Chapter 13

Spectral Analysis

13.1 Spectral analysis

The spectral density f(-) of a stationary time series {X; : ¢ € Z} was introduced in Definition 2.3:

[ee]

1 ,
=5 e_m)‘fy(h), —r <A<,

h=—o00

ey
If 272 [v(h)| < 400, then it is clear that

v(h) = /_ﬂ A F(N) d. (13.1)

The following theorem gives a complete characterisation of the class of functions which are spectral

densities of stationary time series.

Theorem 13.1. A real-valued function f(-) on (—m, x| is the spectral density of a stationary time

series if and only if
1 f(A) = f(=A),
2. f(A) =0,
8. [T f(A)dX < 0.
Proof Firstly, proving that if the conditions on f are satisfied then it is the spectral density of a

stationary time series: Define v : Z — R by Equation (13.1). For any n vector (ay,...,a,), set
AN =210, a;e”*. Then

s

> qani -0 = [ | LagaePe ™) sgar= [ a0
7.k

k=1 -\ -

It follows that if f satisfies the conditions above, then this is clearly well defined and non-negative and
hence 7 is an ACVF by Theorem 1.12.
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Now assume that f is the spectral density of a stationary time series and prove that it satisfies the
conditions:

If f is a spectral density, then f satisfies equation (13.1) for some ACVF. It follows directly from
equation (13.1) that f(A) = f(=X) and [™_ f(A)dA = ~(0) < +oc. To show that f(A) is non negative:
since v is non negative definite, it follows that for any complex numbers a; satisfying j |aj|2 < 400,

>k ajary(j — k) > 0. Let (c) be any real numbers satisfying », ¢? < +00. Then

0< Zc ckel)‘(J k) v(j — Z chcerke Pry(p) = Z <Z CkCh+k> AR v(h).

7.k
A sequence of numbers (¢, ) can be chosen so that for each h lim, 400 ) 1 CnkCnptk = 1. For
example,
1 ||~ (+(1/n)/2
Cn,0 = 0o Cnk = o k #30
(1 + 22;‘:13 (1+(1/n)))1/2 (1 + 22]':1] (1+(1/n)))1/2

13.2 The spectral distribution

In some cases, the spectral density is not well defined. The following theorem gives an important

generalisation:

Theorem 13.2 (Herglotz’s theorem). A complex-valued function ~y(-) defined on Z is non-negative
definite if and only if

~v(h) = / e dF (V) for all h € Z,
(=m,m]

where F(-) is a right-continuous, non-decreasing, bounded function on [—m, 7] and F(—m) = 0.

Sketch of Proof Firstly, if
= [ marw)
(_7‘—77‘-}

where F' is right continuous, non decreasing, bounded on [—7, 7], then it is clear that v is non-negative
definite.

For the converse, assume that 7 is non-negative definite and define fx(v) as

N
1 —irv 1%
fN(I/) - m Z e '}/(7‘ 8)6
r,s=1
Then
In( — Z — |m|)y(m)e™™ >0 for all v € [—, 7.

|nﬂ<N

204



Set

Then
/ e dF, (v) = 1 — M ~v(m) /ﬂ eih=m)v gy,
(—m,m] N 27 N -

0, otherwise.

There exists a distribution function F' and a subsequence { Ny} such that

/(_ ]9(1/) dFn,(v) — g(v)dF(v) ask — oo,

(_7‘—7”]

for all continuous and bounded functions g. For each h, use the function
g(l/) — eihl/.
Ol

Let {X:} be a stationary time series with autocovariance function yx(-). It follows directly from

Theorem 13.2 that yx () has a spectral representation

vx(h) = /( ] e dFx (v).

