
Tutorial 10: Kalman Filtering

We first introduce two packages in R for state space models; dlm (where the initials stand for dynamic

linear model) and MARSS (the initials stand for Multivariate Auto Regressive State Space). We’ll

introduce dlm through the worked example of the ‘Nile’ data and MARSS through the ‘Salmon’

data.

dlm and the ‘Nile’ data

The Nile data is the historical data set consisting of readings of the annual flow volume of the Nile

River at Aswan from 1871 to 1970. It exhibits long range dependence and was studied by Hurst, who

introduced the parameter, now known as the Hurst parameter as a measure of this.

We now show to use dlm to fit a ‘state space’ model to the Nile data and use the model for prediction.

> install.packages("dlm")

> library("dlm")

Firstly, it is important to know what notation is being used; what does dlm mean by F , G, V , W , m,

C. The notation for the dlm package is as follows: the equation is





yt = Ftθt + vt vt ∼ N(0, Vt)

θt = Gtθt−1 + wt wt ∼ N(0,Wt)

θ0 ∼ N(m0, C0)

Ft is m× p, Vt is m×m, Gt is p× p and Wt is p× p. In dlm these are referred to as FF, V, GG, W

respectively.

There are several kinds of dynamic linear models that can be fitted, falling into categories polyno-

mial, Seasonal, ARMA. Try to get information about these models using the help commands:

> ?dlmModPoly

> ?dlmModSeas

> ?dlmModARMA

We want to fit a univariate model here; the observed time series {Yt} is explained by a state {Xt} plus

noise. To specify the dimension of the model mod, type:

> mod <- dlmModPoly(1)

The dimension is the length of the state vector Xt. For the Nile data, we’re taking a single state space

variable.

Now we’ll look at the ‘Nile’ data

> ?Nile

> nileFilt<-dlmFilter(Nile,mod) # Kalman filter

170

The filtering routine returns:

1. the series of filtering means mt = E[Xt|F
(Y)
t]

2. the series of filtering variances Ct = V(Xt|F
(Y)
t)

3. the series of one-step forecasts for the state at = E[Xt|F
(Y)
t−1]

4. the series of one-step forecasts for the variances for the state

Rt = V(Xt|F
(Y)
t−1)

5. the series of one-step forecasts for the observation

ft = E[Yt|F
(Y)
t−1]

Variances are returned in terms of their singular value decomposition: Ct = UtD
2
tU

t
t where Dt is

diagonal and U t is orthogonal. For one dimensional states, Ct = D2
t . In general, the sequence of

variance matrices can be recovered using:

> Ct <- with(nileFilt, dlmSvd2var(U.C, D.C))

> Rt <- with(nileFilt, dlmSvd2var(U.R, D.R))

Plotting the ggplot2 together with ggfortify is very useful for plotting the output of dynamic

linear model routines.

library(ggplot2)

library(ggfortify)

autoplot(nileFilt)

The black plot shows the observations, connected by line, and the red plot shows the filtered values.

Smoothing We now show how to do smoothing using dlm.

> nileSmooth <- dlmSmooth(Nile, mod) #Kalman smoother

> nileSmooth2 <- dlmSmooth(nileFilt) #the same

The smoothing routine returns

1. the series of smoothing means mt = E[Xt|F
(Y)
T]

2. the series of smoothing variances st = V(Xt|F
(Y)
T).

To show the data and the smoothing means on the same plot, try:

nile2 = as.data.frame(Nile)

nile2$smooth = nileSmooth$s[-101]

nile2ts = as.ts(nile2)

autoplot(nile2ts,facets=FALSE)

171

I removed the final year (1971) for the smoother, because the series have to be the same length. I put

it as a data frame so that the new column could be added. Unfortunately autoplot does not support

data.frame, but with ggplot2 and ggfortify activated (ggfortify is essential here) it does support

ts.

Smoothing variances are returned in terms of the decomposition. To recover covariance matrices:

> St <- with(nileSmooth, dlmSvd2var(U.S, D.S)) #Smoothing variance

> level <- dropFirst(nileFilt$m) #filtered level

> sdC <- abs(dropFirst(nileFilt$D.C)) #filtering standard deviations

> ci <- drop(sdC%o% qnorm(c(0.05,0.95))) + as.vector(level) #90 percent interval

> ci2 <- ts(ci, start = start(Nile))

Forecasting The function dlmForecast returns, for k = 1, 2, . . .

