
How Many Numbers Can a Lambda-term
Contain?

Pawe l Parys?

University of Warsaw, Warsaw, Poland
parys@mimuw.edu.pl

Abstract. It is well known, that simply-typed λ-terms can be used to
represent numbers, as well as some other data types. We prove, however,
that in a λ-term of a fixed type we can store only a fixed number of
natural numbers, in such a way that they can be extracted using λ-
terms. More precisely, while representing k numbers in a closed λ-term
of some type we only require that there are k closed λ-terms M1, . . . ,Mk

such that Mi takes as argument the λ-term representing the k-tuple,
and returns the i-th number in the tuple (we do not require that, using
λ-calculus, one can construct the representation of the k-tuple out of the
k numbers in the tuple). Moreover, the same result holds when we allow
that the numbers can be extracted approximately, up to some error (even
when we only want to know whether a set is bounded or not).

1 Introduction

It is well known, that simply-typed λ-terms can be used to represent numbers, as
well as some other data types (for an introduction see e.g. [1]). In particular we
can represent pairs or tuples of representable data types. Notice however that
the sort1 of terms representing pairs is more complex than the sort of terms
representing the elements of pairs. We prove that, indeed, for representing k-
tuples of natural numbers for big k, we need terms of complex sort. For this
reason, for each sort α we define a number dim(α), the dimension of sort α. It
gives an upper bound on how large tuples of natural numbers can be represented
by a term of sort α.

To represent a natural number in a λ-term we use two constants: 0 of sort o,
and 1+ of sort o → o. We define the value of a closed term M of sort o as the
natural number saying how many times the constant 1+ appears in the β-normal
form of M . Notice that each β-normalized closed term of sort o is of the form
1+ (1+ (. . . (1+ 0) . . .)). Of course the number of constants 1+ used in a term
may change during β-reduction; we count it in the β-normal form of a term.

? The author holds a post-doctoral position supported by Warsaw Center of Math-
ematics and Computer Science. Work supported by the National Science Center
(decision DEC-2012/07/D/ST6/02443).

1 We use the name “sort” instead of “type” (except of the abstract) to avoid confusion
with the types introduced later, used for describing terms more precisely.

It is not a problem to pack arbitrarily many natural numbers into a term, so
that for each list (arbitrarily long tuple) of natural numbers we obtain a different
term, even of a very simple sort. We however consider the opposite direction,
that is extracting numbers from terms. We do not require anything about how
a representation of a tuple can be created out of the numbers in the tuple. But
what we require is that using λ-terms we can extract the numbers from the
representation of the tuple. That is, while representing k-tuples in terms of sort
α, we want to have closed terms M1, . . . ,Mk, all of the same sort α → o. Then
the k-tuple extracted by M1, . . . ,Mk from a closed term N (representing a k-
tuple) of sort α is defined as the k-tuple of values of M1 N, . . . ,Mk N . Our main
result is described by the following theorem.

Theorem 1. Let M1, . . . ,Mk be closed terms of sort α → o, for k > dim(α).
Let X be the set of all k-tuples which are extracted by M1, . . . ,Mk from any
closed term of sort α. Then X 6= Nk. Moreover, there exist at most dim(α)
indices i ∈ {1, . . . , k} for which there exists a subset Xi ⊆ X containing tuples
with arbitrarily big numbers on the i-th coordinate, but such that all numbers on
all other coordinates are bounded.

In the last sentence of the theorem we say that the set X is, in some sense,
really at most dim(α)-dimensional. It follows that it is impossible to represent
k-tuples in terms of sort α with k > dim(α) even when we allow some approxi-
mation of the numbers in tuples. The next theorem states a similar property.

Theorem 2. Fix a sort α. We define an equivalence relation over closed terms
of sort α → o: we have M ∼ M ′ when for each sequence N1, N2, . . . of closed
terms of sort α, the sequences of values of the terms M N1,M N2, . . . and
M ′ N1,M

′ N2, . . . are either both bounded or both unbounded. Then this relation
has at most dim(α) equivalence classes.

Beside of the final result, we believe that the techniques used in the proofs
are interesting on their own. First, we introduce a type system which describes,
intuitively, whether a subterm adds something to the value of a term, or not.
Second, we describe a closed term of any sort α by a tuple (of arity depending
only on α) of natural numbers, which approximate all possible values which can
be extracted from the term. This description is compositional: the tuple for MN
depends only on the tuples for M and for N .

Related Work. Results in the spirit of this paper (but with significant differ-
ences) were an important part of the proof [2] that Collapsible Higher-Order
Pushdown Systems generate more trees than Higher-Order Pushdown Systems
without the collapse operation. However the appropriate lemmas of [2] were
almost completely hidden in the appendix, and stated in the world of stacks
of higher-order pushdown systems. Because we think that these results are of
independent interest, we present them here, in a more natural variant.

The types defined in our paper resemble the intersection types used in [3].
However, comparing to [3], we additionally have a productive/nonproductive flag
in our types.

2

One may wonder why we represent natural numbers using constants 1+ and
0, instead of using the standard representation as terms of sort (o→ o)→ o→ o,
where the representation [k] of a number k is defined by [0] = λf.λx.x and
[k + 1] = λf.λx.f ([k] f x). Observe, however, that a number in the “standard”
representation can be easily converted to a number in our representation: the
term [k] 1+ 0 has value k. Since in this paper we only talk about extracting
numbers from terms (we never start from representations of numbers), all our
results also hold for the standard representation. We believe that thanks to
distinguishing the constants 0 and 1+ from other variables, the argumentation
in the paper becomes more clear.

Schwichtenberg [4] and Statman [5] show that the functions over natural
numbers representable in the simply-typed λ-calculus are precisely the “extended
polynomials”. Notice that our results does not follow from this characterization,
since they describe only first-order functions (functions Nk → N). Similarly,
Zaionc [6] characterizes the class of functions over words which are represented
by closed λ-terms (for appropriate representation of words in λ-calculus).

