Unification of ODEs and transport PDEs inspired by models of cellular dynamics

Grzegorz Jamróz joint work with Anna Marciniak-Czochra and Piotr Gwiazda

Partial Differential Equations In Mathematical Biology September 12-17, 2010

INNOVATIVE ECONOMY

Discrete versus continuous cellular dynamics

Continuous – a deterministic process described by transport PDEs:

$$\frac{\partial n(t,x)}{\partial t} + \frac{\partial (g(v(t),x)n(t,x))}{\partial x} = p(v(t,x))n(t,x)$$

differentiation proliferation

Disadvantages of both approaches

- Unphysical infinite-speed effects in purely discrete models
- Lack of semitrivial steady states in purely continuous models
- Purely continuous models are not a limit of discrete (cell cycle)
- Inelegance by dealing with coupled ODE-PDE models

Solution: hybrydization into a purely continuous setting of transport equations with vanishing at some points and nonlipschitz velocity and constitutive relations

Distributional solutions in measures of transport equations with nonlipschitz velocity

 $\partial_t \mu + \partial_x (g(v(t), x)\mu) = p(v(t), x)\mu \quad \text{in} \quad D'([0, \infty] \times \mathbb{R})$ $g(v(t), x) \frac{d\mu^{ac}(t)}{dL^1} (x_i^+) = c_i(v(t)) \int_{\{x_i\}} d\mu(t), \quad i = 0, \dots, N$ $\mu(0) = \mu_0$

Constitutive relations

Initial condition

Feedback from the last point
$$v(t) = \int_{\{x_N\}} d\mu(t)$$

Implications of vanishing xnonlipschitz velocity g(v(t),x)=g₁(v(t))g₂(x)

Lipschitz, bounded function of its argument

Even if the initial measure is atom-free, the solution develops concentrations at zeroes of g
The characteristics are nonunique and branch at zereos of g thus defining possible trajectories for every cell
Constitutive relations define the relative differentiation rate thus allowing to define unique distributional solutions in measures which are continuous in a suitable metric (flat metric on the space of bounded Radon measures)

satisfies $\int \frac{dx}{g_{2}(x)} < \infty$

Nonunique characteristics

Toy models (2) – stationary solutions

$$\partial_t \mu + \partial_x (1_{(0,1)}(x)\mu) = (p 1_0(x) - d 1_1(x))\mu$$

A stationary solution

$$\mu = \delta_0(x) + p \, \mathbf{1}_{(0,1)}(x) + \frac{p}{d} \, \delta_1(x)$$

Toy models (3) – semitrivial steady states

$$\partial_{t} \mu + \partial_{x} (1_{(x \neq x_{i})} \mu) = (1_{0}(x) + 1_{1}(x) - 1_{2}(x)) \mu$$

$$c_{1} = 1$$

$$c_{0} = 1, c_{1} = 1.5$$

$$\mu = \delta_{1}(x) + 1_{(1,2)}(x) + \delta_{2}(x)$$

$$\mu = \delta_{0}(x) + 1_{(0,1)}(x) + 2\delta_{1}(x)$$

$$+ 3 1_{(1,2)}(x) + 3\delta_{2}(x)$$

Change of variables – rectification of characteristics

Simplified assumptions

 $\partial_t \mu + \partial_x (g(v(t), x)\mu) = p(v(t), x)\mu \quad \text{in} \quad D'([0,\infty] \times \mathbb{R})$ $g(v(t), x) \frac{d\mu^{ac}(t)}{dL^1} (x_i^+) = c_i(v(t)) \int_{\{x_i\}} d\mu(t), \qquad i = 0, \dots, N$ $\mu(0) = \mu_0$

