
Chapter 14

Spectral Analysis (II)

14.1 Linear Filters, Interpolation and detection

Linear Filters Let {Xt} be a stationary time series and let {Yt} be defined as:

Yt = h(B)Xt

The relation between the spectral properties of {Xt}, the input and {Yt}, the output are summarised

in Theorem 14.1.

Consider a filter h(B) and the test functions eiλt as input. Then

(h(B)eiλ·)t =

∞∑

k=−∞

ht−ke
iλk =

∞∑

j=−∞

hje
iλ(t−j) = eiλt

∞∑

j=−∞

hje
−iλj = eiλth(e−iλ).

Theorem 14.1. Let {Xt} be a stationary input in a stable TLF h(B) and let {Yt} be the output, i.e.

Y = h(B)X. Then

1. E [Yt] = h(1)E [Xt];

2. Yt is stationary;

3. FY (λ) =
∫
(−π,λ] |h(e

−iν)|2 dFX(ν).

Proof

1. This follows from:

E [Yt] =

∞∑

k=−∞

ht−kE [Xk] = E [Xk]

∞∑

k=−∞

ht−k = E[Xk]h(1).

2. This follows from the stationarity of X.
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3. This follows from:

C(Yt+h, Yt) = C

( ∞∑

j=−∞

hjXt+h−j ,

∞∑

k=−∞

hkXt−k

)

=

∞∑

j,k=−∞

hjhkC(Xt+h−j , Xt−k)

=
∞∑

j,k=−∞

hjhkγX(h− j + k)

=

∞∑

j,k=−∞

hjhk

∫

(−π,π]
eiλ(h−j+k) dFX(λ)

=

∫

(−π,π]
eiλh

( ∞∑

j=−∞

hje
−iλj

)( ∞∑

k=−∞

hke−iλk

)
dFX(λ)

=

∫

(−π,π]
eiλhh(e−iλ)h(e−iλ) dFX(λ) =

∫

(−π,π]
eiλh|h(e−iλ)|2 dFX(λ).

Interpolation Let {Xt, t ∈ Z} be a real stationary time series with mean 0 and spectral density f ,

where f(λ) ≥ A > 0 for all λ ∈ [−π, π]. Assume that the entire time series has been observed except

at the time point t = 0. The best linear interpolator X̂0 of X0 is defined by

X̂0 = Pspa{Xt, t 6=0}X0.

Let Xt have spectral representation Xt =
∫
(−π,π] e

itλ dZ(λ). Set

H0 = spa{eit·, t 6= 0} ⊂ L2(F ).

Then

X̂0 =

∫

(−π,π]
g(λ) dZ(λ),

where g(·) = PH0
1. By the projection theorem, it follows that g ∈ H0 is the unique solution of

E[(X0 − X̂0)Xt] =

∫ π

−π
(1− g(λ))e−itλf(λ) dλ = 0 for t 6= 0.

Any solution of the projection equations must satisfy:

(1− g(λ))f(λ) = k or g(λ) = 1−
k

f(λ)
.

It is enough to see that g above is a solution. The problem is to determine k so that g ∈ H0. This

requires:
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0 =

∫ π

−π
g(ν) dν =

∫ π

−π
1−

k

f(ν)
dν = 2π −

∫ π

−π

k

f(ν)
dν,

from which:

k =
2π∫ π

−π
dν
f(ν)

Thus

X̂0 =

∫

(−π,π]

(
1−

2π

f(λ)
∫ π
−π

dν
f(ν)

)
dZ(λ).

Now consider the mean square interpolation error E

[
(X̂0 −X0)

2
]
.

E

[
(X̂0 −X0)

2
]

=

∫ π

−π
|1− g(λ)|2f(λ) dλ =

∫ π

−π

|k|2

f(λ)2
f(λ) dλ

= k2 ·
2π

k
= 2πk =

4π2∫ π
−π

dλ
f(λ)

.

Example 14.1 ( AR(1) process).

For the AR(1) process, it is straightforward to compute that:

f(λ) =
σ2

2π

∣∣∣∣
1

1− φ1e−iλ

∣∣∣∣
2

=
σ2

2π

1

1− 2φ1 cosλ+ φ21
.

