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A chemotaxis model with growth

u(x , t): cell density
v(x , t): chemical signal

ut = ∇ (D∇u − χu∇v) + ru(1− u) ,
vt = ∆v + u − v .

(1)



Consider on [0, L] with homogeneous boundary conditions.

Initial conditions

(u(x , 0), v(x , 0)) = (1, 1 + ε(x)), |ε| < 10−2

Fix χ = 10,D = 1 and vary L:
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Varying Interval Length



Outline

1 Relevant Literature

2 The Merging Process

3 The Emerging Process

4 Classification of Solutions

5 Lyapunov Exponent

6 Period Doubling Sequence

7 Conclusions



Applications

Murray et al. 1989-1999:
- embryonic pattern formation
- pigmentation of alligator and snake skin

Orme, Chaplan 1996:
- Capillary sprouting in tumor angiogenesis



Applications

Murray et al. 1989-1999:
- embryonic pattern formation
- pigmentation of alligator and snake skin

Orme, Chaplan 1996:
- Capillary sprouting in tumor angiogenesis



Chaplain Lolas model

Chaplain, Lolas, Gerisch et al. (2005, 06, 10):
Tumor invasion into extracellular matrix
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Mathematically

Mimura et al. 1996:
- Allee like nonlinearity f (u) = u(1− u)(u − a).
- domain separates into regions where the solution
is close to 1 and regions where the solution is close to 0.
- they develop an asymptotic theory for movement of the
transition layers.

Osaki et al., 2002:
- existence of a compact global attractor for (1) in
L2(Ω)× H1(Ω), Ω ⊂ IR2.

Aida 2006:
- lower estimate of the fractal dimension of the attractor
- Theorem: dim A ≥ number of unstable modes of (1, 1).
- 2D simulations of periodic or irregular behavior.

Tello, Winkler 2007, Winkler 2010:
- existence of unique global solutions for (1) in any space
dimension, for smooth enough initial data.
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Including volume filling

Painter, H’, 2002

ut = ∇ (D∇u − χu(2− u)∇v) + ru(1− u) ,
vt = ∆v + u − v .



First observation of these irregular patterns.



Including squeezing

Wang, H’, 2007: Include a squeezing probability q(u):

ut = ∇ (D(q(u)− q′(u)u)∇u − χuq(u)∇v) + ru(1− u)
vt = ∆v + u − v .

Case 1:
q(u) = (2− uγ)+, γ ≥ 1

Case 2:
q(u) = (2− u)α+, α ≤ 1

Case 2 leads to a fast diffusion problem, see Wrzosek et al.
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Pattern with squeezing q(u)
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Merging or Coarsening

r = 0: the Minimal model:

ut = ∇ (D∇u − χu∇v) ,
vt = ∆v + u − v .

1− D: global existence and spikes.

n − D, n > 1: blow-up possible.



Coarsening dynamics



Volume filling with r = 0
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(Budrene, Berg, 1991, 1995).
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Bifurcation Analysis

minimal model: Schaaf, 1985

volume fillineg: Potapov, H’, 2005
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Movement of transition layers

Dolak, Schmeiser, 2005: Singular perturbation for the movement
of transition layers for the volume filling model.

(x)τ

u(x)
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Emerging

Emerging is only observed for r > 0.

We estimate an effective emerging length le by a critical
domain size argument:

Linearize at (0, 0) and consider homogeneous Neumann
boundary conditions

Ut = DUxx − rU ,
Vt = Vxx + U − V .

0 = Ux(0, t) = Ux(l , t)
0 = Vx(0, t) = vx(l , t)

Nontrivial solutions exist for

l > le := 2π

√
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Example

χ = 10, D = r = 1, le = 2π ≈ 6.28
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Classification of Solutions

H-solutions: homogeneous steady states (no pattern)

S-solutions: stationary patterns

P-solutions: periodic patterns

I-solutions: irregular patterns
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Solution Types

(a) L = 1 (b) L = 2 (c) L = 3 (d) L = 6 (e) L = 7 (f) L = 10 (g) L = 11 (h) L = 13
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Lyapunov Exponent L

The Lyapunov exponent is a measure for the sensitive dependence
on intitial conditions.
Take two solutions u(x , t), and upert(x , t), then

L(t) = log10

(
1

L

∫ L

0
|u(x , t)− upert(x , t)|dx

)

Fit L(t) by a linear curve with slope λ.

If λ < 0, then solutions converge exponentially (stability).

If λ ≈ 0, then solutions keep their distance (e.g. periodic).

If λ > 0, then solutions diverge exponentially.
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Period Doubling, increase χ
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Conclusions

The logistic Keller-Segel model in one spatial dimension shows
many characteristics which are typically associated to chaotic
dynamics.

We gave some evidence of chaotic like behavior (positive
Lyapunov exponent, period doubling). We tested many more
parameter sets and they show the same behavior. However, a
final proof of chaos is still open.

There are many routes for further investigation:

Is there a way to characterize a merging distance?
Better understand steady states and their stability
Geometric analysis of the attractor?
Higher dimensions
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