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The reproduction operator (R. Rudnicki)

We consider an evolving population of individuals characterized

by some attribute x ∈ Ω ⊂ R+. The population may be

described by the density u(x , t). Alternatively, we can consider

the measure µx ,t describing the evolution of the attribute x if at

t = 0 we had only one individual with attribute x and look at the

evolution of

φ(x , t) =

∫
Ω

f (y)µx ,t (dy).
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If the evolution only occurs due to growth with intrinsic rate r ,

then

∂tu = −∂x (ru), u(x ,0) =
◦
u (x)

(forward Kolmogorov) and

∂tφ = r∂xφ, φ(x ,0) =
◦
f (x)

(backward Kolmogorov), which are adjoint to each other (at

least formally).

Jacek Banasiak Size-structured population models with coagulation and fragmentation



We introduce the set function

P(x ,A)

which is the rate at which an individual with attribute x which

produces descendants which at birth have attribute from the set

A ⊂ Ω. Then

∂tφ = r∂xφ− µφ+

∫
Ω

φ(y , t)P(·,dy), φ(x ,0) =
◦
f (x),

where µ is the total death rate.
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Example 1. Cell division into two equal parts at the rate b(x):

P(x ,A) = 2b(x) if x/2 ∈ A P(x ,A) = 0 if x/2 /∈ A.

Example 2. Continuously distributed attributes.

P(x ,A) =

∫
A

k(y , x)dy

where k is a positive measurable function such that∫
Ω k(y , x)dy = 1 for any x .

Example 3. McKendrick model (all descendants have attribute

0).

P(x ,A) = b(x)χA(0)

where χA is the characteristic function of A.
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To write the equation for the density, we should find the

pre-dual to

B∗φ =

∫
Ω

φ(y , t)P(·,dy).

If P(x ,A) = 0 almost everywhere for any set A of Lebesgue

measure zero, then using Radon-Nikodym theorem, we can

define the pre-dual operator B by∫
A

[Bf ](x)dx =

∫
Ω

P(x ,A)f (x)dx .

If not, we split P(x ,A) into singular and regular part.
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In particular

[Bf ](x) = 4b(2x)f (2x)

in the case of equal division;

[Bf ](x) =

∫
Ω

k(x , y)f (y)dy

in the continuous attribute distribution case.
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In the McKendrick case, we can calculate that if

Au = −µu − (ru)x on the domain

D(A) = {u ∈W 1,1(Ω); u(0) =

∫
Ω

b(x)u(x)dx}

then

A∗φ = −µφ+ rφx + b(x)φ(0).

Thus, at least formally,

[B∗φ](x) = b(x)φ(0) =

∫
Ω

φ(y)P(x ,dy)
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The model.

In our model, we consider Ω = [x0,∞) with x0 ≥ 0 and the

general reproduction operator with P(x ,A) having both

continuous and singular part with the latter concentrated at x0.

We also consider a nonlinear perturbation describing

coagulation of particles. The resulting

coagulation-fragmentation equation with decay or growth is

typically written in the form
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∂tu(x , t) = −∂x [r(x)u(x , t)]− µ(x)u(x , t)

−a(x)u(x , t) +

∞∫
x0+x

a(y)b(x |y)u(y , t)dy

−u(x , t)

∞∫
x0

k(x , y)u(y , t)dy (1)

+
1
2

x−x0∫
x0

k(x − y , y)u(x − y , t)u(y , t)dy ,
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where u is the density of particles of mass/size x ,

a is the

fragmentation rate and b describes the distribution of particle

masses x spawned by the fragmentation of a particle of mass

y . We assume

0 ≤ a ∈ L∞,loc([0,∞)), a(x) = 0, x < 2x0,

b ≥ 0, b(x |y) = 0, x > y − x0
y∫

x0

xb(x |y)dx =

y−x0∫
x0

xb(x |y)dx = y (2)

The expected number of particles in a fragmentation event is

n0(y) =

y∫
x0

b(x |y)dx < +∞, any y > x0. (3)
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The ‘stickiness function’ k(x , y) represents the likelihood of an

aggregate of size x sticking to an aggregate of size y . We

assume

k ∈ L∞([x0, x1)× [x0, x1)). (4)

and k(x , y) 6= 0 if x , y > x0.
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We assume r is positive on (x0,∞) and

r ∈ AC((x0,∞)).

−r is the rate of the continuous mass loss defined so that

−r(m(t)) = dm/dt for a particle of time-dependent mass m(t).

r is the rate of continuous mass growth defined so that

r(m(t)) = dm/dt for a particle of time-dependent mass m(t).

