Fronts for Periodic KPP Equations

Steffen Heinze

Bioquant University of Heidelberg

September 15th 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Content

- Fronts and Asymptotic Spreading
- Variational Formulation for the Speed

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Qualitative Consequences
- Generalizations

KPP in periodic media

Consider the KPP equation in a periodic medium:

(KPP)
$$\begin{aligned} \partial_t u(t,x) &= \nabla (\mathcal{A}(x) \nabla u(t,x)) + f(x,u(t,x)) \\ t > 0, \quad x \in \mathcal{R}^n \qquad u(0,x) = u_0(x) \geq 0 \end{aligned}$$

A, b, f are C¹ and 1-periodic in each direction x_i $A(x) \in \mathbb{R}^{n \times n}$ positive definite, not necessarily symmetric f(x,0) = f(x,1) = 0 f(x,u)/u is decreasing for u > 0 $\partial_u f(x,0) =: \mu(x) > 0$ for 0 < u < 1e.g. $f(x,u) = \mu(x)u(1-u)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Classical case n = 1: $u_t = Au_{xx} + \mu u(1 - u)$

Travelling waves

A travelling wave solution in direction $e \in R^n$, |e| = 1 with speed c satisfies with $\xi = ct + e \cdot x \in R$:

 $u(t,x) = U(\xi,x), \quad U(\xi,x)$ is periodic w.r.t. x_i

$$\mathsf{FW}$$
$$\begin{aligned} \mathsf{C}\partial_{\xi} U(\xi,x) &= (\nabla + \mathbf{e}\partial_{\xi})(\mathsf{A}(x)(\nabla + \mathbf{e}\partial_{\xi})U(\xi,x)) + f(x,U(\xi,x)) \\ U(-\infty,x) &= 0, \quad U(\infty,x) = 1 \end{aligned}$$

We need the following linear operator. With $\mu(x) = \partial_u f(x, 0)$ and $\lambda \ge 0$ let

$$(L_{\lambda}\phi)(\mathbf{x}) = \nabla(\mathbf{A}(\mathbf{x})\nabla\phi(\mathbf{x})) + \mu(\mathbf{x})\phi(\mathbf{x})$$

 $\phi(x)e^{-\lambda e \cdot x}$ is 1-periodic

Due to the last condition L_{λ} is not selfadjoint ! Let $k(\lambda)$ be the principal eigenvalue with corresponding eigenfunction $\phi(x) > 0$. Theorem (Berestycki, Hamel '02)

A travelling wave exist iff

$$c \ge c(e) := \min_{\lambda > 0} rac{k(\lambda)}{\lambda}$$

Explanation: Let $(U(\xi, x), c)$ be a travelling wave.

$$U(\xi,x)\sim e^{\lambda\xi}v(x), \hspace{1em} \xi
ightarrow -\infty \hspace{1em} \lambda>0, \hspace{1em} v ext{ periodic}$$

Then $\phi(x) := e^{\lambda e \cdot x} v(x) > 0$ satisfies

$$L\phi(\mathbf{x}) = \lambda \mathbf{c}\phi(\mathbf{x})$$

Hence $c = \frac{k(\lambda)}{\lambda}$. Construction of upper and lower solutions shows, that every *c* in the range of $\frac{k(\lambda)}{\lambda}$ occurs. How does c(e) depend on A, μ, e ?

Asymptotic Spreading

Consider an initial value $0 \le u_0(x) \le 1$ for KPP with compact, nonempty support and let u(t, x) be the solution.

