Highly nonlinear large-competition limits of elliptic systems

Elaine Crooks

Swansea

Joint work with Norman Dancer, Sydney.

- Parabolic systems of form

$$
\begin{aligned}
u_{t} & =d_{1} \Delta u+f(u)-k u v, & & x \in \Omega, \quad t \geq 0 \\
v_{t} & =d_{2} \Delta v+g(v)-k u v, & & x \in \Omega, \quad t \geq 0 \\
u(x) & =v(x)=0, & & x \in \partial \Omega
\end{aligned}
$$

model populations of densities $u, v$ that compete in $\Omega \in \mathbb{R}^{N}$


- Elliptic systems of form

$$
\begin{aligned}
0 & =\Delta u+f(u)-k u v, & & x \in \Omega \\
0 & =\Delta v+g(v)-k u v, & & x \in \Omega \\
u(x) & =v(x)=0, & & x \in \partial \Omega
\end{aligned}
$$

model steady states of populations $u, v$ that compete in $\Omega \in \mathbb{R}^{N}$

$u=v=0$ on $\partial \Omega$

- Elliptic systems of form

$$
\begin{aligned}
0 & =\Delta u+f(u)-k u v, & & x \in \Omega \\
0 & =\Delta v+g(v)-k u v, & & x \in \Omega \\
u(x) & =v(x)=0, & & x \in \partial \Omega
\end{aligned}
$$

model steady states of populations $u, v$ that compete in $\Omega \in \mathbb{R}^{N}$


$$
u=v=0 \text { on } \partial \Omega
$$

- densities non-negative $\Rightarrow u \geq 0, v \geq 0$
- Elliptic systems of form

$$
\begin{aligned}
0 & =\Delta u+f(u)-k u v, & & x \in \Omega \\
0 & =\Delta v+g(v)-k u v, & & x \in \Omega \\
u(x) & =v(x)=0, & & x \in \partial \Omega
\end{aligned}
$$

model steady states of populations $u, v$ that compete in $\Omega \in \mathbb{R}^{N}$


$$
u=v=0 \text { on } \partial \Omega
$$

- densities non-negative $\Rightarrow u \geq 0, v \geq 0$
- competition parameter $k>0$
- Interest in the large-competition $(k \rightarrow \infty)$ limit comes from
(i) the $k$-dependent system is difficult to analyse; for example, it is not in general the Euler-Lagrange equations of an energy functional variational, whereas the limit problem is a scalar equation
(ii) the $k \rightarrow \infty$ limit is linked to
- spatial segregation in population dynamics
- phase separation in, for example, Bose-Einstein condensates both of which are of importance in applications


## Large-competition limit $k \rightarrow \infty$ of solutions $\left(u^{k}, v^{k}\right)$

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

- $\left(u^{k}, v^{k}\right)$ converge to the positive and negative parts resp. of a limit function $w$ satisfying the scalar equation

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, \quad x \in \Omega \\
w(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

## Large-competition limit $k \rightarrow \infty$ of solutions $\left(u^{k}, v^{k}\right)$

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

- $\left(u^{k}, v^{k}\right)$ converge to the positive and negative parts resp. of a limit function $w$ satisfying the scalar equation

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, \quad x \in \Omega \\
w(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

- Key ingredients:
(i) the linear combination $w^{k}:=u^{k}-v^{k}$ satisfies

$$
\Delta w^{k}+f\left(u^{k}\right)-g\left(v^{k}\right)=0, \quad x \in \Omega
$$

which does not depend explicitly on $k \Rightarrow$ good bounds for $w^{k}$ independent of $k$

## Large-competition limit $k \rightarrow \infty$ of solutions $\left(u^{k}, v^{k}\right)$

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

- $\left(u^{k}, v^{k}\right)$ converge to the positive and negative parts resp. of a limit function $w$ satisfying the scalar equation

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, \quad x \in \Omega \\
w(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

- Key ingredients:
(i) the linear combination $w^{k}:=u^{k}-v^{k}$ satisfies

$$
\Delta w^{k}+f\left(u^{k}\right)-g\left(v^{k}\right)=0, \quad x \in \Omega
$$

which does not depend explicitly on $k \Rightarrow$ good bounds for $w^{k}$ independent of $k$
(ii) $u^{k}, v^{k}$ converge in some sense as $k \rightarrow \infty$

## Large-competition limit $k \rightarrow \infty$ of solutions $\left(u^{k}, v^{k}\right)$

Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

- $\left(u^{k}, v^{k}\right)$ converge to the positive and negative parts resp. of a limit function $w$ satisfying the scalar equation

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, \quad x \in \Omega \\
w(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

- Key ingredients:
(i) the linear combination $w^{k}:=u^{k}-v^{k}$ satisfies

$$
\Delta w^{k}+f\left(u^{k}\right)-g\left(v^{k}\right)=0, \quad x \in \Omega
$$

which does not depend explicitly on $k \Rightarrow$ good bounds for $w^{k}$ independent of $k$
(ii) $u^{k}, v^{k}$ converge in some sense as $k \rightarrow \infty$
(iii) $u^{k}$ and $v^{k}$ segregate, since $k u^{k} v^{k}$ bounded $\Rightarrow u^{k} v^{k} \rightarrow 0$ as $k \rightarrow \infty$

$$
\left.\begin{array}{cc} 
\\
\text { and } & \text { a.e. } \\
u, v \geq 0 \\
w=u-v
\end{array}\right\} \Rightarrow \begin{gathered}
u=w^{+} \quad \text { a.e. } \\
v=-w^{-}
\end{gathered}
$$