The function µ represents the death term; it is assumed that

0 ≤ µ ∈ L∞,loc([x0,∞)).
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Abstract formulation

The problem is formulated as an abstract differential equation

∂tu = T0,bu + Fu + Nu = T0,bu + Au + Bu + Nu = Tbu + Bu + Nu

(5)

in an appropriate Banach space X . Here T0,b is a realization of

the original growth term subject to appropriate boundary

conditions, A is the loss and B the gain term of the

fragmentation operator F and N is the coagulation operator.
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Strategy

Take advantage of (almost) explicit representation of

solutions to the transport part;

Use the (quasi) substochastic semigroup theory to prove

existence and analyse properties of the semigroup

associated with Tb + B;

Use standard Lipschitz perturbation techniques to prove

local (in time) solvability of the full equation;

Use characterization of the generator of the linear

semigroup to derive moment estimates;

Show global existence or blow up, if possible.
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Interlude: quasi substochastic semigroup theory

We work in X = L1(Ω,dµ). For Z ⊂ X by Z+ we denote the

cone of nonnegative elements of Z .

A C0-semigroup (G(t))t≥0 is (quasi) substochastic if it is

positive and (quasi) contractive, that is,

‖G(t)‖ ≤ eωt

for some ω.
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Let (T ,D(T )) and (B,D(B)) be linear operators on X such that

(T ,D(T )) generates a quasi-substochastic semigroup

(GT (t))t≥0, (B,D(B)) is positive on D(B)+ with D(B) ⊃ D(T )

and∫
Ω

(T + B)u dµ = c(u) := −c−(u) + ω′‖u‖X , 0 ≤ u ∈ D(T ),

(6)

where c− is a positive functional defined on D(T ) (zero in the

formally conservative case) and ω′ ∈ R.
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Theorem
Under the above assumptions, there exists a smallest quasi

substochastic semigroup (GK (t))t≥0 generated by an extension

K of the operator T + B.

Furthermore, the functional c (and

thus c−) extends to a continuous functional on D(K ) by

monotone limits of elements of D(T )+ as well as by continuity

in the graph norm of D(K ).
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Denote u(t) = GK (t)f with f ∈ D(K )+. Then always

d
dt

∫
Ω

u(t) dµ =
d
dt
‖u(t)‖ ≤ c (u(t)) . (7)

If there is ′ =′ in (7), then we say that (GK (t))t≥0 is honest.
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A characterization of honesty is given in the following theorem.

Theorem
The following are equivalent:

(a) The semigroup (GK (t))t≥0 is honest.

(b) K = T + B.

(c)
∫
Ω

Ku dµ ≥ c(u) = −c−(u) + ‖u‖X , u ∈ D(K )+.
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Extension techniques

Using the fact that X is embedded in the lattice of measurable

functions and the either the operators involved or their

resolvents are positive integral operators, we can define various

extensions by monotonicity. This technique has proved to be

very useful in characterizing the domain of K . In particular,

Theorem 2 c) is most often used through the following corollary.

Jacek Banasiak Size-structured population models with coagulation and fragmentation



Theorem

Let K be an extension of the generator K acting in X. If∫
Ω

Ku dµ ≥ c(u) u ∈ D(K)+

then the semigroup is honest.

Jacek Banasiak Size-structured population models with coagulation and fragmentation



Typical state spaces.

In

X1 := L1([x0,∞), xdx)

the norm of a nonnegative element u, which represents a state

of the system; that is, a distribution of mass among particles,

given by

‖u‖1 =

∞∫
x0

u(x)xdx

represents the total mass of the system.
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In

X0 := L1([x0,∞),dx)

the norm of a nonnegative element u, given by

‖u‖0 =

∞∫
x0

u(x)dx

represents the total number of particles in the system.

Note that if x0 > 0, then X1 ⊂ X0.
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Choice of the state space.

Example 1. Fragmentation equation with unbounded

fragmentation rate a is well posed in X1 := L1(R+, xdx).

However, it is not well posed in X0 := L1(R+,dx). Indeed, the

function

u(t , x) = e−xt

f (x) +

∞∫
x

f (y)[2t + t2(y − x)]dy


is the solution to

∂tu(x , t) = −xu(x , t) + 2

∞∫
x

u(y , t)dy ,

( a(x) = x and b(x |y) = 2/y ) and initial condition f .
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However, for the norm X0 we have

‖u(1, ·)‖0 =

∞∫
0

f (y)(y − 1 + e−y )dy

which is finite only if f ∈ X0.
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Example 2. Consider

∂tu(x , t) = −∂xu(x , t), t > 0, x > 0

with initial and boundary conditions u(x ,0) = f (x),

u(0, t) = 0.