1. the series of k step ahead forecasts for the states ak = E[Xt+k|F
(Y)
t]

2. the series of forecast variances for the states (covariance matrices if there is a vector of states)

Rk = V(Xt+k|F
(Y)
t)

3. the series of k step ahead forecasts of the observations

fk = E[Yt+k|F
(Y)
t]

4. the series of forecast variances for hte observations

Qt,k = V(Yt+k|F
(Y)
t)

Forecast variances are returned as matrices.

> nileForecast <- dlmForecast(nileFilt, n=20)

> nileForecast <- dlmForecast(nileFilt, n=20, sampleNew = 50)

> str(nileForecast,1)

> nodataForecast <-dlmForecast(mod, n=100, sampleNew = 100)

Model checking The following routines are standard for checking whether the residuals are normal

i.i.d.

> nileRes <- residuals(nileFilt, sd = FALSE) # standardised innovations

> qqnorm(nileRes) #graphical normality assessment

> qqline(nileRes)

> tsdiag(nileFilt) #standard diagnostics

172

The MARSS Package

The MARSS (Multivariate Analysis and State Space Models) package is very useful. The state process

takes the form

xt = Bxt−1 + u+ wt {wt} ∼ WNN(0, Q)

where xt is an m-vector, Q is an m×m covariance matrix. The initial state vector is specified at t = 0

(or t = 1) as:

x0 ∼ N(π,Λ) or x1 ∼ N(π,Λ).

The multivariate observation component is

yt = Zxt + a+ vt {vt} ∼ WNN(0, R)

where yt is an n-vector and R is a n× n covariance matrix.

Example: Salmon Survival

The example is taken from Sheuerell and Williams (2005), using a DLM (dynamic linear model) to

examine the relationship between marine survival of Chinook salmon and an index of ocean upwelling

strength along the west coast of the USA. Upwelling is a process that brings cool, nutrient-rich waters

from the deep ocean to shallower coastal areas. Sheuerell and Williams hypothesised that stronger

upwelling in April should create better growing conditions for the plankton, so that juvenile salmon

(‘smolts’) entering the ocean in May and June should find better feeding opportunities.

Model Specification Suppose (for example) that we have a model

(
x1

x2

)

t

=

(
b 0

0 b

)(
x1

x2

)

t−1

+

(
0

0

)
+

(
w1

w2

)

t

(
w1

w2

)

t

∼ N

((
0

0

)
,

(
q11 q12

q12 q22

))

(
x1

x2

)

0

∼ N

((
0

0

)
,

(
1 0

0 2

))




y1

y2

y3




t

=




1 0

0 1

1 0



(

x1

x2

)

t

+




a1

0

0


+




v1

v2

v3







v1

v2

v3




t

∼ N







0

0

0


 ,




r1 0 0

0 r2 0

0 0 r3







173

We first have to specify the model. To incorporate all the parameters,

> B1 = matrix(list("b", 0, 0, "b"), 2, 2)

> U1 = matrix(0, 2, 1)

> Q1 = matrix(c("q11", "q12", "q12", "q22"), 2, 2)

> Z1 = matrix(c(1, 0, 1, 0, 1, 0), 3, 2)

> A1 = matrix(list("a1", 0, 0), 3, 1)

> R1 = matrix(list("r1", 0, 0, 0, "r2", 0,

+ 0, 0, "r2"), 3, 3)

> pi1 = matrix(0, 2, 1)

> V1 = diag(1, 2)

> model.list = list(B = B1, U = U1, Q = Q1, Z = Z1,

+ A = A1, R = R1, x0 = pi1, V0 = V1)

MARSS has some shortcuts for some of the matrix specification (look it up).

