Highly nonlinear large-competition limits of elliptic systems

Elaine Crooks Swansea

Joint work with Norman Dancer, Sydney.

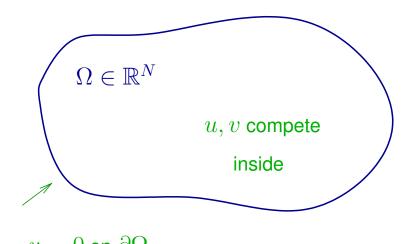
• Parabolic systems of form

$$u_t = d_1 \Delta u + f(u) - kuv, \quad x \in \Omega, \quad t \ge 0,$$

$$v_t = d_2 \Delta v + g(v) - kuv, \quad x \in \Omega, \quad t \ge 0,$$

$$u(x) = v(x) = 0, \quad x \in \partial \Omega$$

model populations of densities u, v that compete in $\Omega \in \mathbb{R}^N$



 $u=v=0 \text{ on } \partial \Omega$

form of self-interaction functions f, ge.g. f(u) = u(1 - u) M = 10 M

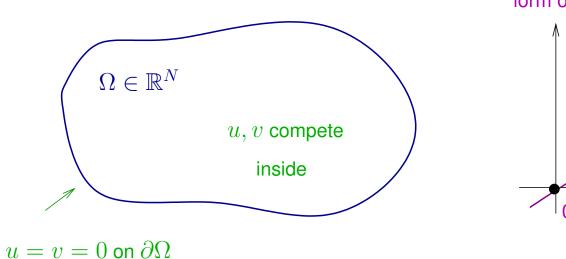
• Elliptic systems of form

$$0 = \Delta u + f(u) - kuv, \quad x \in \Omega,$$

$$0 = \Delta v + g(v) - kuv, \quad x \in \Omega,$$

$$u(x) = v(x) = 0, \qquad x \in \partial\Omega,$$

model steady states of populations u, v that compete in $\Omega \in \mathbb{R}^N$



form of self-interaction functions f, ge.g. f(u) = u(1 - u) M = 10 M

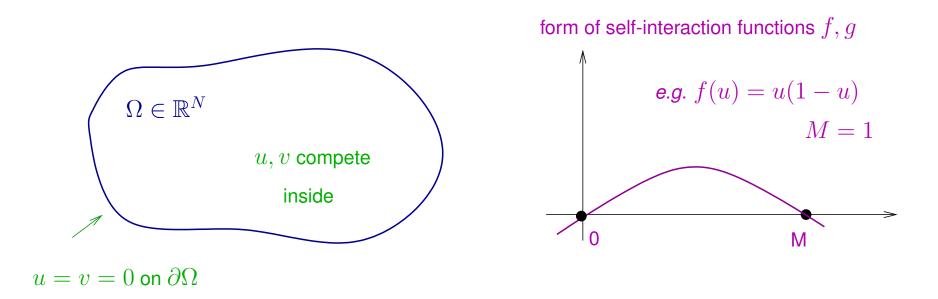
• Elliptic systems of form

$$0 = \Delta u + f(u) - kuv, \quad x \in \Omega,$$

$$0 = \Delta v + g(v) - kuv, \quad x \in \Omega,$$

$$u(x) = v(x) = 0, \qquad x \in \partial\Omega,$$

model steady states of populations u, v that compete in $\Omega \in \mathbb{R}^N$



• densities non-negative $\Rightarrow u \ge 0, v \ge 0$

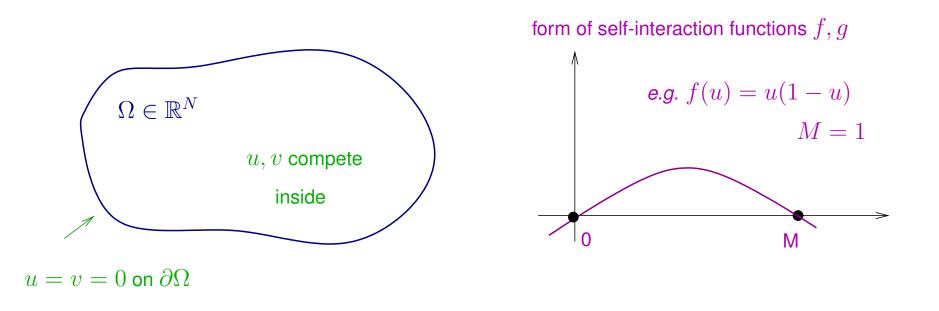
• Elliptic systems of form

$$0 = \Delta u + f(u) - kuv, \quad x \in \Omega,$$

$$0 = \Delta v + g(v) - kuv, \quad x \in \Omega,$$

$$u(x) = v(x) = 0, \qquad x \in \partial\Omega,$$

model steady states of populations u, v that compete in $\Omega \in \mathbb{R}^N$



- densities non-negative $\Rightarrow u \ge 0, v \ge 0$
- competition parameter k > 0

• Interest in the large-competition ($k \rightarrow \infty$) limit comes from

(i) the k-dependent system is difficult to analyse; for example, it is not in general the Euler-Lagrange equations of an energy functional variational, whereas the limit problem is a scalar equation