Then u(x , t) = f (x − t) for x > t , u(x , t) = 0 for x < t

and

‖u‖1 =

∞∫
t

f (x − t)xdx =

∞∫
0

f (y)ydy + t

∞∫
0

f (y)dy

and we see that ‖u‖1 may be infinite if f /∈ X0. Thus, X1 is not a

good state space if r(0) 6= 0.
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Example 3.

ut (t , x) = −(x2u)x , u(0, x) = f (x), x > 0. (8)

Since 1/x2 is not integrable at 0, there is no need to impose

any boundary conditions. The solution is given by

u(t , x) =
1

(1 + xt)2 f
(

x
1 + xt

)
. (9)

The solution is defined for all t , x > 0, the process is dissipative

in X0:∫ ∞
0

1
(1 + xt)2 f

(
x

1 + xt

)
dx =

∫ 1/t

0
f (ξ)dξ ≤

∫ ∞
0

u0(ξ)dξ.
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On the other hand the norm of the solution in X1 is given by∫ ∞
0

x
(1 + xt)2 u0

(
x

1 + xt

)
dx =

∫ 1/t

0

ξu0(ξ)

1− ξt
dξ

and the right hand side has a non integrable singularity at

ξ = 1/t which shows that (9) cannot define a semigroup in

X1.

We note that if 0 ≤ r(x) ≤ r0(1 + x), then the characteristics

of the transport equation are defined for all t > 0. This property

is crucial for the generation of a strongly continuous semigroup

X1. However, it can be proved that (9) (extended by 0) defines a

strongly continuous semigroup in X0.
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The coagulation operator does not behave well in X1 but it can

be controlled in X0. Hence analysis is usually carried out in the

Banach space X0,1 := L1([x0,∞), (1 + x)dx) in which both the

total mass and the number of particles are controlled.

Note that

X0,1 is topologically distinct from X1 only if x0 = 0. However,

their metric properties, essential for the semigroup analysis, are

different even if x0 > 0.

The analysis in X0,1 is well-developed but requires that rather

severe constraints on a and β, such as sublinearity, be

imposed. It is unlikely that one can build an X0,1 theory with a

and β with faster growth at infinity.
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Introduce the mth moment of the solution u

Mm(t) =

∞∫
x0

xmu(x , t)dx .

Formally (with, say, x0 = 0, k = const) we have

d
dt

M0(t) =

∞∫
0

β(x)u(x , t)dx +

∞∫
0

(n0(x)− 1)a(x)u(x , t)dx

−k
2

M2
0 , (10)

and we see that if β and an0 are not sublinear, then the zeroth

moment is controlled by higher order moments.
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The answer: build a theory in higher moments spaces

X0,m = X0 ∩ Xm = L1([x0,∞),dx) ∩ L1([x0,∞), xmdx)

= L1([x0,∞), (1 + xm)dx). (11)

Again, topologically, X0,m 6= Xm only if x0 = 0.

Problems:

(i) Does the transport part generates a quasi-contractive

semigroup on X0,m?

(ii) Does the fragmentation operator behave well in X0,m?

(iii) Can we combine these two?
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The transport part.

∂tu(x , t) = ±∂x [r(x)u(x , t)]− q(x)u(x , t), x ≥ x0,

q = µ+ a.

• If we have mass loss, then there is (almost) no need for

boundary conditions.

• If we have mass growth and∫
x+

0

dx
r(x)

=∞,

then there is no need for boundary condition.
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• If there is mass growth but∫
x+

0

dx
r(x)

<∞,

then we require boundary conditions.

We consider general boundary condition

lim
x→x0

r(x)u(x , t) =

∞∫
x0

β(x)u(x , t)dx (12)

which incorporates both homogeneous Dirichlet (β = 0) and

renewal boundary conditions (β ≥ 0). If the smallest particles

only are created by fragmentation, then

β(x) = a(x)b(x0|x).
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We focus on the growth case and consider

[T gu](x , t) = −∂x [r(x)u(x , t)]− q(x)u(x , t), (13)

for t > 0, x > x0, where 0 ≤ q ∈ L∞,loc([x0,∞)),

r(x) > 0 on (x0,∞), r ∈ AC((x0,∞)),

supx≥x0
(1 + x)−1r(x) <∞. In the case when r is not integrable

at x0 we assume

‖r‖∗1,∞ = sup
x≥x0

(x − x0)−1r(x) <∞. (14)
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When 1/r is integrable, we consider (13) with

lim
x→x0

r(x)u(x , t) =

∞∫
x0

β(x)u(x , t)dx . (15)

This gives the operator T g
m,β as the restriction of T g to

D(T g
m,β) = {u ∈ X0,m; ru ∈ AC((x0,∞)), (ru)x ,qu ∈ X0,m,

(15) holds}.
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Theorem

The operator (T g
m,β,D(T g

m,β)) is the generator of a strongly

continuous positive semi-contractive semigroup, say

(GT g
m,β

(t))t≥0, on X0,m which satisfies

‖GT g
m,β

(t)‖0,m ≤ eCt ,

where C = C(r , β, x0,m) is a constant.
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The fragmentation part.