The function F is called the spectral distribution function of v. If F(\) = f_)‘7r f(v)dv, then f is the
spectral density of . If 3% |vx(h)| < oo it follows that the spectral density ,fx is well defined and
Fx(\) = f_)‘ﬂ fx(v)dv and

vx(h) = / e fx (N) d),
from which
e .
fx(N) =o= " e x(n).
For a real valued time series, the spectral distribution is symmetric; that is,
Fx(/\) = Fx(ﬂ'i) - Fx(—)\i).

This may be seen by considering the limiting sequence of densities fy, which satisfy fn, (A\) = fn, (=)
so that

)= [ (e [ e = B )~ B (230

[7)‘777)
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from which the result follows. OJ
When Fx has a density fx it follows that fx(\) = fx(—A\) so that

vx(h) = /O ' (em + eﬂ“) fx(A\)dr =2 /0 ' cos(hA) fx (N) dA.

13.3 Spectral representation of a time series

The aim is to show that a time series {X;} has representation in terms of a process Z:

X = / edz(v).
(_71—777}

The process Z in the construction is a so-called orthogonal increment process. The following gives the
definition of an orthogonal increment process and also the definition of integration with respect to such

a process.

Definition 13.3 (Orthogonal-increment process). An orthogonal-increment process on [—m,w| is a

complez-valued process {Z(\)} such that the following three conditions hold:

(Z(N),Z(\) < o0, —m< A<,
(Z(N),1) =0, —m<A<m, (13.2)
(Z(M) = Z(A3), Z(A2) = Z(M)) = 0, if (A1, A2l N (Mg, Aa] = 0

where (X,Y) =E [XY].

The process {Z(\)} is assumed to be right continuous. That is,

|1ZA+38) = ZW | =E[|ZA+6) — Z(N)]*)] =0 asd 0.

Proposition 13.4. Let {Z(\) : —7 < X < 7} be an orthogonal-increment process. There ezists a

unique spectral distribution function F such that
FA)=0 A< —m,
F(\) = F(m) A>

and
Fu) = FO) = |1Z0) = ZO)%, —m<A<p<m (13.3)

Proof of Proposition 13.4 For F' to satisfy the prescribed conditions, it is clear, setting A = —r,
that
F(p)=2Z(w) - 2(-m)|*> -wm<p<m

To check that the function is non decreasing, use the orthgonality of Z(u) — Z(A\) and Z(\) — Z(—m)
for —m < A < p < 7. This gives
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F(p) = 12w = ZN) +Z(\) = Z(-)|?
= 2w = ZWIP+ 120 = Z(=m)|* = F(\)

so that the function is non decreasing. Furthermore, this also gives
F(u) = Z(n) = ZW|* + F(\)

so that
F(u) = F(A) = [1Z() = ZW)|1*.

The same calculation gives

F(u+08) — F(p) = | Z(u+8) — Z@)> 0 0.

O
13.3.1 Integration with respect to an Orthogonal Increment Process
The aim is to define an integral with respect to an orthogonal increment process:
1= [ swae) (13.4)
-7,

where {Z(\) : —m < A < 7} is an orthogonal increment process defined on the probability space
(Q, F,P) and f is any function on [—, 7] square integrable with respect to the distribution F associated
with Z. Consider the two Hilbert spaces L?(§2, F, IP) of all square-integrable random variables defined
on (Q, F, P) and L*([-n, 7], B, F) = L?(F) of all functions f such that f(ﬂwr] |[f(V)]?PdF(v) < oo.
The inner-product in L?(F) is defined by:

o= [ swe) o)
Let D C L?(F) be the set of all functions f of the form

FO) =D flpuaag), —m=X<...<Ag=m.
=0

Let I(f) denote the integration operation which, f € D, is defined by:

I(f) =Y fi(ZOin1) = Z(N)).-
i=0

The idea is to extend I to an isomorphism of L?([—m, 7], B, F) = L?(F) onto a subspace of L?(Q2, F,P).