- Note: there are two aspects to large-interaction limit problem
(i) to show that $\left(u^{k}, v^{k}\right)$ converges as $k \rightarrow \infty$ to a solution of the limit problem

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, & x \in \Omega, \\
w(x) & =0, & x \in \partial \Omega
\end{aligned}
$$

(ii) conversely, to show that given a solution $w$ of the limit problem, there exists a sequence of solutions of the $k$-dependent system $\left(u^{k}, v^{k}\right)$ that converge to $w$ as $k \rightarrow \infty$

- Note: there are two aspects to large-interaction limit problem
(i) to show that $\left(u^{k}, v^{k}\right)$ converges as $k \rightarrow \infty$ to a solution of the limit problem

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, & & x \in \Omega, \\
w(x) & =0, & & x \in \partial \Omega
\end{aligned}
$$

(ii) conversely, to show that given a solution $w$ of the limit problem, there exists a sequence of solutions of the $k$-dependent system $\left(u^{k}, v^{k}\right)$ that converge to $w$ as $k \rightarrow \infty$


- Note: there are two aspects to large-interaction limit problem
(i) to show that $\left(u^{k}, v^{k}\right)$ converges as $k \rightarrow \infty$ to a solution of the limit problem

$$
\begin{aligned}
\Delta w+f\left(w^{+}\right)-g\left(-w^{-}\right) & =0, \quad x \in \Omega, \\
w(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

(ii) conversely, to show that given a solution $w$ of the limit problem, there exists a sequence of solutions of the $k$-dependent system $\left(u^{k}, v^{k}\right)$ that converge to $w$ as $k \rightarrow \infty$


Focus on (i) here

- Key property that allows cancellation of competition terms "kuv" is that the same term occurs in both equations

$$
\begin{aligned}
& 0=\Delta u+f(u)-k u v, \\
& 0=\Delta v+g(v)-k u v,
\end{aligned}
$$

so cancel in equation for $w^{k}:=u^{k}-v^{k}$

- Key property that allows cancellation of competition terms "kuv" is that the same term occurs in both equations

$$
\begin{aligned}
& 0=\Delta u+f(u)-k u v, \\
& 0=\Delta v+g(v)-k u v,
\end{aligned}
$$

so cancel in equation for $w^{k}:=u^{k}-v^{k}$

- Similarly, the competition terms in the more general system cancel

$$
\begin{aligned}
& 0=\Delta u+f(u)-k u v \\
& 0=\Delta v+g(v)-k \alpha u v
\end{aligned}
$$

in the equation for $\hat{w}^{k}=\alpha u^{k}-v^{k}$

- Key property that allows cancellation of competition terms "kuv" is that the same term occurs in both equations

$$
\begin{aligned}
& 0=\Delta u+f(u)-k u v, \\
& 0=\Delta v+g(v)-k u v,
\end{aligned}
$$

so cancel in equation for $w^{k}:=u^{k}-v^{k}$

- Similarly, the competition terms in the more general system cancel

$$
\begin{aligned}
& 0=\Delta u+f(u)-k u v \\
& 0=\Delta v+g(v)-k \alpha u v
\end{aligned}
$$

in the equation for $\hat{w}^{k}=\alpha u^{k}-v^{k}$

- Question: to what types of system with different competition terms in the two equations can this "cancellation" approach be extended?


## Our two prototype classes of system

1. Non-autonomous system

$$
\begin{aligned}
\Delta u+f(u)-\alpha_{1}(x) k u v & =0, \quad x \in \Omega \\
\Delta v+g(v)-\alpha_{2}(x) k u v & =0, \quad x \in \Omega \\
u(x)=v(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2} \in C^{2}\left(\Omega,\left[\alpha_{0}, \infty\right)\right)$ for some constant $\alpha_{0}>0$
2. "Nonlinear" competition system

$$
\begin{aligned}
\Delta u+f(u)-k u v & =0, \quad x \in \Omega \\
\Delta v+g(v)-k\left(1+u^{2}\right) u v & =0, \quad x \in \Omega \\
u(x)=v(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

## Our two prototype classes of system

1. Non-autonomous system

$$
\begin{aligned}
\Delta u+f(u)-\alpha_{1}(x) k u v & =0, \quad x \in \Omega \\
\Delta v+g(v)-\alpha_{2}(x) k u v & =0, \quad x \in \Omega \\
u(x)=v(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2} \in C^{2}\left(\Omega,\left[\alpha_{0}, \infty\right)\right)$ for some constant $\alpha_{0}>0$
2. "Nonlinear" competition system

$$
\begin{aligned}
\Delta u+f(u)-k u v & =0, \quad x \in \Omega \\
\Delta v+g(v)-k\left(1+u^{2}\right) u v & =0, \quad x \in \Omega \\
u(x)=v(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

Key feature: each competition term is of form "kuv" multiplied by a positive function that is bounded below by a strictly positive constant