Since

∫ π

−π

dλ

f(λ)
=

2π

σ2

∫ π

−π
(1− 2φ1 cos(λ) + φ21) dλ =

4π2

σ2
(1 + φ21),

it follows that:

X̂0 =

∫

(−π,π]

(
1−

1

2π(1 + φ21)f(λ)

)
dZ(λ) =

∫

(−π,π]

(
1−

1− φ1(e
−iλ + eiλ)

1 + φ21

)
dZ(λ)

=

∫

(−π,π]
(φ1e

−iλ + φ1e
iλ)dZ(λ) = φ1X−1 + φ1X1

and

E[(X̂0 −X0)
2] =

σ2

1 + φ21
.
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Detection Suppose that the stationary time series {Xt, t ∈ Z} is a disturbed signal. That is, it is

the sum of a signal {St, t ∈ Z} and a noise {Nt, t ∈ Z}, where the signal and the noise are independent

stationary time series with means 0 and spectral densities fS and fN respectively. (Note that the noise

is not assumed to be white noise.) Assume that the entire time series Xt = St+Nt has been observed.

The best linear detector Ŝ0 of S0 is defined by

Ŝ0 = Pspa{Xt, t∈Z}S0,

where spa{Xt, t ∈ Z} is a Hilbert sub-space of the Hilbert space spa{St, Nt, t ∈ Z}.

It follows from the projection theorem that Ŝ0 is the unique solution of

E[(S0 − Ŝ0)Xt] = 0 for all t.

Let St and Nt have spectral representations

St =

∫

(−π,π]
eitλ dZS(λ) and Nt =

∫

(−π,π]
eitλ dZN (λ)

respectively. Then Xt has spectral representation

Xt =

∫

(−π,π]
eitλ (dZS(λ) + dZN (λ)),

where ZS and ZN are independent. Thus

Ŝ0 =

∫

(−π,π]
g(λ) (dZS(λ) + dZN (λ)),

for some function g ∈ L2(FS + FN ). Now,

0 = E[(S0 − Ŝ0)Xt]

= E

[(∫

(−π,π]
dZS(λ)−

∫

(−π,π]
g(λ) (dZS(λ) + dZN (λ))

)∫

(−π,π]
e−itλ (dZS(λ) + dZN (λ))

]

=

∫

(−π,π]
e−itλfS(λ) dλ−

∫

(−π,π]
e−itλg(λ)(fS(λ) + fN (λ)) dλ

=

∫

(−π,π]
e−itλ (fS(λ)− g(λ)(fS(λ) + fN (λ))) dλ.

It follows that

fS(λ)− g(λ)(fS(λ) + fN (λ)) = 0 or g(λ) =
fS(λ)

fS(λ) + fN (λ)

From this we get the best linear detector

Ŝ0 =

∫

(−π,π]

fS(λ)

fS(λ) + fN (λ)
(dZS(λ) + dZN (λ)),

and
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E[(S0 − Ŝ0)
2] = E

[
S2
0

]
− E

[
Ŝ2
0

]

=

∫

(−π,π]
fS(λ) dλ−

∫

(−π,π]
|g(λ)|2 (fS(λ) + fN (λ)) dλ

=

∫

(−π,π]
fS(λ) dλ−

∫

(−π,π]

∣∣∣∣
fS(λ)

fS(λ) + fN (λ)

∣∣∣∣
2

(fS(λ) + fN (λ)) dλ

=

∫

(−π,π]

(
fS(λ)−

f2S(λ)

fS(λ) + fN (λ)

)
dλ

=

∫ π

−π

fS(λ)fN (λ)

fS(λ) + fN (λ)
dλ.

14.2 Estimating the spectral density

Recall that the ACVF γ(·) of a stationary time series has the spectral representation

γ(h) =

∫

(−π,π]
eihν dF (ν).

If, furthermore,
∑∞

−∞ |γ(h)| <∞, then the spectral density function f(·) defined by

f(λ) =
1

2π

∞∑

n=−∞

e−inλγ(n).

is well defined, F (λ) =
∫ λ
−π f(ν) dν and

γ(h) =

∫ π

−π
eihλf(λ) dλ.

Attention is now restricted to the situation where {Xt} is a stationary time series with mean µ and with

absolutely summable covariance;
∑∞

−∞ |γ(h)| < ∞, so that the spectral density f(·) is well defined.

The n variables X1, . . . , Xn are observed.

