Fronts for Periodic KPP Equations

Steffen Heinze

Bioquant
University of Heidelberg

September 15th 2010

Content

- Fronts and Asymptotic Spreading
- Variational Formulation for the Speed
- Qualitative Consequences
- Generalizations

KPP in periodic media

Consider the KPP equation in a periodic medium:

$$
\begin{gathered}
\partial_{t} u(t, x)=\nabla(A(x) \nabla u(t, x))+f(x, u(t, x)) \\
t>0, \quad x \in R^{n} \quad u(0, x)=u_{0}(x) \geq 0
\end{gathered}
$$

A, b, f are C^{1} and 1-periodic in each direction x_{i}
$A(x) \in R^{n \times n}$ positive definite, not necessarily symmetric
$f(x, 0)=f(x, 1)=0$
$f(x, u) / u$ is decreasing for $u>0$
$\partial_{u} f(x, 0)=: \mu(x)>0$ for $0<u<1$
e.g. $f(x, u)=\mu(x) u(1-u)$

Classical case $n=1: u_{t}=A u_{x x}+\mu u(1-u)$

Travelling waves

A travelling wave solution in direction $e \in R^{n},|e|=1$ with speed c satisfies with $\xi=c t+e \cdot x \in R$:

$$
u(t, x)=U(\xi, x), \quad U(\xi, x) \quad \text { is periodic w.r.t. } \quad x_{i}
$$

(TW)

$$
\begin{gathered}
c \partial_{\xi} U(\xi, x)=\left(\nabla+e \partial_{\xi}\right)\left(A(x)\left(\nabla+e \partial_{\xi}\right) U(\xi, x)\right)+f(x, U(\xi, x)) \\
U(-\infty, x)=0, \quad U(\infty, x)=1
\end{gathered}
$$

We need the following linear operator.
With $\mu(x)=\partial_{u} f(x, 0)$ and $\lambda \geq 0$ let

$$
\begin{gathered}
\left(L_{\lambda} \phi\right)(x)=\nabla(A(x) \nabla \phi(x))+\mu(x) \phi(x) \\
\phi(x) e^{-\lambda e \cdot x} \quad \text { is } 1 \text {-periodic }
\end{gathered}
$$

Due to the last condition L_{λ} is not selfadjoint!
Let $k(\lambda)$ be the principal eigenvalue with corresponding eigenfunction $\phi(x)>0$.

Theorem (Berestycki, Hamel '02)

A travelling wave exist iff

$$
c \geq c(e):=\min _{\lambda>0} \frac{k(\lambda)}{\lambda}
$$

Explanation: Let $(U(\xi, x), c)$ be a travelling wave.

$$
U(\xi, x) \sim e^{\lambda \xi} v(x), \quad \xi \rightarrow-\infty \quad \lambda>0, \quad v \text { periodic }
$$

Then $\phi(x):=e^{\lambda e \cdot x} v(x)>0$ satisfies

$$
L \phi(x)=\lambda c \phi(x)
$$

Hence $c=\frac{k(\lambda)}{\lambda}$. Construction of upper and lower solutions shows, that every c in the range of $\frac{k(\lambda)}{\lambda}$ occurs. How does $c(e)$ depend on A, μ, e ?

Asymptotic Spreading

Consider an initial value $0 \leq u_{0}(x) \leq 1$ for KPP with compact, nonempty support and let $u(t, x)$ be the solution.
Theorem (Weinberger '02, Beresytcki, Hamel, Nadin '08))
For

$$
w(e)=\min _{f \cdot e>0} \frac{c(f)}{f \cdot e}
$$

the following holds

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} u(t, x+w t e)=0, & x \in R^{n}, w>w(e) \\
\lim _{t \rightarrow \infty} u(t, x+w t e)=1, & x \in R^{n}, 0 \leq w<w(e)
\end{array}
$$