- systems (1.) and (2.) are special cases of the general system

$$
\begin{aligned}
\Delta u+f(u)-k \alpha_{1}(x) \gamma_{1}(v) u v & =0, & x \in \Omega, \\
\Delta v+g(v)-k \alpha_{2}(x) \gamma_{2}(u) u v & =0, & x \in \Omega
\end{aligned}
$$

where $\gamma_{1}, \gamma_{2} \geq \gamma_{0}$ and $\alpha_{1}, \alpha_{2} \geq \alpha_{0}$ for some constants $\alpha_{0}, \gamma_{0}>0$

- systems (1.) and (2.) are special cases of the general system

$$
\begin{aligned}
\Delta u+f(u)-k \alpha_{1}(x) \gamma_{1}(v) u v=0, & x \in \Omega, \\
\Delta v+g(v)-k \alpha_{2}(x) \gamma_{2}(u) u v=0, & x \in \Omega
\end{aligned}
$$

where $\gamma_{1}, \gamma_{2} \geq \gamma_{0}$ and $\alpha_{1}, \alpha_{2} \geq \alpha_{0}$ for some constants $\alpha_{0}, \gamma_{0}>0$

- the system

$$
\begin{aligned}
\Delta u+f(u)-k u v^{2}=0, & x \in \Omega \\
\Delta v+g(v)-k u^{2} v=0, & x \in \Omega
\end{aligned}
$$

is unfortunately excluded from our framework; it

- arises in modelling phase separation in Bose-Einstein condensates
- is variational, being the Euler-Lagrange equations of a functional of form

$$
J(u, v)=\int_{\Omega} \frac{1}{2}\left(|\nabla u|^{2}+|\nabla v|^{2}\right)-F(u)-G(v)+\frac{1}{2} k u^{2} v^{2} d x
$$

(references: Conti, Terracini, Verzini, Squassina, ...)

## Preliminary "cancellation" calculations

System 1.
Given a solution $\left(u^{k}, v^{k}\right)$ of system 1,

$$
\begin{aligned}
\Delta u+f(u)-\alpha_{1}(x) k u v & =0, \quad x \in \Omega \\
\Delta v+g(v)-\alpha_{2}(x) k u v & =0, \quad x \in \Omega \\
u(x)=v(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

define

$$
w^{k}=\alpha_{2} u^{k}-\alpha_{1} v^{k} .
$$

Then $w^{k}$ satisfies the equation

$$
\begin{aligned}
\Delta w^{k}= & 2 \nabla \alpha_{2} \cdot \nabla u^{k}-2 \nabla \alpha_{1} \cdot \nabla v^{k} \\
& \quad+u^{k} \Delta \alpha_{2}-v^{k} \Delta \alpha_{1}-\alpha_{2} f\left(u^{k}\right)+\alpha_{1} g\left(v^{k}\right) \text { in } \Omega, \\
w^{k}=0 & \text { on } \partial \Omega,
\end{aligned}
$$

because

$$
\Delta w^{k}=\alpha_{2} \Delta u^{k}-\alpha_{1} \Delta v^{k}+2 \nabla \alpha_{2} \cdot \nabla u^{k}-2 \nabla \alpha_{1} \cdot \nabla v^{k}+u^{k} \Delta \alpha_{2}-v^{k} \Delta \alpha_{1}
$$

## System 2.

Given a solution $\left(u^{k}, v^{k}\right)$ of system 2 ,

$$
\begin{aligned}
\Delta u+f(u)-k u v & =0, \quad x \in \Omega, \\
\Delta v+g(v)-k\left(1+u^{2}\right) u v & =0, \quad x \in \Omega, \\
u(x)=v(x) & =0, \quad x \in \partial \Omega,
\end{aligned}
$$

define

$$
y^{k}=u^{k}+\frac{\left(u^{k}\right)^{3}}{3}-v^{k}
$$

Then $y^{k}$ satisfies the equation

$$
\begin{aligned}
\Delta y^{k} & =2 u^{k}\left|\nabla u^{k}\right|^{2}-\left(1+\left(u^{k}\right)^{2}\right) f\left(u^{k}\right)+g\left(v^{k}\right) \text { in } \Omega, \\
y^{k} & =0 \text { on } \partial \Omega .
\end{aligned}
$$

## System 2.

Given a solution $\left(u^{k}, v^{k}\right)$ of system 2 ,

$$
\begin{aligned}
\Delta u+f(u)-k u v & =0, \quad x \in \Omega, \\
\Delta v+g(v)-k\left(1+u^{2}\right) u v & =0, \quad x \in \Omega, \\
u(x)=v(x) & =0, \quad x \in \partial \Omega,
\end{aligned}
$$

define

$$
y^{k}=u^{k}+\frac{\left(u^{k}\right)^{3}}{3}-v^{k}
$$

Then $y^{k}$ satisfies the equation

$$
\begin{aligned}
\Delta y^{k} & =2 u^{k}\left|\nabla u^{k}\right|^{2}-\left(1+\left(u^{k}\right)^{2}\right) f\left(u^{k}\right)+g\left(v^{k}\right) \text { in } \Omega, \\
y^{k} & =0 \text { on } \partial \Omega
\end{aligned}
$$