10.1.6 Example: Salmon Survival Data

We begin by loading the data set (which is in the MARSS package). The data set has 3 columns:

1. the year the salmon smolts migrated to the ocean (year),

2. logit-transformed survival (logit.s), and

3. the coastal upwelling index, abbreviated CUI. For April, this is named CUI.apr. There are 42

years of data (1964–2005).

load the data

data(SalmonSurvCUI, package = "MARSS")

get time indices and call it years

years <- SalmonSurvCUI[, 1]

count the number of years of data

TT <- length(years)

get the response variable, which is logit(survival)

dat <- matrix(SalmonSurvCUI[, 2], nrow = 1)

Standardising the covariates to have zero mean and unit variance can be useful in model fitting

and interpretation. In this case, the variance of CUI.apr is orders of magnitude larger than survival.

get the predictor variable; we’re using CUI (Coastal Upwelling

Index CUI)

CUI <- SalmonSurvCUI[, 3]

z-score the CUI (i.e. centred and standardised)

CUI.z <- matrix((CUI - mean(CUI))/sqrt(var(CUI)), nrow = 1)

174

number of regr params (slope + intercept)

m <- dim(CUI.z)[1] + 1

#note: we only have two parameters; CUI.z is a single column.

Now set up the matrices and vectors for MARSS. Reminder: the syntax here is

{
xt = Bxt−1 + ut + wt wt ∼ N(0, Qt)

yt = Ztxt + at + vt vt ∼ N(0, Rt)

for the process (or state space) equation, we need:

B <- diag(m) ## 2x2; Identity

U <- matrix(0, nrow = m, ncol = 1) ## 2x1; both elements = 0

Q <- matrix(list(0), m, m) ## 2x2; all 0 for now

diag(Q) <- c("q.alpha", "q.beta") ## 2x2; diag = (q1,q2)

Now let us define the correct form for the observation model.

for observation eqn

Z <- array(NA, c(1, m, TT)) ## NxMxT; empty for now

Z[1, 1,] <- rep(1, TT) ## Nx1; 1’s for intercept

Z[1, 2,] <- CUI.z ## Nx1; predictor variable

A <- matrix(0) ## 1x1; scalar = 0

R <- matrix("r") ## 1x1; scalar = r

Lastly, we need to define our lists of initial starting values and model matrices/vectors.

only need starting values for regr parameters

inits.list <- list(x0 = matrix(c(0, 0), nrow = m))

list of model matrices & vectors

mod.list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)

And now we can fit our dynamic linear model (DLM) with MARSS.

fit univariate DLM

dlm1 <- MARSS(dat, inits = inits.list, model = mod.list)

The Kalman filter function in MARSS is MARSSkfss(). We’ll use the notation





yt = GXt + wt {wt} ∼ IIDN(0, R)

Xt = FXt−1 + Vt {Vt} ∼ IIDN(0, Q)

{wt} ⊥ {Vt}

and we’ll consider {yt} a univariate process. We take X0 ∼ N(π0,Λ0), a multivariate normal random

vector. Since this involves linear transformations of normals, we have

175

Xt−1|{Y1, . . . , Yt−1} ∼ N(πt−1,Λt−1)

and the one-step-ahead predictive distribution for Xt given {y1, . . . , yt−1} is:





Xt|{y1, . . . , yt−1} ∼ N(ηt,Ωt)

ηt = Fηt−1

Ωt = FΩt−1F
′ −Θt∆

−1
t Θ′

t +Q

∆t = GΩtG
′ +R

Θt = FΩtG
′ + S

so that the one-step-ahead predictive distribution for the observation yt given {y1, . . . , yt−1} is:





yt|{y1, . . . , yt−1} ∼ N(ζt,Ψt)

ζt = Gηt

Ψt = GΩtG
′ +R

The one-step-ahead forecasts at time t, which we call ηt, are termed x̂t−1
t in MARSS and are stored in

xtt1 in the list produced by MARSSkfss. To get the forecast, simply write:

get list of Kalman filter output

kf.out <- MARSSkfss(dlm1)

forecasts of regr parameters; 2xT matrix

eta <- kf.out$xtt1

ts of E(forecasts)

fore.mean <- vector()

for (t in 1:TT) {

fore.mean[t] <- Z[, , t] %*% eta[, t, drop = FALSE]

}

Note that, in MARSS, Z is what we call G. The forecast variance is obtained as follows:

variance of regr parameters; 1x2xT array

Phi <- kf.out$Vtt1

obs variance; 1x1 matrix

R.est <- coef(dlm1, type = "matrix")$R

ts of Var(forecasts)

fore.var <- vector()

for (t in 1:TT) {

tZ <- matrix(Z[, , t], m, 1) ## transpose of Z

fore.var[t] <- Z[, , t] %*% Phi[, , t] %*% tZ + R.est

}

For forecast diagnostics: we can find the residuals as follows:

176

forecast errors

innov <- kf.out$Innov

and we can analyse the residuals to see if they look like i.i.d. N(0, σ2).