The periodogram The first empirical approximation to f(·) is the so-called periodogram. Set

ωj =
2πj

n
, −π < ωj ≤ π

and

Fn := {j ∈ Z, −π < ωj ≤ π} =

{
−

[
n− 1

2

]
, . . . ,

[n
2

]}
,

where [x] denotes the integer part of x.

Definition 14.2. The periodogram In(·) of {X1, . . . , Xn} is defined by

In(ωj) =
1

n

∣∣∣∣
n∑

t=1

Xte
−itωj

∣∣∣∣
2

, j ∈ Fn.
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The values of the periodogram may be expressed in terms of the sample covariance, as indicated in the

following proposition.

Proposition 14.3. The periodogram satisfies:

In(ωj) =





n|X|2 if ωj = 0,

∑
|k|<n

γ̂(k)e−ikωj if ωj 6= 0,

where γ̂(k) = 1
n

∑n−|k|
t=1 (Xt −X)(Xt+|k| −X) and X = 1

n

∑n
j=1Xj.

Proof The result is clear when ωj = 0. Consider ωj 6= 0. Then

In(ωj) =
1

n

∣∣∣∣
n∑

t=1

Xte
−itωj

∣∣∣∣
2

=
1

n

n∑

s=1

Xse
−isωj

n∑

t=1

Xte
itωj .

Since
∑n

t=1 e
−isωj = 0, this may be written as:

In(ωj) =
1

n

n∑

s=1

n∑

t=1

(Xs −X)e−isωj (Xt −X)eitωj

=
n−1∑

k=−n+1

eikωj
1

n

n∧(n−k)∑

s=1∨(1−k)

(Xs −X)(Xk+s −X)

=
∑

|k|≤n−1

eikωj γ̂(k).

The last equality follows from the definition of γ̂(k).

The periodogram has now been defined for the Fourier frequencies 2πj
n ; it is extended to all ω ∈ (−π, π]

(or equivalently (0, 2π]) in the following way.

Definition 14.4 (Extension of the periodogram). For any ω ∈ [−π, π] define

In(ω) =




In(ωk) if ωk − π/n < ω ≤ ωk + π/n and 0 ≤ ω ≤ π,

In(−ω) if ω ∈ [−π, 0).

For ω ∈ [0, π], let

g(n, ω) =
2πj

n
j = min argmink

{∣∣∣∣ω −
2πk

n

∣∣∣∣
}

(the multiple of 2π
n closest to ω, taking the the smaller one if there are two). For ω ∈ [−π, 0),

g(n, ω) = g(n,−ω). With this notation,

In(ω) = In(g(n, ω)).
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Theorem 14.5. The following convergence results hold:

E [In(0)]− nµ2 → 2πf(0) as n→ ∞

and

E [In(ω)] → 2πf(ω) as n→ ∞ if ω 6= 0.

If µ = 0 then In(ω) converges uniformly to 2πf(ω) on [−π, π)

Proof Omitted. It is straightforward and may be found in Brockwell and Davis.

For a strictly linear time series {Xt} with mean 0; that is

Xt =
∞∑

j=−∞

ψjZt−j , {Zt} ∼ IID(0, σ2)

the statistical behaviour of the periodogram has been well analysed in the literature. The following

theorem gives some key properties.

Theorem 14.6. Let {Xt} be a strictly linear time series with

µ = 0,

∞∑

j=−∞

|ψj ||j|
1/2 <∞ and E[Z4] <∞.

Then

C(In(ωj), In(ωk)) =





2(2π)2f2(ωj) +O(n−1/2) if ωj = ωk = 0 or π,

(2π)2f2(ωj) +O(n−1/2) if 0 < ωj = ωk < π,

O(n−1) if ωj 6= ωk.

Proof Omitted. This may also be found in Brockwell and Davies. It requires heavy computation,

but the steps are all reasonably obvious.

14.2.1 Smoothing the periodogram

When estimating the periodogram, the same number of parameters are estimated as observations. That

is, if there are n observations, then the periodogram is constructed from the estimates of γ(0), . . . , γ(n−

1). The deficiencies of the periodogram may be seen from a few examples; the periodogram for ‘white

noise’ may not have a discernible pattern, but it will be far from constant, when f(λ) = σ2

2π for all

λ ∈ (−π, π] for WN(0, σ2). A first attempt may be to consider

1

2π

∑

|k|≤m

1

2m+ 1
In(ωj+k).