Structure of the Paper. In Section 2 we define some basic notions. In Section 3
we introduce a type system which has two roles. First, it allows us to determine
which arguments of a term will be used (i.e. will not be ignored, as in λx.0).
Second, the type of a subterm says whether this subterm is productive, that
is whether it adds something to the value of the whole term. In Section 4 we
introduce the Krivine machine, and we define its variant which beside of terms
stores type judgements, and even derivation trees for them. This machine allows
us to trace how a derivation tree changes during β-reductions. Next, in Section
5, to configurations of the Krivine machine we assign some numbers, which
give a lower and an upper bound on the value of the term. To obtain them,
we basically count in how many places in derivation trees for type judgements
something “productive” happens. Finally, in Section 6 we conclude the proof of
our main theorems, and in Section 7 we give some further remarks.

Acknowledgement. We thank Igor Walukiewicz and Sylvain Salvati for a discus-
sion on this topic.

2 Preliminaries

The set of sorts is constructed from a unique basic sort o using a binary operation
→. Thus o is a sort and if α, β are sorts, so is (α → β). The order of a sort is
defined by: ord(o) = 0, and ord(α→ β) = max(1 + ord(α), ord(β)).

A signature is a set of typed constants, that is symbols with associated sorts.
In our paper we use a signature consisting of two constants: 0 of sort o, and 1+
of sort o→ o.

The set of simply-typed λ-terms is defined inductively as follows. A constant
of sort α is a term of sort α. For each sort α there is a countable set of variables
xα, yα, . . . that are also terms of sort α. If M is a term of sort β and xα a variable

3

of sort α then λxα.M is a term of sort α→ β. Finally, if M is of sort α→ β and
N is of sort α then MN is a term of sort β. As usual, we identify λ-terms up
to α-conversion. We often omit the sort annotation of variables, but please keep
in mind that every variable is implicitly sorted. A term is called closed when it
does not have free variables. For a term M of sort α we write ord(M) for ord(α).

3 Type System

In this section we define types which will be used to describe our terms. These
types differ from sorts in that on the left-hand side of →, instead of a single
type, we have a set of pairs (f, τ), where τ is a type, and f is a flag from {pr, np}
(where pr stands for productive, and np for nonproductive). The unique atomic
type is denoted r. More precisely, for each sort α we define the set T α of types
of sort α as follows:

T o = {r}, T α→β = P({pr, np} × T α)× T β ,

where P denotes the powerset. A type (T, τ) ∈ T α→β is denoted as
∧
T → τ ,

or
∧
i∈I(fi, τi) → τ when T = {(fi, τi) | i ∈ I}. Moreover, to our terms we will

not only assign a type τ , but also a flag f ∈ {pr, np} (which together form a pair
(f, τ)).

Intuitively, a term has type
∧
T → τ when it can return τ , while taking an

argument for which we can derive all pairs (of a flag and a type) from T . And,
we assign the flag pr (productive), when this term (while being a subterm of
a term of sort o) increases the value. To be more precise, a term is productive
in two cases. First, when it uses the constant 1+. Notice however that this 1+
has to be really used: there exist terms which syntactically contain 1+, but the
result of this 1+ is then ignored, like in (λx.0)1+. Second, a term which takes a
productive argument and uses it at least twice is also productive.

A type judgement is of the form Γ ` M : (f, τ), where we require that the
type τ and the term M are of the same sort. The type environment Γ is a set
of bindings of variables of the form xα : (f, τ), where τ ∈ T α. In Γ we may
have multiple bindings for the same variable. By dom(Γ) we denote the set of
variables x which are binded by Γ , and by Γ �pr we denote the set of those binding
from Γ which use flag pr.

The type system consists of the following rules:

∅ ` 0 : (np, r) ∅ ` 1+ : (pr, (f, r)→ r) x : (f, τ) ` x : (np, τ)

Γ ∪ {x : (fi, τi) | i ∈ I} `M : (f, τ) x 6∈ dom(Γ)

Γ ` λx.M : (f,
∧
i∈I

(fi, τi)→ τ)
(λ)

Γ `M : (f ′,
∧
i∈I

(f•i , τi)→ τ) Γi ` N : (f◦i , τi) for each i ∈ I

Γ ∪
⋃
i∈I

Γi `MN : (f, τ)
(@)

4

where in the (@) rule we assume that

– each pair (f•i , τi) is different (where i ∈ I), and
– for each i ∈ I, f•i = pr if and only if f◦i = pr or Γi�pr 6= ∅, and
– f = pr if and only if f ′ = pr, or f◦i = pr for some i ∈ I, or |Γ �pr| +∑

i∈I |Γi�pr| > |(Γ ∪
⋃
i∈I Γi)�pr|.

Let us explain the conditions of the (@) rule. The second condition says that
when M requires a “productive” argument, either we can apply an N which is
itself productive, or we can apply a nonproductive N which uses a productive
variable; after substituting something for the variable N will become productive.
The third condition says that MN is productive if M is productive, or if N is
productive, or if some productive free variable is duplicated.

Notice that strengthening of type environment is disallowed (i.e., Γ ` M :
(f, τ) does not necessarily imply Γ, x : (g, σ) ` M : (f, τ)), but contraction is
allowed (i.e., Γ, x : (g, σ), x : (g, σ) ` M : (f, τ) implies Γ, x : (g, σ) ` M : (f, τ),
since a type environment is a set of type bindings); such contractions will be
counted by duplication factors defined below.

A derivation tree is defined as usual: it is a tree labeled by type judgements,
such that each node together with its children fit to one of the rules of the type
system. Consider a node of a derivation tree in which the (@) rule is used, with
type environments Γ and Γi for i ∈ I. For a ∈ N, the order-a duplication factor
in such a node is defined as

|{(x : (pr, σ)) ∈ Γ | ord(x) = a}|+
∑
i∈I
|{(x : (pr, σ)) ∈ Γi | ord(x) = a}|−

− |{(x : (pr, σ)) ∈ Γ ∪
⋃
i∈I

Γi | ord(x) = a}|.

In other words, this is equal to the number of productive type bindings for
variables of order a together in all the type environments Γ , (Γi)i∈I , minus the
number of such type bindings in their union.