(ii) the $k \to \infty$ limit is linked to

- spatial segregation in population dynamics
- phase separation in, for example, Bose-Einstein condensates

both of which are of importance in applications

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (u^k, v^k) converge to the positive and negative parts resp. of a limit function w satisfying the scalar equation

$$\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$$
$$w(x) = 0, \quad x \in \partial \Omega$$

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (u^k, v^k) converge to the positive and negative parts resp. of a limit function w satisfying the scalar equation

$$\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$$
$$w(x) = 0, \quad x \in \partial \Omega$$

• Key ingredients:

(i) the linear combination $w^k := u^k - v^k$ satisfies

$$\Delta \boldsymbol{w}^{\boldsymbol{k}} + f(\boldsymbol{u}^{\boldsymbol{k}}) - g(\boldsymbol{v}^{\boldsymbol{k}}) = 0, \quad \boldsymbol{x} \in \Omega$$

which does not depend explicitly on $k \Rightarrow$ good bounds for w^k independent of k

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (u^k, v^k) converge to the positive and negative parts resp. of a limit function w satisfying the scalar equation

$$\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$$
$$w(x) = 0, \quad x \in \partial \Omega$$

• Key ingredients:

(i) the linear combination $w^k := u^k - v^k$ satisfies

$$\Delta \boldsymbol{w}^{\boldsymbol{k}} + f(\boldsymbol{u}^{\boldsymbol{k}}) - g(\boldsymbol{v}^{\boldsymbol{k}}) = 0, \quad \boldsymbol{x} \in \Omega$$

which does not depend explicitly on $k \Rightarrow$ good bounds for w^k independent of k(ii) u^k , v^k converge in some sense as $k \to \infty$

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (u^k, v^k) converge to the positive and negative parts resp. of a limit function w satisfying the scalar equation

$$\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$$
$$w(x) = 0, \quad x \in \partial \Omega$$

• Key ingredients:

(i) the linear combination $w^k := u^k - v^k$ satisfies

$$\Delta w^k + f(u^k) - g(v^k) = 0, \quad x \in \Omega$$

which does not depend explicitly on $k \Rightarrow \text{good bounds for } w^k$ independent of k(ii) u^k , v^k converge in some sense as $k \to \infty$ (iii) u^k and v^k segregate, since $k \ u^k v^k$ bounded $\Rightarrow u^k v^k \to 0$ as $k \to \infty$ and uv = 0 a.e. uv = 0 a.e. w = u - vw = u - v • Note: there are two aspects to large-interaction limit problem

(i) to show that (u^k, v^k) converges as $k \to \infty$ to a solution of the limit problem

$$\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$$
$$w(x) = 0, \quad x \in \partial \Omega$$

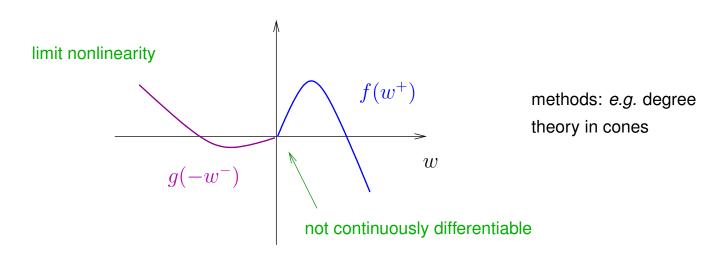
(ii) conversely, to show that given a solution w of the limit problem, there exists a sequence of solutions of the k-dependent system (u^k, v^k) that converge to w as $k \to \infty$

• Note: there are two aspects to large-interaction limit problem

(i) to show that (u^k, v^k) converges as $k \to \infty$ to a solution of the limit problem

$$\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$$
$$w(x) = 0, \quad x \in \partial \Omega$$

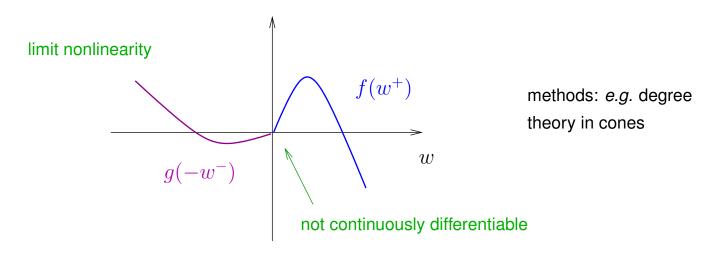
(ii) conversely, to show that given a solution w of the limit problem, there exists a sequence of solutions of the k-dependent system (u^k, v^k) that converge to w as $k \to \infty$



• Note: there are two aspects to large-interaction limit problem

(i) to show that (u^k, v^k) converges as $k \to \infty$ to a solution of the limit problem $\Delta w + f(w^+) - g(-w^-) = 0, \quad x \in \Omega,$ $w(x) = 0, \quad x \in \partial \Omega$

(ii) conversely, to show that given a solution w of the limit problem, there exists a sequence of solutions of the k-dependent system (u^k, v^k) that converge to w as $k \to \infty$