For f,g € D, there is a representation
f(A) = Z filoupag V) g\ = Zgil(xi,/\m]()\)’
i=0 i=0
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and with this representation,

(I I@) = O filZ(Ni) = Z2(00), Y gi(Z(Nir1) = Z(W))
1=0 1=0
= S S (F i) — F(W) = /( SWTOMEE) = (F,9)1206)
i=0 T

Now let D denote the closure in L?(F) of D For any f € D, there is a Cauchy sequence (f,,) in D such
that || fn — fllz2(r) — 0. Therefore, define

I(f) = lim I(fn)

n—-+oo

in the mean squared sense. To check,

||I(fn> _I(fm)H = ”I(fn - fm)” = ||fn - fm||L2(F)'

From this, the sequence I(f,) is Cauchy and hence convergent in L?(2, 7, P) hence I(f) is well defined
for f € D. The mapping I is clearly an isomorphism and it can be extended to an isomorphism of
spa{D} onto a subspace of L?(Q, F, P). Furthermore D is dense in L?(F) and thus spa{D} = L?(F).
It follows that I is an isomorphism of L?(F) onto the subspace I(L?(F)) of L*(Q, F, P). This is the
formal definition of Equation (13.4).

Let {Z(X\) : —m < XA < 7} be an orthogonal increment process with associated distribution function F'.
Let
X, =I(e") = / evdzZ(v)  tel
(—7[',71']

then X is a stationary mean zero process with autocovariance function

E[X: X n] = /( }e“’hdF(u).

Having established the basic definitions, the main result of this section may now be stated and proved.

Theorem 13.5 (The Spectral Representation Theorem). Let {X;} be a stationary time series with
mean 0 and spectral distribution function F'. Then there exists a right continuous orthogonal increment

process such that:

1.

X = / edz(v) with probability 1. (13.5)
(_ﬂ-vﬂ-}

Firstly, we need to define Hilbert space isomorphisms.

208



Definition 13.6 (Hilbert space isomorphisms). An isomorphism of the Hilbert space Hi onto the
Hilbert space Ha is a one to one mapping T of Hi onto Ha such that for all f1, fo € H,

T(afi +bfa) =aT f1 +bT fo for all scalars a and b

and
<Tf17 Tf2>7'[2 = <f17 f2>H1'

The spaces Hi and Hsy are said to be isomorphic if there is an isomorphism T of Hyi onto Ho. The

mverse mapping T~ is then an isomorphism of Ha onto H;.

The following properties are clear:

T3, = [l

|Txn — Tx|y, — 0 if and only if ||z, — x|, — 0;

{Tx,} is a Cauchy sequence in Hy if and only if {z,} is a Cauchy sequence in H;.
e For any set A, TPSpia{x)\,/\GA}x = PSpia{T:t)\,)\GA}Tx‘

Let {X;} be a stationary time series defined on a probability space (£2, F, IP) with spectral distri-
bution function F. Let H and K denote all finite linear combinations of {X;} and {e?*'} respectively.

Their closures are:
H =spa{Xy, t € Z} C L*(Q, F,P) and K =spale’,tcZ} C L*(F).

We lift the standard result from Fourier analysis that K = L?(F). The mapping

T (Zn: ant]-> = zn: ajeitj'
j=1 i=1

is an isomorphism between H and K since

(oS0 ) r (S

_ <Z ajeitj- Z bke’isk-> — Z Z a]gk <eitj-’ eisk.>L2(F)
L2(F)

7=1 k=1 Jj=1k=1
S [ ) = 5 0 8, X = (B S0 )
j=1k=1 (=m.7] j=1 k=1 j=1 k=1

T can be extended to an isomorphism of H onto L?(F). The aim now is to find functions gy (v) € L*(F)

such that T~ 1gy = Z()\) where {Z()\)} is an orthogonal-increment process with distribution function

F'. Such functions must satisfy:

0, if pp < A1 < pg < Ag,

/(_M] (9320) = 9)) (90,00~ 9 ) ) dF () = PO F
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This is obtained if, for u < A,
9A(V) = 9u(V) = 1N () = La (V) = Lo (v)-
It is therefore it is natural to define

ZA) =T "1,y (13.6)

since clearly 1(_. \ € L?(F). For any f € D, i.e. for any f of the form

fQ) = Zfil()\i,)\i+1]()\)7 —T=X<...<App1 =T,
i=0

it follows that: . .
I(f) = fi(ZOie) = Z(N)) = Y _ T M pp =T7'f
i=0 i=0
Since both I and T~! can be extended to L?(F),
I=T"' on L*(F).

Using {Z(\)} defined by Equation (13.6) gives:

2
= [1Xe = 1) = ITXe = TIE) 2y = ™ = €[y = 0

HXt — / e dz(v)
(77(77"]

and hence the integral with respect to the orthogonal integral process of Equation (13.4) is established.

O

Remark Any Y € spa{Xy, t € Z} has the representation

/ f(v)dZ(v) for some f € L*(F).
(—7’[’,71’]
This follows from:
Y=ITY)= / TY (v)dZ(v) for f=TY.
(=m,m]

O

Remark Equation (13.5) has been derived only by using Hilbert spaces, i.e. by using ‘geometric’ or

covariance properties. Distributional properties follow from the fact that

Z(\) e spa{Xy, t € Z}.

If, for example, {X;} is Gaussian then, since linear combinations of (multivariate) normal random

variables are normal, it follows that {Z(\)} is a Gaussian process. O
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13.4 Prediction in the frequency domain

In Section 8.3, starting at page 133, it was mentioned that prediction based on infinitely many ob-
servations is best treated in the framework of spectral properties of the underlying time series. Let
us first consider prediction based on finitely many observations. As usual, let {X;} be a zero-mean

stationary time series and assume that we have observed Xi, ..., X,, and want to predict X,,1 . Then

Xn+h = Bspagx,,.. x,) Xnth = 00 Xn + .. on1.Xy
for some constants «y, . .. ap—1. By Theorem 13.5 (the spectral representation theorem) Equation (13.5),
it follows that:

Roin = /( W) (13.7)

where g(v) = Zz;é e ™R - Assume now that we have infinitely many observations (Xn—j)j>0. In
Equation (8.28), we assumed that the predictor could be represented as an infinite sum. This is not
always the case, but the predictor does always have a spectral representation of the form (13.7). The
aim is now to determine the function g(-).

Let {X:} be a zero-mean stationary time series with spectral distribution function F' and associated

orthogonal-increment process {Z(\)}. Recall from Section 13.3 that the mapping I defined by

)= [ gwaze)

is an isomorphism of L?(F) onto the subspace H = spa{Xy, t € Z} such that

I(e™) = X;.

The idea is to compute projections, i.e. predictors, in L2(F) and then apply I. More precisely:

P@{-’Q tSn}Xn—l-h = I(Pm{eit<7 tgn}ei(nﬁ—h)) .

Solution to the Prediction Problem The solution to the prediction problem is the function

- i(n+h)
g() -= L'spafeit, tgn}ez(nJr ) .
There is always a solution of this form, even when the infinite sum is not well defined. Of course,
when the infinite sum is not well defined, this solution may not be so useful, since it does not produce
coefficients needed for a well defined linear combination of the original series. It does, however, give
the coefficients up to some ‘proportionality’. For X; = Z; + Z;41 (the MA(1) process), let X, =
Pspa(x,m<0)(X1). Then the linear predictor may be regarded as the limit of Yy = %Zngn X;.
This may be expressed in terms of a function g(v), but not in terms of an infinite series.
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13.4.1 Spectral Representation for Predicting a Causal Invertible ARMA (p,q)

The causal invertible ARMA(p,q) process has a representation of the predictor in terms of an infinite
sum. The fact that the predictor has such a representation follows from Theorem 8.6; the following
argument shows how to compute the coefficients from the spectral representation.

