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KPP in periodic media

Consider the KPP equation in a periodic medium:

(KPP)
∂tu(t , x) = ∇(A(x)∇u(t , x)) + f (x ,u(t , x))

t > 0, x ∈ IRn u(0, x) = u0(x) ≥ 0

A,b, f are C1 and 1-periodic in each direction xi
A(x) ∈ IRn×n positive definite, not necessarily symmetric
f (x ,0) = f (x ,1) = 0
f (x ,u)/u is decreasing for u > 0
∂uf (x ,0) =: µ(x) > 0 for 0 < u < 1

e.g. f (x ,u) = µ(x)u(1− u)

Classical case n = 1: ut = Auxx + µu(1− u)



Travelling waves
A travelling wave solution in direction e ∈ IRn, |e| = 1 with speed
c satisfies with ξ = ct + e · x ∈ IR:

u(t , x) = U(ξ, x), U(ξ, x) is periodic w.r.t. xi

(TW)
c∂ξU(ξ, x) = (∇+ e∂ξ)(A(x)(∇+ e∂ξ)U(ξ, x)) + f (x ,U(ξ, x))

U(−∞, x) = 0, U(∞, x) = 1

We need the following linear operator.
With µ(x) = ∂uf (x ,0) and λ ≥ 0 let

(Lλφ)(x) = ∇(A(x)∇φ(x)) + µ(x)φ(x)

φ(x)e−λe·x is 1-periodic

Due to the last condition Lλ is not selfadjoint !
Let k(λ) be the principal eigenvalue with corresponding
eigenfunction φ(x) > 0.



Theorem (Berestycki, Hamel ’02)
A travelling wave exist iff

c ≥ c(e) := min
λ>0

k(λ)
λ

Explanation: Let (U(ξ, x), c) be a travelling wave.

U(ξ, x) ∼ eλξv(x), ξ → −∞ λ > 0, v periodic

Then φ(x) := eλe·xv(x) > 0 satisfies

Lφ(x) = λcφ(x)

Hence c = k(λ)
λ . Construction of upper and lower solutions

shows, that every c in the range of k(λ)
λ occurs.

How does c(e) depend on A, µ,e ?



Asymptotic Spreading
Consider an initial value 0 ≤ u0(x) ≤ 1 for KPP with compact,
nonempty support and let u(t , x) be the solution.

Theorem (Weinberger ’02, Beresytcki, Hamel, Nadin ’08))
For

w(e) = min
f ·e>0

c(f )
f ·e

the following holds

lim
t→∞

u(t , x + wte) = 0, x ∈ IRn,w > w(e)

lim
t→∞

u(t , x + wte) = 1, x ∈ IRn,0 ≤ w < w(e)

w(e) is called the spreading speed in direction e.

We will see that the formula for w(e) can be inverted:

c(e) = sup
f

(e · f )w(f )

.



Variational Formulation of the Speed
There exists a variational formulation of k(λ) using the
maximum principle:

k(λ) = inf
0<φe−λe·x∈C2

per

sup
x

(Lλφ)(x)

φ(x)

Difficult to use for qualitative analysis. Seek an integral
variational principle.
The adjoint operator of Lλ is

(L∗λψ) = ∇(A(x)T∇ψ(x)) + µ(x)ψ(x)

ψ(x)eλe·x is 1-periodic

Observe that k(λ) is a critical value of:∫
C
(−∇ψA∇φ+µφψ) dx → critical with constraint

∫
C
φψ dx = 1



Goal: Transform s.t. convex and concave part are seperated:

φ(x) = α(x)eλρ(x), ψ(x) = α(x)e−λρ(x)

α(x), ρ(x)− e · x are 1-periodic

G(α, ρ, λ) :=

∫
C

(
−(∇α− λα∇ρ)A(∇α+ λα∇ρ) + µα2

)
=

∫
C

(
λ2α2∇ρAs∇ρ+ 2λα∇ρAa∇α−∇αAs∇α+ µα2

)
→ critical point with constriant

∫
C
α2 = 1

where As := 1
2(A + AT ), Aa := 1

2(A− AT )



Now the following saddle point property for k(λ) follows:

Theorem (Donsker-Varadhan ’76, Holland ’78)

k(λ) = sup
α

inf
ρ

G(α, ρ, λ) = inf
ρ

sup
α

G(α, ρ, λ)

α, ρ− e · x ∈ C1
per (IR

n), α > 0,
∫

C
α2 dx = 1

The Euler Lagrange equations are:

∇(As∇α) + λ2α∇ρAs∇ρ+ λα∇ · Aa∇ρ+ µα = k(λ)α

λ∇(α2As∇ρ) +∇ · (Aa∇α2) = 0

This is a selfadjoint problem for α coupled to a Poisson
equation for ρ.