## Note:

(i) no terms involving second derivatives of $u^{k}$ or $v^{k}$ in eqn for $y^{k}$
(ii) $u \mapsto u+\frac{u^{3}}{3}$ is invertible, since $\frac{d}{d u}\left(u+\frac{u^{3}}{3}\right)=1+u^{2} \geq 1$ for all $u$

Why? - form of system is

$$
\begin{aligned}
\Delta u+f(u)-k u v & =0, & x \in \Omega, \\
\Delta v+g(v)-k \gamma(u) u v & =0, & x \in \Omega
\end{aligned}
$$

where

$$
\gamma(u)=1+u^{2} \geq \gamma_{0}>0
$$

Why? - form of system is

$$
\begin{array}{rlrl}
\Delta u+f(u)-k u v & =0, & & x \in \Omega \\
\Delta v+g(v)-k \gamma(u) u v & =0, & x \in \Omega
\end{array}
$$

where

$$
\gamma(u)=1+u^{2} \geq \gamma_{0}>0
$$

- Define

$$
y^{k}:=\Gamma\left(u^{k}\right)-v^{k}, \quad \text { where } \Gamma(u):=\int_{0}^{u} \gamma(s) d s
$$

Why? - form of system is

$$
\begin{array}{rlrl}
\Delta u+f(u)-k u v & =0, & & x \in \Omega, \\
\Delta v+g(v)-k \gamma(u) u v & =0, & x \in \Omega
\end{array}
$$

where

$$
\gamma(u)=1+u^{2} \geq \gamma_{0}>0
$$

- Define

$$
y^{k}:=\Gamma\left(u^{k}\right)-v^{k}, \quad \text { where } \Gamma(u):=\int_{0}^{u} \gamma(s) d s
$$

Then

$$
\Gamma^{\prime}(u)=\gamma(u) \geq \gamma_{0}>0 \text { for all } u \Rightarrow \Gamma \text { is invertible }
$$

Why? - form of system is

$$
\begin{array}{rlrl}
\Delta u+f(u)-k u v & =0, & & x \in \Omega, \\
\Delta v+g(v)-k \gamma(u) u v & =0, & x \in \Omega
\end{array}
$$

where

$$
\gamma(u)=1+u^{2} \geq \gamma_{0}>0
$$

- Define

$$
y^{k}:=\Gamma\left(u^{k}\right)-v^{k}, \quad \text { where } \Gamma(u):=\int_{0}^{u} \gamma(s) d s
$$

Then

$$
\Gamma^{\prime}(u)=\gamma(u) \geq \gamma_{0}>0 \text { for all } u \Rightarrow \Gamma \text { is invertible }
$$

and

$$
\begin{gathered}
\nabla y^{k}=\gamma\left(u^{k}\right) \nabla u^{k}-\nabla v^{k} \\
\Rightarrow \quad \Delta y^{k}=\gamma^{\prime}\left(u^{k}\right)\left|\nabla u^{k}\right|^{2}+\gamma\left(u^{k}\right) \Delta u^{k}-\Delta v^{k} \\
=\gamma^{\prime}\left(u^{k}\right)\left|\nabla u^{k}\right|^{2}-\gamma\left(u^{k}\right) f\left(u^{k}\right)+g\left(v^{k}\right)
\end{gathered}
$$

- Also,

$$
\Gamma(u)=\int_{0}^{u} \gamma(s) d s>0 \text { if } u>0
$$

and

$$
\Gamma(0)=0
$$

- thus

$$
\left.\begin{array}{c}
u v=0 \text { a.e. } \\
u, v \geq 0 \\
y=\Gamma(u)-v
\end{array}\right\} \Rightarrow \begin{aligned}
& y^{+}=\Gamma(u) \\
& y^{-}=-v
\end{aligned} \Rightarrow \begin{gathered}
\Gamma^{-1}\left(y^{+}\right)=u \\
y^{-}=v
\end{gathered}
$$

i.e. segregation of $u$ and $v$ implies that $u$ and $v$ can be written in terms of the positive and negative parts of $y$

Theorem Given a sequence of non-negative solutions $\left(u^{k}, v^{k}\right)$ of either system 1 or 2 , there exist subsequences $\left\{u^{k_{n}}\right\},\left\{v^{k_{n}}\right\}$ and non-negative functions $u, v \in L^{\infty}(\Omega) \cap W_{0}^{1,2}(\Omega)$ such that

- $u^{k_{n}} \rightarrow u, v^{k_{n}} \rightarrow v$ in $W_{0}^{1,2}(\Omega)$ as $k_{n} \rightarrow \infty$;
- $u v=0$ a.e. in $\Omega$.
- In the case of system 1 , the function $w:=\alpha_{2} u-\alpha_{1} v$ is such that $w^{+}=\alpha_{2} u, w^{-}=-\alpha_{1} v$ and $w$ is a weak solution of the equation

$$
\begin{aligned}
\Delta w= & 2 \nabla \alpha_{2} \cdot \nabla\left(\alpha_{2}^{-1} w^{+}\right)-2 \nabla \alpha_{1} \cdot \nabla\left(-\alpha_{1}^{-1} w^{-}\right) \\
& +\alpha_{2}^{-1} w^{+} \Delta \alpha_{2}-\alpha_{2} f\left(\alpha_{2}^{-1} w^{+}\right)+\alpha_{1}^{-1} w^{-} \Delta \alpha_{1}+\alpha_{1} g\left(-\alpha_{1} w^{-}\right) \text {in } \Omega, \\
w= & 0 \text { on } \partial \Omega
\end{aligned}
$$