We impose assumptions:

0 ≤ a(x) ≤ a0(1 + xk ),

n0(x) =

x∫
0

b(y |x)dy ≤ b0(1 + x l), (16)

for any x ∈ [x0,∞), some k , l ∈ N0 and a0 > 0 and b0 ≥ 1.

Note. These assumptions are only necessary if x0 = 0 since,

as we shall see later, they enter solely into the estimates of the

zeroth moment, see (10), which for x0 > 0 is controlled by the

higher moments and there is no need to use it.
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We note that (3) implies

nm(y) :=

y∫
x0

b(x |y)xmdx ≤ ym

y∫
x0

b(x |y)dx = ymn0(y) < +∞

for any m ∈ N0 and y ∈ [x0,∞). We denote

Nm(y) = nm(y)− ym.

Observe that, by (2), for m ≥ 1

Nm(y) =

y∫
0

b(x |y)xmdx − ym ≤ ym−1

y∫
0

b(x |y)xdx − ym ≤ 0

(17)

while

N0 = n0(y)− 1 ≥ 0. (18)
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For any m, let Amu = au on

D(Am) = {u ∈ X0,m; au ∈ X0,m}

and consider the expression

[Bu](x) =

∞∫
x

a(y)b(x |y)u(y)dy . (19)

Then

Lemma

If 0 ≤ f ∈ D(Am) with m ≥ k + l , then

‖Bf‖0,m =

∞∫
0

a(x)(nm(x) + n0(x))f (x)dx < +∞. (20)
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Fragmentation equation with growth/decay.

Again we shall consider T g
m,β with q = µ+ a. Let k , l be

specified in (16) and let m ≥ k + l . To shorten notation, we drop

the indices g and β. Then for u ∈ D(Tm) we have
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∞∫
x0

(Tm + Bm)u(x)(1 + xm)dx = −cm(u) := (21)

−
∞∫

x0

µ(x)u(x)(1 + xm)dx + (1 + xm
0 )

∞∫
x0

β(x)u(x)dx

+m

∞∫
x0

r(x)u(x)xm−1dx +

∞∫
x0

(Nm(x) + N0(x))a(x)u(x)dx

≤ −c−m(u) + Cm‖u‖0,m.
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Thus there is an extension Km of Tm + Bm which generates a

positive quasi-contractive semigroup (GTm (t))t≥0 satisfying

‖GTm (t)‖0,m ≤ eCmt . (22)
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Moreover, the functional −c−m extends to D(Km) by density in

the graph norm of D(Km), and also to D(Km)+ by monotonic

limits, from D(Tm), respectively D(Tm)+. Thus, in particular, for

u ∈ D(Km)+ we have

∞∫
x0

µ(x)u(x)(1 + xm)dx < +∞

and
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−
∞∫

x0

Nm(x)a(x)u(x)dx < +∞. (23)

By (17) we have

|Nm(x)| ≤ 2xm.

If Nm is precisely of order xm, then (23) gives D(Km) ⊂ D(Am)

and, in fact, using theory of extensions, one can prove

Km = Tm + Bm.

This is true in an important in applications homogeneous

fragmentation, where b(x |y) = y−1h(x/y).
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Characterization of the generator

In all cases it can be proved that

Km = Tm + Bm. (24)

This result shows that all moments
∞∫

x0

[Kmu](x)xkdx , u ∈ D(Km),

for k ≤ m can be calculated by direct evaluation for u ∈ D(Tm)

and extended to D(Km).
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Trotter formula

Moreover, the following holds

GKm (t)u = lim
n→∞

(
GT0,m (t/n)GF̄ (t/n)

)n
u, u ∈ X0,m, (25)

uniformly in t on bounded intervals.
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Local solvability of the complete equation.

We introduce the coagulation operator defined by

[Nmf ](x) :=
1
2

∫ x−x0

x0

k(x − y , y)f (x − y)f (y) dy

−f (x)

∫ ∞
x0

k(x , y)f (y) dy , x > x0

on X0,m × X0,m.
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Moments of Nmf satisfy∫ ∞
x0

xp[Nm(f )](x) dx

=
1
2

∫ ∞
x0

∫ ∞
x0

((x + y)p − xp − yp)k(x , y)f (x)f (y) dx dy .

