
Chapter 13

Spectral Analysis

13.1 Spectral analysis

The spectral density f(·) of a stationary time series {Xt : t ∈ Z} was introduced in Definition 2.3:

f(λ) =
1

2π

∞∑

h=−∞
e−ihλγ(h), −π ≤ λ ≤ π.

If
∑∞

h=−∞ |γ(h)| < +∞, then it is clear that

γ(h) =

∫ π

−π
eihλf(λ) dλ. (13.1)

The following theorem gives a complete characterisation of the class of functions which are spectral

densities of stationary time series.

Theorem 13.1. A real-valued function f(·) on (−π, π] is the spectral density of a stationary time

series if and only if

1. f(λ) = f(−λ),

2. f(λ) ≥ 0,

3.
∫ π
−π f(λ) dλ <∞.

Proof Firstly, proving that if the conditions on f are satisfied then it is the spectral density of a

stationary time series: Define γ : Z → R by Equation (13.1). For any n vector (a1, . . . , an), set

A(λ) =
∑n

j=1 aje
ijλ. Then

n∑

j,k=1

ajakγ(j − k) =

∫ π

−π


∑

j,k

ajake
ijλe−ikλ


 f(λ)dλ =

∫ π

−π
|A(λ)|2f(λ)dλ.

It follows that if f satisfies the conditions above, then this is clearly well defined and non-negative and

hence γ is an ACVF by Theorem 1.12.
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Now assume that f is the spectral density of a stationary time series and prove that it satisfies the

conditions:

If f is a spectral density, then f satisfies equation (13.1) for some ACVF. It follows directly from

equation (13.1) that f(λ) = f(−λ) and
∫ π
−π f(λ)dλ = γ(0) < +∞. To show that f(λ) is non negative:

since γ is non negative definite, it follows that for any complex numbers aj satisfying
∑

j |aj |2 < +∞,∑
j,k ajakγ(j − k) ≥ 0. Let (ck) be any real numbers satisfying

∑
k c

2
k < +∞. Then

0 ≤
∑

j,k

cjcke
iλ(j−k)γ(j − k) =

∑

k

∑

p

ckcp+ke
iλpγ(p) =

∑

h

(
∑

k

ckch+k

)
eiλhγ(h).

A sequence of numbers (cn,k) can be chosen so that for each h limn→+∞
∑

k cn,kcn,h+k = 1. For

example,

cn,0 =
1

(1 + 2
∑∞

j=1 j
−(1+(1/n)))1/2

cn,k =
|k|−(1+(1/n))/2

(1 + 2
∑∞

j=1 j
−(1+(1/n)))1/2

k 6= 0.

13.2 The spectral distribution

In some cases, the spectral density is not well defined. The following theorem gives an important

generalisation:

Theorem 13.2 (Herglotz’s theorem). A complex-valued function γ(·) defined on Z is non-negative

definite if and only if

γ(h) =

∫

(−π,π]
eihν dF (ν) for all h ∈ Z,

where F (·) is a right-continuous, non-decreasing, bounded function on [−π, π] and F (−π) = 0.

Sketch of Proof Firstly, if

γ(h) =

∫

(−π,π]
eihν dF (ν),

where F is right continuous, non decreasing, bounded on [−π, π], then it is clear that γ is non-negative

definite.

For the converse, assume that γ is non-negative definite and define fN (ν) as:

fN (ν) :=
1

2πN

N∑

r,s=1

e−irνγ(r − s)eisν .

Then

fN (ν) =
1

2πN

∑

|m|<N
(N − |m|)γ(m)e−imν ≥ 0 for all ν ∈ [−π, π].
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Set

FN (λ) =

∫ λ

−π
fN (ν) dν.

Then

∫

(−π,π]
eihν dFN (ν) =

1

2π

∑

|m|<N

(
1− |m|

N

)
γ(m)

∫ π

−π
ei(h−m)ν dν

=





(
1− |h|

N

)
γ(h), |h| < N,

0, otherwise.