Focus on (i) here

• Key property that allows cancellation of competition terms "kuv" is that the same term occurs in both equations

$$0 = \Delta u + f(u) - kuv,$$

$$0 = \Delta v + g(v) - kuv,$$

so cancel in equation for $w^k := u^k - v^k$

• Key property that allows cancellation of competition terms "kuv" is that the same term occurs in both equations

$$0 = \Delta u + f(u) - kuv,$$

$$0 = \Delta v + g(v) - kuv,$$

so cancel in equation for $\boldsymbol{w}^k := \boldsymbol{u}^k - \boldsymbol{v}^k$

• Similarly, the competition terms in the more general system cancel

$$0 = \Delta u + f(u) - kuv,$$

$$0 = \Delta v + g(v) - k\alpha uv$$

in the equation for $\hat{w}^k = \alpha u^k - v^k$

• Key property that allows cancellation of competition terms "kuv" is that the same term occurs in both equations

$$0 = \Delta u + f(u) - kuv,$$

$$0 = \Delta v + g(v) - kuv,$$

so cancel in equation for $\boldsymbol{w}^k := \boldsymbol{u}^k - \boldsymbol{v}^k$

• Similarly, the competition terms in the more general system cancel

$$0 = \Delta u + f(u) - kuv,$$

$$0 = \Delta v + g(v) - k\alpha uv$$

in the equation for $\hat{w}^k = \alpha u^k - v^k$

• Question: to what types of system with different competition terms in the two equations can this "cancellation" approach be extended?

Our two prototype classes of system

1. Non-autonomous system

$$\Delta u + f(u) - \alpha_1(x)kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - \alpha_2(x)kuv = 0, \quad x \in \Omega,$$

$$u(x) = v(x) = 0, \quad x \in \partial\Omega$$

where $\alpha_1, \alpha_2 \in C^2(\Omega, [\alpha_0, \infty))$ for some constant $\alpha_0 > 0$

2. "Nonlinear" competition system

$$\begin{split} \Delta u + f(u) - kuv &= 0, \quad x \in \Omega, \\ \Delta v + g(v) - k(1 + u^2)uv &= 0, \quad x \in \Omega, \\ u(x) = v(x) &= 0, \quad x \in \partial \Omega \end{split}$$

Our two prototype classes of system

1. Non-autonomous system

$$\Delta u + f(u) - \alpha_1(x)kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - \alpha_2(x)kuv = 0, \quad x \in \Omega,$$

$$u(x) = v(x) = 0, \quad x \in \partial\Omega$$

where $\alpha_1, \alpha_2 \in C^2(\Omega, [\alpha_0, \infty))$ for some constant $\alpha_0 > 0$

2. "Nonlinear" competition system

$$\begin{aligned} \Delta u + f(u) - kuv &= 0, \quad x \in \Omega, \\ \Delta v + g(v) - k(1 + u^2)uv &= 0, \quad x \in \Omega, \\ u(x) &= v(x) \,= \, 0, \quad x \in \partial \Omega \end{aligned}$$

Key feature: each competition term is of form "kuv" multiplied by a positive function that is bounded below by a strictly positive constant

• systems (1.) and (2.) are special cases of the general system

 $\Delta u + f(u) - k\alpha_1(x)\gamma_1(v)uv = 0, \quad x \in \Omega,$ $\Delta v + g(v) - k\alpha_2(x)\gamma_2(u)uv = 0, \quad x \in \Omega$

where $\gamma_1, \gamma_2 \geq \gamma_0$ and $\alpha_1, \alpha_2 \geq \alpha_0$ for some constants $\alpha_0, \gamma_0 > 0$

• systems (1.) and (2.) are special cases of the general system

 $\Delta u + f(u) - k\alpha_1(x)\gamma_1(v)uv = 0, \quad x \in \Omega,$ $\Delta v + g(v) - k\alpha_2(x)\gamma_2(u)uv = 0, \quad x \in \Omega$

where $\gamma_1, \gamma_2 \geq \gamma_0$ and $\alpha_1, \alpha_2 \geq \alpha_0$ for some constants $\alpha_0, \gamma_0 > 0$

• the system

$$\Delta u + f(u) - kuv^2 = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - ku^2v = 0, \quad x \in \Omega$$

is unfortunately excluded from our framework; it

- arises in modelling phase separation in Bose-Einstein condensates
- is variational, being the Euler-Lagrange equations of a functional of form

$$J(u,v) = \int_{\Omega} \frac{1}{2} (|\nabla u|^2 + |\nabla v|^2) - F(u) - G(v) + \frac{1}{2} k u^2 v^2 \, dx$$

(references: Conti, Terracini, Verzini, Squassina, ...)

Preliminary "cancellation" calculations

System 1.