$$g = g(v(t), x) = g_1(v(t))g_2(x)$$

$$g_1(v) \in W^{1,\infty}$$

$$g_1 > 0$$

$$g_2(x) \in C^1((x_{i-1}, x_i)) \cap L^{\infty}(\mathbb{R})$$

$$g_2 > 0 \text{ in } (x_{i-1}, x_i)$$

$$g_2(x_i) = 0$$

$$\int_{x_{i-1}}^{x_i} \frac{dx}{g_2(x)} < \infty \quad i = 1, ..., N$$

$$p = p(v(t), x) = p_1(v(t)) p_2(x)$$

$$p_1(v) \in W^{1,\infty}$$

$$p_2(x) \in L^{\infty} \cap C^0(\mathbb{R} \setminus \{x_{0,\dots}, x_N\})$$

$$c_i = c_i(v) \in W^{1,\infty}$$

$$c_N = 0$$

Main Theorem

Under the above assumptions for every Radon measure on R, μ_0 we can find a unique mapping μ : [0,T] -> (Radon measures) which is locally Lipschitz continuous with respect to the flat metric ρ_{F} .

$$\rho_F(\mu, \nu) = \sup_{\phi \in C^1, \|\phi\|_{W^{1,\infty}} \leq 1} \int \phi d(\mu - \nu)$$

Sketch of the proof (existence)

Transformation of variables (done)
 Double-freezing of coefficients

$$\partial_{t} \mu + \partial_{x} (g_{1}(t_{0}) \mathbf{1}_{x \neq x_{i}} \mu) = p_{1}(t) p_{2}(x) \mu \quad \text{in} \quad D'([0, \infty] \times \mathbb{R})$$

$$g_{1}(t_{0}) \frac{d \mu^{ac}(t)}{dL^{1}} (x_{i}^{+}) = c_{i}(t) \int_{\{x_{i}\}} d \mu(t), \qquad i = 0, \dots, N$$

$$\mu(0) = \mu_{0}$$

3. Explicit "from left to right" definition of a solution along characteristics (transport of measure)
4. p₁,g₁,c_i are only in BV what leads to complications by definition and verfication that what we defined is a distributional solution Lipschitz continuous (in flat metric)

Sketch of the proof (existence - unfreezing)

Step 1. Rectification of characteristics with repect to time

$$\partial_{t} \mu + \partial_{x} (g_{1}(t) 1_{x \neq x_{i}} \mu) = p_{1}(t) p_{2}(x) \mu \quad \text{in} \quad D'([0,\infty] \times \mathbb{R})$$

$$g_{1}(t) \frac{d \mu^{ac}(t)}{dL^{1}} (x_{i}^{+}) = c_{i}(t) \int_{\{x_{i}\}} d \mu(t), \qquad i = 0, \dots, N$$

$$\mu(0) = \mu_{0}$$

W

Step 2 (Tricky). Solving (in distribution sense) of the endpoint ODE

$$\frac{dv}{dt} = h(t) + p(x_N, v(t))v(t), \quad v(t) = \int_{x_N} d\mu(t) \in BV$$

Inflow (measure)
Ve are done by the separation of points

Sketch of the proof (uniqueness)

from left to right

(test functions for points x_i)

On intervals: Backward dual equation (taking into account that at xi the measures are equal by induction). Vorsicht(!) Regularity of explicitly found ϕ is insufficient

$$\int \phi(T, x) d(\mu_1(T) - \mu_2(T)) = \int_0^T \int_{(x_0, x_1)} (p(t, x) \phi(t, x) + (g_1(t)\partial_x + \partial_t)\phi) d(\mu_1(t) - \mu_2(t)) dt$$

Regularization + passage to the limit, the problematic term:

$$p(t, x)(\phi(t, x) * \rho^{\epsilon}) - (p(t, x)\phi(t, x)) * \rho^{\epsilon} \rightarrow 0$$

At x_{N} (for v(t))tricky analysis of jumps of the first in time supposed difference of solutions 1. exclude different jumps. 2. if jumps are equal or nonexistent – L¹ contraction **Regularizing effects at quasistationary point x**_i

 \rightarrow When passing through a point x_i the solution becomes more regular (once integrated)

 \rightarrow This means that after some time the whole solution becomes more regular than initial measures

Perspectives

* Branching * Disappearance of quasistationary points (destabilization) * Emergence of quasistationary points biological expertise required!! - the modelled processes have to stem from reality – we have many possibilities * Stochastic formulation

Thank You very much for your attention

University of Warsaw This work was done during a visit to University of Heidelberg

NNOVATIVE ECONOMY

