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• Parabolic systems of form

ut = d1 ∆u + f (u)− kuv, x ∈ Ω, t ≥ 0,

vt = d2 ∆v + g(v)− kuv, x ∈ Ω, t ≥ 0,

u(x) = v(x) = 0, x ∈ ∂Ω

model populations of densities u, v that compete in Ω ∈ RN

M = 1
Ω ∈ RN

u = v = 0 on ∂Ω

u, v compete

inside

M0

form of self-interaction functions f, g

e.g. f(u) = u(1− u)
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• Elliptic systems of form

0 = ∆u + f (u)− kuv, x ∈ Ω,

0 = ∆v + g(v)− kuv, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

model steady states of populations u, v that compete in Ω ∈ RN

M = 1
Ω ∈ RN

u = v = 0 on ∂Ω

u, v compete

inside

M0

form of self-interaction functions f, g

e.g. f(u) = u(1− u)

• densities non-negative⇒ u ≥ 0, v ≥ 0 • competition parameter k > 0



• Interest in the large-competition (k →∞) limit comes from

(i) the k-dependent system is difficult to analyse; for example, it is not in

general the Euler-Lagrange equations of an energy functional variational,

whereas the limit problem is a scalar equation

(ii) the k →∞ limit is linked to

- spatial segregation in population dynamics

- phase separation in, for example, Bose-Einstein condensates

both of which are of importance in applications



Large-competition limit k →∞ of solutions (uk, vk)
Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (uk, vk) converge to the positive and negative parts resp. of a limit function

w satisfying the scalar equation

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω
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Large-competition limit k →∞ of solutions (uk, vk)
Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (uk, vk) converge to the positive and negative parts resp. of a limit function

w satisfying the scalar equation

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

• Key ingredients:

(i) the linear combination wk := uk − vk satisfies

∆wk + f (uk)− g(vk) = 0, x ∈ Ω

which does not depend explicitly on k ⇒ good bounds for wk independent of k

(ii) uk, vk converge in some sense as k →∞

(iii) uk and vk segregate , since k ukvk bounded⇒ ukvk → 0 as k →∞

and

uv = 0 a.e.

u, v ≥ 0

w = u− v

 ⇒
u = w+ a.e.

v = −w−



• Note: there are two aspects to large-interaction limit problem

(i) to show that (uk, vk) converges as k →∞ to a solution of the limit problem

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

(ii) conversely, to show that given a solution w of the limit problem, there exists

a sequence of solutions of the k-dependent system (uk, vk) that converge

to w as k →∞
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• Note: there are two aspects to large-interaction limit problem

(i) to show that (uk, vk) converges as k →∞ to a solution of the limit problem

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

(ii) conversely, to show that given a solution w of the limit problem, there exists

a sequence of solutions of the k-dependent system (uk, vk) that converge

to w as k →∞

theory in cones

g(−w−)

f(w+)

w

limit nonlinearity

not continuously differentiable

methods: e.g. degree

Focus on (i) here



• Key property that allows cancellation of competition terms “kuv” is that the

same term occurs in both equations

0 = ∆u + f (u)− kuv,
0 = ∆v + g(v)− kuv,

so cancel in equation for wk := uk − vk
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• Key property that allows cancellation of competition terms “kuv” is that the

same term occurs in both equations

0 = ∆u + f (u)− kuv,
0 = ∆v + g(v)− kuv,

so cancel in equation for wk := uk − vk

• Similarly, the competition terms in the more general system cancel

0 = ∆u + f (u)− kuv,
0 = ∆v + g(v)− kαuv

in the equation for ŵk = αuk − vk

•Question: to what types of system with different competition terms in the

two equations can this “cancellation” approach be extended?