More generally, the following class of estimators is considered.

231



Definition 14.7. The estimator f̂(ω) = f̂(g(n, ω)) with

f̂(ωj) =
1

2π

∑

|k|≤mn

Wn(k)In(ωj+k),

where





mn → ∞ and mn/n→ 0 as n→ ∞,

Wn(k) =Wn(−k), Wn(k) ≥ 0, for all k,∑
|k|≤mn

Wn(k) = 1,
∑

|k|≤mn
W 2

n(k) → 0 as n→ ∞

is called a discrete spectral average estimator of f(ω).

If ωj+k 6∈ [−π, π] the term In(ωj+k) is evaluated by defining In to have period 2π.

Theorem 14.8. Let {Xt} be a strictly linear time series with

µ = 0,
∞∑

j=−∞

|ψj ||j|
1/2 <∞ and E[Z4] <∞.

Then

lim
n→∞

E

[
f̂(ω)

]
= f(ω)

and

lim
n→∞

1∑
|k|≤mn

W 2
n(k)

C(f̂(ω), f̂(λ)) =





2f2(ω) if ω = λ = 0 or π,

f2(ω) if 0 < ω = λ < π,

0 if ω 6= λ.

Proof Omitted.

Remark If µ 6= 0, then the term In(0) is omitted from the construction and instead:

f̂(0) :=
1

2π

(
Wn(0)In(ω1) + 2

mn∑

k=1

Wn(k)In(ωk+1)

)
.

For each appearance of In(0) in the formula for f̂(ωj), it is replaced with f̂(0).

Example 14.2.

Wn(k) =




1/(2mn + 1) if |k| ≤ mn,

0 if |k| > mn,
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and

V(f̂(ω)) ∼





1
mn
f2(ω) if ω = 0 or π,

1
mn

f2(ω)
2 if 0 < ω < π.

The lag window spectral estimator is defined as follows:

Definition 14.9. An estimator f̂L(ω) of the form

f̂L(ω) =
1

2π

∑

|h|≤rn

w(h/rn)γ̂(h)e
−ihω

where




rn → ∞ and rn/n→ 0 as n→ ∞,

w(x) = w(−x), w(0) = 1,

|w(x)| ≤ 1, for all x,

w(x) = 0, for |x| > 1

is called a lag window spectral estimator of f(ω).

Discrete spectral average estimators and lag window spectral estimator are essentially the same.

The spectral window is defined as:

W (ω) =
1

2π

∑

|h|≤rn

w(h/rn)e
−ihω.

The lag window spectral estimator may be expressed in terms of the following slightly different exten-

sion of the periodogram:

Ĩn(ω) =
∑

|h|≤n

γ̂(h)e−ihω.

Note that

γ̂(h) =
1

2π

∫ π

−π
eihλĨn(λ) dλ.

It follows that
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f̂L(ω) =
1

(2π)2

∑

|h|≤rn

w(h/rn)

∫ π

−π
e−ih(ω−λ)Ĩn(λ) dλ

=
1

(2π)2

∫ π

−π


 ∑

|h|≤rn

w(h/rn)e
−ih(ω−λ)


 Ĩn(λ) dλ

=
1

2π

∫ π

−π
W (ω − λ)Ĩn(λ) dλ

=
1

2π

∫ π

−π
W (λ)Ĩn(ω + λ) dλ

≃
1

2π

∑

|j|≤[n/2]

W (ωj)Ĩn(ω + ωj)
2π

n

≃
1

2π

∑

|j|≤[n/2]

W (ωj)In(g(n, ω) + ωj)
2π

n
.

Here f̂L(ω) is approximated by a discrete spectral average estimator with weights

Wn(j) = 2πW (ωj)/n, |j| ≤ [n/2].

It is straightforward to show that

∑

|j|≤[n/2]

W 2
n(j) ≃

rn
n

∫ 1

−1
w2(x) dx.

The following theorem holds:

Theorem 14.10. Let {Xt} be a strictly linear time series with µ = 0,
∞∑

j=−∞
|ψj ||j|

1/2 < ∞ and

E
[
Z4
]
<∞. Then

lim
n→∞

E

[
f̂L(ω)

]
= f(ω)

and

V(f̂L(ω)) ∼





rn
n 2f2(ω)

∫ 1
−1w

2(x) dx if ω = 0 or π

rn
n f

2(ω)
∫ 1
−1w

2(x) dx if 0 < ω < π.

