Tutorial 11

Arch-Garch Processes

AG1. Derive multistep-ahead forecasts of the volatility for a $\operatorname{GARCH}(1,2)$ model at the forecast origin h.
Do this by noting that $\sigma_{h}^{2}(j)=\mathbb{E}\left[\sigma_{h+j}^{2} \mid \mathcal{F}_{h}\right]$, using $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$ and that $\mathbb{E}\left[X_{t}^{2} \mid \mathcal{F}_{t-1}\right]=\sigma_{t}^{2}$.
Obtain a recursive formula by computing $\sigma_{h}^{2}(1), \sigma_{h}^{2}(2)$ and $\sigma_{h}^{2}(j)$ for $j>2$.

Compute $\sigma_{h}^{2}(\infty)$, assuming it exists and state conditions such that the answer is well defined.
AG2. Derive multistep-ahead forecasts of the volatility for a $\operatorname{GARCH}(2,1)$ model at the origin h.
Comute $\sigma_{h}^{2}(\infty)$ assuming it exists and state conditions such that the answer is well defined.
AG3. Suppose that r_{1}, \ldots, r_{n} are observations of a return series that follows the $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ model:

$$
\left\{\begin{array}{l}
X_{t}=\sigma_{t} Z_{t} \quad\left\{Z_{t}\right\} \sim \operatorname{IIDN}(0,1) \\
\sigma_{t}^{2}=\alpha_{0}+\alpha_{1} X_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2} \\
R_{t}=\mu+\phi_{1} R_{t-1}+X_{t}
\end{array}\right.
$$

Derive the conditional log-likelihood function of the data. Base this on r_{3}, \ldots, r_{n} and use as an initialisation $r_{-1}=r_{0}=\sigma_{0}^{2}=0$.

AG4. Consider the $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ model of the previous exercise, with the difference that $\left\{Z_{t}\right\}$ is IID t_{ν}. Derive the conditional log-likelihood function of the data.

Kalman Filtering

K1. Let $\left\{Y_{t}\right\}$ be the MA(1) process

$$
Y_{t}=Z_{t}+\theta Z_{t-1} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

Show that $\left\{Y_{t}\right\}$ has the state space representation

$$
Y_{t}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \underline{X}_{t}
$$

where $\left\{\underline{X}_{t}\right\}$ is the unique stationary solution of

$$
\underline{X}_{t+1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \underline{X}_{t}+\binom{1}{\theta} Z_{t+1} .
$$

In particular, show that the state vector \underline{X} may be written as:

$$
\underline{X}_{t}=\left(\begin{array}{cc}
1 & \theta \\
\theta & 0
\end{array}\right)\binom{Z_{t}}{Z_{t-1}}
$$

K2. Let $\left\{Y_{t}\right\}$ be an $\operatorname{ARIMA}(\mathrm{p}, \mathrm{d}, \mathrm{q})$ process. By using a suitable state space model, show that $\left\{Y_{t}\right\}$ has representation

$$
\left\{\begin{array}{l}
Y_{t}=G \underline{X}_{t} \\
\underline{X}_{t+1}=F \underline{X}_{t}+H Z_{t+1}
\end{array}\right.
$$

for $t \in \mathbb{N}$ and suitably chosen matrices F, G and H.
K3. Consider the state space representation for a causal $A R(p)$ process:
of the form $\underline{X}_{t+1}=F \underline{X}_{t}+H \underline{Z}_{t+1}$. Show the stability of the equation for \underline{X} by showing that the eigenvalues of F are equal to the reciprocals of the autoregressive polynomial $\phi(z)$. In particular, show that

$$
\operatorname{det}(z I-F)=z^{p} \phi\left(z^{-1}\right)
$$

Answers

ARCH-GARCH Processes

AG1. For the $\operatorname{GARCH}(1,2)$,

$$
\left\{\begin{array}{l}
X_{t}=\sigma_{t} Z_{t} \quad\left\{Z_{t}\right\} \sim \operatorname{IID~N}(0,1) \\
\sigma_{t}^{2}=\alpha_{0}+\alpha_{1} X_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}+\beta_{2} \sigma_{t-2}^{2}
\end{array}\right.
$$