$w(e)$ is called the spreading speed in direction e.
We will see that the formula for $w(e)$ can be inverted:

$$
c(e)=\sup _{f}(e \cdot f) w(f)
$$

Variational Formulation of the Speed

There exists a variational formulation of $k(\lambda)$ using the maximum principle:

$$
k(\lambda)=\inf _{0<\phi e^{-\lambda e \cdot x} \in C_{p e r}^{2}} \sup _{x} \frac{\left(L_{\lambda} \phi\right)(x)}{\phi(x)}
$$

Difficult to use for qualitative analysis. Seek an integral variational principle.
The adjoint operator of L_{λ} is

$$
\begin{gathered}
\left(L_{\lambda}^{*} \psi\right)=\nabla\left(A(x)^{T} \nabla \psi(x)\right)+\mu(x) \psi(x) \\
\psi(x) e^{\lambda e \cdot x} \quad \text { is 1-periodic }
\end{gathered}
$$

Observe that $k(\lambda)$ is a critical value of:
$\int_{C}(-\nabla \psi A \nabla \phi+\mu \phi \psi) d x \rightarrow$ critical \quad with constraint $\quad \int_{C} \phi \psi d x=1$

Goal: Transform s.t. convex and concave part are seperated:

$$
\begin{gathered}
\phi(x)=\alpha(x) e^{\lambda \rho(x)}, \quad \psi(x)=\alpha(x) e^{-\lambda \rho(x)} \\
\alpha(x), \rho(x)-e \cdot x \text { are 1-periodic }
\end{gathered}
$$

$$
\begin{aligned}
& G(\alpha, \rho, \lambda):=\int_{C}\left(-(\nabla \alpha-\lambda \alpha \nabla \rho) A(\nabla \alpha+\lambda \alpha \nabla \rho)+\mu \alpha^{2}\right) \\
& =\int_{C}\left(\lambda^{2} \alpha^{2} \nabla \rho A_{s} \nabla \rho+2 \lambda \alpha \nabla \rho \boldsymbol{A}_{a} \nabla \alpha-\nabla \alpha \boldsymbol{A}_{s} \nabla \alpha+\mu \alpha^{2}\right)
\end{aligned}
$$

\rightarrow critical point with constriant $\int_{C} \alpha^{2}=1$
where $A_{s}:=\frac{1}{2}\left(A+A^{T}\right), \quad A_{a}:=\frac{1}{2}\left(A-A^{T}\right)$

Now the following saddle point property for $k(\lambda)$ follows:
Theorem (Donsker-Varadhan '76, Holland '78)

$$
\begin{aligned}
& k(\lambda)=\sup _{\alpha} \inf _{\rho} G(\alpha, \rho, \lambda)=\inf _{\rho} \sup _{\alpha} G(\alpha, \rho, \lambda) \\
& \alpha, \rho-e \cdot x \in C_{p e r}^{1}\left(R^{n}\right), \alpha>0, \int_{C} \alpha^{2} d x=1
\end{aligned}
$$

The Euler Lagrange equations are:

$$
\begin{gathered}
\nabla\left(\boldsymbol{A}_{s} \nabla \alpha\right)+\lambda^{2} \alpha \nabla \rho \boldsymbol{A}_{s} \nabla \rho+\lambda \alpha \nabla \cdot \boldsymbol{A}_{a} \nabla \rho+\mu \alpha=k(\lambda) \alpha \\
\lambda \nabla\left(\alpha^{2} \boldsymbol{A}_{s} \nabla \rho\right)+\nabla \cdot\left(\boldsymbol{A}_{a} \nabla \alpha^{2}\right)=0
\end{gathered}
$$

This is a selfadjoint problem for α coupled to a Poisson equation for ρ.

