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Discrete versus continuous
cellular dynamics

Discrete — a stochastic process described by ODEs: F_eedt|>ack
signa
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differentiation

Continuous — a deterministic process described by
transport PDEs:
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Disadvantages of both
approaches

« Unphysical infinite-speed effects in purely
discrete models

» Lack of semitrivial steady states in purely
continuous models

« Purely continuous models are not a limit of
discrete (cell cycle)

« Inelegance by dealing with coupled ODE-PDE
models



Solution: hybrydization into a
purely continuous setting of
transport equations with
vanishing at some points and
nonlipschitz velocity and
constitutive relations
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Distributional solutions in
measures of transport equations
with nonlipschitz velocity

0,u+0,(g(v(t), x)u)=p(v(t),x)u in D'(0,00/XR)

g<v<r>,x>d‘;ﬁf”<x:>=ci<v<t>>!du<t>, =0, N

Constitutive relations
Initial condition

Feedback from the last point v(2)= [ du(7)
{xy}



Implications of vanishing x-
nonlipschitz velocity

g,(v(t)g,(x)
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function of its argument

<0

s Even if the initial measure is atom-free, the solution
develops concentrations at zeroes of g

= The characteristics are nonunique and branch at zereos of g
thus defining possible trajectories for every cell

= Constitutive relations define the relative differentiation rate
thus allowing to define unique distributional solutions in
measures which are continuous in a suitable metric (flat
metric on the space of bounded Radon measures)






Toy-models (1) - nonuniqueness

atl"l 8x(l)c;lﬁxol"l>=0
H(0)=50




Toy models (2) — stationary
solutions

6tﬂ+8x(1(0,1)<x)l~‘)=(plo(x)_d11(35))#

A stationary solution

p=6y(x)+p Lo (x)+L48,(x)



Toy models (3) — semitrivial
steady states

0, M+ 0, (1)) =(1o(x)+ 1, (x) = 1,(x))

c, = 1 % E c0=1,c1=1.5

p=8, ()41 (x)+8,(x) MO0l Ly (x)+20,(x)
’ +3 1, (x)+30,(x)



Change of variables —
rectification of characteristics
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Simplified assumptions

0,u+0,(g(v(t), x)u)=p(v(t),x)u in D'(|0,00XR)
d u <>

gv(t),x)—5 fdu i=0,..., N
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g=g(v(t),x)=g,(v(t))g,(x)
g, (view"” p=p(v(t),x)=p (v(t)) p,(x)
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Main Theorem

Under the above assumptions for every Radon measure
on R, y, we can find a unique mapping p: [0,T] -> (Radon

measures) which is locally Lipschitz continuous with
respect to the flat metric p_.

.DF(/J , V)=Sup¢eclj||¢||wl,m§1f d)d(U_V)



Sketch of the proof (existence)

1. Transformation of variables (done)
2. Double-freezing of coefficients

atu_i_ax(gl(tO)lxixiu)=pl(t)p2(x)u in D’([0,00)XlR)
gl(to)d“ (t)(xf)=c,-(t)f du(t), i=0,....N

dL’ x)
u(0)=p,

3. Explicit “from left to right” definition of a solution along
characteristics (transport of measure)
4.p,.g,.c are only in BV what leads to complications by

definition and verfication that what we defined is a
distributional solution Lipschitz continuous (in flat metric)



Sketch of the proof (existence
- unfreezing)

Step 1. Rectification of characteristics with repect to time
atl’l_i_ax(gl(t)lxixiu)=pl<t)p2<x)l’l in DI([anO)XlR)

d“ac<t) .
g () ——=2(x)=c(t) [ du(t), i=0,..,N
dL {x;}
u(0)=py,
Step 2 (Tricky). Solving (in distribution sense) of the endpoint ODE

dv _

2 )+ pley.vin)v(e), v(t)=| du(t)eBV

Inflow (measure)

Discretization&

We are done by the separation of points CR[EEGEEE e




Sketch of the proof (uniqueness)

from left to right

(test functions
for points x )

On intervals: Backward dual equation (taking into account that at xi the

measures are equal by induction). Vorsicht(!) Regularity of explicitly found ¢ is
insufficient
T

| (T, x)d (u(T)=py(T)=[ [ (p(t,x)p(t,x)+(g,(£)0,+8,))d (,(¢)—p,(t))dr

0 (x,x,)
Regularization + passage to the limit, the problematic term:

plt,x)(p(t,x)xp")=(p(t,x)p(t,x))*p =0

At x_ (for v(t))tricky analysis of jumps of the first in time supposed difference of solutions
1. exclude different jumps. 2. if jumps are equal or nonexistent — L' contraction




Regularizing effects at
quasistationary point x

— When passing through a point x

the solution becomes more regular
(once integrated)

— This means that after some time
the whole solution becomes more
regular than initial measures



Perspectives

* Branching

» Disappearance of quasistationary
points (destabilization)

* Emergence of quasistationary points
biological expertise required!! — the
modelled processes have to stem

from reality — we have many possibilities
» Stochastic formulation
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