Our two prototype classes of system

1. Non-autonomous system

∆u + f (u)− α1(x)kuv = 0, x ∈ Ω,

∆v + g(v)− α2(x)kuv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω

where α1, α2 ∈ C2(Ω, [α0,∞)) for some constant α0 > 0

2. “Nonlinear” competition system

∆u + f (u)− kuv = 0, x ∈ Ω,

∆v + g(v)− k(1 + u2)uv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω



Our two prototype classes of system

1. Non-autonomous system

∆u + f (u)− α1(x)kuv = 0, x ∈ Ω,

∆v + g(v)− α2(x)kuv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω

where α1, α2 ∈ C2(Ω, [α0,∞)) for some constant α0 > 0

2. “Nonlinear” competition system

∆u + f (u)− kuv = 0, x ∈ Ω,

∆v + g(v)− k(1 + u2)uv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω

Key feature: each competition term is of form “kuv” multiplied by a positive

function that is bounded below by a strictly positive constant



• systems (1.) and (2.) are special cases of the general system

∆u + f (u)− kα1(x)γ1(v)uv = 0, x ∈ Ω,

∆v + g(v)− kα2(x)γ2(u)uv = 0, x ∈ Ω

where γ1, γ2 ≥ γ0 and α1, α2 ≥ α0 for some constants α0, γ0 > 0



• systems (1.) and (2.) are special cases of the general system

∆u + f (u)− kα1(x)γ1(v)uv = 0, x ∈ Ω,

∆v + g(v)− kα2(x)γ2(u)uv = 0, x ∈ Ω

where γ1, γ2 ≥ γ0 and α1, α2 ≥ α0 for some constants α0, γ0 > 0

• the system

∆u + f (u)− kuv2 = 0, x ∈ Ω,

∆v + g(v)− ku2v = 0, x ∈ Ω

is unfortunately excluded from our framework; it

- arises in modelling phase separation in Bose-Einstein condensates

- is variational, being the Euler-Lagrange equations of a functional of form

J(u, v) =

∫
Ω

1

2
(|∇u|2 + |∇v|2)− F (u)−G(v) +

1

2
ku2v2 dx

(references: Conti, Terracini, Verzini, Squassina, ...)



Preliminary “cancellation” calculations

System 1.

Given a solution (uk, vk) of system 1,

∆u + f (u)− α1(x)kuv = 0, x ∈ Ω,

∆v + g(v)− α2(x)kuv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

define

wk = α2u
k − α1v

k.

Then wk satisfies the equation

∆wk = 2∇α2 · ∇uk − 2∇α1 · ∇vk

+uk∆α2 − vk∆α1−α2f (uk) + α1g(vk) in Ω,

wk = 0 on ∂Ω,

because

∆wk = α2∆uk − α1∆vk + 2∇α2 · ∇uk − 2∇α1 · ∇vk + uk∆α2 − vk∆α1



System 2.

Given a solution (uk, vk) of system 2,

∆u + f (u)− kuv = 0, x ∈ Ω,

∆v + g(v)− k(1 + u2)uv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

define

yk = uk +
(uk)3

3
− vk.

Then yk satisfies the equation

∆yk = 2uk|∇uk|2 − (1 + (uk)2)f (uk) + g(vk) in Ω,

yk = 0 on ∂Ω.



System 2.

Given a solution (uk, vk) of system 2,

∆u + f (u)− kuv = 0, x ∈ Ω,

∆v + g(v)− k(1 + u2)uv = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

define

yk = uk +
(uk)3

3
− vk.

Then yk satisfies the equation

∆yk = 2uk|∇uk|2 − (1 + (uk)2)f (uk) + g(vk) in Ω,

yk = 0 on ∂Ω.

Note:

(i) no terms involving second derivatives of uk or vk in eqn for yk

(ii) u 7→ u + u3

3 is invertible, since d
du

(
u + u3

3

)
= 1 + u2 ≥ 1 for all u



Why? - form of system is

∆u + f (u)− kuv = 0, x ∈ Ω,

∆v + g(v)− k γ(u)uv = 0, x ∈ Ω

where

γ(u) = 1 + u2 ≥ γ0 > 0
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Why? - form of system is

∆u + f (u)− kuv = 0, x ∈ Ω,

∆v + g(v)− k γ(u)uv = 0, x ∈ Ω

where

γ(u) = 1 + u2 ≥ γ0 > 0

• Define

yk := Γ(uk)− vk, where Γ(u) :=

∫ u

0

γ(s) ds

Then

Γ′(u) = γ(u) ≥ γ0 > 0 for all u ⇒ Γ is invertible

and

∇yk = γ(uk)∇uk −∇vk

⇒ ∆yk = γ′(uk)|∇uk|2 + γ(uk)∆uk −∆vk

= γ′(uk)|∇uk|2 − γ(uk)f (uk) + g(vk)



• Also,

Γ(u) =

∫ u

0

γ(s) ds > 0 if u > 0

and

Γ(0) = 0

• thus

uv = 0 a.e.

u, v ≥ 0

y = Γ(u)− v

 ⇒
y+ = Γ(u)

y− = −v
⇒

Γ−1(y+) = u

y− = v

i.e. segregation of u and v implies that u and v can be written in terms of the

positive and negative parts of y



Theorem Given a sequence of non-negative solutions (uk, vk) of either

system 1 or 2, there exist subsequences {ukn}, {vkn} and non-negative

functions u, v ∈ L∞(Ω) ∩W 1,2
0 (Ω) such that

• ukn → u, vkn → v in W 1,2
0 (Ω) as kn →∞;

• uv = 0 a.e. in Ω.