Given a solution (u^k, v^k) of system 1,

$$\Delta u + f(u) - \alpha_1(x)kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - \alpha_2(x)kuv = 0, \quad x \in \Omega,$$

$$u(x) = v(x) = 0, \quad x \in \partial\Omega,$$

define

$$w^k = \alpha_2 u^k - \alpha_1 v^k.$$

Then w^k satisfies the equation

$$\begin{split} \Delta w^k &= 2\nabla \alpha_2 \cdot \nabla u^k - 2\nabla \alpha_1 \cdot \nabla v^k \\ &+ u^k \Delta \alpha_2 - v^k \Delta \alpha_1 - \alpha_2 f(u^k) + \alpha_1 g(v^k) \quad \text{in } \ \Omega, \\ w^k &= 0 \quad \text{on } \ \partial \Omega, \end{split}$$

because

$$\Delta w^{k} = \alpha_{2} \Delta u^{k} - \alpha_{1} \Delta v^{k} + 2\nabla \alpha_{2} \cdot \nabla u^{k} - 2\nabla \alpha_{1} \cdot \nabla v^{k} + u^{k} \Delta \alpha_{2} - v^{k} \Delta \alpha_{1}$$

System 2.

Given a solution (u^k, v^k) of system 2,

$$\begin{split} \Delta u + f(u) - kuv &= 0, \quad x \in \Omega, \\ \Delta v + g(v) - k(1 + u^2)uv &= 0, \quad x \in \Omega, \\ u(x) &= v(x) \,= \, 0, \quad x \in \partial \Omega, \end{split}$$

define

$$y^{k} = u^{k} + \frac{(u^{k})^{3}}{3} - v^{k}.$$

Then y^k satisfies the equation

$$\begin{split} \Delta y^k \ &= \ 2u^k |\nabla u^k|^2 - (1+(u^k)^2)f(u^k) + g(v^k) \quad \text{in} \ \ \Omega, \\ y^k \ &= \ 0 \quad \text{on} \ \ \partial \Omega. \end{split}$$

System 2.

Given a solution (u^k, v^k) of system 2,

$$\begin{aligned} \Delta u + f(u) - kuv &= 0, \quad x \in \Omega, \\ \Delta v + g(v) - k(1 + u^2)uv &= 0, \quad x \in \Omega, \\ u(x) &= v(x) \,= \, 0, \quad x \in \partial \Omega, \end{aligned}$$

define

$$y^{k} = u^{k} + \frac{(u^{k})^{3}}{3} - v^{k}.$$

Then y^k satisfies the equation

$$\begin{split} \Delta y^k \ &= \ 2u^k |\nabla u^k|^2 - (1+(u^k)^2)f(u^k) + g(v^k) \quad \text{in} \ \ \Omega, \\ y^k \ &= \ 0 \quad \text{on} \ \ \partial \Omega. \end{split}$$

Note:

(i) no terms involving second derivatives of u^k or v^k in eqn for y^k (ii) $u \mapsto u + \frac{u^3}{3}$ is invertible, since $\frac{d}{du}\left(u + \frac{u^3}{3}\right) = 1 + u^2 \ge 1$ for all u

$$\Delta u + f(u) - kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - k\gamma(u)uv = 0, \quad x \in \Omega$$

where

$$\gamma(u) = 1 + u^2 \ge \gamma_0 > 0$$

$$\Delta u + f(u) - kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - k\gamma(u)uv = 0, \quad x \in \Omega$$

where

$$\gamma(u) = 1 + u^2 \ge \gamma_0 > 0$$

• Define

$$y^k := \Gamma(u^k) - v^k, \quad \text{ where } \ \Gamma(u) := \int_0^u \ \gamma(s) \, ds$$

$$\Delta u + f(u) - kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - k\gamma(u)uv = 0, \quad x \in \Omega$$

where

$$\gamma(u) = 1 + u^2 \ge \gamma_0 > 0$$

• Define

$$y^k := \Gamma(u^k) - v^k$$
, where $\Gamma(u) := \int_0^u \gamma(s) \, ds$

Then

 $\Gamma'(u) = \gamma(u) \ge \gamma_0 > 0$ for all $u \Rightarrow \Gamma$ is invertible

$$\Delta u + f(u) - kuv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - k\gamma(u)uv = 0, \quad x \in \Omega$$

where

$$\gamma(u) = 1 + u^2 \ge \gamma_0 > 0$$

• Define

$$y^k := \Gamma(u^k) - v^k$$
, where $\Gamma(u) := \int_0^u \gamma(s) \, ds$

Then

 $\Gamma'(u) = \gamma(u) \ge \gamma_0 > 0$ for all $u \implies \Gamma$ is invertible

and

$$\begin{aligned} \nabla y^k &= \gamma(u^k) \, \nabla u^k - \nabla v^k \\ \Rightarrow \quad \Delta y^k &= \gamma'(u^k) |\nabla u^k|^2 + \gamma(u^k) \Delta u^k - \Delta v^k \\ &= \gamma'(u^k) |\nabla u^k|^2 - \gamma(u^k) f(u^k) + g(v^k) \end{aligned}$$