Consider a causal invertible ARMA (p,q) process {X;}
#(B)X; =0(B)Z;,  {Z;} ~ WN(0,0?).
From Equation (2.4) of Theorem 2.4,

o2

T or

2

b(e”") — a(N)a(V).

¢(e=")
where the notation 6(x) = Y 0;27 and the quantity a()) is defined as:

Ix(N)

922) |z| < 1.

o 0o . [e’e)
a(N) = N kz_owke kA where kz_owkzk = 2 <

From the projection theorem, it follows that g(-) := Pspgeit, tgn}ei(’”rh)' satisfies:

<ei(n+h)- —g(), eim-> _ /_: (ei(n+h)A _ g(/\)> emA i (M) dA

L2(F)

™
= / <ez(n‘"h)A - g(/\)) e"mAa(N)a(\) dr =0 for m < n.
It follows that:

(ei(”Jrh))‘ - g(/\)) a(N)a(\) € M, :=5paf{e™, m >n} C L3(d\).

Since {X};} is invertible, it follows that ﬁ = @ S o ke~ and hence:
1 ==/ im- 2
a0) € spa{e™, m <0} C L*(d)),
a .
from which:
1 ,
0 € spafe™, m >0} C L*(d\).
a .

It follows that

(11— () al-)

I
/N
o)

=
3
+
Z
|
Q
—~
N
N—
Q
—
S—
Q
—~
S~—
m
+

Set:

eHRa(3) = g(Na(h) + (N = g (1)) a(n).
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Since g(-)a(-) € spa{e’™, m < n} and spa{e™, m < n} L M, in L%(d)\), and furthermore an
element, here ei(”J“h)'a(-), has a unique decomposition in two orthogonal Hilbert spaces, it follows
that:

g i = —1
g(Na(A) = \/T—Fem)‘ Z Vkthe "
k=0

It follows that:

o] —3 0
g()\) — ginA Zk:o Vkthe i — Zajei(n*j))\.
=0

Q(e_i)\)
$e=N)
An application of the map I gives:
o0
P@{Xz, tgn}XnJrh = Z o Xp_j.
§=0

Example 13.1 (AR(1) process).

From Example 8.1, )?n+1 = ¢1X,, from which it follows directly that )A(nJrh = ¢}1LXn. This also follows
from the derivation above. For the AR(1), 8(z) = 1, ¢(2) = 1 — ¢12 and by, = ¢¥. It follows that:

0o k+h_—ik\
g(\) = oinX Zk:() ¢ e d)ilzein)\
= - = ,
1,¢1e—i>\

and the predictor follows. O
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Spectral Analysis: Written Exercises

1. Let {X;} and {Y;} be stationary processes where
Xt - aXt_l = Wt {Wt} ~ WN(O, 0'2)
Y, —aY,_1 =X+ Z; {Zt} NWN(O,O'Q)
where |o| < 1 and {W;} and {Z;} are uncorrelated. Compute the spectral density of {Y;}.

2. Let {X;} be the MA(1) process:
Xi=2—2Z 1 {Z} ~WN(0,0?)

Given € > 0, find a positive integer k(e) and constants ag = 1, a1, ..., a such that the spectral

density of the process
k
Yi=> aXi
=0

satisfies
1

fr(A) = 5-V(¥)

sup o

—n<A<m

< €.

3. Let {X;} be a stationary time series with spectral density f satisfying 0 < f(A) < K and
f(m) #0. Let f,, denote the spectral density of the series ¥; = (1 — B)"X;.

(a) Express fp(A) in terms of f,_1(A) and hence evaluate fy,(A).

(b) Show that lim,, ;:83 = 0 for each A\ € (—m, ).