Example 3. Below we give two example derivation trees. In the first tree, we
denote by by the binding y : (pr, (pr, r)→ r), and by bz the binding z : (pr, r).

by ` y : (np, (pr, r)→ r)

by ` y : (np, (pr, r)→ r) bz ` z : (np, r)

bz, by ` y z : (np, r)
(@)

bz, by ` y (y z) : (pr, r)
(@)

` 1+ : (pr, (pr, r)→ r)

` 1+ : (pr, (pr, r)→ r) x : (pr, r) ` x : (np, r)

x : (pr, r) ` 1+ x : (pr, r)
(@)

x : (pr, r) ` 1+ (1+ x) : (pr, r)
(@)

` λx.1+ (1+ x) : (pr, (pr, r)→ r)
(λ)

The order-1 duplication factor of the root node of the first tree is 1, because the
binding for y is used in both subtrees (and y is of order 1); the other nodes have
duplication factors 0.

5

It is possible to derive six other type judgements containing the term y (y z):

y : (np, (pr, r)→ r), z : (pr, r) ` y (y z) : (np, r),

y : (pr, (pr, r)→ r), y : (np, (pr, r)→ r), z : (pr, r) ` y (y z) : (np, r),

y : (pr, (pr, r)→ r), y : (pr, (np, r)→ r), z : (np, r) ` y (y z) : (np, r),

y : (pr, (np, r)→ r), y : (np, (np, r)→ r), z : (np, r) ` y (y z) : (np, r),

y : (np, (pr, r)→ r), y : (pr, (np, r)→ r), z : (np, r) ` y (y z) : (np, r),

y : (np, (np, r)→ r), z : (np, r) ` y (y z) : (np, r).

4 Krivine Machine

The Krivine machine [7] is an abstract machine that computes the weak head
normal form of a λ-term, using explicit substitutions, called environments. Two
properties of the Krivine machine are important for us. First, the Krivine ma-
chine performs β-reductions starting from the head redex; this redex is always
a closed term. Second, the Krivine machine isolates closed subterms of a term
using closures; we will be deriving types for each closure separately. We could
perform β-reductions in this order and identify closed subterms also without the
Krivine machine, but we believe that using it simplifies the presentation.

An environment is a function mapping some variables into closures. A closure
is a pair C = (M,ρ), where M is a term and ρ is an environment. We use the
notation term(C) := M and env(C) := ρ. A configuration of the Krivine machine
is a pair (C, S), where C is a closure and S is a stack, which is a sequence of
closures (with the topmost element on the left).

We require that in a closure (M,ρ), the environment is defined for every
free variable of M ; moreover term(ρ(x)) has to be of the same sort as x. We
also require that in a configuration (C, S), when term(C) is of sort α1 → · · · →
αk → o, then the stack S has k elements C1, . . . , Ck, where term(Ci) is of
sort αi, for each i. Let us also emphasize that we only consider “finite” closures,
environments, configurations: an environment binds only finitely many variables,
and after going repeatedly to a closure in the environment of a closure we will
find an empty environment after finitely many steps.

The rules of the Krivine machine are as follows:

((λx.M, ρ), CS)
λ−→ ((M,ρ[x 7→ C]), S),

((MN, ρ), S)
@−→ ((M,ρ), (N, ρ)S),

((x, ρ), S)
Var−−→ (ρ(x), S),

((1+, ρ), C)
1+−−→ (C, ε).

Intuitively, a closure C = (M,ρ) denotes the closed λ-term JCK which is
obtained from M by substituting for every its free variable x the λ-term Jρ(x)K.
Also a configuration (C, S) denotes a closed λ-term JC, SK of sort o; this is the
application JCKJC1K . . . JCkK, where S = C1 . . . Ck. It is not difficult to see that

6

– when (C, S)
@−→ (C ′, S′) or (C, S)

Var−−→ (C ′, S′), then JC, SK = JC ′, S′K;
– when (C, S)

λ−→ (C ′, S′), then JC, SK β-reduces to JC ′, S′K (the head redex is
eliminated);

– when (C, S)
1+−−→ (C ′, S′), then JC, SK = (1+ JC ′, S′K) (in particular the value

of the new term is smaller by one than that of the old term).

From each configuration (C, S), as long as term(C) 6= 0, a (unique) step can
be performed. Next, observe that each computation terminates after finite time.
Indeed, the 1+ rule changes the denoted term into one with smaller value (and the
value is not changed by the other rules). The λ rule performs β-reduction (and
the term is not changed by the @ and Var rules), so as well it can be applied only
finitely many times. The Var rule removes one closure from the configuration; the
total number of closures (computed recursively) in the configuration decreases.
The @ rule does not change this number, but increases the size of the stack, which
is necessarily bounded by the number of closures. It follows that to compute the
value of the term JC, SK, it is enough to start the Krivine Machine from (C, S),
and count how many times the 1+ rule was used.

In this paper we use an extension of the Krivine Machine, which also stores
derivation trees. An extended closure is a triple (M,D, ρ), where M is a term of
some sort α, and ρ is an environment (mapping variables to extended closures),
and D is a partial function from {pr, np} × T α to derivation trees. Beside of
term(C) and env(C) we use the notation der(C) := D, as well as tp(C) :=
dom(D). The root of the tree assigned by D to a pair (f•, τ) has to be labeled
by Γ ` M : (f◦, τ) such that f• = pr if and only if f◦ = pr or Γ �pr 6= ∅.
Moreover, for each binding (x : (g, σ)) ∈ Γ we require that (g, σ) ∈ tp(ρ(x));
denote this condition by (?). The partial function D can be also seen as a set
of derivation trees: the pair (f, τ) to which a tree is assigned is determined by
its root (however this is not an arbitrary set: to each pair we assign at most one
tree).

A configuration of the extended Krivine machine is a pair (C, S), where C
is an extended closure such that |tp(C)| = 1, and S = C1 . . . Ck is a stack of
extended closures. We require that, when tp(C) = {(f,

∧
T1 → · · · →

∧
Tk →

r)}, it holds Ti ⊆ tp(Ci) for each i; denote this condition by (??).
The rules of the extended Krivine machine are as follows:

– ((λx.M,D, ρ), CS)
λ−→ ((M,D′, ρ[x 7→ C]), S), where the only tree in D′ is

obtained from the only tree in D by cutting off the root;

– ((MN,D, ρ), S)
@−→ ((M,DM , ρ), (N,DN , ρ)S), where DM contains the sub-

tree of the tree in D which derives a type for M , and DN contains all other
subtrees (rooted in children of the root) of the tree in D;

– ((x,D, ρ), S)
Var−−→ ((term(ρ(x)), der(ρ(x))�dom(D), env(ρ(x))), S);

– ((1+, D, ρ), (M,D′, ρ′))
1+−−→ ((M,D′�{(f,r)}, ρ

′), ε), when the only element of
dom(D) is (pr, (f, r)→ r).