• Also,

$$\label{eq:gamma} \begin{split} \Gamma(u) &= \int_0^u \gamma(s) \, ds > 0 \quad \text{if} \ u > 0 \\ \Gamma(0) &= 0 \end{split}$$

and

• thus

$$\left.\begin{array}{c} uv = 0 \quad a.e. \\ u, v \ge 0 \\ y = \Gamma(u) - v \end{array}\right\} \quad \Rightarrow \quad \begin{array}{c} y^+ = \Gamma(u) \\ y^- = -v \end{array} \quad \Rightarrow \quad \begin{array}{c} \Gamma^{-1}(y^+) = u \\ y^- = v \end{array}$$

i.e. segregation of u and v implies that u and v can be written in terms of the positive and negative parts of y

<u>**Theorem</u>** Given a sequence of non-negative solutions (u^k, v^k) of either system 1 or 2, there exist subsequences $\{u^{k_n}\}$, $\{v^{k_n}\}$ and non-negative functions $u, v \in L^{\infty}(\Omega) \cap W_0^{1,2}(\Omega)$ such that</u>

•
$$u^{k_n} \to u, v^{k_n} \to v$$
 in $W_0^{1,2}(\Omega)$ as $k_n \to \infty$;

•
$$uv = 0$$
 a.e. in Ω .

• In the case of system 1, the function $w := \alpha_2 u - \alpha_1 v$ is such that $w^+ = \alpha_2 u, w^- = -\alpha_1 v$ and w is a weak solution of the equation $\Delta w = 2\nabla \alpha_2 \cdot \nabla(\alpha_2^{-1}w^+) - 2\nabla \alpha_1 \cdot \nabla(-\alpha_1^{-1}w^-)$ $+\alpha_2^{-1}w^+\Delta \alpha_2 - \alpha_2 f(\alpha_2^{-1}w^+) + \alpha_1^{-1}w^-\Delta \alpha_1 + \alpha_1 g(-\alpha_1 w^-)$ in Ω , w = 0 on $\partial \Omega$

• In the case of system 2, the function $y := \Gamma(u) - v$, where $\Gamma(u) := u + \frac{u^3}{3}$, is such that $y^+ = \Gamma(u)$, $y^- = -v$ and y is a weak solution of the equation $2\Gamma^{-1}(u^+)$

$$\begin{split} \Delta y &= \frac{2\Gamma^{-1}(y^+)}{(1+\Gamma^{-1}(y^+)^2)^2} |\nabla y^+|^2 + (1+\Gamma^{-1}(y^+)^2) f(\Gamma^{-1}(y^+)) + g(-y^-) & \text{in } \Omega, \\ y &= 0 & \text{on } \partial\Omega. \end{split}$$

Basic estimates on solutions (u^k, v^k) of system 1 or 2 (i) L^∞ -bound

 $0 \le u^k, v^k \le M$ for all $x \in \Omega, k > 0$

by maximum principle, since f(u), g(v) < 0 when u, v > M and so if, say, u^k attains a maximum value $u^k(x_0) > M$, then

 $-\Delta u^k(x_0) \le f(u^k(x_0)) < 0,$

which is impossible

(ii) L^2 -gradient bound there exists $K_1 > 0$ such that $\int_{\Omega} |\nabla u^k(x)|^2 dx, \quad \int_{\Omega} |\nabla v^k(x)|^2 dx \leq K_1 \text{ for all } k > 0$

since, *e.g.*, multiplication of u^k equation by u^k and integration over Ω gives

$$-\int_{\Omega} |\nabla u^k|^2 \, dx + \int_{\Omega} u^k f(u^k) \, dx \ge 0$$

(iii) normal derivative bound there exists $K_2 > 0$ such that

$$\frac{\partial u^k}{\partial \nu} \left| (x), \; \left| \frac{\partial v^k}{\partial \nu} \right| (x) \le K_2 \; \text{ for all } x \in \partial \Omega, k > 0$$

since

$$-\Delta u^k \leq f(u^k), \quad x\in\Omega, \ u^k=0 \ \text{on} \ \partial\Omega,$$

and so $0 \leq u^k \leq \overline{u},$ where \overline{u} is the maximal solution in [0,M] of

$$-\Delta u = f(u), \ x \in \Omega, \ u = 0 \ \text{on} \ \partial \Omega$$

which, as $u^k = \overline{u} = 0$ on $\partial \Omega$, then implies

$$\left|\frac{\partial u^k}{\partial \nu}\right|(x) \le \left|\frac{\partial \overline{u}}{\partial \nu}\right|(x) \text{ for all } x \in \partial \Omega$$

(iii) normal derivative bound there exists $K_2 > 0$ such that

$$\frac{\partial u^k}{\partial \nu} \left| (x), \; \left| \frac{\partial v^k}{\partial \nu} \right| (x) \le K_2 \; \text{ for all } x \in \partial \Omega, k > 0$$

since

$$-\Delta u^k \leq f(u^k), \quad x\in\Omega, \ u^k=0 \ \text{on} \ \partial\Omega,$$

and so $0 \leq u^k \leq \overline{u},$ where \overline{u} is the maximal solution in [0,M] of

$$-\Delta u = f(u), \ x \in \Omega, \ u = 0 \ \text{on} \ \partial \Omega$$

which, as $u^k = \overline{u} = 0$ on $\partial \Omega$, then implies

$$\left|\frac{\partial u^k}{\partial \nu}\right|(x) \le \left|\frac{\partial \overline{u}}{\partial \nu}\right|(x) \text{ for all } x \in \partial \Omega$$