It follows that

$$
\mathbb{E}\left[X_{t}^{2} \mid \mathcal{F}_{t-1}\right]=\sigma_{t}^{2}
$$

so that

$$
\begin{aligned}
& \sigma_{h}^{2}(1)=\alpha_{0}+\alpha_{1} X_{h}^{2}+\beta_{1} \sigma_{h}^{2}+\beta_{2} \sigma_{h-1}^{2} \\
\sigma_{h}^{2}(2)= & \alpha_{0}+\alpha_{1} \sigma_{h}^{2}(1)+\beta_{1} \sigma_{h}^{2}(1)+\beta_{2} \sigma_{h}^{2} \\
= & \alpha_{0}+\left(\alpha_{1}+\beta_{1}\right) \sigma_{h}^{2}(1)+\beta_{2} \sigma_{h}^{2} \\
= & \alpha_{0}+\left(\alpha_{1}+\beta_{1}\right)\left(\alpha_{0}+\alpha_{1} X_{h}^{2}+\beta_{2} \sigma_{h-1}^{2}\right)+\left(\beta_{1}\left(\alpha_{1}+\beta_{1}\right)+\beta_{2}\right) \sigma_{h}^{2}
\end{aligned}
$$

For $j \geq 3$,

$$
\begin{aligned}
\sigma_{h}^{2}(j) & =\alpha_{0}+\alpha_{1} \mathbb{E}\left[X_{h+j-1}^{2} \mid \mathcal{F}_{h}\right]+\beta_{1} \sigma_{h}^{2}(j-1)+\beta_{2} \sigma_{h}^{2}(j-2) \\
& =\alpha_{0}+\left(\alpha_{1}+\beta_{1}\right) \sigma_{h}^{2}(j-1)+\beta_{2} \sigma^{2}(j-2) . \\
\sigma_{h}^{2}(\infty) & \left(1-\alpha_{1}-\beta_{1}-\beta_{2}\right)=\alpha_{0} \Rightarrow \sigma_{h}^{2}(\infty)=\frac{\alpha_{0}}{1-\alpha_{1}-\beta_{1}-\beta_{2}} .
\end{aligned}
$$

AG2.

$$
\left\{\begin{array}{l}
\sigma_{h}^{2}(1)=\alpha_{0}+\alpha_{1} X_{h}^{2}+\alpha_{2} X_{h-1}^{2}+\beta_{1} \sigma_{h}^{2} \\
\sigma_{h}^{2}(2)=\alpha_{0}+\alpha_{1} \sigma_{h}^{2}(1)+\alpha_{2} X_{h}^{2}+\beta_{1} \sigma_{h}^{2}(1) \\
\alpha_{h}(j)=\alpha_{0}+\left(\alpha_{1}+\beta_{1}\right) \sigma_{h}^{2}(j-1)+\alpha_{2} \sigma_{h}^{2}(j-2) \\
\\
\sigma_{h}^{2}(\infty)=\frac{\alpha_{0}}{1-\alpha_{1}-\alpha_{2}-\beta_{1}}
\end{array}\right.
$$

(if and only if $\alpha_{1}+\alpha_{2}+\beta_{1}<1$)
AG3. Let $\underline{\theta}=\left(\alpha_{0}, \alpha_{1}, \beta_{1}, \mu, \phi_{1}\right)$ denote the vector of parameters and let $f\left(r_{1}, \ldots, r_{n}\right)$ be the joint density, then

$$
f\left(r_{1}, \ldots, r_{n} \mid \underline{\theta}\right)=f\left(r_{1}, r_{2} \mid \underline{\theta}\right) \prod_{j=3}^{n} f\left(r_{j} \mid \underline{\theta}, r_{1}, \ldots, r_{j-1}\right)
$$

Take $\mathcal{L}(\underline{\theta})=f\left(r_{3}, \ldots, r_{n} \mid \underline{\theta}, r_{1}, r_{2}\right)$, then

$$
\mathcal{L}(\underline{\theta})=-\frac{n-2}{2} \ln (2 \pi)-\sum_{j=3}^{n} \ln \sigma_{j}^{2}-\frac{1}{2} \sum_{j=3}^{n} \frac{\left(r_{j}-\mu-\phi_{1} r_{j-1}\right)^{2}}{\sigma_{j}^{2}}
$$

$$
\sigma_{t}^{2}=\beta_{1} \sigma_{t-1}^{2}+\alpha_{0}+\alpha_{1}\left(r_{t-1}-\mu-\phi_{1} r_{t-2}\right)^{2}
$$

Use an initialisation of $\sigma_{0}^{2}=0, r_{0}=r_{-1}=0$.
AG4. The student t on ν degrees of freedom has density proportional to:

$$
f(x) \propto\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}
$$

and the model is:

$$
\frac{X_{t}}{\sigma_{t}}:=\frac{\left(R_{t}-\nu-\phi_{1} R_{t-1}\right)}{\sigma_{t}} \sim t_{\nu}
$$

so that

$$
\begin{gathered}
\mathcal{L}(\underline{\theta})=\text { const }-\frac{\nu+1}{2} \sum_{j=3}^{n} \ln \left(1+\frac{\left(r_{j}-\nu-\phi_{1} r_{j-1}\right)^{2}}{\nu \sigma_{t}^{2}}\right) \\
\sigma_{t}^{2}=\beta_{1} \sigma_{t-1}^{2}+\alpha_{0}+\alpha_{1}\left(r_{t-1}-\mu-\phi_{1} r_{t-2}\right)^{2} .
\end{gathered}
$$