Let π be the projection from configurations of the extended machine to con-
figurations of the standard one, which just drops the “der” component of every

7

extended closure. Notice that when (C, S) → (C ′, S′) in the extended machine,
then π(C, S) → π(C ′, S′) in the standard machine. Next, we observe that from
each configuration, as long as the term in its main closure is not 0, we can
perform a step (in particular, the result of the step satisfies all conditions of a
configuration).

– In the case of λx.M , the root of the derivation tree in D is labeled by
Γ ` λx.M : (f,

∧
i∈I(fi, τi) → τ). This tree begins by the (λ) rule, so

x 6∈ dom(Γ), and the only child of the root (which becomes the root of
the new tree) is labeled by Γ ∪ {x : (fi, τi) | i ∈ I} ` M : (f, τ). Notice
that (due to conditions (?) and (??)) for each binding (y : (g, σ)) ∈ Γ we
have (g, σ) ∈ tp(ρ(y)) = tp(ρ[x 7→ C](y)), and for each i ∈ I we have
(fi, τi) ∈ tp(C) = tp(ρ[x 7→ C](x)), which gives condition (?) for the new
closure.

– In the application case, the derivation tree in D uses the (@) rule in the
root. Thus one child of the root is labeled by Γ `M : (f ′,

∧
i∈I(f

•
i , τi)→ τ),

and the other children by Γi ` N : (f◦i , τi) for each i ∈ I, where f•i = pr
if and only if f◦i = pr or Γi�pr 6= ∅. It follows that dom(DN) = {(f•i , τi) |
i ∈ I}. Simultaneously dom(DM) = {(f ′•,

∧
i∈I(f

•
i , τi) → τ)} for some f ′•,

so condition (??) holds for the new configuration. The definition of the (@)
rule ensures that each pair (f•i , τi) is different, so DN is really a (partial)
function. Condition (?) for both the new closures is ensured by condition
(?) for the original closure, since the type environment in the root of the
derivation tree in D is a superset of Γ and of each Γi.

– In the Var case, the root of the tree in D is labeled by x : (f, τ) ` x :
(np, τ), where dom(D) = {(f, τ)}. Thus condition (?) for (x,D, ρ) ensures
that dom(D) ⊆ tp(ρ(x)).

– In the 1+ case, the root of the tree in D is labeled by ∅ ` 1+ : (pr, (f, r)→ r),
so dom(D) is as in the rule, and condition (??) ensures that (f, r) ∈ dom(D′).

Example 4. We give an example computation of the extended Krivine machine.
In our closures we use fragments of the derivation trees given in Example 3. By
T1, T2, T3, U1, U2, U3, U4 we denote the subtrees of these trees, where:

– T1 derives y : (pr, (pr, r)→ r), z : (pr, r) ` y (y z) : (pr, r),

– T2 derives y : (pr, (pr, r)→ r) ` y : (np, (pr, r)→ r),

– T3 derives y : (pr, (pr, r)→ r), z : (pr, r) ` y z : (np, r),

– U1 derives ` λx.1+ (1+ x) : (pr, (pr, r)→ r),

– U2 derives x : (pr, r) ` 1+ (1+ x) : (pr, r),

– U3 derives ` 1+ : (pr, (pr, r)→ r),

– U4 derives x : (pr, r) ` 1+ x : (pr, r).

Additionally, we use the following derivation tree, which we denote V1.

` 1+ : (pr, (np, r)→ r) ` 0 : (np, r)

` 1+ 0 : (pr, r)
(@)

8

To shorten the notation, we denote:

ρ := [y 7→ (λx.1+ (1+ x), {U1}, ∅), z 7→ (1+ 0, {V1}, ∅)],
η := [x 7→ (y z, {T3}, ρ)].

The extended Krivine machine can transition as follows:

((y (y z), {T1}, ρ), ε)
@−→ ((y, {T2}, ρ), (y z, {T3}, ρ))

Var−−→
Var−−→ ((λx.1+ (1+ x), {U1}, ∅), (y z, {T3}, ρ))

λ−→ ((1+ (1+ x), {U2}, η), ε)
@−→

@−→ ((1+, {U3}, η), (1+ x, {U4}, η))
1+−−→ ((1+ x, {U4}, η), ε)

@−→ . . .

Next, we observe that we can really add some derivation trees to a configu-
ration.

Lemma 5. For each configuration (C, S) of the standard Krivine machine there
exists a configuration (C ′, S′) of the extended machine such that π(C ′, S′) =
(C, S).

Proof. We use induction on the length of the longest computation starting from
the configuration (C, S) (this computation is unique and has finite length). We
have five cases depending on the form of the term in the main closure. Before
starting the case analysis, we observe that for each closure B there exists an
extended closure B′ such that π(B′) = B. To construct such B′ we can add
the partial function with empty domain everywhere inside B. (This cannot be
applied for a configuration: the tp of the main closure of a configuration is
required to have size 1).

Consider first a configuration of the form ((0, ρs), ε). Then to the main closure
we can add the derivation tree using the rule ∅ ` 0 : (np, r), and everywhere
inside ρs we can add the partial function with empty domain.

Next, consider a configuration of the form ((λx.M, ρs), CsSs). Its successor
is ((M,ρs[x 7→ Cs]), Ss), which by the induction assumption can be extended
to a configuration ((M,D′, ρ[x 7→ C]), S) of the extended machine. Potentially
ρs(x) can be defined. In such situation we can assume that ρ(x) is defined and
π(ρ(x)) = ρs(x); otherwise we assume that ρ(x) is undefined. Notice that these
assumptions do not change ρ[x 7→ C], where ρ(x) is overwritten. The label of
the root of the tree in D′ can be denoted as Γ ∪{x : (fi, τi) | i ∈ I} `M : (f, τ),
where x 6∈ dom(Γ). We can apply the (λ) rule, and obtain a tree rooted by
Γ ` λx.M : (f,

∧
i∈I(fi, τi) → τ). The thesis is satisfied by the configura-

tion ((λx.M,D, ρ), CS), where D contains this new tree. Notice that conditions
(?) and (??) are satisfied for this configuration, since they were satisfied for
((M,D′, ρ[x 7→ C]), S).