(i), (ii) and (iii) use the sign of the competition term

(iv) basic segregation bound there exists $K_3 > 0$ such that

$$\int_{\Omega} k u^k v^k \, dx \le K_3$$

since

$$0 \leq \min\{1, \alpha_0\} \int_{\Omega} k u^k v^k \, dx \leq \int_{\Omega} \Delta u^k + f(u^k) \, dx$$
$$= \int_{\partial \Omega} \frac{\partial u^k}{\partial \nu} \, dx + \int_{\Omega} f(u^k) \, dx$$
$$\leq C$$

Note: (iv) uses key feature that α , *etc* are bounded below by a positive const

Key lemma $\nabla u^{k_n} \to \nabla u$, $\nabla v^{k_n} \to \nabla v$ in $L^2(\Omega)$ as $k_n \to \infty$.

Idea of proof for system 1

• have to prove that

$$\limsup_{k_n \to \infty} \int_{\Omega} |\nabla u^{k_n}|^2 \, dx \le \int_{\Omega} |\nabla u|^2 \, dx$$

• multiplication of v^{k_n} equation by limit u and integration over Ω yields

$$-\int_{\Omega} \nabla u \cdot \nabla v^{k_n} \, dx + \int_{\Omega} ug(v^{k_n}) \, dx - k_n \int_{\Omega} uu^{k_n} v^{k_n} \alpha_2 \, dx = 0$$

• then as
$$k_n \to \infty$$
,

$$\int_{\Omega} \nabla u \cdot \nabla v^{k_n} dx \to \int_{\Omega} \nabla u \cdot \nabla v dx = 0, \quad \int_{\Omega} ug(v^{k_n}) dx \to \int_{\Omega} ug(v) dx = 0$$
so that

$$k_n \int_{\Omega} uu^{k_n} v^{k_n} \alpha_2 dx \to 0 \text{ as } k_n \to \infty$$

$$\Rightarrow \qquad k_n \int_{\Omega} uu^{k_n} v^{k_n} \alpha_1 dx \to 0 \text{ as } k_n \to \infty$$

Idea of proof contd....

• now by multiplication of u^{k_n} equation by the limit u and integration over Ω ,

$$-\int_{\Omega} \nabla u^{k_n} \cdot \nabla u \, dx + \int_{\Omega} u f(u^{k_n}) \, dx - k_n \int_{\Omega} u u^{k_n} v^{k_n} \alpha_1 \, dx = 0,$$

and then letting $k_n \to \infty$ gives

$$\int_{\Omega} |\nabla u|^2 \, dx = \int_{\Omega} u f(u) \, dx$$

• multiplication of u^{k_n} equation by u^{k_n} and integration over Ω gives

$$-\int_{\Omega} |\nabla u^{k_n}|^2 \, dx + \int_{\Omega} u^{k_n} f(u^{k_n}) \, dx - k_n \int_{\Omega} (u^{k_n})^2 v^{k_n} \alpha_1 \, dx = 0,$$

which, since α_1 and v^{k_n} are non-negative, implies that

$$\int_{\Omega} |\nabla u^{k_n}|^2 dx \leq \int_{\Omega} u^{k_n} f(u^{k_n}) dx$$

$$\rightarrow \int_{\Omega} u f(u) dx$$

$$= \int_{\Omega} |\nabla u|^2 dx$$

Remark : improved segregation

Lemma Let $\varepsilon > 0$. Then there exists $k_0 \in \mathbb{N}$ such that if $k \ge k_0$ and (u^k, v^k) is a non-negative solution of

$$\Delta u + f(u) - k\alpha_1(x)\gamma_1(v)uv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - k\alpha_2(x)\gamma_2(u)uv = 0, \quad x \in \Omega,$$

$$u = v = 0, \quad x \in \partial\Omega,$$

then given $x \in \Omega$,

$$u^k(x) \le \varepsilon_0 \quad \text{or} \quad v^k(x) \le \varepsilon_0$$

Remark : improved segregation

Lemma Let $\varepsilon > 0$. Then there exists $k_0 \in \mathbb{N}$ such that if $k \ge k_0$ and (u^k, v^k) is a non-negative solution of

$$\Delta u + f(u) - k\alpha_1(x)\gamma_1(v)uv = 0, \quad x \in \Omega,$$

$$\Delta v + g(v) - k\alpha_2(x)\gamma_2(u)uv = 0, \quad x \in \Omega,$$

$$u = v = 0, \quad x \in \partial\Omega,$$

then given $x \in \Omega$,

$$u^k(x) \le \varepsilon_0 \quad \text{or} \quad v^k(x) \le \varepsilon_0$$

Idea of proof : Suppose not. Then there exist $\varepsilon_0 > 0$ and sequences $k_j \to \infty$ and $x_j \in \Omega$ such that