Saddle point principle for the speed

Goal: Eliminate λ in c(e) = inf
λ>0

k(λ)
λ .

Idea: Consider
J(α, ρ) := inf

λ>0

G(α, ρ, λ)

λ

= 2
(∫

C
(µα2 −∇αAs∇α)

∫
C
α2∇ρAs∇ρ

)1/2

+

∫
C
∇ρAa∇α2,

if
∫

C
(µα2 −∇αAs∇α) ≥ 0 and −∞ otherwise.

Let (αλ, ρλ) be the saddle point of G(α, ρ, λ). and let λ∗ > 0 be
the unique minimizer of k(λ)/λ.

Have to show, that J(αλ∗ , ρλ∗) > −∞ holds.



This follows from

0 =
d

dλ
k(λ)

λ

∣∣
λ∗

=

∫
C
α2
λ∗∇ρλ∗As∇ρλ∗−

1
λ∗2

∫
C
(µα2

λ∗−∇αλ∗As∇αλ∗)

Since J is convex, w.r.t. λ, ρ and concave w.r.t. α we obtain:

Theorem: (Saddle point principle)

c(e) = sup
α

inf
ρ

J(α, ρ) = inf
ρ

sup
α

J(α, ρ)

α, ρ− e · x ∈ C1
per (IR

n), α > 0,
∫

C
α2 dx = 1



Dual variational principle
Goal: Dualize the infimum into a supremum:

For simplicity assume Aa = 0.
Let v(x) be a nontrivial periodic divergence free C1 vector field.(∫

C
e · v

)2

=

(∫
C

v∇ρ
)2

≤
∫

C

vA−1v
α2

∫
C
α2∇ρA∇ρ

and equality holds iff v = γα2A∇ρ for some γ ∈ IR. This is the
Euler Lagrange equation for ρ.

Theorem (Maximization principle)

c(e)2/4 = sup
α,v

 ∫
C

v · e
!2 ∫

C
(µα2 −∇αA∇α)∫

C

vA−1v
α2

α, v ∈ C1
per (IR

n), α > 0,
∫

C
α2 dx = 1,∇ · v = 0, v 6= 0



For n = 1 this simplyfies to:

c(e)2/4 = sup
α

1∫
0
(µα2 − Aα′2)

1∫
0

1
Aα2



Qualitative Consequences

Smooth Dependence

The principle eigenvalue k(λ) is simple. Hence it depends
smoothly on parameters.
One can show that

d
dλ

k(λ)

λ

∣∣
λ∗

= 0 implies
d2

d2λ

k(λ)

λ

∣∣
λ∗
> 0.

Hence the minimal speed also depends smoothly on
parameters.
Suppose that the functional J depends on a parameter t and
(αt , ρt) is the saddle point. Then

d
dt

c(t) = ∂tJ(αt , ρt , t)



Dependence on the direction

Extend the definition of c(e) and w(e) as a homogeneous
function to all e ∈ IRn of degree 1 and degree -1 respectively.

Theorem
c(e) and w(e) satisfy:

1. c(e),w(e) > 0, e 6= 0
2. c(se) = sc(e), s ≥ 0
3. c(e + f ) ≤ c(e) + c(f )
4. c(e) is the support function of a convex body.
5. 1/w(e) is the support function of the polar convex body,

i.e. 1/w(e) = sup
f 6=0

e·f
c(f )

6. c(e) = sup
f 6=0

e · f w(f )



Dependence on the period
Consider the symmetric case Aa = 0.
For L > 0 replace in (KPP) A(x) and f (x ,u) by A(x/L) and
f (x/L,u). A rescaling of x gives:

c(L)2/4 = sup
α

inf
ρ

∫
C
(µα2 − 1

L2∇αAs∇α)

∫
C
α2∇ρAs∇ρ

Let (αL, ρL) be the saddle point of J.