Proof Omitted.

Example 14.3 (The Rectangular or Truncated Window).

For this window,

w(x) =




1 if |x| ≤ 1,

0 if |x| > 1,
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and

V(f̂L(ω)) ∼
2rn
n
f2(ω) for 0 < ω < π.

Example 14.4 (The Blackman-Tukey Window).

For this window,

w(x) =




1− 2a+ 2a cosx if |x| ≤ 1,

0 if |x| > 1,

and

V(f̂L(ω)) ∼
2rn
n

(1− 4a+ 6a2)f2(ω) for 0 < ω < π.

Note that f̂L(ω) = af̂T (ω−π/rn)+(1−2a)f̂T (ω)+af̂T (ω+π/rn) where f̂T is the truncated estimate.

This estimate is easy to compute. Usual choices of a are 0.23 (The Tukey-Hamming estimate) or 0.25

(The Tukey-Hanning estimate).

14.3 Spectral Properties of Multivariate Time Series

Firstly, assume that

∞∑

h=−∞

|γij(h)| <∞, i, j = 1, . . . ,m. (14.1)

Definition 14.11 (The cross spectrum). Let {Xt, t ∈ Z} be an m-variate stationary time series whose

ACVF satisfies (14.1). The function

fjk(λ) =
1

2π

∞∑

h=−∞

e−ihλγjk(h), −π ≤ λ ≤ π, j 6= k,

is called the cross spectrum or cross spectral density of {Xtj} and {Xtk}. The matrix

f(λ) =




f11(λ) . . . f1m(λ)
...

fm1(λ) . . . fmm(λ)




is called the spectrum or spectral density matrix of {Xt}.

It follows from direct calculations that

Γ(h) =

∫ π

−π
eihλf(λ) dλ.
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The function fjj(λ) is the spectral density of {Xtj} and therefore non-negative and symmetric about

zero. However, since γij(·), i 6= j, is not in general symmetric about zero, the cross spectral density is

typically complex-valued. The spectral density matrix f(λ) is non-negative definite for all λ ∈ [−π, π].

Theorem 14.12 (Multivariate Spectral Distribution). Γ(·) is the ACVF of an m-variate stationary

time series {Xt, t ∈ Z} if and only if

Γ(h) =

∫

(−π,π]
eihλ dF (λ), h ∈ Z,

where F (·) is an m×m matrix distribution, i.e. Fjk(−π) = 0, Fjk(·) is right-continuous and F (µ)−F (λ)

is non-negative definite for all λ ≤ µ.

Proof Left as an exercise: similar to the univariate case.

Similarly, a multivariate time series has a spectral representation.

Theorem 14.13 (Multivariate Spectral Representation). Let {Xt} be a multivariate stationary time

series, with mean µ. Then {Xt − µ} has the representation

Xt − µ =

∫

(−π,π]
eitλ dZ(λ)

where {Z(λ), λ ∈ [−π, π]} is an m-variate process whose components are complex-valued and satisfy,

when integrating against test functions f, g : [−π, π] → R, f, g ∈ L2(F )

E

[∫

(−π,π]

∫

(−π,π]
f(λ)g(ν)dZj(λ)dZk(ν)

]
=

∫

(−π,π]
f(λ)g(λ)dFjk(λ).

Proof Left as an exercise: similar to the univariate case.
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Chapter 15

Granger Causality and the Spectral

Density

Consider a linear p-variate stationary time series Z, mean 0. Let S(λ) denote the spectral density

matrix. If Z(i) denotes the ith component of Z, then the ACVF is defined as:

Γij(h) = Cov(Z
(i)
t , Z

(j)
t+h).

The spectral density matrix is the matrix with entries:

Sij(λ) =
1

2π

∞∑

h=−∞

eiλhΓij(h).

15.1 Representations for Stationary Processes

The stationary process has a moving average representation if it can be written as:

Zt =
∞∑

s=0

Θsǫt−s Θ0 = I {ǫt} ∼WN(0,Σ)

Invertibility is equivalent to: |Θ(z)| 6= 0 for all z ∈ C : |z| ≤ 1 where, for a matrix C, ‖C‖ denotes

the square root of the largest eigenvalue of CtC and |C| =
√

det(CtC). Furthermore, to ensure the

process has a well defined covariance structure, it is necessary that
∑∞

s=1 ‖Θ(s)‖2 < +∞.