$$u^{k_j}(x_j) \geq arepsilon_0$$
 and $v^{k_j}(x_j) \geq arepsilon_0.$

Rescale

$$(U^{k_j}, V^{k_j})(\sqrt{k_j}(x - x_j)) = (u^{k_j}, v^{k_j})(x), \quad x \in \Omega$$

satisfies

$$\begin{split} \Delta U^{k_j} + k_j^{-1} f(U^{k_j}) &- \alpha_1 (x_j + \frac{x'}{\sqrt{k_j}}) \gamma_1 (V^{k_j}) U^{k_j} V^{k_j} = 0 & \text{in } \Omega_j, \\ \Delta V^{k_j} + k_j^{-1} g(V^{k_j}) - \alpha_2 (x_j + \frac{x'}{\sqrt{k_j}}) \gamma_2 (U^{k_j}) U^{k_j} V^{k_j} = 0 & \text{in } \Omega_j, \\ U^{k_j} = V^{k_j} = 0 & \text{on } \partial \Omega_j \end{split}$$

and

$$0 \le U^{k_j}, V^{k_j} \le M, \quad 0 \in \Omega_j, \quad U^{k_j}(0) \ge \varepsilon_0 \text{ and } V^{k_j}(0) \ge \varepsilon_0$$

Rescale

$$(U^{k_j}, V^{k_j})(\sqrt{k_j}(x - x_j)) = (u^{k_j}, v^{k_j})(x), \quad x \in \Omega$$

satisfies

$$\begin{split} \Delta U^{k_j} + k_j^{-1} f(U^{k_j}) &- \alpha_1 (x_j + \frac{x'}{\sqrt{k_j}}) \gamma_1 (V^{k_j}) U^{k_j} V^{k_j} = 0 & \text{in } \Omega_j, \\ \Delta V^{k_j} + k_j^{-1} g(V^{k_j}) - \alpha_2 (x_j + \frac{x'}{\sqrt{k_j}}) \gamma_2 (U^{k_j}) U^{k_j} V^{k_j} = 0 & \text{in } \Omega_j, \\ U^{k_j} = V^{k_j} = 0 & \text{on } \partial \Omega_j \end{split}$$

and

$$0 \leq U^{k_j}, V^{k_j} \leq M, \quad 0 \in \Omega_j, \quad U^{k_j}(0) \geq \varepsilon_0 \text{ and } V^{k_j}(0) \geq \varepsilon_0$$

 $k_j \rightarrow \infty$ limit system

$$\Delta U = \alpha_1(\overline{x})\gamma_1(V)UV,$$

$$\Delta V = \alpha_2(\overline{x})\gamma_2(U)UV,$$
 in \mathbb{R}^N

and

 $0 \leq U, V \leq M, \ U(0) \geq \varepsilon_0 \ \text{and} \ V(0) \geq \varepsilon_0$

Then on the one hand....

 $\Delta U \geq 0$ and U is bounded on \mathbb{R}^N ;

 $\Delta V \geq 0 \quad \text{and} \ V \ \text{is bounded on} \ \mathbb{R}^N,$

 $\Rightarrow \exists \text{ direction } \{\lambda\xi: \xi\in S^{n-1}, \ \lambda\geq 0\} \text{ along which }$

$$U(x) \to \sup U \quad \text{and} \quad V(x) \to \sup V \text{ as } |x| \to \infty,$$

by properties of subharmonic functions

 $\therefore \text{ limit } (\tilde{U}, \tilde{V}) \text{ of translates } U(\cdot + x_n), V(\cdot + x_n) \text{ along this direction satisfies}$ $\tilde{U}(0) = \sup \tilde{U}, \ \Delta \tilde{U}(0) \leq 0 \text{ and } \tilde{V}(0) = \sup \tilde{V}, \ \Delta \tilde{V}(0) \leq 0$

Then on the one hand....

 $\Delta U \geq 0$ and U is bounded on \mathbb{R}^N ;

 $\Delta V \ge 0$ and V is bounded on \mathbb{R}^N ,

 $\Rightarrow \exists \text{ direction } \{\lambda \xi : \xi \in S^{n-1}, \ \lambda \ge 0\} \text{ along which }$

$$U(x) \to \sup U \quad \text{and} \quad V(x) \to \sup V \; \; \text{as} \; \; |x| \to \infty,$$

by properties of subharmonic functions

 $\therefore \text{ limit } (\tilde{U}, \tilde{V}) \text{ of translates } U(\cdot + x_n), V(\cdot + x_n) \text{ along this direction satisfies}$ $\tilde{U}(0) = \sup \tilde{U}, \ \Delta \tilde{U}(0) \leq 0 \text{ and } \tilde{V}(0) = \sup \tilde{V}, \ \Delta \tilde{V}(0) \leq 0$

But on the other hand....

$$\Delta \tilde{U}(0) = \alpha_1(\overline{x})\gamma_1(\tilde{V}(0)) \ \tilde{U}(0)\tilde{V}(0) > 0$$