Before considering the next case, notice that any two extended closures C1, C2

such that π(C1) = π(C2) can be merged into one extended closure C such that
π(C) = π(C1) and tp(C) = tp(C1)∪tp(C2). To do that, by induction we create an
environment ρ, which maps each variable x ∈ dom(env(C1)) into the extended
closure obtained by merging env(C1)(x) and env(C2)(x). We also create D which

9

is equal to der(C1) on tp(C1), and is equal to der(C2) on tp(C2) \ tp(C1). As C
we take (term(C1), D, ρ); notice that condition (?) remains satisfied.

Next, consider a configuration of the form ((MN, ρs), Ss). Its successor is
((M,ρs), (N, ρs)Ss), which by the induction assumption can be extended to a
configuration ((M,DM , ρM), (N,DN , ρN)S) of the extended machine. Let ρ be
obtained by merging ρM and ρN , as described in the previous paragraph. Denote
dom(DM) as {(f ′•,

∧
i∈I(f

•
i , τi) → τ)}, where each pair (f•i , τi) is different.

Then (f•i , τi) ∈ dom(DN) for each i ∈ I, by condition (??). Let Γ ` M :
(f ′,

∧
i∈I(f

•
i , τi) → τ) be the label of the root of the tree in DM , and let Γi `

N : (f◦i , τi) be the label of the root of DN (f•i , τi) for each i; recall that f•i = pr
if and only if f◦i = pr or Γi�pr 6= ∅. We can apply the (@) rule to these roots,
and obtain a derivation tree with root labeled by Γ ∪

⋃
i∈I Γi ` MN : (f, τ)

(for some f). Then ((MN,D, ρ), S), where D contains this new tree, is a correct
configuration and satisfies the thesis.

Next, consider a configuration ((x, ρs), Ss). Its successor is (ρs(x), Ss), which
by the induction assumption can be extended to a configuration (C, S) of the
extended machine. Let {(f, τ)} := tp(C). We take D containing the derivation
x : (f, τ) ` x : (np, τ), and we take ρ mapping x to C, and each other variable
y ∈ dom(ρs) into any extended closure Ey such that π(Ey) = ρs(y). Then
((x,D, ρ), S) is a configuration and satisfies the thesis.

Finally, consider a configuration of the form ((1+, ρs), Cs). Its successor is
(Cs, ε), which by the induction assumption can be extended to a configuration
(C, ε) of the extended machine. Let {(f, r)} := tp(C). We take D containing
the derivation ∅ ` 1+ : (pr, (f, r) → r), and we take ρ mapping each variable
x ∈ dom(ρs) into any extended closure Ex such that π(Ex) = ρs(x). Then
((1+, D, ρ), C) is a configuration and satisfies the thesis. ut

5 Assigning Values to Configurations

To a configuration of a Krivine machine we assign two numbers, low and high,
which estimate (from below and from above, respectively) the value of the term
represented by the configuration.

Let C be an extended closure, and let (f, τ) ∈ tp(C). By inc0(C, f, τ) we de-
note the number of leaves of der(C)(f, τ) using the 1+ rule, and by inca(C, f, τ)
for a > 0 we denote the sum of order-(a− 1) duplication factors of all (@) nodes
of der(C)(f, τ).

We define low(C, f, τ), and higha(C, f, τ), and reca(C, f, τ), and exta(C, f, τ)
for each a ∈ N by induction on the structure of C (where rec stands for “recur-
sive” and ext for “external”). Let Γ be the type environment used in the root
of der(C)(f, τ). We take

low(C, f, τ) :=
∑
a∈N

inca(C, f, τ) +
∑

(x:(g,σ))∈Γ

low(env(C)(x), g, σ),

reca(C, f, τ) := inca(C, f, τ) +
∑

(x:(g,σ))∈Γ

exta(env(C)(x), g, σ),

10

higha(C, f, τ) := (reca(C, f, τ) + 1) · 2higha+1(C,f,τ) − 1,

higha(C, f, τ) := 0 if recb(C, f, τ) = 0 for all b ≥ a,

exta(C, f, τ) :=

0 if a > ord(term(C)),
higha(C, f, τ) if a = ord(term(C)),
reca(C, f, τ) if a < ord(term(C)).

For a configuration (C0, S) with S = C1 . . . Ck and tp(C0) = {(f,
∧
T1 → · · · →∧

Tk → r)} we define, denoting T0 := tp(C0):

low(C0, S) :=

k∑
i=0

∑
(g,σ)∈Ti

low(Ci, g, σ),

reca(C0, S) :=

k∑
i=0

∑
(g,σ)∈Ti

exta(Ci, g, σ),

higha(C0, S) := (reca(C0, S) + 1) · 2higha+1(C0,S) − 1,

higha(C0, S) := 0 if recb(C0, S) = 0 for all b ≥ a,
high(C0, S) := high0(C0, S).

Example 6. We will compute these numbers for the first configuration from Ex-
ample 4. Denoting

C2 = (λx.1+ (1+ x), {U1}, ∅), C3 = (1+ 0, {V1}, ∅),

C1 = (y (y z), {T1}, [y 7→ C2, z 7→ C3]),

this configuration is (C1, ε). It denotes the term

(λx.1+ (1+ x)) ((λx.1+ (1+ x)) (1+ 0)),

which has value 5. It holds tp(C1) = tp(C3) = {(pr, r)} and tp(C2) = {(pr, τ)},
where τ = ((pr, r)→ r). Because we have two 1+ nodes in U1, and one in V1, it
holds inc0(C2, pr, τ) = 2 and inc0(C3, pr, r) = 1. The order-1 duplication factor
in the root of T1 causes that inc2(C1, pr, r) = 1. All other inci(·, ·, ·) equal 0. It
follows that

low(C2, pr, τ) = ext0(C2, pr, τ) = high0(C2, pr, τ) = rec0(C2, pr, τ) = 2,

low(C3, pr, r) = ext0(C3, pr, r) = high0(C3, pr, r) = rec0(C3, pr, r) = 1,

low(C1, pr, r) = low(C2, pr, τ) + low(C3, pr, r) + inc2(C1, pr, r) = 4,

rec0(C1, pr, r) = 3, high2(C1, pr, r) = rec2(C1, pr, r) = 1,

high1(C1, pr, r) = (0 + 1) · 21 − 1 = 1,

ext0(C1, pr, r) = high0(C1, pr, r) = (3 + 1) · 21 − 1 = 7,

low(C, ε) = 4, high(C, ε) = 7.