Doob (Stochastic Processes, John Wiley, New York 1953 pp499 - 500) proves that the existence of

such a moving average representation for a stationary time series is equivalent to the existence of the

spectral matrix SZ(λ) of Z for almost all frequencies λ ∈ [−π, π].

Under these assumptions, the mean-squared-error of the one-step-ahead forecast (forecast of Zt based

on {Zs; s ≤ t− 1} is:

|Σ| = exp

{
1

2π

∫ π

−π
ln |S(λ)|dλ

}
> 0.
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This spectral representation for the mean-squared prediction error was stated (without proof) for

univariate time series earlier. It is due to Rozanov.

We restrict attention to series with an MA(+∞) representation which can be inverted:

Zt =

∞∑

j=1

ΦjZt−j + ǫt (15.1)

where {ǫt} ∼WN(0,Σ). As usual, let

Φ(z) = I −

∞∑

j=1

zjΦj .

A sufficient condition for existence of an AR(+∞) representation is the existence of a constant c < +∞

such that

c−1I 4 S(λ) � cI

where, for two matrices A and B, the symbol A � B means that B −A is non-negative definite. This

is a result of Rozanov.

Note: not all stationary time series have an AR(+∞) representation; recall the MA(1) example of:

Zt = ǫt+ǫt−1. This does not have such a representation; we showed that infλ S(λ) = 0 in this example.

Now suppose that Z is partitioned into
(
X
Y

)
where X is k-variate and Y is m variate, k +m = p. Let

SZ denote S (the subscript indicates the multivariate time series for which this is the spectral density

matrix). Use the following partition of SZ(λ):

SZ(λ) =

(
SX(λ) SXY (λ)

SY X(λ) SY (λ)

)
.

Both X and Y possess autoregressive representations:

{
Xt =

∑∞
s=1E1sXt−s + η1t {η1t} ∼WN(0, CX)

Yt =
∑∞

s=1G1sYt−s + ξ1t {ξ1t} ∼WN(0, CY ).

These arise from predicting X only using its own past, respectively Y , only using its own past. The

disturbance η1t is the one-step-ahead error when Xt is forecast from its own past alone, similarly ξ1t

is the one-step-ahead error when Yt is forecast from its own past alone. These disturbances are each

serially uncorrelated, but may be correlated with each other contemporaneously and at various leads

and lags.

These equations denote the linear projections of Xt respectively Yt on their own pasts.

The equation for Z may be partitioned:
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{
Xt =

∑∞
s=1ΦXX;sXt−s +

∑∞
s=1ΦXY ;sYs + ǫX;t

Yt =
∑∞

s=1ΦY Y ;sYt−s +
∑∞

s=1ΦY X;sXt−s + ǫY ;t.
(15.2)

Since ǫt =
(
ǫXt

ǫY t

)
and {ǫt} ∼WN(0,Σ), it is clear that the disturbance vectors for this model can only

be correlated with each other contemporaneously.

Now consider Σ =

(
ΣXX ΣXY

ΣY X ΣY Y

)
.

15.2 Useful Representations

Let us pre-multiply the system for
(
X
Y

)
by the matrix:

(
Ik −ΣXY Σ

−1
Y Y

−ΣY XΣ−1
XX Im

)
.

This gives a system of equations

{
Xt =

∑
s≥1E3sXt−s +

∑∞
s=0 F3sYt−s + eXt

Yt =
∑∞

s=1G3sYt−s +
∑∞

s=0H3sXt−s + eY t

(15.3)

Note that the transformation, for Xt introduces contemporaneous Yt and vice versa. Here

(
eXt

eY t

)
=

(
Ik −ΣXY Σ

−1
Y Y

−ΣY XΣ−1
XX Im

)(
ǫXt

ǫY t

)
.

While eXt and eY t are correlated with each other, the important point is that (a) eXt is uncorrelated

with ǫY t and (b) eY t is uncorrelated with ǫXt. This is a straightforward computation. It follows that

eY t is uncorrelated with Yt as well as with {Xs : s ≤ t− 1} and {Ys : s ≤ t− 1}.