There exists a distribution function F and a subsequence {Nk} such that
∫

(−π,π]
g(ν) dFNk

(ν) →
∫

(−π,π]
g(ν) dF (ν) as k → ∞,

for all continuous and bounded functions g. For each h, use the function

g(ν) = eihν .

Let {Xt} be a stationary time series with autocovariance function γX(·). It follows directly from

Theorem 13.2 that γX(·) has a spectral representation

γX(h) =

∫

(−π,π]
eihν dFX(ν).

The function F is called the spectral distribution function of γ. If F (λ) =
∫ λ
−π f(ν) dν, then f is the

spectral density of γ. If
∑∞

−∞ |γX(h)| <∞ it follows that the spectral density ,fX is well defined and

FX(λ) =
∫ λ
−π fX(ν) dν and

γX(h) =

∫ π

−π
eihλfX(λ) dλ,

from which

fX(λ) =
1

2π

∞∑

n=−∞
e−inλγX(n).

For a real valued time series, the spectral distribution is symmetric; that is,

FX(λ) = FX(π
−)− FX(−λ−).

This may be seen by considering the limiting sequence of densities fNk
which satisfy fNk

(λ) = fNk
(−λ)

so that

FNk
(λ) =

∫

(−π,λ]
fNk

(−x)dx =

∫

[−λ,π)
fNk

(x)dx = FNk
(π−)− FNk

(−λ−)
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from which the result follows.

When FX has a density fX it follows that fX(λ) = fX(−λ) so that

γX(h) =

∫ π

0

(
eihλ + e−ihλ

)
fX(λ) dλ = 2

∫ π

0
cos(hλ)fX(λ) dλ.

13.3 Spectral representation of a time series

The aim is to show that a time series {Xt} has representation in terms of a process Z:

Xt =

∫

(−π,π]
eitνdZ(ν).

The process Z in the construction is a so-called orthogonal increment process. The following gives the

definition of an orthogonal increment process and also the definition of integration with respect to such

a process.

Definition 13.3 (Orthogonal-increment process). An orthogonal-increment process on [−π, π] is a

complex-valued process {Z(λ)} such that the following three conditions hold:





〈Z(λ), Z(λ)〉 <∞, −π ≤ λ ≤ π,

〈Z(λ), 1〉 = 0, −π ≤ λ ≤ π,

〈Z(λ4)− Z(λ3), Z(λ2)− Z(λ1)〉 = 0, if (λ1, λ2] ∩ (λ3, λ4] = ∅
(13.2)

where 〈X,Y 〉 = E
[
XY

]
.

The process {Z(λ)} is assumed to be right continuous. That is,

‖Z(λ+ δ)− Z(λ)‖ = E
[
|Z(λ+ δ)− Z(λ)|2

]
→ 0 as δ ↓ 0.

Proposition 13.4. Let {Z(λ) : −π ≤ λ ≤ π} be an orthogonal-increment process. There exists a

unique spectral distribution function F such that

F (λ) = 0 λ ≤ −π,

F (λ) = F (π) λ ≥ π

and

F (µ)− F (λ) = ‖Z(µ)− Z(λ)‖2, −π ≤ λ ≤ µ ≤ π. (13.3)

Proof of Proposition 13.4 For F to satisfy the prescribed conditions, it is clear, setting λ = −π,

that

F (µ) = ‖Z(µ)− Z(−π)‖2 − π ≤ µ ≤ π.

To check that the function is non decreasing, use the orthgonality of Z(µ)− Z(λ) and Z(λ)− Z(−π)
for −π ≤ λ ≤ µ ≤ π. This gives
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F (µ) = ‖Z(µ)− Z(λ) + Z(λ)− Z(−π)‖2

= ‖Z(µ)− Z(λ)‖2 + ‖Z(λ)− Z(−π)‖2 ≥ F (λ)

so that the function is non decreasing. Furthermore, this also gives

F (µ) = ‖Z(µ)− Z(λ)‖2 + F (λ)

so that

F (µ)− F (λ) = ‖Z(µ)− Z(λ)‖2.

The same calculation gives

F (µ+ δ)− F (µ) = ‖Z(µ+ δ)− Z(µ)‖2 → 0 δ ↓ 0.