In the second configuration of the computation we do not have any dupli-
cation factor, and we count five 1+ nodes. Notice that both C2 and C3 appear

11

in two environments, but C3 is not used in the first of them (more precisely, no
binding for z is appears in the type environment of T2), so the 1+ node in C3 is
counted only once. Thus both low and high of this configuration are 5, which is
equal to its value.

Let us explain the intuitions behind the definitions of low and high. First,
concentrate on low . It counts the number of 1+ leaves of our derivation trees. Our
type system ensures that each such 1+ will be used (and thus it will add 1 to the
value of the term). It also counts duplication factors of (@) nodes of derivation
trees. When a duplication factor in some node is 1 (and similarly for any positive
number), some “productive” subtree of the (@) node will be used twice. And
such a subtree increases the value of the term at least by one—it either contains
some 1+, or some other duplication, which will be now performed twice instead
of once.

In the formula for high, which is going to be an upper bound for the value,
we have to overapproximate. For that reason, it is not enough to look on the
sum of duplication factors; the orders on which they appear start to play a role.
Consider the highest k for which the order-k duplication factor is positive in
some (@) node, and consider an innermost node such that it is positive; say, it is
equal to 1. Inside, we only have duplication factors of smaller order, and some 1+
nodes. When the application described by the (@) node is performed, they will
be replicated twice. Similarly, the next (@) node also can multiply their number
by two, and so on. Next, analogous analysis for order-(k− 1) duplication factors
(whose number is already increased by order-k duplication factors) shows that
each of them can multiply by two the number of duplication factors of order
smaller than k − 1 (and of 1+ nodes), and so on. This justifies on the intuitive
level the exponential character of the formula2 for high, but in fact this analysis
cannot be formalized (in some sense it is incorrect). The problem is that the
innermost node with positive duplication factor for the highest order does not
necessarily denote a closed term. So a positive duplication factor not only implies
that the subterms will be replicated, but also the free variables will be used more
times (and we do not know how “big” terms will be substituted there). Thus it
is important in our correctness proof that we reduce only such redexes (λx.M)N
in which N is closed; this is always the case for the head redex, which is reduced
by the Krivine machine.

However in the formula we do not make just one tower of exponentials at
the end, but we compute some exponentials already for some inner closures.
This is essential for the proof of correctness, since otherwise Lemma 9 would be
false (although this modification makes the high value even smaller). The idea
behind that is as follows. When we have a closed term M , its subterm of order
a ≥ ord(M) cannot be duplicated by anything outside M ; only the whole M
can be duplicated (or subterms of M which are of order smaller order than M).
Oppositely, a subterm of order a < ord(M) can be duplicated by things from

2 One can observe that the order-0 duplication factor always equals 0 (an order-0
term can be used only once). Thus in high0 we could multiply rec0 directly by
2high2 . However this observation would only complicate the proof.

12

outside of M , because we can pass this subterm as an argument to an argument
of M . Thus basically inca is cumulated recursively along closures; however for
a closure of some order k we can forget about its duplication factors in inca for
a > k—they will only be applied to inck contained inside this closure, so we can
predict their result in highk.

The next two propositions state that low and high extend quantitatively the
information in the pr/np flag: 0 corresponds to np, and positive numbers to pr.

Proposition 7. Let C be a closure, and let (np, τ) ∈ tp(C). Then it holds
reca(C, np, τ) = 0 for each a ∈ N.

Proof. The root of der(C)(np, τ) is labeled by a type judgement Γ ` term(C) :
(np, τ), where Γ �pr = ∅. It is easy to see by induction on the tree structure, that
a derivation tree ending with the np flag has duplication factors of each (@) node
(and each order) equal to zero, as well as it does not contain 1+ leaves. It follows
that inca(C, np, τ) = 0. Because Γ �pr = ∅, the added reca components are also
equal to 0, by induction on the structure of the closure. ut

Proposition 8. Let C be a closure, and let (pr, τ) ∈ tp(C). Then it holds
low(C, pr, τ) > 0.

Proof. When der(C)(pr, τ) is labeled by a type judgement Γ ` term(C) : (f, τ),
we have one of two cases. One possibility is that f = pr. Then it is easy to see
by induction on the tree structure, that a derivation tree ending with the pr flag
either has a 1+ leaf, or an (@) node with a positive duplication factor for some
order. Otherwise we have Γ �pr 6= ∅. Then by induction on the structure of the
closure we obtain that some of the added low components (for closures in the
environment) is positive. ut

Below we have the key lemma about the low and high numbers.

Lemma 9. Let (C, S) be a configuration of the extended Krivine machine, which
evolves to (C ′, S′) in one step. If this was the 1+ step, we have low(C, S) ≤
1+ low(C ′, S′) and high(C, S) ≥ 1+high(C ′, S′); otherwise we have low(C, S) ≤
low(C ′, S′) and high(C, S) ≥ high(C ′, S′).

Proof (sketch). The proof consists of tedious but straightforward calculations.
We have four rules of the Krivine machine, which we have to analyze. We will
see that only in the application rule we can have inequalities; for the other rules
we have equalities. In all cases only the “front” of the configuration changes. In
low and high for the old configuration we include some low and high of closures
in the environment or on the stack, for some pairs (g, σ). We see that for the
new configuration we include exactly the same closures with the same (g, σ)
pairs. Thus we have to locally analyze what changes only near the “front” of the
configuration.

For the 1+ rule this is immediate. We remove a closure (1+, D, ρ), where the
only tree in D uses the rule ∅ ` 1+ : (pr, (f, r) → r). Since inc0 for this closure
is 1, and inca for a > 0 is 0, during the step we subtract 1 from low and high.