Use an initialisation of $\sigma_{0}^{2}=0, r_{0}=r_{-1}=0$.
K1 Let $\underline{X}_{t}=\binom{X_{1 t}}{X_{2 t}}$ then the unique stationary solution of the equation written satisfies:

$$
X_{1, t+1}=X_{2, t}+Z_{t+1} \quad X_{2, t+1}=\theta Z_{t+1} \Rightarrow X_{2, t}=\theta Z_{t} \Rightarrow X_{1, t+1}=Z_{t+1}+\theta Z_{t}=Y_{t}
$$

so that $Y_{t}=(1,0) \underline{X}_{t}=X_{1, t}$ as required. Rewriting gives:

$$
\left\{\begin{array}{l}
X_{1, t}=Z_{t}+\theta Z_{t-1} \\
X_{2, t}=\theta Z_{t}
\end{array} \quad \Rightarrow \underline{X}_{t}=\left(\begin{array}{cc}
1 & \theta \\
\theta & 0
\end{array}\right)\binom{Z_{t}}{Z_{t-1}}\right.
$$

as required.
K2 If $\left\{Y_{t}\right\}$ is an $\operatorname{ARIMA}(\mathrm{p}, \mathrm{d}, \mathrm{q})$ process, then it has representation:

$$
(1-B)^{d} \phi(B) Y_{t}=\theta(B) Z_{k}
$$

Now suppose that U_{t} is a process that satisfies $(1-B)^{d} \phi(B) U_{t}=Z_{t}$, then $Y_{t}=\theta(B) U_{t}$:

$$
(1-B)^{d} \phi(B) Y_{t}=(1-B)^{d} \phi(B) \theta(B) U_{t}=\theta(B)(1-B)^{d} \phi(B) U_{t}=\theta(B) Z_{t}
$$

Let

$$
\psi(z)=1+\sum_{j=1}^{p+d} \psi_{j} z^{j}=(1-z)^{d} \phi(z)=1+\sum_{l=1}^{p+d}\left(\sum_{k=(l-d) \vee 0}^{l \wedge p}(-1)^{l-k}\binom{d}{l-k} \phi_{k}\right) z^{l}
$$

so

$$
\psi_{l}=\sum_{k=(l-d) \vee 0}^{l \wedge p}(-1)^{l-k}\binom{d}{l-k} \phi_{k} \quad l=1, \ldots, p+d
$$

Derive state space rep. from:

$$
\left\{\begin{array}{l}
Y_{t}=\theta(B) U_{t} \\
\psi(B) U_{t+1}=Z_{t+1} \Rightarrow U_{t+1}=\sum_{j=1}^{p+d} \psi_{j} U_{t+1-j}+Z_{t+1}
\end{array}\right.
$$

The state space representation is now the same as that for the $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ given in lectures, with $r=\max (p+d, q+1)$.

K3 Let $D_{p}=|z I-F|$ denote the determinant of the $p \times p$ matrix thus defined; note that

$$
z I-F=\left(\begin{array}{cccccc}
z & -1 & 0 & \ldots & 0 & 0 \\
0 & z & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & z & -1 \\
-\phi_{p} & -\phi_{p-1} & -\phi_{p-2} & \ldots & -\phi_{2} & z-\phi_{1}
\end{array}\right)
$$

then it is clear (consider p even and odd separately - in both cases) that

$$
D_{p}=z D_{p-1}+\phi_{p} \Rightarrow \frac{D_{p}}{z^{p}}=\frac{D_{p-1}}{z^{p-1}}+\frac{\phi_{p}}{z^{p}} \Rightarrow D_{p}=z^{p} \sum_{j=1}^{p} \frac{\phi_{j}}{z^{j}} .
$$

It follows that each eigenvalue λ_{j} satisfies either $\lambda_{j}=0$ or

$$
0=\left|\lambda_{j} I-F\right|=\sum_{k=1}^{p} \frac{\phi_{k}}{\lambda_{j}^{k}} .
$$

Since the process is causal, it follows that $\phi(z):=\sum_{k=1}^{p} \phi_{k} z^{k}$ does not have roots satisfying $|z| \leq 1$, hence that $\frac{1}{\left|\lambda_{j}\right|}>1$, so that $\left|\lambda_{j}\right|<1$. Hence stability.