- In the case of system 2, the function $y:=\Gamma(u)-v$, where $\Gamma(u):=u+\frac{u^{3}}{3}$, is such that $y^{+}=\Gamma(u), y^{-}=-v$ and $y$ is a weak solution of the equation

$$
\begin{aligned}
\Delta y & =\frac{2 \Gamma^{-1}\left(y^{+}\right)}{\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right)^{2}}\left|\nabla y^{+}\right|^{2}+\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right) f\left(\Gamma^{-1}\left(y^{+}\right)\right)+g\left(-y^{-}\right) \text {in } \Omega \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

## Basic estimates on solutions $\left(u^{k}, v^{k}\right)$ of system 1 or 2

(i) $L^{\infty}$-bound

$$
0 \leq u^{k}, v^{k} \leq M \text { for all } x \in \Omega, k>0
$$

by maximum principle, since $f(u), g(v)<0$ when $u, v>M$ and so if, say, $u^{k}$ attains a maximum value $u^{k}\left(x_{0}\right)>M$, then

$$
-\Delta u^{k}\left(x_{0}\right) \leq f\left(u^{k}\left(x_{0}\right)\right)<0
$$

which is impossible
(ii) $L^{2}$-gradient bound there exists $K_{1}>0$ such that

$$
\int_{\Omega}\left|\nabla u^{k}(x)\right|^{2} d x, \int_{\Omega}\left|\nabla v^{k}(x)\right|^{2} d x \leq K_{1} \text { for all } k>0
$$

since, e.g., multiplication of $u^{k}$ equation by $u^{k}$ and integration over $\Omega$ gives

$$
-\int_{\Omega}\left|\nabla u^{k}\right|^{2} d x+\int_{\Omega} u^{k} f\left(u^{k}\right) d x \geq 0
$$

(iii) normal derivative bound there exists $K_{2}>0$ such that

$$
\left|\frac{\partial u^{k}}{\partial \nu}\right|(x),\left|\frac{\partial v^{k}}{\partial \nu}\right|(x) \leq K_{2} \text { for all } x \in \partial \Omega, k>0
$$

since

$$
-\Delta u^{k} \leq f\left(u^{k}\right), \quad x \in \Omega, \quad u^{k}=0 \quad \text { on } \partial \Omega
$$

and so $0 \leq u^{k} \leq \bar{u}$, where $\bar{u}$ is the maximal solution in $[0, M]$ of

$$
-\Delta u=f(u), \quad x \in \Omega, \quad u=0 \text { on } \partial \Omega
$$

which, as $u^{k}=\bar{u}=0$ on $\partial \Omega$, then implies

$$
\left|\frac{\partial u^{k}}{\partial \nu}\right|(x) \leq\left|\frac{\partial \bar{u}}{\partial \nu}\right|(x) \text { for all } x \in \partial \Omega
$$

(iii) normal derivative bound there exists $K_{2}>0$ such that

$$
\left|\frac{\partial u^{k}}{\partial \nu}\right|(x),\left|\frac{\partial v^{k}}{\partial \nu}\right|(x) \leq K_{2} \text { for all } x \in \partial \Omega, k>0
$$

since

$$
-\Delta u^{k} \leq f\left(u^{k}\right), \quad x \in \Omega, \quad u^{k}=0 \quad \text { on } \partial \Omega
$$

and so $0 \leq u^{k} \leq \bar{u}$, where $\bar{u}$ is the maximal solution in $[0, M]$ of

$$
-\Delta u=f(u), \quad x \in \Omega, \quad u=0 \text { on } \partial \Omega
$$

which, as $u^{k}=\bar{u}=0$ on $\partial \Omega$, then implies

$$
\left|\frac{\partial u^{k}}{\partial \nu}\right|(x) \leq\left|\frac{\partial \bar{u}}{\partial \nu}\right|(x) \text { for all } x \in \partial \Omega
$$

(i), (ii) and (iii) use the sign of the competition term
(iv) basic segregation bound there exists $K_{3}>0$ such that

$$
\int_{\Omega} k u^{k} v^{k} d x \leq K_{3}
$$

since

$$
\begin{aligned}
0 \leq \min \left\{1, \alpha_{0}\right\} \int_{\Omega} k u^{k} v^{k} d x & \leq \int_{\Omega} \Delta u^{k}+f\left(u^{k}\right) d x \\
& =\int_{\partial \Omega} \frac{\partial u^{k}}{\partial \nu} d x+\int_{\Omega} f\left(u^{k}\right) d x \\
& \leq C
\end{aligned}
$$

Note: (iv) uses key feature that $\alpha$, etc are bounded below by a positive const

## Key lemma $\quad \nabla u^{k_{n}} \rightarrow \nabla u, \quad \nabla v^{k_{n}} \rightarrow \nabla v$ in $L^{2}(\Omega)$ as $k_{n} \rightarrow \infty$.