• In the case of system 1, the function w := α2u− α1v is such that
w+ = α2u, w− = −α1v and w is a weak solution of the equation

∆w = 2∇α2 · ∇(α−1
2 w+)− 2∇α1 · ∇(−α−1

1 w−)

+α−1
2 w+∆α2 − α2f (α−1

2 w+) + α−1
1 w−∆α1 + α1g(−α1w

−) in Ω,

w = 0 on ∂Ω

• In the case of system 2, the function y := Γ(u)− v, where Γ(u) := u + u3

3 ,
is such that y+ = Γ(u), y− = −v and y is a weak solution of the equation

∆y =
2Γ−1(y+)

(1 + Γ−1(y+)2)2
|∇y+|2 + (1 + Γ−1(y+)2)f (Γ−1(y+)) + g(−y−) in Ω,

y = 0 on ∂Ω.



Basic estimates on solutions (uk, vk) of system 1 or 2

(i) L∞-bound

0 ≤ uk, vk ≤M for all x ∈ Ω, k > 0

by maximum principle, since f (u), g(v) < 0 when u, v > M and so if, say,

uk attains a maximum value uk(x0) > M , then

−∆uk(x0) ≤ f (uk(x0)) < 0,

which is impossible

(ii) L2-gradient bound there exists K1 > 0 such that∫
Ω

|∇uk(x)|2 dx,
∫

Ω

|∇vk(x)|2 dx ≤ K1 for all k > 0

since, e.g., multiplication of uk equation by uk and integration over Ω gives

−
∫

Ω

|∇uk|2 dx +

∫
Ω

ukf (uk) dx ≥ 0



(iii) normal derivative bound there exists K2 > 0 such that∣∣∣∣∂uk∂ν

∣∣∣∣ (x),

∣∣∣∣∂vk∂ν
∣∣∣∣ (x) ≤ K2 for all x ∈ ∂Ω, k > 0

since

−∆uk ≤ f (uk), x ∈ Ω, uk = 0 on ∂Ω,

and so 0 ≤ uk ≤ u, where u is the maximal solution in [0,M ] of

−∆u = f (u), x ∈ Ω, u = 0 on ∂Ω

which, as uk = u = 0 on ∂Ω, then implies∣∣∣∣∂uk∂ν

∣∣∣∣ (x) ≤
∣∣∣∣∂u∂ν
∣∣∣∣ (x) for all x ∈ ∂Ω



(iii) normal derivative bound there exists K2 > 0 such that∣∣∣∣∂uk∂ν

∣∣∣∣ (x),

∣∣∣∣∂vk∂ν
∣∣∣∣ (x) ≤ K2 for all x ∈ ∂Ω, k > 0

since

−∆uk ≤ f (uk), x ∈ Ω, uk = 0 on ∂Ω,

and so 0 ≤ uk ≤ u, where u is the maximal solution in [0,M ] of

−∆u = f (u), x ∈ Ω, u = 0 on ∂Ω

which, as uk = u = 0 on ∂Ω, then implies∣∣∣∣∂uk∂ν

∣∣∣∣ (x) ≤
∣∣∣∣∂u∂ν
∣∣∣∣ (x) for all x ∈ ∂Ω

(i), (ii) and (iii) use the sign of the competition term



(iv) basic segregation bound there exists K3 > 0 such that∫
Ω

kukvk dx ≤ K3

since

0 ≤ min{1, α0}
∫

Ω

kukvk dx ≤
∫

Ω

∆uk + f (uk) dx

=

∫
∂Ω

∂uk

∂ν
dx +

∫
Ω

f (uk) dx

≤ C

Note: (iv) uses key feature that α, etc are bounded below by a positive const



Key lemma ∇ukn → ∇u, ∇vkn → ∇v in L2(Ω) as kn →∞.