4. Let {Z(v) : —m < v < 7} be an orthogonal increment process with associated distribution
function F. Let ¢ € L*(F).

(a) Prove that
wmo—/ P(N)AZ(\)  —r<v<n
(_ﬂ-al/}

is an orthogonal increment process with associated distribution function
G0 = [ PAEQ)
(77Tvy]
(b) Prove that if g € L?(G) then gy € L?(F) and that
| marey= [ gz,

(c) Prove that if [¢p| > 0 (except possibly on a set of F-measure zero) then

1

“”‘Z“”:Aﬂﬂwm
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5. Let {X;} be a stationary process with spectral representation
X, =/ edZx (v) t=0,+1,42,...
(_ﬂ-ﬂﬂ-}

where
1

li E
no E(v+h) — F(v—h) {
F is a distribution function on [—7, 7], ¢ # 0 F-almost everywhere, ¢ € L?(F). Prove that

Zx (v +h) = Zx(v = W] = o)

1
Y, _/ e —_dZx(v teZ
' (—m,m] ¢<V) X( )

is a stationary process and compute its spectral density f.

6. Let {X;} be the moving average

Xe= Y iZi;  {Z}~WN(©,0?

j=—00

oo

Find the spectral density of {X;}.

where

L) ko
o k=0

7. Suppose that

t ¢ 1
X, = Acos (g) + Bsin (g) tZi+ 52 t=0,ELE2,

where {Z;} ~ WN(0,1) and A and B are uncorrelated random variables with mean 0, variance 4
and satisfying E[AZ;] = E[BZ;] = 0 for each t € Z. Find the best linear predictor of X;1; based
on X; and X;—;. What is the mean squared error of the best linear predictor of X;1; based on
{Xj:—00<j<t}?

8. Recall the definition of deterministic and recall the Wold decomposition. Let {Y;} be the MA(1)
process
Yi=2Z;+25Z1  {Z;} ~ WN(0,0%).

Define:
X¢ = Acos(wt) + Bsin(wt) + Y;

where A and B are uncorrelated (0, %) variables and are uncorrelated with {V;}.
(a) Show that {X;} is non-deterministic.

(b) Determine the Wold decomposition of {X;}.

(c) What are the components of the spectral distribution function of {X;} corresponding to the

deterministic and purely non-deterministic components of the Wold decomposition?
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Answers

1. Firstly, the spectral density for X may be computed by:
(Xtrn — aXppn—1) (Xt — aXy) = Wipn Wi
giving
(1+0®)x (h) — alyx (h +1) +9x(h = 1)) = 0*19(h)

so that
2

(1+0?)fx(V) = a(e™ + e fx (V) = T

0.2

2m(1 + a? — 2acos(N))

fx(A) =
For the spectral density of Y,

(1 +a®)yy (h) = alyy (h+ 1) + 9y (h = 1)) = 7x(h) + 0”10 (h)

(1+a? —2acos(\)fy(\) = fx(\) + 072

27
o? o2
A) = .
Frd) 27(1 4+ a? — 2acos(N))? * 27(1 + a? — 2acos(N))
2. Here
502 h=0
yx(h) =4 —20% h=+1
0 |h| > 2
SO
1 o) ' k k
Q) =g 30 €YY anapix(h—ji+ )
h=—c0 Jj1=072=0
giving
1 o) ' k
fyr(A) = o e Z aj (5ajin — 2aj4p-1 — 2a4p41) -
h=—00 7=0
(ap=1,a; =0 for j > k+ 1. Solving 2 — 5z + 22% = 0, for |z| < 1 gives z = 1.25 — v/1.25%2 — 1.
Set
a; = x’ j=0,...,k
for this value of x, then
o 2k—1
FrN) =2 ((5 —22) + 2% (52 — ))

o2 F . » - 0% .
2;:: ( Ay =i (58 _ gk 1)> - ka:% (e Ak+1) | ¢ (/\(k—H)))

v+ (s — 4 k_l)icos()\h) k27 sk 4 1)
= — — (52" — 4z — N — :
™ t Vs ™

h=1
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so that

1 0'2 k—1 20'2 k
vy <Z 442
) = oo V| < Tkt = 1) + 2T

from which the result may easily be obtained.
3. Let Y = (I — B)X, then
fr(A) =2(1 — cos(A)) fx (A)

SO

fa(A) = 2(1 = cos(M)) fu1(A),  fu(A) = 2"(1 = cos(N))" fx ().