Basic inequalities used are

(x + y)β ≤ 2β(xβ + yβ), β ≥ 0, (26)

and, for p ≥ 2,

0 ≤ (x + y)p − xp − yp ≤ (2p − 1)(xyp−1 + yxp−1).
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Theorem
Nm is continuously Fréchet differentiable at any point f ∈ X0,m

and therefore locally Lipschitz on X0,m. Consequently, for any

0 ≤ u0 ∈ D(Km) there exists a unique non-negative strict

solution u(t) to

ut (t) = Kmu(t) + Nmu(t), (27)

defined on its maximal interval of existence [0, t(u0)), where

t(u0) > 0.

Define

Mm(t) =

∞∫
x0

xmu(x , t)dx .
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Moments’ estimates.

a) Decay case:

M ′0 ≤
∞∫

x0

(n0(x)− 1)a(x)u(x , t)dx

−
∞∫

x0

∞∫
x0

k(x , y)u(x , t)u(y , t)dxdy ≤ C0(M0 + Mm)

M ′1 ≤ 0

M ′m ≤
1
2

∫ ∞
x0

∫ ∞
x0

((x + y)m−xm− ym)k(x , y)u(x , t)u(y , t)dxdy

≤ Cm(M2
1 + 2M1Mm)
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b) Growth with no boundary conditions or β = 0:

M ′0 ≤ C0(M0 + Mm),

M ′1 ≤
∫ ∞

x0

r(x)u(x , t)dx ,

M ′m ≤ Cm(M2
1 + 2M1Mm) + Cm,r (M0 + M1).
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b) Growth with boundary conditions β 6= 0:

M ′0 ≤ C′0(M0 + Mm),

M ′1 ≤ x0

∫ ∞
x0

β(x)u(x , t)dx +

∫ ∞
x0

r(x)u(x , t)dx ,

M ′m ≤ Cm(M2
1 + 2M1Mm) + Cm,r ,β(M0 + M1).
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Global solvability.

a) In the decay case, M1 ≤ M1(0) is bounded, thus Mm and,

consequently, M0 are bounded on each time interval, giving

thus global solvability of the DFG equation.

b) Growth with 1/r non-integrable at x0. Then∫ ∞
0

r(x)u(x , t)dx ≤ ‖r‖∗1,∞M1

and thus M1, growing exponentially, yields Mm to be globally

defined and therefore M0 is globally defined and the solution is

global.
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c) The case of growth with 1/r integrable at x0. Assume x0 > 0,

r(x), β(x) sublinear. Then, similarly to the above,∫ ∞
x0

r(x)u(x , t)dx ≤ ‖r‖1,∞
∫ ∞

x0

(1 + x)u(x , t)dx

≤ ‖r‖1,∞(M1 + M0) ≤ ‖r‖1,∞(1 + x0)x−1
0 M1

and ∫ ∞
x0

β(x)u(x , t)dx ≤ ‖β‖1,∞(1 + x0)x−1
0 M1

so

M ′1 ≤ CM1

for some constant C and the argument as above yields global

solvability.
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A case of a finite time blow-up.

We consider the following example. Let x0 = 1, k = 1,

a(x) = 1. Consider a uniform binary fragmentation on [1,∞).

Then we have

b(x |y) =
2χ[1,y−1](x)

y − 2
for y > 2 expressing the fact that no particles of size y < 2 can

fragment into two particles of size at least 1 and no particle of

size greater than y − 1 can emerge after fragmentation. The

clearly we have

n0(x) =
2

y − 2

y−1∫
1

dx = 2, n1(x) =
2

y − 2

y−1∫
1

xdx = y
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Furthermore,

n2(y) =
2

y − 2

y−1∫
1

x2dx =
2
3

(y2 − y + 1)

so that −N2(y) ∼ 1
3y2 uniformly for large y . Thus, we know that

D(Km) ⊂ D(Am) and, using the earlier results, we can integrate

termwise which leads to the system

M ′1 = M2 + M1,

M ′2 = −2
3

M1 +
2
3

M0 +
8
3

M2 + M2
1

on the maximal interval of existence of the solution.
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Then

M ′′1 ≥ M2
1 .

which, for any initial value u0 such that

M2(0) + M1(0)−M3
1 (0) ≥ 0 gives

M ′1 ≥
√

2
3

M3
1

and yields the estimate of the blow-up time

tb ≤
√

3
2

∞∫
M1(0)

ds
s3/2 =

√
3
8

1√
M1(0)

.
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