Now let

D̂(λ) = SXY (λ)SY (λ)
−1

The terms are well defined, by the invertibility condition for the time series. Let D denote the inverse

Fourier transform

D(s) =
1

2π

∫ π

−π
D̂(λ)e−iλsdλ s ∈ Z.

Let

Wt := Xt −
∞∑

s=−∞

D(s)Yt−s

Theorem 15.1. The process W , thus defined, is uncorrelated with all {Ys : s ∈ Z}. From this, it

follows that
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Xt =
∞∑

s=−∞

DsYt−s +Wt

is the linear projection of Xt onto {Ys; s ≤ t}.

Proof Consider the spectral representation of Z: Zt =
∫ π
−π e

−itνdL(ν) where L is the p-variate

orthogonal increment process. Let L =
(
LX

LY

)
, the k-variate and m-variate processes corresponding to

X respectively Y . Then

Wt =

∫
eitνdLX(ν)−

∑

s

D(s)

∫
ei(t−s)νdLY (ν)

so that:

E[WtY r]
t] =

∫
SXY (ν)e

−(t−r)νdν −
∞∑

s=−∞

D(s)

∫
SY (ν)e

−i(t−r+s)νdν

Using the fact that a convolution of Fourier transforms is the Fourier transform of the product gives

that E[WtY
t
r] = 0 for all r.

The final formula for the projection is a direct consequence of this.

Similarly, it follows that the spectral density matrix for W is given by:

SW (λ) = SX(λ)− SXY (λ)SY (λ)
−1SY X(λ)

The process W has an autoregressive representation

Wt =
∞∑

s=1

ΦWsWt−s + ǫWt

and consequently

Xt =
∞∑

s=1

ΦWsXt−s −
∞∑

s=0

ΦWs

∞∑

r=−∞

DsYt−s−r + ǫWt

where ΦW0 = −I. Grouping the terms gives:

Xt =
∞∑

s=1

ΦWsXt−s +
∞∑

s=−∞

(
∞∑

r=0

ΦWrD(s− r)

)
Yt−s + ǫWt.

Since ǫWt is a linear function of Y and {Ws : s ≤ t−1}, it is uncorrelated with Y . Since {Xs : s ≤ t−1}

is a linear function of Y and {Ws : s ≤ t − 1}, ǫWt is uncorrelated with {Xs : s ≤ t − 1}. Hence this

equation provides the linear projection of Xt on {Xs : s ≤ t− 1} and all Y .

Similarly, we can obtain the projection of Yt on {Ys : s ≤ t} and all X.
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15.3 Linear Dependence and Feedback

The measure of linear feedback from Y to X is defined as:

FY→X = ln
|CX |

|ΣXX |
.

Similarly, the linear feedback from X to Y is:

FX→Y = ln
|CY |

|ΣXX |
.

The measure of instantaeous linear feedback is:

FX.Y = log
|ΣXX ||ΣY Y |

|Σ|
.

It is non-zero if and only if the partial correlation between Xt and Yt conditioned on the entire past

history of both processes is zero. Finally, the measure of linear dependence is:

F̃X,Y = ln
|CX |‘|CY |

|Σ|
.

Note:

F̃X,Y = FY→X + FX→Y + FX.Y .

We now want to describe the linear feedback in Fourier space and we seek non-negative functions

fX→Y (λ) and fY→X(λ) which represent the transfer in Fourier space.

We use (15.2) and (15.3) as the basis for the transfer function. This may be expressed as:

(
ΦXX(B) ΦXY (B)

G3(B) H3(B)

)(
Xt

Yt

)
=

(
ǫXt

eY t

)
.

The existence of joint autoregressive representation ensures that this can be inverted to express:

(
Xt

Yt

)
=

(
A11(B) A12(B)

A21(B) A22(B)

)(
ǫXt

eY t

)
.

We use:

Xt = A11(B)ǫXt +A12(B)eY t

Let TY denote the correlation matrix of eY t, then the spectral density of X may be written:

SX(λ) = Â11(λ)ΣXÂ
t
11 + Â12(λ)TY Â

t
12(λ)

where the hat denotes a Fourier transform.

The measure of linear feedback from Y to X in Fourier space is therefore defined as:
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fY→X(λ) = ln
|SX(λ)|

|Â12(λ)ΣXÂt
12(λ)|

.

This is the fraction of the spectral density of X which is due to the disturbance {eY t : t ∈ Z}.

242