## Idea of proof for system 1

- have to prove that

$$
\limsup _{k_{n} \rightarrow \infty} \int_{\Omega}\left|\nabla u^{k_{n}}\right|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x
$$

- multiplication of $v^{k_{n}}$ equation by limit $u$ and integration over $\Omega$ yields

$$
-\int_{\Omega} \nabla u \cdot \nabla v^{k_{n}} d x+\int_{\Omega} u g\left(v^{k_{n}}\right) d x-k_{n} \int_{\Omega} u u^{k_{n}} v^{k_{n}} \alpha_{2} d x=0
$$

- then as $k_{n} \rightarrow \infty$,
$\int_{\Omega} \nabla u \cdot \nabla v^{k_{n}} d x \rightarrow \int_{\Omega} \nabla u \cdot \nabla v d x=0, \quad \int_{\Omega} u g\left(v^{k_{n}}\right) d x \rightarrow \int_{\Omega} u g(v) d x=0$
so that

$$
\begin{aligned}
& k_{n} \int_{\Omega} u u^{k_{n}} v^{k_{n}} \alpha_{2} d x \rightarrow 0 \text { as } k_{n} \rightarrow \infty \\
& k_{n} \int_{\Omega} u u^{k_{n}} v^{k_{n}} \alpha_{1} d x \rightarrow 0 \text { as } k_{n} \rightarrow \infty
\end{aligned}
$$

## Idea of proof contd....

- now by multiplication of $u^{k_{n}}$ equation by the limit $u$ and integration over $\Omega$,

$$
-\int_{\Omega} \nabla u^{k_{n}} \cdot \nabla u d x+\int_{\Omega} u f\left(u^{k_{n}}\right) d x-k_{n} \int_{\Omega} u u^{k_{n}} v^{k_{n}} \alpha_{1} d x=0,
$$

and then letting $k_{n} \rightarrow \infty$ gives

$$
\int_{\Omega}|\nabla u|^{2} d x=\int_{\Omega} u f(u) d x
$$

- multiplication of $u^{k_{n}}$ equation by $u^{k_{n}}$ and integration over $\Omega$ gives

$$
-\int_{\Omega}\left|\nabla u^{k_{n}}\right|^{2} d x+\int_{\Omega} u^{k_{n}} f\left(u^{k_{n}}\right) d x-k_{n} \int_{\Omega}\left(u^{k_{n}}\right)^{2} v^{k_{n}} \alpha_{1} d x=0
$$

which, since $\alpha_{1}$ and $v^{k_{n}}$ are non-negative, implies that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u^{k_{n}}\right|^{2} d x & \leq \int_{\Omega} u^{k_{n}} f\left(u^{k_{n}}\right) d x \\
& \rightarrow \int_{\Omega} u f(u) d x \\
& =\int_{\Omega}|\nabla u|^{2} d x
\end{aligned}
$$

Remark: improved segregation
Lemma Let $\varepsilon>0$. Then there exists $k_{0} \in \mathbb{N}$ such that if $k \geq k_{0}$ and $\left(u^{k}, v^{k}\right)$ is a non-negative solution of

$$
\begin{aligned}
\Delta u+f(u)-k \alpha_{1}(x) \gamma_{1}(v) u v & =0, & & x \in \Omega \\
\Delta v+g(v)-k \alpha_{2}(x) \gamma_{2}(u) u v & =0, & & x \in \Omega \\
u=v & =0, & & x \in \partial \Omega
\end{aligned}
$$

then given $x \in \Omega$,

$$
u^{k}(x) \leq \varepsilon_{0} \quad \text { or } \quad v^{k}(x) \leq \varepsilon_{0}
$$

Remark: improved segregation
Lemma Let $\varepsilon>0$. Then there exists $k_{0} \in \mathbb{N}$ such that if $k \geq k_{0}$ and $\left(u^{k}, v^{k}\right)$ is a non-negative solution of

$$
\begin{aligned}
& \Delta u+f(u)-k \alpha_{1}(x) \gamma_{1}(v) u v=0, \\
& \Delta v \in \Omega \\
& \Delta v+g(v)-k \alpha_{2}(x) \gamma_{2}(u) u v=0, \\
& u=v=0,
\end{aligned} \begin{aligned}
x \in \partial \Omega
\end{aligned}
$$

then given $x \in \Omega$,

$$
u^{k}(x) \leq \varepsilon_{0} \quad \text { or } \quad v^{k}(x) \leq \varepsilon_{0}
$$

Idea of proof: Suppose not. Then there exist $\varepsilon_{0}>0$ and sequences $k_{j} \rightarrow \infty$ and $x_{j} \in \Omega$ such that

$$
u^{k_{j}}\left(x_{j}\right) \geq \varepsilon_{0} \text { and } v^{k_{j}}\left(x_{j}\right) \geq \varepsilon_{0}
$$