.: contradiction

here also use feature that α , etc are bounded below by a positive const

Remark : regularity for limit equation of System 2

•
$$y \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$$
 is a weak solution of limit equation

$$\Delta y = \frac{2\Gamma^{-1}(y^+)}{(1+\Gamma^{-1}(y^+)^2)^2} |\nabla y^+|^2 + (1+\Gamma^{-1}(y^+)^2)f(\Gamma^{-1}(y^+)) + g(-y^-) \text{ in } \Omega,$$
 $y = 0 \text{ on } \partial \Omega$

Remark : regularity for limit equation of System 2

•
$$y \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$$
 is a weak solution of limit equation

$$\Delta y = \frac{2\Gamma^{-1}(y^+)}{(1+\Gamma^{-1}(y^+)^2)^2} |\nabla y^+|^2 + (1+\Gamma^{-1}(y^+)^2)f(\Gamma^{-1}(y^+)) + g(-y^-) \text{ in } \Omega,$$
 $y = 0 \text{ on } \partial \Omega$

• since $\Gamma^{-1}(0) = 0$, this can be re-written as

$$\begin{split} \Delta y \ &= \ h(y) \, |\nabla y|^2 + d(y) \ \ \text{in} \ \ \Omega, \\ y \ &= \ 0 \quad \text{on} \ \ \partial \Omega \end{split}$$

where h and d are continuous functions

Remark : regularity for limit equation of System 2

•
$$y \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$$
 is a weak solution of limit equation

$$\Delta y = \frac{2\Gamma^{-1}(y^+)}{(1+\Gamma^{-1}(y^+)^2)^2} |\nabla y^+|^2 + (1+\Gamma^{-1}(y^+)^2)f(\Gamma^{-1}(y^+)) + g(-y^-) \text{ in } \Omega,$$
 $y = 0 \text{ on } \partial \Omega$

• since $\Gamma^{-1}(0) = 0$, this can be re-written as

$$\begin{split} \Delta y \ &= \ h(y) \, |\nabla y|^2 + d(y) \ \ \text{in} \ \ \Omega, \\ y \ &= \ 0 \quad \text{on} \ \ \partial \Omega, \end{split}$$

where h and d are continuous functions

• change of variables : let $r : \mathbb{R} \to \mathbb{R}$ be such that

$$r'(t) = e^{H(r(t))}, \quad t \in \mathbb{R},$$

$$r(0) = 0,$$

where H' = h, and note that

$$r''(t) - h(r(t))r'(t)^2 = 0, \quad t \in \mathbb{R}.$$

• define $s:\Omega \to \mathbb{R}$ by

$$s(x) = r^{-1}(y(x)), \quad x \in \Omega,$$

where $y \in W^{1,2}_0(\Omega)$ is a solution of the limit equation

 \bullet then s satisfies

$$\Delta s = \frac{d(s(x))}{r'(s(x))}, \quad x \in \Omega$$
$$s = 0 \quad \text{on } \partial \Omega$$

• define $s:\Omega \to \mathbb{R}$ by

$$s(x) = r^{-1}(y(x)), \quad x \in \Omega,$$

where $y \in W_0^{1,2}(\Omega)$ is a solution of the limit equation

 \bullet then s satisfies

$$\begin{split} \Delta s \ &= \ \frac{d(s(x))}{r'(s(x))} \ \in L^\infty(\Omega) \\ s \ &= \ 0 \quad \text{on } \partial \Omega \end{split}$$

since

$$r'(s(x)) = e^{H(r(s(x)))} = e^{H(y(x))} \geq r_0 > 0$$
 because $y \in L^\infty(\Omega)$

• define $s:\Omega \to \mathbb{R}$ by

$$s(x) = r^{-1}(y(x)), \quad x \in \Omega,$$

where $y \in W_0^{1,2}(\Omega)$ is a solution of the limit equation

 \bullet then s satisfies

$$\begin{split} \Delta s \ &= \ \frac{d(s(x))}{r'(s(x))} \ \in L^\infty(\Omega) \\ s \ &= \ 0 \quad \text{on } \partial \Omega \end{split}$$

since

$$r'(s(x)) = e^{H(r(s(x)))} = e^{H(y(x))} \geq r_0 > 0$$
 because $y \in L^\infty(\Omega)$

• hence

$$\begin{split} \Delta s \in L^{\infty}(\Omega), \ s = 0 \text{ on } \partial\Omega \implies s \in W^{2,p}(\Omega) \text{ for all } p \in [1,\infty) \\ \implies s \in C^{1,\mu}(\Omega) \text{ for all } \mu \in (0,1) \\ \implies y \in C^{1,\mu}(\Omega) \text{ for all } \mu \in (0,1) \end{split}$$

- to better understand solutions of the scalar limit problems, especially sign-changing solutions of the limit problems
- in particular, to understand which sign-changing solutions arises as the limit as $k\to\infty$ of co-existence states of the k-dependent system

- to better understand solutions of the scalar limit problems, especially sign-changing solutions of the limit problems
- in particular, to understand which sign-changing solutions arises as the limit as $k\to\infty$ of co-existence states of the k-dependent system

Thank you for your attention ...