Time Series

Examination

Deadline: Saturday 6th July 2024, 13.00

1. Let $\left\{X_{t}\right\}_{t=-\infty}^{\infty}$ be a stationary $\operatorname{AR}(1)$ process defined by:

$$
X_{t}+0.25 X_{t-1}=Z_{t} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1) .
$$

Suppose that X_{1} and X_{3} are observed, but the value X_{2} is missed. The value X_{2} is then estimated by a linear combination:

$$
\widehat{X}_{2}=a_{1} X_{1}+a_{2} X_{3} .
$$

(a) Find a_{1} and a_{2} such that the mean squared error $\mathbb{E}\left[\left(X_{2}-\widehat{X}_{2}\right)^{2}\right]$ is minimised. (5pts)
(b) Find the value of the optimal mean squared error.
2. Let $\left\{X_{t}: t \in \mathbb{Z}\right\}$ be an MA(1) process

$$
X_{t}=Z_{t}+\theta Z_{t-1} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right) .
$$

(a) Find the value θ^{*} for θ such that the correlation between X_{t} and X_{t-1} is maximised. (7pts)
(b) Find the spectral density of $\left\{X_{t}: t \in \mathbb{Z}\right\}$ when $\theta=\theta^{*}$. Are high or low frequencies dominating the spectrum? How does this change when θ moves away from θ^{*} ?
3. (a) Which of the following processes $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ are causal ARMA(1,1) process? Justify your answer.
i.

$$
\begin{equation*}
Y_{t}-\frac{5}{6} Y_{t-1}=Z_{t}-\frac{9}{20} Z_{t-1} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1) \tag{1pt}
\end{equation*}
$$

ii.

$$
\begin{equation*}
Y_{t}-Y_{t-1}+\frac{1}{4} Y_{t-2}=Z_{t}-\frac{5}{4} Z_{t-1}+\frac{3}{8} Z_{t-2} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1) \tag{2pts}
\end{equation*}
$$

iii.

$$
\begin{equation*}
Y_{t}+\frac{1}{2} Y_{t-1}-\frac{1}{2} Y_{t-2}=Z_{t}-\frac{5}{4} Z_{t-1}+\frac{3}{8} Z_{t-2} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1) \tag{2pts}
\end{equation*}
$$

(b) Find a state space representation of the process $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ defined by

$$
Y_{t}-\frac{5}{6} Y_{t-1}=Z_{t}-\frac{9}{20} Z_{t-1} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1)
$$

Justify your answer.
4. Let $\left\{X_{t}: t \in \mathbb{Z}\right\}$ be a time series that satisfies:

$$
\left\{\begin{array}{l}
X_{t}=b_{t}-\left(\theta_{1}+\theta_{2}\right) Z_{t}-\theta_{2} Z_{t-1} \\
b_{t}=b_{t-1}+\left(1+\theta_{1}+\theta_{2}\right) Z_{t} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1) .
\end{array}\right.
$$

Show that $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is an $\operatorname{ARIMA}(0,1,2)$ process.
5. For this exercise, use R for the matrix computations.

Let $\left\{X_{t}: t=0,1,2, \ldots\right\}$ be a stationary mean zero time series. Let

$$
\widehat{X}_{t}= \begin{cases}0 & t=1 \\ P_{t-1} X_{t} & t=2,3, \ldots\end{cases}
$$

where $P_{t-1} X_{t}$ is the optimal projection of X_{t} onto the linear span of $\left(X_{1}, \ldots, X_{t-1}\right)$. In other words,

$$
\widehat{X}_{t}:=P_{t-1} X_{t}=\phi_{t-1,1} X_{t-1}+\phi_{t-2,2} X_{t-2}+\ldots+\phi_{t-1, t-1} X_{1}
$$

Let

$$
\epsilon_{t}:=X_{t}-\widehat{X}_{t}
$$

These are the one step prediction errors. Let

$$
v_{t-1}=\mathbb{E}\left[\left(X_{t}-\widehat{X}_{t}\right)^{2}\right]
$$

Set

$$
\begin{gathered}
\underline{\epsilon}_{n}=\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n-1} \\
\epsilon_{n}
\end{array}\right), \quad \underline{X}_{n}=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n-1} \\
X_{n}
\end{array}\right), \quad \widehat{X}_{n}=\left(\begin{array}{c}
\widehat{X}_{1} \\
\widehat{X}_{2} \\
\vdots \\
\widehat{X}_{n-1} \\
\widehat{X}_{n}
\end{array}\right), \\
\Phi_{n}=\left(\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0 \\
-\phi_{11} & 1 & 0 & \ldots & 0 \\
-\phi_{22} & -\phi_{21} & 1 & \ddots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
-\phi_{n-1, n-1} & -\phi_{n-1, n-2} & -\phi_{n-1, n-3} & \ldots & 1
\end{array}\right)
\end{gathered}
$$

(a) Let $C_{n}=\Phi_{n}^{-1}$. The matrix C_{n} is lower triangular with $C_{n ; j j}=1$ for each j. Show that the covariance matrix of \underline{X}_{n} is given by

$$
\Gamma_{n}=\mathbb{E}\left[\underline{X}_{n} \underline{X}_{n}^{t}\right]=C_{n} D_{n} C_{n}^{t}
$$

where

$$
D_{n}=\left(\begin{array}{ccccc}
v_{0} & 0 & 0 & \ldots & 0 \\
0 & v_{1} & 0 & \ldots & 0 \\
0 & 0 & v_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \ldots & v_{n-1}
\end{array}\right)
$$

Justify your solution.
(b) Express $\underline{\widehat{X}}_{n}$ in terms of $\underline{\epsilon}_{n}$ via a matrix operation.
(c) The $\operatorname{MA}(1)$ process $\left\{X_{t}: t \in \mathbb{Z}\right\}$ has zero mean and satisfies

$$
X_{t}=Z_{t}-1.2 Z_{t-1} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}(0,1)
$$

i. Express \underline{X}_{4} in terms of $\underline{\epsilon}_{4}$.
ii. Find the values of v_{1} and v_{2}.
6. Let $\left\{X_{t}\right\}$ be an invertible MA(q) process:

$$
X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}, \quad\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

Let \widehat{X}_{t} denote the one step predictor based on $\left(X_{1}, \ldots, X_{t-1}\right)$ and let $\theta_{t, j}$ denote the coefficients in the expansion

$$
\widehat{X}_{t+1}=\sum_{j=1}^{t} \theta_{t, j}\left(X_{t+1-j}-\widehat{X}_{t+1-j}\right)
$$

Let

$$
v_{t}:=\mathbb{E}\left[\left(X_{t+1}-\widehat{X}_{t+1}\right)^{2}\right]
$$

Show that, as $t \rightarrow+\infty$,
(a)

$$
\begin{equation*}
\mathbb{E}\left[\left(X_{t}-\widehat{X}_{t}-Z_{t}\right)^{2}\right] \rightarrow 0 \tag{7pts}
\end{equation*}
$$

(b)

$$
\begin{equation*}
v_{t} \rightarrow \sigma^{2} \tag{3pts}
\end{equation*}
$$