Idea of proof for system 1

• have to prove that

lim sup
kn→∞

∫
Ω

|∇ukn|2 dx ≤
∫

Ω

|∇u|2 dx

•multiplication of vkn equation by limit u and integration over Ω yields

−
∫

Ω

∇u · ∇vkn dx +

∫
Ω

ug(vkn) dx− kn
∫

Ω

uuknvknα2 dx = 0

• then as kn →∞,∫
Ω

∇u·∇vkn dx→
∫

Ω

∇u·∇v dx = 0,

∫
Ω

ug(vkn) dx→
∫

Ω

ug(v) dx = 0

so that

kn

∫
Ω

uuknvknα2 dx→ 0 as kn →∞
⇒

kn

∫
Ω

uuknvknα1 dx→ 0 as kn →∞



Idea of proof contd....

• now by multiplication of ukn equation by the limit u and integration over Ω,

−
∫

Ω

∇ukn · ∇u dx +

∫
Ω

uf (ukn) dx− kn
∫

Ω

uuknvknα1 dx = 0,

and then letting kn →∞ gives∫
Ω

|∇u|2 dx =

∫
Ω

uf (u) dx

•multiplication of ukn equation by ukn and integration over Ω gives

−
∫

Ω

|∇ukn|2 dx +

∫
Ω

uknf (ukn) dx− kn
∫

Ω

(ukn)2vknα1 dx = 0,

which, since α1 and vkn are non-negative, implies that∫
Ω

|∇ukn|2 dx ≤
∫

Ω

uknf (ukn) dx

→
∫

Ω

uf (u) dx

=

∫
Ω

|∇u|2 dx 2



Remark : improved segregation

Lemma Let ε > 0. Then there exists k0 ∈ N such that if k ≥ k0 and (uk, vk)

is a non-negative solution of

∆u + f (u)− kα1(x)γ1(v)uv = 0, x ∈ Ω,

∆v + g(v)− kα2(x)γ2(u)uv = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

then given x ∈ Ω,

uk(x) ≤ ε0 or vk(x) ≤ ε0



Remark : improved segregation

Lemma Let ε > 0. Then there exists k0 ∈ N such that if k ≥ k0 and (uk, vk)

is a non-negative solution of

∆u + f (u)− kα1(x)γ1(v)uv = 0, x ∈ Ω,

∆v + g(v)− kα2(x)γ2(u)uv = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

then given x ∈ Ω,

uk(x) ≤ ε0 or vk(x) ≤ ε0

Idea of proof : Suppose not. Then there exist ε0 > 0 and sequences

kj →∞ and xj ∈ Ω such that

ukj(xj) ≥ ε0 and vkj(xj) ≥ ε0.



Rescale

(Ukj, V kj)(
√
kj(x− xj)) = (ukj, vkj)(x), x ∈ Ω

satisfies

∆Ukj + k−1
j f (Ukj)− α1(xj + x′√

kj
)γ1(V kj)UkjV kj = 0 in Ωj,

∆V kj + k−1
j g(V kj)− α2(xj + x′√

kj
)γ2(Ukj)UkjV kj = 0 in Ωj,

Ukj = V kj = 0 on ∂Ωj

and

0 ≤ Ukj, V kj ≤M, 0 ∈ Ωj, Ukj(0) ≥ ε0 and V kj(0) ≥ ε0



Rescale

(Ukj, V kj)(
√
kj(x− xj)) = (ukj, vkj)(x), x ∈ Ω

satisfies

∆Ukj + k−1
j f (Ukj)− α1(xj + x′√

kj
)γ1(V kj)UkjV kj = 0 in Ωj,

∆V kj + k−1
j g(V kj)− α2(xj + x′√

kj
)γ2(Ukj)UkjV kj = 0 in Ωj,

Ukj = V kj = 0 on ∂Ωj

and

0 ≤ Ukj, V kj ≤M, 0 ∈ Ωj, Ukj(0) ≥ ε0 and V kj(0) ≥ ε0

kj →∞ limit system

∆U = α1(x)γ1(V )UV,

∆V = α2(x)γ2(U)UV,
in RN

and

0 ≤ U, V ≤M, U(0) ≥ ε0 and V (0) ≥ ε0



Then on the one hand....

∆U ≥ 0 and U is bounded on RN ;

∆V ≥ 0 and V is bounded on RN ,

⇒ ∃ direction {λξ : ξ ∈ Sn−1, λ ≥ 0} along which

U(x)→ supU and V (x)→ supV as |x| → ∞,

by properties of subharmonic functions

∴ limit (Ũ , Ṽ ) of translates U(·+ xn), V (·+ xn) along this direction satisfies

Ũ(0) = sup Ũ , ∆Ũ(0)≤ 0 and Ṽ (0) = sup Ṽ , ∆Ṽ (0)≤ 0



Then on the one hand....