13.3.1 Integration with respect to an Orthogonal Increment Process

The aim is to define an integral with respect to an orthogonal increment process:

I(f) =

∫

(−π,π]
f(ν)dZ(ν) (13.4)

where {Z(λ) : −π ≤ λ ≤ π} is an orthogonal increment process defined on the probability space

(Ω,F ,P) and f is any function on [−π, π] square integrable with respect to the distribution F associated

with Z. Consider the two Hilbert spaces L2(Ω, F , P) of all square-integrable random variables defined

on (Ω, F , P) and L2([−π, π], B, F ) = L2(F ) of all functions f such that
∫
(−π,π] |f(ν)|2 dF (ν) < ∞.

The inner-product in L2(F ) is defined by:

〈f, g〉 =
∫

(−π,π]
f(ν)g(ν) dF (ν).

Let D ⊆ L2(F ) be the set of all functions f of the form

f(λ) =
n∑

i=0

fi1(λi,λi+1](λ), −π = λ0 < . . . < λn+1 = π.

Let I(f) denote the integration operation which, f ∈ D, is defined by:

I(f) =

n∑

i=0

fi (Z(λi+1)− Z(λi)) .

The idea is to extend I to an isomorphism of L2([−π, π],B, F ) ≡ L2(F ) onto a subspace of L2(Ω,F ,P).
For f, g ∈ D, there is a representation

f(λ) =
n∑

i=0

fi1(λi,λi+1](λ) g(λ) =
n∑

i=0

gi1(λi,λi+1](λ),
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and with this representation,

〈I(f), I(g)〉 = 〈
n∑

i=0

fi(Z(λi+1)− Z(λi)),
n∑

i=0

gi(Z(λi+1)− Z(λi))〉

=
n∑

i=0

figi(F (λi+1)− F (λi)) =

∫

(−π,π]
f(ν)g(ν)dF (ν) = 〈f, g〉L2(F ).

Now let D denote the closure in L2(F ) of D For any f ∈ D, there is a Cauchy sequence (fn) in D such

that ‖fn − f‖L2(F ) → 0. Therefore, define

I(f) = lim
n→+∞

I(fn)

in the mean squared sense. To check,

‖I(fn)− I(fm)‖ = ‖I(fn − fm)‖ = ‖fn − fm‖L2(F ).

From this, the sequence I(fn) is Cauchy and hence convergent in L2(Ω,F ,P) hence I(f) is well defined

for f ∈ D. The mapping I is clearly an isomorphism and it can be extended to an isomorphism of

spa{D} onto a subspace of L2(Ω, F , P). Furthermore D is dense in L2(F ) and thus spa{D} = L2(F ).

It follows that I is an isomorphism of L2(F ) onto the subspace I(L2(F )) of L2(Ω, F , P). This is the

formal definition of Equation (13.4).

Let {Z(λ) : −π ≤ λ ≤ π} be an orthogonal increment process with associated distribution function F .

Let

Xt = I(eit.) =

∫

(−π,π]
eitνdZ(ν) t ∈ Z

then X is a stationary mean zero process with autocovariance function

E[XtXt+h] =

∫

(−π,π]
eiνhdF (ν).

Having established the basic definitions, the main result of this section may now be stated and proved.

Theorem 13.5 (The Spectral Representation Theorem). Let {Xt} be a stationary time series with

mean 0 and spectral distribution function F . Then there exists a right continuous orthogonal increment

process such that:

1.

E[(Z(λ)− Z(−π))2] = F (λ) − π ≤ λ ≤ π

2.

Xt =

∫

(−π,π]
eitνdZ(ν) with probability 1. (13.5)

Firstly, we need to define Hilbert space isomorphisms.
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Definition 13.6 (Hilbert space isomorphisms). An isomorphism of the Hilbert space H1 onto the

Hilbert space H2 is a one to one mapping T of H1 onto H2 such that for all f1, f2 ∈ H1,

T (af1 + bf2) = aTf1 + bTf2 for all scalars a and b

and

〈Tf1, T f2〉H2
= 〈f1, f2〉H1

.

