Problem: Hom$(\mathbb{B})$
Input: structure $\mathbb{A}$ (over the same signature)
Decide: Is there a homomorphism from $\mathbb{A}$ to $\mathbb{B}$?
$\mathbb{B} = \bigl( \{0,1\}, R_1, R_0 \bigr)$
$R_0 = \{ (x,y,z) \in \{0,1 \}^3 \ | \ x+y+z=0 \mbox{ mod } 2\}$
$R_1 = \{ (x,y) \in \{0,1 \}^2 \ | \ x+y=1 \mbox{ mod } 2\}$
$\mathbb{B} = \bigl( \{0,1\}, R_{000}, R_{100}, R_{110}, R_{111} \bigr)$
$R_{000} = \{0,1 \}^3 \setminus \{(0,0,0) \}$
$R_{100} = \{0,1 \}^3 \setminus \{(1,0,0) \}$
$R_{110} = \{0,1 \}^3 \setminus \{(1,1,0) \}$
$R_{111} = \{0,1 \}^3 \setminus \{(1,1,1) \}$
CSP Dichotomy Conjecture (Feder, Vardi). For every finite structure $\mathbb{B}$, the problem Hom$(\mathbb{B})$ is solvable in polynomial time or NP-complete.
$\{ ab \ | \ a,b \in \mathbb{A}, a \neq b \}$ - vertices
$\{ \{ab,bc\} \ | \ a,b,c \in \mathbb{A}, a \neq b \wedge b \neq c \wedge a \neq c \}$ - edges
Problem: Hom$(\mathbb{B})$
Input: definable structure $\mathbb{A}$ (over the same signature)
Decide: Is there a homomorphism from $\mathbb{A}$ to $\mathbb{B}$?
Theorem. There exists a definable structure $\mathbb{B}$ for which the problem Hom$(\mathbb{B})$ is undecidable.
$\begin{align*} x_{ab} + x_{ba} &= 1, \mbox{ where $a$ and $b$ are distinc} \\ x_{ab}+x_{bc}+x_{ca} &=0, \mbox{where $a$, $b$ and $c$ are distinct} \end{align*}$
Problem: Hom$(\mathbb{B})$
Input: definable structure $\mathbb{A}$ (over the same signature)
Decide: Is there a homomorphism from $\mathbb{A}$ to $\mathbb{B}$?
Theorem. If $\mathbb{B}$ is a definable structure whose every relation is finite, then Hom$(\mathbb{B})$ is decidable.
Theorem. If $\mathbb{B}$ is a definable structure over a finite signature, then Hom$(\mathbb{B})$ is decidable.
Proof techniques: Ramsey theory, topological dynamics
Generalizations: other atoms; both structures as input
Applications: TMA, descriptive complexity
Open problem: isomorphism of definable structures