Theorem

d
dL

c(L) =
2
L3

∫
C
∇αLA∇αL ≥ 0

holds. Equality holds for some L0 > 0 or equvalently for all L >
iff

∇ρA∇ρ∫
C ∇ρA∇ρ

+
µ∫
C µ

= 2

where ρ solves

∇(A∇ρ) = 0, ρ(x)− e · x is 1-periodic



Remark: There exist nonconstant media, s.t. the speed is
independent of the period and the direction.
(test case for numerics)



Homogenization

For simplicity consider the case Aa = 0 only.

Theorem
The following limit exists

lim
L→0

c(L) =: c0 = 2
√
µeAhe

and equals the minimal speed of the homogenized equation.
Proof: Choosing α = 1 in the variational principle gives:

c(L)2/4 ≥
∫

C
µ inf

ρ

∫
C
∇ρA∇ρ = 2

√
µeAhe



Let (αL, ρL) be the critical point of J(α, ρ, L). We know:∫
C
(µα2

L −
1
L2∇αLA∇αL) ≥ 0

This implies αL → 1 in H1
per . We have for every ρ:

c(L)2/4 = J(αL, ρL) ≤ J(αL, ρ)

≤
∫

C
µα2

L

∫
C
α2

L∇ρA∇ρ→
∫

C
µ

∫
C
∇ρA∇ρ

Minimizing over ρ completes the proof.



Large period limit

Theorem
Suppose Aa = 0. Then

lim
L→∞

c(L) = c∞ = sup
α,v

(∫
C v · e

)2 ∫
C µα

2∫
C

vA−1v
α2

In 1-D we have c∞ = sup
α

1∫
0
µα2

(
1∫
0

1
Aα2

)−1

The supremum can be evaluated, conjectured by Hamel,
Fayard, Roques ’10.



Theorem
Let µ∗ = supµ(x) and assume

µ∗
∫ 1

0
(a(µ∗ − µ))−1/2 ≥ 2

∫ 1

0

(
µ∗ − µ

a

)1/2

Then

c∞ = inf
η>µ+

η∫ 1

0

√
η − µ

a

This holds e.g. if µ is piecewise C2. If µ is constant this gives

c∞ = 2
√
µ

(∫ 1

0

1√
a

)−1



Proof: The lower is obtained by choosing α = (a(η − µ))1/4 in
the variational principle and maximizing over η.
The upper bound follows from(∫

C

√
ψ − µ

a

)2

≤
∫
α2(η − µ)

∫
C

1
aα2

and minimizing over η. Equality of these bounds holds iff the
condition above holds.



Dependence on µ

Theorem
If A is constant, then µ 7→ γ(µ) := c(µ)2 is increasing and
convex.
In particular if µ2(x) = µ1(x + a) holds, then

c(
µ1 + µ2

2
) ≤ c(µ1)

follows, i.e. fragmentation decreases the minimal speed.
Proof: Let (α, v) be the maximizer of J∗(α, v , (µ1 + µ2)/2)
where J∗ is the functional of the dual variational principle.

c(
µ1 + µ2

2
)2 = J(α, v ,

µ1 + µ2

2
)2

=
1
2

J(α, v , µ1)
2 +

1
2

J(α, v , µ2)
2 ≤ c(µ1)

2 + c(µ2)
2

2



Optimization over µ

Theorem
Suppose that A is constant and let µ > 0 be given. Then

sup
1R
0
µ=µ

c(µ) = c(µδx0)

where δx0 is the Dirac functional at x0.

In 1-D this is finite.
Proof: The convexity implies for every periodic ν with integral
one:

c(µ ∗ ν) ≤ c(µ)

The variational formula can be extended to measures.
Choosing µ = µδx0 completes the proof.

Related rearrangement results: Nadim (2010)



Generalizations

I Less regular data A, f , µ, e.g. µ could be a characterstic
function.

I f (x ,u) < 0 for u > M instead of f (x ,1) = 0. Then U+(x) is
a periodic function instead of U+ = 1.

I Instead of µ(x) ≥ 0, assume k(0) > 0, e.g.
∫
C
µ > 0 is

enough.
I Perforated domains.
I Space and time periodic data.
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