The spaces H1 and H2 are said to be isomorphic if there is an isomorphism T of H1 onto H2. The

inverse mapping T−1 is then an isomorphism of H2 onto H1.

The following properties are clear:

• ‖Tx‖H2
= ‖x‖H1

;

• ‖Txn − Tx‖H2
→ 0 if and only if ‖xn − x‖H1

→ 0;

• {Txn} is a Cauchy sequence in H2 if and only if {xn} is a Cauchy sequence in H1.

• For any set Λ, TPspa{xλ, λ∈Λ}x = Pspa{Txλ, λ∈Λ}Tx.

Let {Xt} be a stationary time series defined on a probability space (Ω, F , P) with spectral distri-

bution function F . Let H and K denote all finite linear combinations of {Xt} and {eit·} respectively.

Their closures are:

H = spa{Xt, t ∈ Z} ⊂ L2(Ω, F , P) and K = spa{eit·, t ∈ Z} ⊆ L2(F ).

We lift the standard result from Fourier analysis that K = L2(F ). The mapping

T

( n∑

j=1

ajXtj

)
=

n∑

j=1

aje
itj ·

is an isomorphism between H and K since
〈
T

( n∑

j=1

ajXtj

)
, T

( m∑

k=1

bkXsk

)〉

=

〈
n∑

j=1

aje
itj ·

m∑

k=1

bke
isk·
〉

L2(F )

=
n∑

j=1

m∑

k=1

ajbk
〈
eitj ·, eisk·

〉
L2(F )

=
n∑

j=1

m∑

k=1

ajbk

∫

(−π,π]
ei(tj−sk)ν dF (ν) =

n∑

j=1

m∑

k=1

ajbk
〈
Xtj , Xsk

〉
L2(Ω,F ,P) =

〈
n∑

j=1

ajXtj ,

m∑

k=1

bkXsk

〉
.

T can be extended to an isomorphism of H onto L2(F ). The aim now is to find functions gλ(ν) ∈ L2(F )

such that T−1gλ = Z(λ) where {Z(λ)} is an orthogonal-increment process with distribution function

F . Such functions must satisfy:

∫

(−π,π]

(
gλ2(ν)− gµ2(ν)

)(
gλ1(ν)− gµ1(ν)

)
dF (ν) =




0, if µ1 < λ1 < µ2 < λ2,

F (λ1)− F (µ2), if µ1 < µ2 < λ1 < λ2.
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This is obtained if, for µ < λ,

gλ(ν)− gµ(ν) = 1(µ,λ](ν) = 1(−π,λ](ν)− 1(−π,µ](ν).

It is therefore it is natural to define

Z(λ) = T−1
1(−π,λ] (13.6)

since clearly 1(−π,λ] ∈ L2(F ). For any f ∈ D, i.e. for any f of the form

f(λ) =
n∑

i=0

fi1(λi,λi+1](λ), −π = λ0 < . . . < λn+1 = π,

it follows that:

I(f) =
n∑

i=0

fi (Z(λi+1)− Z(λi)) =
n∑

i=0

fiT
−1

1(λi,λi+1] = T−1f.

Since both I and T−1 can be extended to L2(F ),

I = T−1 on L2(F ).

Using {Z(λ)} defined by Equation (13.6) gives:

∥∥∥∥Xt −
∫

(−π,π]
eitν dZ(ν)

∥∥∥∥
2

=
∥∥Xt − I(eit·)

∥∥2 =
∥∥TXt − TI(eit·)

∥∥2
L2(F )

=
∥∥eit· − eit·

∥∥2
L2(F )

= 0

and hence the integral with respect to the orthogonal integral process of Equation (13.4) is established.

Remark Any Y ∈ spa{Xt, t ∈ Z} has the representation

∫

(−π,π]
f(ν) dZ(ν) for some f ∈ L2(F ).

This follows from:

Y = IT (Y ) =

∫

(−π,π]
TY (ν) dZ(ν) for f = TY.

Remark Equation (13.5) has been derived only by using Hilbert spaces, i.e. by using ‘geometric’ or

covariance properties. Distributional properties follow from the fact that

Z(λ) ∈ spa{Xt, t ∈ Z}.

