}\right)$,

Self-similar blowing-up solutions II

Assume further that U is non-increasing so that

$$
\mathcal{P}=\{r>0: U(r)>0\}=\left[0, R_{s}\right), \quad R_{s} \in(0, \infty]
$$

Then

- J is constant in $\left[0, R_{s}\right)$,
- $J^{\prime \prime}=0$ in $\left[0, R_{S}\right)$,
- $\xi: r \mapsto U^{(d-2) / d}\left(r / \mu_{d}\right) / \lambda_{d}$ solves

$$
\left\{\begin{array}{l}
\xi^{\prime \prime}(r)+\frac{d-1}{r} \xi^{\prime}(r)+\xi(r)^{d /(d-2)}-1=0, \quad r \in\left[0, \mu_{d} R_{s}\right) \\
\xi^{\prime}(0)=\xi\left(\mu_{d} R_{s}\right)=0
\end{array}\right.
$$

An auxiliary ODE

For $a \in \mathbb{R}$, let $\eta(., a) \in \mathcal{C}^{1}\left(\left[0, r_{\max }(a)\right)\right)$ denote the maximal solution to the Cauchy problem

$$
\left\{\begin{array}{l}
\eta^{\prime \prime}(r, a)+\frac{d-1}{r} \eta^{\prime}(r, a)+|\eta(r, a)|^{2 /(d-2)} \eta(r, a)-1=0, \\
\eta(0, a)=a, \quad \eta^{\prime}(0, a)=0 .
\end{array}\right.
$$

- $\eta(., 1) \equiv 1$,
- $r_{\max }(a)=\infty$ and $\eta(., a)$ oscillates around the value 1 with decreasing amplitude.

Oscillating behaviour of $\eta(., a)$ for $a \in\{0.2,1,3,7\}$

u(., a)

Vanishing solutions I

There is a constant $a_{c}>1$ such that

- if $a \in\left(0, a_{c}\right)$, then $\eta(r, a)>0$ for all $r \geq 0$ (and $\eta(r, a) \rightarrow 1$ as $r \rightarrow \infty)$,
- if $a=a_{c}$, then there is $R\left(a_{c}\right)>0$ such that $\eta\left(r, a_{c}\right)>0$ for all $r \in\left[0, R\left(a_{c}\right)\right)$, and

$$
\eta\left(R\left(a_{c}\right), a_{c}\right)=\eta^{\prime}\left(R\left(a_{c}\right), a_{c}\right)=0
$$

- if $a \in\left(a_{c}, \infty\right)$, then there is $R(a)>0$ such that $\eta(r, a)>0$ for all $r \in[0, R(a))$, and

$$
\eta(R(a), a)=0, \quad \eta^{\prime}(R(a), a)<0
$$

[Blanchet \& L.]

Vanishing solutions II

Self-similar blowing-up solutions III

Given $a \in\left[a_{c}, \infty\right)$ and $T>0$,

$$
U_{a}(r):=\left\{\begin{array}{l}
\lambda_{d}^{d /(d-2)} \eta\left(\mu_{d} r, a\right)^{d /(d-2)} \text { for } r \in\left[0, R(a) / \mu_{d}\right] \\
0 \text { for } r \geq R(a) / \mu_{d},
\end{array}\right.
$$

gives a self-similar blowing-up solution $\left(u_{a}, \varphi_{a}\right)$ which satisfies for $t \in[0, T):$

$$
\begin{gathered}
\lim _{a \rightarrow \infty}\left\|u_{a}(t)\right\|_{1}=\lim _{a \rightarrow \infty} \sigma_{d} \int_{0}^{\infty} U_{a}(r) r^{d-1} d r=M_{c} \\
\sup _{a \in\left[a_{c}, \infty\right)}\left\|u_{a}(t)\right\|_{1}=\sup _{a \in\left[a_{c}, \infty\right)} \sigma_{d} \int_{0}^{\infty} U_{a}(r) r^{d-1} d r \leq M_{2}<\infty .
\end{gathered}
$$