13

Also the case of the Var rule is very easy. This time we remove a closure
(x,D, ρ), where the only tree in D uses the rule x : (f, τ) ` x : (np, τ). This
closure has inca equal to 0 for each a, so low and high do not change.

In the λ rule we only move one closure from the stack to the environment, so
low and high do not change as well. It can happen that the order of λx.M and of
M is different, and the definition of exta is sensitive for that. But, since all other
terms in the stack are of order smaller than the order of M (and the order of
λx.M), this change of order does not influence the result: some exponents which
were computed outside of the closure with λx.M will be now computed inside
the closure with M .

Finally, consider the case ((MN,D, ρ), S)
@−→ ((M,DM , ρ), (N,DN , ρ)S). For

low the analysis is quite simple. The root of the tree in D had some duplication
factor, which were added to low in the old configuration, but is not in the new
one. But such duplication factor counts how many times a productive binding of
a variable in the type environment in D is replicated in the type environments
of the trees in DM and DN . In the new configuration, the low for these bindings
will be added for each copy. Since by Proposition 8 these low are positive, they
will compensate the duplication factor of the root, which is subtracted.

For high we have two phenomena. The first concerns the replication of vari-
able bindings in the type environments. We do not have to care about nonpro-
ductive bindings, since by Proposition 7 their reca is 0. Let dpa be the order-a
duplication factor at the root of the tree in D. A productive binding for a vari-
able of order a is replicated at most dpa times (instead of once in D it appears
at most dpa + 1 times in DM and DN). Notice the shift of orders: in the old
configuration we were adding dpa to inca+1. Thus without it, higha decreases
2dpa times. On the other hand, a closure (from ρ) of order a adds something to
recb only for b ≤ a (otherwise its extb is 0), and now this recb will be multiplied
by (at most) dpa+1. Due to the inequality 2dpa ≥ dpa+1, we see that higha will
not increase. In fact it decreases by at least dpa, thanks to the +1 in the formula
for higha. Thus we can repeat the same argument for a − 1, and continue by
induction for all b ≤ a. The second phenomenon is that ord(N) is smaller than
ord(M). This implies that previously we were first adding together some exta for
elements of ρ, and then making a tower of exponents in the closure (MN,D, ρ),
while now we are making the tower of exponents inside (N,DN , ρ), separately
for each pair (g, σ) ∈ dom(DN), and then we are summing the results. But this
can only decrease the result, as described by the inequality

(a+ b+ 1) · 2c+d − 1 ≥ (a+ 1) · 2c − 1 + (b+ 1) · 2d − 1.

We also notice that ord(MN) can be smaller than ord(M), but this does not
influence the result, since all other elements on the stack are of smaller order
(similarly to the λ case). ut

Corollary 10. Let (C, S) be a configuration of the extended Krivine machine.
Then the value of the term JC, SK is not smaller than low(C, S), and not greater
than high(C, S).

14

Proof. Induction on the length of the maximal computation from (C, S). If this
length is 0, we have term(C) = 0, and tp(C) = {(np, r)}, and der(C)(np, r)
consists of the rule ∅ ` 0 : (np, r), so low(C, S) = 0 = high(C, S), and JC, SK = 0
has value 0. Otherwise we use the induction assumption and Lemma 9.

Next, we state that if low(C, S) is small, then also high(C, S) is small, so
low(C, S) (and high(C, S) as well) really approximates the value of JC, SK.

Lemma 11. For all k, L ∈ N there exists a number Hk,L such that for each con-
figuration (C, S) such that low(C, S) ≤ L and such that each variable appearing
anywhere inside (C, S) (inside a term or an environment) is of order at most k,
it holds high(C, S) ≤ Hk,L.

Proof. We define

H0,L := (L+ 1) · 2L − 1,

Ha+1,L := (L+ 1) · 2Ha,L − 1 for each a ∈ N.

Let #cl(C, S) denote the number of closures everywhere (recursively) inside
(C, S), and let |S| denote the length of the stack. We prove the inequality by
induction on 2 ·#cl(C, S)− |S|.

Assume first that S and env(C) are empty. Let tp(C) = {(f, τ)}. Then
low(C, S) = low(C, f, τ) =

∑
a∈N inca(C, f, τ), and high(C, S) = high0(C, f, τ)

with reca(C, f, τ) = inca(C, f, τ) ≤ low(C, S) for each a ∈ N. Since each variable
in term(C) is of order at most k, for a > k+1 (which gives a−1 > k) the order-
(a − 1) duplication factor of any (@) node in der(C)(f, τ) is zero, thus also
inca(C, f, τ) = 0. We see for a ∈ {0, 1, . . . , k} that higha(C, f, τ) ≤ Hk−a,L.

Next, assume that S is nonempty. Denote ((M,DM , ρM), (N,DN , ρN)S′) :=
(C, S). W.l.o.g. we can assume that dom(ρM)∩ dom(ρN) = ∅; otherwise we can
rename the variables in M , DM , ρM so that they are different from the variables
in dom(ρN), and such renaming does not change the low and high values. Denote
ρ := ρM ∪ ρN . Notice that ((M,DM , ρ), (N,DN , ρ)S′) is a configuration with
the same low and high as (C, S). The tree in DM has root’s label of the form
Γ `M : (f ′,

∧
i∈I(f

•
i , τi)→ τ), where each pair (f•i , τi) is different. Moreover, for

each i ∈ I, we have a derivation tree DN (f•i , τi) rooted by some Γi ` N : (f◦i , τi)
such that f•i = pr if and only if f◦i = pr or Γi�pr 6= ∅. Thus we can apply
the (@) rule to these trees, and obtain a tree rooted by Γ ∪

⋃
i∈I Γi ` MN :

(f, τ) for some f . Let C ′ := (MN,D, ρ), where D contains this new tree. We
notice that (C ′, S′) is a configuration (satisfies conditions (?) and (??)), and
the machine can make a step from it to ((M,DM , ρ), (N,DN , ρ)S′). Lemma 9
implies that low(C ′, S′) ≤ low(C, S) ≤ L and high(C, S) ≤ high(C ′, S′). It holds
#cl(C

′, S′) = #cl(C, S) − 1, and |S′| = |S| − 1, and the maximal order of a
variable in these two configurations is the same. The induction assumption for
(C ′, S′) tells us that high(C ′, S′) ≤ Hk,L.