Theorem (Weinberger '02, Beresytcki, Hamel, Nadin '08)) *For*

$$w(e) = \min_{f \cdot e > 0} \frac{c(f)}{f \cdot e}$$

the following holds

$$\lim_{t \to \infty} u(t, x + wte) = 0, \quad x \in \mathbb{R}^n, w > w(e)$$

 $\lim_{t \to \infty} u(t, x + wte) = 1, \quad x \in \mathbb{R}^n, 0 \le w < w(e)$

w(e) is called the spreading speed in direction e. We will see that the formula for w(e) can be inverted:

$$c(e) = \sup_{f} (e \cdot f) w(f)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Variational Formulation of the Speed

There exists a variational formulation of $k(\lambda)$ using the maximum principle:

$$k(\lambda) = \inf_{0 < \phi e^{-\lambda e \cdot x} \in C^2_{per}} \sup_{x} \frac{(L_\lambda \phi)(x)}{\phi(x)}$$

Difficult to use for qualitative analysis. Seek an integral variational principle.

The adjoint operator of L_{λ} is

$$egin{aligned} & (L^*_\lambda\psi) =
abla(A(x)^T
abla\psi(x)) + \mu(x)\psi(x) \ & \psi(x)e^{\lambda e\cdot x} & ext{is 1-periodic} \end{aligned}$$

Observe that $k(\lambda)$ is a critical value of:

$$\int_{C} (-\nabla \psi A \nabla \phi + \mu \phi \psi) \, dx \rightarrow \text{critical} \quad \text{with constraint} \quad \int_{C} \phi \psi \, dx = 1$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Goal: Transform s.t. convex and concave part are seperated:

$$\phi(\mathbf{x}) = \alpha(\mathbf{x})\mathbf{e}^{\lambda\rho(\mathbf{x})}, \quad \psi(\mathbf{x}) = \alpha(\mathbf{x})\mathbf{e}^{-\lambda\rho(\mathbf{x})}$$
$$\alpha(\mathbf{x}), \ \rho(\mathbf{x}) - \mathbf{e} \cdot \mathbf{x} \text{ are 1-periodic}$$

$$\boldsymbol{G}(\alpha,\rho,\lambda) := \int_{\boldsymbol{\mathcal{C}}} \left(-(\nabla \alpha - \lambda \alpha \nabla \rho) \boldsymbol{A} (\nabla \alpha + \lambda \alpha \nabla \rho) + \mu \alpha^2 \right)$$

$$= \int_{\mathcal{C}} \left(\lambda^2 \alpha^2 \nabla \rho \mathbf{A}_{\mathbf{s}} \nabla \rho + 2\lambda \alpha \nabla \rho \mathbf{A}_{\mathbf{a}} \nabla \alpha - \nabla \alpha \mathbf{A}_{\mathbf{s}} \nabla \alpha + \mu \alpha^2 \right)$$

 \rightarrow critical point with constriant $\int_{C} \alpha^2 = 1$

where $A_s := \frac{1}{2}(A + A^T), \quad A_a := \frac{1}{2}(A - A^T)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Now the following saddle point property for $k(\lambda)$ follows: Theorem (Donsker-Varadhan '76, Holland '78)

$$k(\lambda) = \sup_{\alpha} \inf_{\rho} G(\alpha, \rho, \lambda) = \inf_{\rho} \sup_{\alpha} G(\alpha, \rho, \lambda)$$

$$\alpha, \rho - e \cdot x \in C^{1}_{per}(\mathbb{R}^{n}), \alpha > 0, \int_{C} \alpha^{2} dx = 1$$

The Euler Lagrange equations are:

$$\nabla (\mathbf{A}_{\mathbf{s}} \nabla \alpha) + \lambda^2 \alpha \nabla \rho \mathbf{A}_{\mathbf{s}} \nabla \rho + \lambda \alpha \nabla \cdot \mathbf{A}_{\mathbf{a}} \nabla \rho + \mu \alpha = \mathbf{k}(\lambda) \alpha$$
$$\lambda \nabla (\alpha^2 \mathbf{A}_{\mathbf{s}} \nabla \rho) + \nabla \cdot (\mathbf{A}_{\mathbf{a}} \nabla \alpha^2) = \mathbf{0}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This is a selfadjoint problem for α coupled to a Poisson equation for ρ .