Saddle point principle for the speed

Goal: Eliminate λ in $c(e)=\inf _{\lambda>0} \frac{k(\lambda)}{\lambda}$. Idea: Consider

$$
J(\alpha, \rho):=\inf _{\lambda>0} \frac{G(\alpha, \rho, \lambda)}{\lambda}
$$

$=2\left(\int_{C}\left(\mu \alpha^{2}-\nabla \alpha A_{s} \nabla \alpha\right) \int_{C} \alpha^{2} \nabla \rho A_{s} \nabla \rho\right)^{1 / 2}+\int_{C} \nabla \rho A_{a} \nabla \alpha^{2}$,
if $\int_{C}\left(\mu \alpha^{2}-\nabla \alpha A_{s} \nabla \alpha\right) \geq 0$ and $-\infty$ otherwise.
Let $\left(\alpha_{\lambda}, \rho_{\lambda}\right)$ be the saddle point of $G(\alpha, \rho, \lambda)$. and let $\lambda^{*}>0$ be the unique minimizer of $k(\lambda) / \lambda$.

Have to show, that $J\left(\alpha_{\lambda^{*}}, \rho_{\lambda^{*}}\right)>-\infty$ holds.

This follows from
$0=\left.\frac{d}{d \lambda} \frac{k(\lambda)}{\lambda}\right|_{\lambda^{*}}=\int_{C} \alpha_{\lambda^{*}}^{2} \nabla \rho_{\lambda^{*}} A_{s} \nabla \rho_{\lambda^{*}}-\frac{1}{\lambda^{* 2}} \int_{C}\left(\mu \alpha_{\lambda^{*}}^{2}-\nabla \alpha_{\lambda^{*}} A_{S} \nabla \alpha_{\lambda^{*}}\right)$
Since J is convex, w.r.t. λ, ρ and concave w.r.t. α we obtain:
Theorem: (Saddle point principle)

$$
\begin{aligned}
& c(e)=\sup _{\alpha} \inf _{\rho} J(\alpha, \rho)=\inf _{\rho} \sup _{\alpha} J(\alpha, \rho) \\
& \alpha, \rho-e \cdot x \in C_{p e r}^{1}\left(R^{n}\right), \alpha>0, \int_{C} \alpha^{2} d x=1
\end{aligned}
$$

Dual variational principle

Goal: Dualize the infimum into a supremum:
For simplicity assume $A_{a}=0$.
Let $v(x)$ be a nontrivial periodic divergence free C^{1} vector field.

$$
\left(\int_{C} e \cdot v\right)^{2}=\left(\int_{C} v \nabla \rho\right)^{2} \leq \int_{C} \frac{v A^{-1} v}{\alpha^{2}} \int_{C} \alpha^{2} \nabla \rho A \nabla \rho
$$

and equality holds iff $v=\gamma \alpha^{2} A \nabla \rho$ for some $\gamma \in R$. This is the Euler Lagrange equation for ρ.

Theorem (Maximization principle)

$$
\begin{aligned}
& c(e)^{2} / 4=\sup _{\alpha, v} \frac{\left(\int_{C} v \cdot e\right)^{2} \int_{C}\left(\mu \alpha^{2}-\nabla \alpha A \nabla \alpha\right)}{\int_{C} \frac{v A^{-1} v}{\alpha^{2}}} \\
& \alpha, v \in C_{\text {per }}^{1}\left(R^{n}\right), \alpha>0, \int_{C} \alpha^{2} d x=1, \nabla \cdot v=0, v \neq 0
\end{aligned}
$$

For $n=1$ this simplyfies to:

$$
c(e)^{2} / 4=\sup _{\alpha} \frac{\int_{0}^{1}\left(\mu \alpha^{2}-A \alpha^{\prime 2}\right)}{\int_{0}^{1} \frac{1}{A \alpha^{2}}}
$$

Qualitative Consequences

Smooth Dependence

The principle eigenvalue $k(\lambda)$ is simple. Hence it depends smoothly on parameters.
One can show that

$$
\left.\frac{d}{d \lambda} \frac{k(\lambda)}{\lambda}\right|_{\lambda^{*}}=0 \quad \text { implies }\left.\quad \frac{d^{2}}{d^{2} \lambda} \frac{k(\lambda)}{\lambda}\right|_{\lambda^{*}}>0 .
$$