177

Exercises

1. Consider the ‘Nile’ data. Work through the preceding and then:

(a) Plot the data, the filtered level and the lower and upper 90% confidence bounds.

(b) Plot the data, the smoothed level and the 90% probability interval for the smoothed data.

(c) Plot the forecasts, with lower and upper confidence bounds.

(d) Try Holt Winters filtering on the Nile data and compare the results.

2. (a) The file m-ppiaco4709.txt contains year, month, day and U.S. producer price index (PPI)

from January 1947 to November 2009. The index is for all commodities and is not seasonally

adjusted. Let

zt = ln(Zt)− ln(Zt−1)

where Zt is the observed monthly PPI. It turns out that an AR(3) model is adequate for zt

if the minor seasonal dependence is ignored. Let yt be the sample mean-corrected series of

zt.

i. Fit an AR(3) model to yt. Write down the fitted model and check that it is suitable.

(hint: look at pacf).

ii. Suppose that yt has independent measurement errors so that yt = xt + ǫt, where xt

is a zero mean AR(3) process. Use a state space model to estimate the parameters,

including the variances of the innovations for the states and for ǫt. Write down the

fitted model and obtain a time plot of the smoothed estimate of xt. Also, show the

time plot of filtered response residuals of the fitted state-space model.

The command dlmModARMA may be useful.

3. Simulated Stock Market Data Consider the following model for a stock price yt:

{
yt = θt + vt

θt = θt−1 + wt

where θ0 ∼ N(25, 10), vt ∼ N(0, 2), wt ∼ N(0, 0.1).

Install the sspir package and check the SS function. Check the kfilter function and smooth.

Try the following:

> library(sspir)

> set.seed(1)

> Plummet.dat <- 20 + 2*rnorm(20) + c(rep(0,10), rep(-10,10))

> n <- length(Plummet.dat)

> Plummet.mat <- matrix(Plummet.dat, nrow = n, ncol = 1)

> m1 <- SS(y = Plummet.mat,

Fmat = function(tt,x,phi) return(matrix(1)),

178

Gmat = function(tt,x,phi) return(matrix(1)),

Wmat = function(tt,x,phi) return(matrix(0.1)),

Vmat = function(tt,x,phi) return(matrix(2)),

m0 = matrix(25), C0 = matrix(10)

)

> plot(m1$y, ylab = "Closing price", main = "Simulated")

> m1.f <- kfilter(m1)

> m1.s <- smoother(m1.f)

> lines(m1.f$m, lty = 2)

> lines(m1.s$m, lty = 3)

and

> plot(m1$y, ylab = "Closing price", main = "Simulated")

> m1.f <- kfilter(m1)

> lines(m1.f$m, lty = 2)

> m2 <- m1

> Wmat(m2) <- function(tt, x, phi) {

if (tt == 12) return(matrix(10)) else return(matrix(0.1))

}

> m2.f <- kfilter(m2)

> lines(m2.f$m,lty=4)

(a) Change the variance of wt from 0.1 to 10, and comment on the change in the filter and

smoother paths.

(b) Change the variance of wt from 0.1 to 10 and the variance of vt from 2 to 200, and comment

on the change in the filter and smoother paths.

4. Global Temperatures The data for this assignment is taken from the package astsa. Start by

loading this package:

> install.packages("astsa")

The data for the exercise is found in the data file gtemp in this package. Let yt represent the

global temperature series.

(a) Plot the series.

(b) Fit a smoothing spline (try ?smooth.spline) using GCV (generalised cross validation,

which is the default method) and plot the result, superimposed on the data. Repeat using

spar=0.5 and spar = 0.7.

179

(c) Write the model yt = xt+ vt with ∇2xtt = wt, in state-space form. [Hint: The state will be

a 2×1 vector, say, xt = (xt;xt−1)
′.] Assume wt and vt are independent Gaussian white noise

processes, both independent of x0. Fit this state-space model to yt, and produce a time plot

the estimated smoother, x̂nt and the corresponding error limits, x̂nt ± 2

√
P̂n
t superimposed

on the data.

(d) Superimpose all fits on the data and comment on the results.

(e) For one-step prediction, compare the performance of the Kalman filter with Holt Winters

filtering.

180