Saddle point principle for the speed

Goal: Eliminate
$$\lambda$$
 in $c(e) = \inf_{\lambda>0} \frac{k(\lambda)}{\lambda}$.
Idea: Consider

$$J(\alpha, \rho) := \inf_{\lambda>0} \frac{G(\alpha, \rho, \lambda)}{\lambda}$$

$$= 2 \left(\int_{C} (\mu \alpha^{2} - \nabla \alpha A_{s} \nabla \alpha) \int_{C} \alpha^{2} \nabla \rho A_{s} \nabla \rho \right)^{1/2} + \int_{C} \nabla \rho A_{a} \nabla \alpha^{2},$$
if $\int_{C} (\mu \alpha^{2} - \nabla \alpha A_{s} \nabla \alpha) \ge 0$ and $-\infty$ otherwise.

Let $(\alpha_{\lambda}, \rho_{\lambda})$ be the saddle point of $G(\alpha, \rho, \lambda)$. and let $\lambda^* > 0$ be the unique minimizer of $k(\lambda)/\lambda$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Have to show, that $J(\alpha_{\lambda^*}, \rho_{\lambda^*}) > -\infty$ holds.

This follows from

$$\mathbf{0} = \frac{d}{d\lambda} \frac{k(\lambda)}{\lambda} \big|_{\lambda^*} = \int_{\mathcal{C}} \alpha_{\lambda^*}^2 \nabla \rho_{\lambda^*} \mathcal{A}_{\mathcal{S}} \nabla \rho_{\lambda^*} - \frac{1}{\lambda^{*2}} \int_{\mathcal{C}} (\mu \alpha_{\lambda^*}^2 - \nabla \alpha_{\lambda^*} \mathcal{A}_{\mathcal{S}} \nabla \alpha_{\lambda^*})$$

Since J is convex, w.r.t. λ, ρ and concave w.r.t. α we obtain:

Theorem: (Saddle point principle)

$$\begin{split} c(e) &= \sup_{\alpha} \inf_{\rho} J(\alpha, \rho) = \inf_{\rho} \sup_{\alpha} J(\alpha, \rho) \\ \alpha, \rho - e \cdot x \in C^{1}_{per}(R^{n}), \alpha > 0, \int_{C} \alpha^{2} dx = 1 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dual variational principle

Goal: Dualize the infimum into a supremum:

For simplicity assume $A_a = 0$.

Let v(x) be a nontrivial periodic divergence free C^1 vector field.

$$\left(\int_{C} \boldsymbol{e} \cdot \boldsymbol{v}\right)^{2} = \left(\int_{C} \boldsymbol{v} \nabla \rho\right)^{2} \leq \int_{C} \frac{\boldsymbol{v} \boldsymbol{A}^{-1} \boldsymbol{v}}{\alpha^{2}} \int_{C} \alpha^{2} \nabla \rho \boldsymbol{A} \nabla \rho$$

and equality holds iff $v = \gamma \alpha^2 A \nabla \rho$ for some $\gamma \in R$. This is the Euler Lagrange equation for ρ .

Theorem (Maximization principle)

$$c(e)^{2}/4 = \sup_{\alpha, v} \frac{\left(\int_{C} v \cdot e\right)^{2} \int_{C} (\mu \alpha^{2} - \nabla \alpha A \nabla \alpha)}{\int_{C} \frac{v A^{-1} v}{\alpha^{2}}}$$

$$\alpha, v \in C_{per}^{1}(\mathbb{R}^{n}), \alpha > 0, \int_{C} \alpha^{2} dx = 1, \nabla \cdot v = 0, v \neq 0$$

For n = 1 this simplyfies to:

$$c(e)^2/4 = \sup_{\alpha} \frac{\int_{0}^{1} (\mu \alpha^2 - A \alpha'^2)}{\int_{0}^{1} \frac{1}{A \alpha^2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Qualitative Consequences

Smooth Dependence

The principle eigenvalue $k(\lambda)$ is simple. Hence it depends smoothly on parameters.