Hence the minimal speed also depends smoothly on parameters.
Suppose that the functional J depends on a parameter t and $\left(\alpha_{t}, \rho_{t}\right)$ is the saddle point. Then

$$
\frac{d}{d t} c(t)=\partial_{t} J\left(\alpha_{t}, \rho_{t}, t\right)
$$

Dependence on the direction

Extend the definition of $c(e)$ and $w(e)$ as a homogeneous function to all $e \in R^{n}$ of degree 1 and degree -1 respectively.
Theorem
$c(e)$ and $w(e)$ satisfy:

1. $c(e), w(e)>0, \quad e \neq 0$
2. $c(s e)=s c(e), \quad s \geq 0$
3. $c(e+f) \leq c(e)+c(f)$
4. $c(e)$ is the support function of a convex body.
5. $1 / w(e)$ is the support function of the polar convex body,
i.e. $1 / w(e)=\sup _{f \neq 0} \frac{e \cdot f}{c(f)}$
6. $c(e)=\operatorname{supe} \cdot f w(f)$
$f \neq 0$

Dependence on the period

Consider the symmetric case $A_{a}=0$.
For $L>0$ replace in (KPP) $A(x)$ and $f(x, u)$ by $A(x / L)$ and $f(x / L, u)$. A rescaling of x gives:

$$
c(L)^{2} / 4=\sup _{\alpha} \inf _{\rho} \int_{C}\left(\mu \alpha^{2}-\frac{1}{L^{2}} \nabla \alpha A^{s} \nabla \alpha\right) \int_{C} \alpha^{2} \nabla \rho A^{s} \nabla \rho
$$

Let $\left(\alpha_{L}, \rho_{L}\right)$ be the saddle point of J.
Theorem

$$
\frac{d}{d L} c(L)=\frac{2}{L^{3}} \int_{C} \nabla \alpha_{L} A \nabla \alpha_{L} \geq 0
$$

holds. Equality holds for some $L_{0}>0$ or equvalently for all $L>$ iff

$$
\frac{\nabla \rho A \nabla \rho}{\int_{C} \nabla \rho A \nabla \rho}+\frac{\mu}{\int_{C} \mu}=2
$$

where ρ solves

$$
\nabla(A \nabla \rho)=0, \quad \rho(x)-e \cdot x \quad \text { is 1-periodic }
$$

Remark: There exist nonconstant media, s.t. the speed is independent of the period and the direction. (test case for numerics)

Homogenization

For simplicity consider the case $A_{a}=0$ only.
Theorem
The following limit exists

$$
\lim _{L \rightarrow 0} c(L)=: c_{0}=2 \sqrt{\bar{\mu} e A^{h} e}
$$

and equals the minimal speed of the homogenized equation.
Proof: Choosing $\alpha=1$ in the variational principle gives:

$$
c(L)^{2} / 4 \geq \int_{C} \mu \inf _{\rho} \int_{C} \nabla \rho A \nabla \rho=2 \sqrt{\bar{\mu} e A^{h} e}
$$

Let $\left(\alpha_{L}, \rho_{L}\right)$ be the critical point of $J(\alpha, \rho, L)$. We know:

$$
\int_{C}\left(\mu \alpha_{L}^{2}-\frac{1}{L^{2}} \nabla \alpha_{L} A \nabla \alpha_{L}\right) \geq 0
$$

This implies $\alpha_{L} \rightarrow 1$ in $H_{p e r}^{1}$. We have for every ρ :

$$
\begin{gathered}
c(L)^{2} / 4=J\left(\alpha_{L}, \rho_{L}\right) \leq J\left(\alpha_{L}, \rho\right) \\
\leq \int_{C} \mu \alpha_{L}^{2} \int_{C} \alpha_{L}^{2} \nabla \rho A \nabla \rho \rightarrow \int_{C} \mu \int_{C} \nabla \rho A \nabla \rho
\end{gathered}
$$

Minimizing over ρ completes the proof.