∆U ≥ 0 and U is bounded on RN ;

∆V ≥ 0 and V is bounded on RN ,

⇒ ∃ direction {λξ : ξ ∈ Sn−1, λ ≥ 0} along which

U(x)→ supU and V (x)→ supV as |x| → ∞,
by properties of subharmonic functions

∴ limit (Ũ , Ṽ ) of translates U(·+ xn), V (·+ xn) along this direction satisfies

Ũ(0) = sup Ũ , ∆Ũ(0)≤ 0 and Ṽ (0) = sup Ṽ , ∆Ṽ (0)≤ 0

But on the other hand....

∆Ũ(0) = α1(x)γ1(Ṽ (0)) Ũ(0)Ṽ (0) > 0

∴ contradiction

here also use feature that α, etc are bounded below by a positive const



Remark : regularity for limit equation of System 2

• y ∈ W 1,2
0 (Ω) ∩ L∞(Ω) is a weak solution of limit equation

∆y =
2Γ−1(y+)

(1 + Γ−1(y+)2)2
|∇y+|2 + (1 + Γ−1(y+)2)f (Γ−1(y+)) + g(−y−) in Ω,

y = 0 on ∂Ω



Remark : regularity for limit equation of System 2

• y ∈ W 1,2
0 (Ω) ∩ L∞(Ω) is a weak solution of limit equation

∆y =
2Γ−1(y+)

(1 + Γ−1(y+)2)2
|∇y+|2 + (1 + Γ−1(y+)2)f (Γ−1(y+)) + g(−y−) in Ω,

y = 0 on ∂Ω

• since Γ−1(0) = 0, this can be re-written as

∆y = h(y) |∇y|2 + d(y) in Ω,

y = 0 on ∂Ω

where h and d are continuous functions



Remark : regularity for limit equation of System 2

• y ∈ W 1,2
0 (Ω) ∩ L∞(Ω) is a weak solution of limit equation

∆y =
2Γ−1(y+)

(1 + Γ−1(y+)2)2
|∇y+|2 + (1 + Γ−1(y+)2)f (Γ−1(y+)) + g(−y−) in Ω,

y = 0 on ∂Ω

• since Γ−1(0) = 0, this can be re-written as

∆y = h(y) |∇y|2 + d(y) in Ω,

y = 0 on ∂Ω,

where h and d are continuous functions

• change of variables : let r : R→ R be such that

r′(t) = eH(r(t)), t ∈ R,
r(0) = 0,

where H ′ = h, and note that

r′′(t)− h(r(t))r′(t)2 = 0, t ∈ R.



• define s : Ω→ R by

s(x) = r−1(y(x)), x ∈ Ω,

where y ∈ W 1,2
0 (Ω) is a solution of the limit equation

• then s satisfies

∆s =
d(s(x))

r′(s(x))
, x ∈ Ω

s = 0 on ∂Ω
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r′(s(x)) = eH(r(s(x)) = eH(y(x)) ≥ r0 > 0

because y ∈ L∞(Ω)



• define s : Ω→ R by

s(x) = r−1(y(x)), x ∈ Ω,

where y ∈ W 1,2
0 (Ω) is a solution of the limit equation

• then s satisfies

∆s =
d(s(x))

r′(s(x))
∈ L∞(Ω)

s = 0 on ∂Ω

since

r′(s(x)) = eH(r(s(x)) = eH(y(x)) ≥ r0 > 0

because y ∈ L∞(Ω)

• hence

∆s ∈ L∞(Ω), s = 0 on ∂Ω ⇒ s ∈ W 2,p(Ω) for all p ∈ [1,∞)

⇒ s ∈ C1,µ(Ω) for all µ ∈ (0, 1)

⇒ y ∈ C1,µ(Ω) for all µ ∈ (0, 1)



Main open question...

• to better understand solutions of the scalar limit problems, especially

sign-changing solutions of the limit problems

- in particular, to understand which sign-changing solutions arises as the limit

as k →∞ of co-existence states of the k-dependent system



Main open question...

• to better understand solutions of the scalar limit problems, especially

sign-changing solutions of the limit problems

- in particular, to understand which sign-changing solutions arises as the limit

as k →∞ of co-existence states of the k-dependent system

Thank you for your attention ...