One can show that

$$rac{d}{d\lambda}rac{k(\lambda)}{\lambda}ig|_{\lambda^*}=0 \quad ext{implies} \quad rac{d^2}{d^2\lambda}rac{k(\lambda)}{\lambda}ig|_{\lambda^*}>0.$$

Hence the minimal speed also depends smoothly on parameters.

Suppose that the functional *J* depends on a parameter *t* and (α_t, ρ_t) is the saddle point. Then

$$\frac{d}{dt}c(t) = \partial_t J(\alpha_t, \rho_t, t)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Dependence on the direction

Extend the definition of c(e) and w(e) as a homogeneous function to all $e \in \mathbb{R}^n$ of degree 1 and degree -1 respectively.

Theorem

c(e) and w(e) satisfy:

- $1. \ c(e), w(e) > 0, \quad e \neq 0$
- $2. \ c(se) = sc(e), \quad s \ge 0$
- **3**. $c(e+f) \le c(e) + c(f)$

 $f \neq 0$

- 4. c(e) is the support function of a convex body.
- 5. 1/w(e) is the support function of the polar convex body, *i.e.* 1/w(e) = sup e ⋅ f / c(f)
 6. c(e) = sup e ⋅ f w(f)

Dependence on the period

Consider the symmetric case $A_a = 0$. For L > 0 replace in (KPP) A(x) and f(x, u) by A(x/L) and f(x/L, u). A rescaling of *x* gives:

$$c(L)^{2}/4 = \sup_{\alpha} \inf_{\rho} \int_{C} (\mu \alpha^{2} - \frac{1}{L^{2}} \nabla \alpha A^{s} \nabla \alpha) \int_{C} \alpha^{2} \nabla \rho A^{s} \nabla \rho$$

Let (α_L, ρ_L) be the saddle point of *J*. Theorem

$$\frac{d}{dL}c(L) = \frac{2}{L^3} \int_C \nabla \alpha_L A \nabla \alpha_L \ge 0$$

holds. Equality holds for some $L_0 > 0$ or equvalently for all L >iff

$$\frac{\nabla \rho \mathbf{A} \nabla \rho}{\int_{\mathcal{C}} \nabla \rho \mathbf{A} \nabla \rho} + \frac{\mu}{\int_{\mathcal{C}} \mu} = \mathbf{2}$$

where ρ solves

 $abla (A \nabla \rho) = 0, \quad \rho(x) - e \cdot x \quad \text{is 1-periodic}$

Remark: There exist nonconstant media, s.t. the speed is independent of the period and the direction. (test case for numerics)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Homogenization

For simplicity consider the case $A_a = 0$ only.

Theorem The following limit exists

$$\lim_{L\to 0} c(L) =: c_0 = 2\sqrt{\overline{\mu}eA^he}$$

and equals the minimal speed of the homogenized equation. **Proof:** Choosing $\alpha = 1$ in the variational principle gives:

$$c(L)^2/4 \geq \int_C \mu \inf_{
ho} \int_C \nabla
ho A \nabla
ho = 2 \sqrt{\mu} e A^h e$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let (α_L, ρ_L) be the critical point of $J(\alpha, \rho, L)$. We know:

$$\int_{C} (\mu \alpha_{L}^{2} - \frac{1}{L^{2}} \nabla \alpha_{L} A \nabla \alpha_{L}) \geq 0$$

This implies $\alpha_L \rightarrow 1$ in H_{per}^1 . We have for every ρ :

$$\begin{split} \boldsymbol{c}(L)^2/4 &= \boldsymbol{J}(\alpha_L,\rho_L) \leq \boldsymbol{J}(\alpha_L,\rho) \\ \leq \int_{\boldsymbol{C}} \mu \alpha_L^2 \int_{\boldsymbol{C}} \alpha_L^2 \nabla \rho \boldsymbol{A} \nabla \rho \rightarrow \int_{\boldsymbol{C}} \mu \int_{\boldsymbol{C}} \nabla \rho \boldsymbol{A} \nabla \rho \end{split}$$

Minimizing over ρ completes the proof.