Rescale

$$
\left(U^{k_{j}}, V^{k_{j}}\right)\left(\sqrt{k_{j}}\left(x-x_{j}\right)\right)=\left(u^{k_{j}}, v^{k_{j}}\right)(x), \quad x \in \Omega
$$

satisfies

$$
\begin{array}{ll}
\Delta U^{k_{j}}+k_{j}^{-1} f\left(U^{k_{j}}\right)-\alpha_{1}\left(x_{j}+\frac{x^{\prime}}{\sqrt{k_{j}}}\right) \gamma_{1}\left(V^{k_{j}}\right) U^{k_{j}} V^{k_{j}}=0 \text { in } \Omega_{j} \\
\Delta V^{k_{j}}+k_{j}^{-1} g\left(V^{k_{j}}\right)-\alpha_{2}\left(x_{j}+\frac{x^{\prime}}{\sqrt{k_{j}}}\right) \gamma_{2}\left(U^{k_{j}}\right) U^{k_{j}} V^{k_{j}}=0 \text { in } \Omega_{j} \\
U^{k_{j}}=V^{k_{j}}=0 & \text { on } \partial \Omega_{j}
\end{array}
$$

and

$$
0 \leq U^{k_{j}}, V^{k_{j}} \leq M, \quad 0 \in \Omega_{j}, \quad U^{k_{j}}(0) \geq \varepsilon_{0} \quad \text { and } \quad V^{k_{j}}(0) \geq \varepsilon_{0}
$$

Rescale

$$
\left(U^{k_{j}}, V^{k_{j}}\right)\left(\sqrt{k_{j}}\left(x-x_{j}\right)\right)=\left(u^{k_{j}}, v^{k_{j}}\right)(x), \quad x \in \Omega
$$

satisfies

$$
\begin{array}{ll}
\Delta U^{k_{j}}+k_{j}^{-1} f\left(U^{k_{j}}\right)-\alpha_{1}\left(x_{j}+\frac{x^{\prime}}{\sqrt{k_{j}}}\right) \gamma_{1}\left(V^{k_{j}}\right) U^{k_{j}} V^{k_{j}}=0 \text { in } \Omega_{j}, \\
\Delta V^{k_{j}}+k_{j}^{-1} g\left(V^{k_{j}}\right)-\alpha_{2}\left(x_{j}+\frac{x^{\prime}}{\sqrt{k_{j}}}\right) \gamma_{2}\left(U^{k_{j}}\right) U^{k_{j}} V^{k_{j}}=0 \text { in } \Omega_{j}, \\
U^{k_{j}}=V^{k_{j}}=0 & \text { on } \partial \Omega_{j}
\end{array}
$$

and

$$
0 \leq U^{k_{j}}, V^{k_{j}} \leq M, \quad 0 \in \Omega_{j}, \quad U^{k_{j}}(0) \geq \varepsilon_{0} \quad \text { and } \quad V^{k_{j}}(0) \geq \varepsilon_{0}
$$

$k_{j} \rightarrow \infty$ limit system

$$
\begin{aligned}
\Delta U & =\alpha_{1}(\bar{x}) \gamma_{1}(V) U V \\
\Delta V & =\alpha_{2}(\bar{x}) \gamma_{2}(U) U V
\end{aligned}
$$

and

$$
0 \leq U, V \leq M, \quad U(0) \geq \varepsilon_{0} \text { and } V(0) \geq \varepsilon_{0}
$$

Then on the one hand....

$$
\begin{aligned}
& \Delta U \geq 0 \quad \text { and } U \text { is bounded on } \mathbb{R}^{N} ; \\
& \Delta V \geq 0 \quad \text { and } V \text { is bounded on } \mathbb{R}^{N}
\end{aligned}
$$

$\Rightarrow \exists$ direction $\left\{\lambda \xi: \xi \in S^{n-1}, \quad \lambda \geq 0\right\}$ along which

$$
U(x) \rightarrow \sup U \quad \text { and } \quad V(x) \rightarrow \sup V \text { as }|x| \rightarrow \infty
$$

by properties of subharmonic functions
$\therefore$ limit $(\tilde{U}, \tilde{V})$ of translates $U\left(\cdot+x_{n}\right), V\left(\cdot+x_{n}\right)$ along this direction satisfies

$$
\tilde{U}(0)=\sup \tilde{U}, \quad \Delta \tilde{U}(0) \leq 0 \quad \text { and } \quad \tilde{V}(0)=\sup \tilde{V}, \quad \Delta \tilde{V}(0) \leq 0
$$

Then on the one hand....

$$
\begin{aligned}
& \Delta U \geq 0 \quad \text { and } U \text { is bounded on } \mathbb{R}^{N} ; \\
& \Delta V \geq 0 \quad \text { and } V \text { is bounded on } \mathbb{R}^{N}
\end{aligned}
$$

$\Rightarrow \exists$ direction $\left\{\lambda \xi: \xi \in S^{n-1}, \quad \lambda \geq 0\right\}$ along which

$$
U(x) \rightarrow \sup U \quad \text { and } \quad V(x) \rightarrow \sup V \text { as }|x| \rightarrow \infty
$$

by properties of subharmonic functions
$\therefore$ limit $(\tilde{U}, \tilde{V})$ of translates $U\left(\cdot+x_{n}\right), V\left(\cdot+x_{n}\right)$ along this direction satisfies

$$
\tilde{U}(0)=\sup \tilde{U}, \quad \Delta \tilde{U}(0) \leq 0 \quad \text { and } \quad \tilde{V}(0)=\sup \tilde{V}, \quad \Delta \tilde{V}(0) \leq 0
$$

But on the other hand....