B 1)
Fulm) — 2o T

from which the result follows.

4. (a) This follows from approximations:

W W) =" (M) (ZOnj1) = Z(n)-

Aj<v

Clearly mean zero, orthogonal increments, and prescribed variance:

E[W ()W ()] = / WV PAF(N).

(_7T7V]
(b)
oo > / 192G = / g2l PdF = gv € L2(F)

(c¢) From previous part, require: il(_my] € L%(G) for each v. Let K = ess min|¢()\)| then

1 1 )
| oopeN < g [ WOOPAEO) < oo

because ¢ € L?(F). The result follows:

1
/<—7r,u] @dW(A) - /(_W] dZ(\) = Z(v) — Z(—).

5. Clearly E[Y;] = 0 and

ElY;Y s = / itV g—i(t+s)v dF (1) = / oISV dF (v
el = P EW= a0 BoEE®)

_ /We_is”dyz 2r s=0
— 0 s==+£1,£2,...

which does not depend on ¢, hence stationary, and

R = oo ey =1 Ae(mal
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0'2 .,
fx(N) = o1 3 wje™ PP
J

;1/;]-@‘”“ — ot % T sinj(j)e_m — o+ % 3 21] (eij(l—)\) _ e—ij(l—i—)\))

j#0 J#0

1 > 1 g . g g
— ¢0 + Z — ez](l—/\) . e—zy(l—)\) + ez](l-i—)\) - e—z](l-l—/\)
o 243 ( )

o
Now use:
0 g 1 ...
/ e_(a""lﬂ)]da — *,6_1’61.
0 J
so that:
o0 [e'e) )
Lo-iss /OO —(a+iB)j /OO e~ (atif) 1
Z = do = ——  da=ln—
;je ; 0 ‘ “ 0o 1—e(atib) @ nl—e_lﬁ
giving
,e_i)\j — 0+ L —In(1 — ei(l—)\) + In(1 — e—i(l—)\) —In(1 — ei(l—i—A) + In(1 — e_i(1+)\)
’ 4
- )
J
1
= o — %

7.
Xip1 = aXy + X 1.
From the definition,
1
7(0) =525 (1) = 4cosg +5=25
C(Xes1, Xi) = C(Xp41, Xp) = (1) = ay(0) + By(1) = 5.250 + 2.53 = 2.5
PN 2
C(Xi1, Xi—1) = 4 cos ?ﬂ = —2=a7(1) + y(0) = 2.5a + 5.258 = —2.
a ~ 0.8504 8 ~ —0.7859
For the second part: V(Z;) = 1.
8. (a)

M_ ={A,B}
hence non-deterministic (since M_o; is non empty).
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(b) For Wold decomposition, V; = A cos(wt) + Bsin(wt), o = 1, 1 = 2.5, ¢y, = 0 for k # 0, 1.

Xi =V + Z%‘Zt—j
J

Ix(A) = fr(A) + fr(N)

v (h) = o3 cos(wh)

Spectral density: sum is not well defined; instead consider
1 _. 1 1 . .
_ 2 L i _ 1t = (=i wh | —i(Atw)h
G =ty e W(h)_QZZ,h(e’ wh 4 =il )
h£0 he£0

Now use (previous question)

2
so that )
d o
Jv(A) EG()\) 7
72502 h=0
yy(h) =14 2502 h==+l
0 |h| > 2
7.2502 o?
fr(\) = o + 52— cos(A)
Ix=fy+fv.

219