Large period limit

Theorem Suppose $A_a = 0$. Then

$$\lim_{L \to \infty} c(L) = c_{\infty} = \sup_{\alpha, \nu} \frac{\left(\int_{C} \nu \cdot e\right)^{2} \int_{C} \mu \alpha^{2}}{\int_{C} \frac{\nu A^{-1} \nu}{\alpha^{2}}}$$

In 1-D we have $c_{\infty} = \sup_{\alpha} \int_{0}^{1} \mu \alpha^{2} \left(\int_{0}^{1} \frac{1}{A \alpha^{2}}\right)^{-1}$

The supremum can be evaluated, conjectured by Hamel, Fayard, Roques '10.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem Let $\mu^* = \sup \mu(x)$ and assume

$$\mu^* \int_0^1 (a(\mu^* - \mu))^{-1/2} \ge 2 \int_0^1 \left(\frac{\mu^* - \mu}{a}\right)^{1/2}$$

Then

$$c_{\infty} = \inf_{\eta > \mu_+} rac{\eta}{\int_0^1 \sqrt{rac{\eta - \mu}{a}}}$$

This holds e.g. if μ is piecewise C^2 . If μ is constant this gives

$$c_{\infty} = 2\sqrt{\mu} \left(\int_0^1 \frac{1}{\sqrt{a}} \right)^{-1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof: The lower is obtained by choosing $\alpha = (a(\eta - \mu))^{1/4}$ in the variational principle and maximizing over η . The upper bound follows from

$$\left(\int_{C}\sqrt{\frac{\psi-\mu}{a}}\right)^{2}\leq\int lpha^{2}(\eta-\mu)\int_{C}rac{1}{alpha^{2}}$$

and minimizing over η . Equality of these bounds holds iff the condition above holds.

Dependence on μ

Theorem

If A is constant, then $\mu \mapsto \gamma(\mu) := c(\mu)^2$ is increasing and convex.

In particular if $\mu_2(x) = \mu_1(x + a)$ holds, then

$$c(rac{\mu_1+\mu_2}{2})\leq c(\mu_1)$$

follows, i.e. fragmentation decreases the minimal speed. **Proof:** Let (α, ν) be the maximizer of $J^*(\alpha, \nu, (\mu_1 + \mu_2)/2)$ where J^* is the functional of the dual variational principle.

$$\begin{aligned} c(\frac{\mu_1 + \mu_2}{2})^2 &= J(\alpha, \nu, \frac{\mu_1 + \mu_2}{2})^2 \\ &= \frac{1}{2}J(\alpha, \nu, \mu_1)^2 + \frac{1}{2}J(\alpha, \nu, \mu_2)^2 \leq \frac{c(\mu_1)^2 + c(\mu_2)^2}{2} \end{aligned}$$

◆□→ ◆□→ ◆目→ ◆目→ ○□ ◆○へ⊙→

Optimization over μ

Theorem

Suppose that A is constant and let $\overline{\mu} > 0$ be given. Then

$$\sup_{\substack{\substack{1\\0\\\mu=\overline{\mu}}}} c(\mu) = c(\overline{\mu}\delta_{x_0})$$

where δ_{x_0} is the Dirac functional at x_0 .

In 1-D this is finite.

Proof: The convexity implies for every periodic ν with integral one:

$$c(\mu *
u) \leq c(\mu)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

The variational formula can be extended to measures. Choosing $\mu = \overline{\mu} \delta_{x_0}$ completes the proof.

Related rearrangement results: Nadim (2010)

Generalizations

- Less regular data A, f, μ, e.g. μ could be a characteristic function.
- ► f(x, u) < 0 for u > M instead of f(x, 1) = 0. Then U⁺(x) is a periodic function instead of U⁺ = 1.

(日) (日) (日) (日) (日) (日) (日)

- Instead of µ(x) ≥ 0, assume k(0) > 0, e.g. ∫_C µ > 0 is enough.
- Perforated domains.
- Space and time periodic data.