$$
\Delta \tilde{U}(0)=\alpha_{1}(\bar{x}) \gamma_{1}(\tilde{V}(0)) \tilde{U}(0) \tilde{V}(0)>0
$$

$\therefore$ contradiction
here also use feature that $\alpha$, etc are bounded below by a positive const

Remark : regularity for limit equation of System 2

- $y \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution of limit equation

$$
\begin{aligned}
\Delta y & =\frac{2 \Gamma^{-1}\left(y^{+}\right)}{\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right)^{2}}\left|\nabla y^{+}\right|^{2}+\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right) f\left(\Gamma^{-1}\left(y^{+}\right)\right)+g\left(-y^{-}\right) \text {in } \Omega, \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

Remark : regularity for limit equation of System 2

- $y \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution of limit equation

$$
\begin{aligned}
\Delta y & =\frac{2 \Gamma^{-1}\left(y^{+}\right)}{\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right)^{2}}\left|\nabla y^{+}\right|^{2}+\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right) f\left(\Gamma^{-1}\left(y^{+}\right)\right)+g\left(-y^{-}\right) \text {in } \Omega \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

- since $\Gamma^{-1}(0)=0$, this can be re-written as

$$
\begin{aligned}
\Delta y & =h(y)|\nabla y|^{2}+d(y) \text { in } \Omega, \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

where $h$ and $d$ are continuous functions

Remark : regularity for limit equation of System 2

- $y \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution of limit equation

$$
\begin{aligned}
\Delta y & =\frac{2 \Gamma^{-1}\left(y^{+}\right)}{\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right)^{2}}\left|\nabla y^{+}\right|^{2}+\left(1+\Gamma^{-1}\left(y^{+}\right)^{2}\right) f\left(\Gamma^{-1}\left(y^{+}\right)\right)+g\left(-y^{-}\right) \text {in } \Omega \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

- since $\Gamma^{-1}(0)=0$, this can be re-written as

$$
\begin{aligned}
\Delta y & =h(y)|\nabla y|^{2}+d(y) \text { in } \Omega, \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

where $h$ and $d$ are continuous functions

- change of variables : let $r: \mathbb{R} \rightarrow \mathbb{R}$ be such that

$$
\begin{aligned}
r^{\prime}(t) & =e^{H(r(t))}, \quad t \in \mathbb{R}, \\
r(0) & =0,
\end{aligned}
$$

where $H^{\prime}=h$, and note that

$$
r^{\prime \prime}(t)-h(r(t)) r^{\prime}(t)^{2}=0, \quad t \in \mathbb{R}
$$

- define $s: \Omega \rightarrow \mathbb{R}$ by

$$
s(x)=r^{-1}(y(x)), \quad x \in \Omega,
$$

where $y \in W_{0}^{1,2}(\Omega)$ is a solution of the limit equation

- then $s$ satisfies

$$
\begin{aligned}
\Delta s & =\frac{d(s(x))}{r^{\prime}(s(x))}, \quad x \in \Omega \\
s & =0 \text { on } \partial \Omega
\end{aligned}
$$

- define $s: \Omega \rightarrow \mathbb{R}$ by

$$
s(x)=r^{-1}(y(x)), \quad x \in \Omega,
$$

where $y \in W_{0}^{1,2}(\Omega)$ is a solution of the limit equation

- then $s$ satisfies

$$
\begin{aligned}
\Delta s & =\frac{d(s(x))}{r^{\prime}(s(x))} \in L^{\infty}(\Omega) \\
s & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

since

$$
r^{\prime}(s(x))=e^{H(r(s(x))}=e^{H(y(x))} \geq r_{0}>0
$$

because $y \in L^{\infty}(\Omega)$

- define $s: \Omega \rightarrow \mathbb{R}$ by

$$
s(x)=r^{-1}(y(x)), \quad x \in \Omega,
$$

where $y \in W_{0}^{1,2}(\Omega)$ is a solution of the limit equation

- then $s$ satisfies

$$
\begin{aligned}
\Delta s & =\frac{d(s(x))}{r^{\prime}(s(x))} \in L^{\infty}(\Omega) \\
s & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

since

$$
r^{\prime}(s(x))=e^{H(r(s(x))}=e^{H(y(x))} \geq r_{0}>0
$$

because $y \in L^{\infty}(\Omega)$

- hence

$$
\begin{aligned}
\Delta s \in L^{\infty}(\Omega), s=0 \text { on } \partial \Omega & \Rightarrow s \in W^{2, p}(\Omega) \text { for all } p \in[1, \infty) \\
& \Rightarrow s \in C^{1, \mu}(\Omega) \text { for all } \mu \in(0,1) \\
& \Rightarrow y \in C^{1, \mu}(\Omega) \text { for all } \mu \in(0,1)
\end{aligned}
$$

## Main open question...

- to better understand solutions of the scalar limit problems, especially sign-changing solutions of the limit problems
- in particular, to understand which sign-changing solutions arises as the limit as $k \rightarrow \infty$ of co-existence states of the $k$-dependent system


## Main open question...

- to better understand solutions of the scalar limit problems, especially sign-changing solutions of the limit problems
- in particular, to understand which sign-changing solutions arises as the limit as $k \rightarrow \infty$ of co-existence states of the $k$-dependent system