Large period limit

Theorem

Suppose $A_{a}=0$. Then

$$
\lim _{L \rightarrow \infty} c(L)=c_{\infty}=\sup _{\alpha, v} \frac{\left(\int_{C} v \cdot e\right)^{2} \int_{C} \mu \alpha^{2}}{\int_{C} \frac{v A^{-1} v}{\alpha^{2}}}
$$

In 1-D we have $\quad c_{\infty}=\sup _{\alpha} \int_{0}^{1} \mu \alpha^{2}\left(\int_{0}^{1} \frac{1}{A \alpha^{2}}\right)^{-1}$

The supremum can be evaluated, conjectured by Hamel, Fayard, Roques '10.

Theorem
Let $\mu^{*}=\sup \mu(x)$ and assume

$$
\mu^{*} \int_{0}^{1}\left(a\left(\mu^{*}-\mu\right)\right)^{-1 / 2} \geq 2 \int_{0}^{1}\left(\frac{\mu^{*}-\mu}{a}\right)^{1 / 2}
$$

Then

$$
c_{\infty}=\inf _{\eta>\mu_{+}} \frac{\eta}{\int_{0}^{1} \sqrt{\frac{\eta-\mu}{a}}}
$$

This holds e.g. if μ is piecewise C^{2}. If μ is constant this gives

$$
c_{\infty}=2 \sqrt{\mu}\left(\int_{0}^{1} \frac{1}{\sqrt{a}}\right)^{-1}
$$

Proof: The lower is obtained by choosing $\alpha=(a(\eta-\mu))^{1 / 4}$ in the variational principle and maximizing over η. The upper bound follows from

$$
\left(\int_{C} \sqrt{\frac{\psi-\mu}{a}}\right)^{2} \leq \int \alpha^{2}(\eta-\mu) \int_{C} \frac{1}{\mathrm{a} \alpha^{2}}
$$

and minimizing over η. Equality of these bounds holds iff the condition above holds.

Dependence on μ

Theorem
If \boldsymbol{A} is constant, then $\mu \mapsto \gamma(\mu):=c(\mu)^{2}$ is increasing and convex.
In particular if $\mu_{2}(x)=\mu_{1}(x+a)$ holds, then

$$
c\left(\frac{\mu_{1}+\mu_{2}}{2}\right) \leq c\left(\mu_{1}\right)
$$

follows, i.e. fragmentation decreases the minimal speed.
Proof: Let (α, v) be the maximizer of $J^{*}\left(\alpha, v,\left(\mu_{1}+\mu_{2}\right) / 2\right)$ where J^{*} is the functional of the dual variational principle.

$$
\begin{gathered}
c\left(\frac{\mu_{1}+\mu_{2}}{2}\right)^{2}=J\left(\alpha, v, \frac{\mu_{1}+\mu_{2}}{2}\right)^{2} \\
=\frac{1}{2} J\left(\alpha, v, \mu_{1}\right)^{2}+\frac{1}{2} J\left(\alpha, v, \mu_{2}\right)^{2} \leq \frac{c\left(\mu_{1}\right)^{2}+c\left(\mu_{2}\right)^{2}}{2}
\end{gathered}
$$

Optimization over μ

Theorem
Suppose that A is constant and let $\bar{\mu}>0$ be given. Then

$$
\sup _{\int_{0}^{1} \mu=\bar{\mu}} c(\mu)=c\left(\bar{\mu} \delta_{x_{0}}\right)
$$

where $\delta_{x_{0}}$ is the Dirac functional at x_{0}.
In 1-D this is finite.
Proof: The convexity implies for every periodic ν with integral one:

$$
c(\mu * \nu) \leq c(\mu)
$$

The variational formula can be extended to measures.
Choosing $\mu=\bar{\mu} \delta_{x_{0}}$ completes the proof.
Related rearrangement results: Nadim (2010)

Generalizations

- Less regular data A, f, μ, e.g. μ could be a characterstic function.
- $f(x, u)<0$ for $u>M$ instead of $f(x, 1)=0$. Then $U^{+}(x)$ is a periodic function instead of $U^{+}=1$.
- Instead of $\mu(x) \geq 0$, assume $k(0)>0$, e.g. $\int_{C} \mu>0$ is enough.
- Perforated domains.
- Space and time periodic data.