Finally, assume that S is empty, but env(C) is nonempty. Fix some variable
x ∈ dom(env(C)), and denote (M,D, ρ[x → Cx]) := C, where x 6∈ dom(ρ). Let
Γ ∪ {x : (fi, τi) | i ∈ I} `M : (f, τ) with x 6∈ dom(Γ) be the label of the root of

15

the tree in D. We can append the (λ) rule to this tree, and obtain a tree with root
labeled by Γ ` λx.M : (f,

∧
i∈I(fi, τi) → τ). Let C ′ := (λx.M,D′, ρ), where D′

contains this new tree. We notice that (C ′, CxS
′) is a configuration (satisfies (?)

and (??)), and the machine can make a step from it to (C, S). Lemma 9 implies
that low(C ′, CxS

′) ≤ low(C, S) ≤ L and high(C, S) ≤ high(C ′, CxS
′). Notice

that #cl(C
′, CxS

′) = #cl(C, S), and |S′| = |S|+ 1, and the maximal order of a
variable in these two configurations is the same. The induction assumption for
(C ′, CxS

′) tells us that high(C ′, CxS
′) ≤ Hk,L. ut

6 Representing Tuples

In this section conclude the proof of Theorems 1 and 2.

Proof (Theorem 2). We define dim(α) = |P({pr, np}×T α→o)|. For a closed term
M of sort α→ o, let types(M) be the set of pairs (f,

∧
T → r) such that we can

derive ∅ ` nf (M) : (f,
∧
T → τ), where nf (M) is the β-normal form of M . We

will show that when types(M) = types(M ′) then also M ∼M ′; the thesis of the
theorem will follow, since we have at most dim(α) possible sets types(M).

Thus suppose types(M) = types(M ′), and consider a sequence N1, N2, . . .
of terms of sort α, such that the sequence of values of M N1,M N2, . . . is
bounded. W.l.o.g. we can assume that M , M ′, and all Ni are in β-normal form
(since the value of M Ni and of nf (M) nf (Ni) is exactly the same). For each
i ∈ N, there exists a correct configuration of the form ((M,DM

i , ∅), (Ni, DN
i , ∅)),

denote it (Ci, Ei) (we use Lemma 5 for ((M, ∅), (Ni, ∅))). Let {(fi,
∧
Ti → r)} :=

dom(DM
i), and let DM ′

i contain a derivation tree rooted by ∅ `M ′ : (fi,
∧
Ti →

r), which exists thanks to equality of types. Let C ′i := (M ′, DM ′

i , ∅). Then
(C ′i, Ei) is a correct configuration as well. Since low(Ci, Ei) is not greater than
the value of M Ni (Corollary 10), also low(Ci, Ei) is bounded (when ranging
over i = 1, 2, . . .). Next, we see that

low(C ′i, Ei) + low(Ci, fi,
∧
Ti → r) =

= low(C ′i, fi,
∧
Ti → r) +

∑
(g,σ)∈Ti

low(Ei, g, σ) + low(Ci, fi,
∧
Ti → r) =

= low(Ci, Ei) + low(C ′i, fi,
∧
Ti → r).

Since Ci, fi, Ti, C
′
i come from a finite set, we obtain that low(C ′i, Ei) is bounded

as well (by some L). Notice that the maximal order of a variable appearing
anywhere inside M ′ or some Ni is ord(α), because these terms are in β-normal
form. Thus high(C ′i, Ei) is bounded by Hord(α),L (Lemma 11). It follows that the
sequence of values of M ′ N1,M

′ N2, . . . is bounded by Hord(α),L as well (Corol-
lary 10). The opposite implication (from M ′ to M) is completely symmetric. ut

Proof (Theorem 1). This is an immediate consequence of Theorem 2. Assume
that for some i there exists a set Xi as in the statement of the theorem. This
means that there is a sequence of terms N1, N2, . . . , such that the values of

16

Mi N1,Mi N2, . . . are unbounded, but the values of Mj N1,Mj N2, . . . are
bounded for each j 6= i. Then, by definition Mi 6∼ Mj for each j 6= i. Since we
only have dim(α) equivalence classes of ∼, we can have at most dim(α) such
indices i. In particular it holds X 6= Nk. ut

7 Future Work

One can consider λ-calculus enriched by the Y combinator, describing recursion.
Then, instead of a finite β-normal form of a term, we may obtain an infinite limit
tree, called the Böhm tree. An algorithmic question arises: given a λY -term, how
to calculate its “value”, that is the “value” of its Böhm tree. In particular, can
we decide whether this value is finite? (It turns out that when the value is finite,
one can compute it precisely, using standard techniques.) The question starts
to become interesting when we can have arbitrary constants of order 0 and 1,
instead of just 0 and 1+, and the value (of a Böhm tree) is defined by a finite
tree automaton with counters (e.g. a parity B-automaton), given as a part of the
input. (Notice that the value can be finite even when the tree is infinite.) This
question (in several variants) were approached only for order 1 (all subterms of
the input term are of order 1), that is for pushdown systems [8, 9]; in general it
remains open.

References

1. Barendregt, H., Dekkers, W., Statman, R.: Lambda calculus with types. Perspec-
tives in Logic. Cambridge University Press (2013)

2. Parys, P.: On the significance of the collapse operation. In: LICS, IEEE (2012)
521–530

3. Kobayashi, N.: Pumping by typing. In: LICS, IEEE Computer Society (2013)
398–407

4. Schwichtenberg, H.: Definierbare funktionen im lambda-kalkl mit typen. Archiv
Logic Grundlagenforsch 17 (1976) 113–114

5. Statman, R.: The typed lambda-calculus is not elementary recursive. Theor. Com-
put. Sci. 9 (1979) 73–81

6. Zaionc, M.: Word operation definable in the typed lambda-calculus. Theor. Comput.
Sci. 52 (1987) 1–14

7. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation 20(3) (2007) 199–207

8. Lang, M.: Resource-bounded reachability on pushdown systems. Master’s thesis,
RWTH Aachen (2011)

9. Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In Rocca,
S.R.D., ed.: CSL. Volume 23 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2013) 181–196

17