If, for example, {Xt} is Gaussian then, since linear combinations of (multivariate) normal random

variables are normal, it follows that {Z(λ)} is a Gaussian process.
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13.4 Prediction in the frequency domain

In Section 8.3, starting at page 133, it was mentioned that prediction based on infinitely many ob-

servations is best treated in the framework of spectral properties of the underlying time series. Let

us first consider prediction based on finitely many observations. As usual, let {Xt} be a zero-mean

stationary time series and assume that we have observed X1, . . . , Xn and want to predict Xn+h. Then

X̂n+h = Pspa{X1,...,Xn}Xn+h = α0Xn + . . . αn−1X1

for some constants α0, . . . αn−1. By Theorem 13.5 (the spectral representation theorem) Equation (13.5),

it follows that:

X̂n+h =

∫

(−π,π]
g(ν) dZ(ν) (13.7)

where g(ν) =
∑n−1

k=0 αke
i(n−k)ν . Assume now that we have infinitely many observations (Xn−j)j≥0. In

Equation (8.28), we assumed that the predictor could be represented as an infinite sum. This is not

always the case, but the predictor does always have a spectral representation of the form (13.7). The

aim is now to determine the function g(·).
Let {Xt} be a zero-mean stationary time series with spectral distribution function F and associated

orthogonal-increment process {Z(λ)}. Recall from Section 13.3 that the mapping I defined by

I(g) =

∫

(−π,π]
g(ν) dZ(ν)

is an isomorphism of L2(F ) onto the subspace H = spa{Xt, t ∈ Z} such that

I(eit·) = Xt.

The idea is to compute projections, i.e. predictors, in L2(F ) and then apply I. More precisely:

Pspa{Xt, t≤n}Xn+h = I
(
Pspa{eit·, t≤n}e

i(n+h)·
)
.

Solution to the Prediction Problem The solution to the prediction problem is the function

g(.) := Pspa{eit·, t≤n}e
i(n+h)·.

There is always a solution of this form, even when the infinite sum is not well defined. Of course,

when the infinite sum is not well defined, this solution may not be so useful, since it does not produce

coefficients needed for a well defined linear combination of the original series. It does, however, give

the coefficients up to some ‘proportionality’. For Xt = Zt + Zt+1 (the MA(1) process), let X̂1 =

Pspa(Xn:n≤0)(X1). Then the linear predictor may be regarded as the limit of Y (n) = 1
n

∑0
j=−nXj .

This may be expressed in terms of a function g(ν), but not in terms of an infinite series.
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13.4.1 Spectral Representation for Predicting a Causal Invertible ARMA(p,q)

The causal invertible ARMA(p,q) process has a representation of the predictor in terms of an infinite

sum. The fact that the predictor has such a representation follows from Theorem 8.6; the following

argument shows how to compute the coefficients from the spectral representation.

Consider a causal invertible ARMA(p,q) process {Xt}

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN(0, σ2).

From Equation (2.4) of Theorem 2.4,

fX(λ) =
σ2

2π

∣∣∣∣
θ(e−iλ)
φ(e−iλ)

∣∣∣∣
2

= a(λ)a(λ).

where the notation θ(x) =
∑
θjx

j and the quantity a(λ) is defined as:

a(λ) =
σ√
2π

∞∑

k=0

ψke
−ikλ where

∞∑

k=0

ψkz
k =

θ(z)

φ(z)
, |z| ≤ 1.

From the projection theorem, it follows that g(·) := Pspa{eit·, t≤n}e
i(n+h)· satisfies:

〈
ei(n+h)· − g(·), eim·

〉
L2(F )

=

∫ π

−π

(
ei(n+h)λ − g(λ)

)
eimλfX(λ) dλ

=

∫ π

−π

(
ei(n+h)λ − g(λ)

)
e−imλa(λ)a(λ) dλ = 0 for m ≤ n.

It follows that:

(
ei(n+h)λ − g(λ)

)
a(λ)a(λ) ∈ M+ := spa{eim·, m > n} ⊂ L2(dλ).

Since {Xt} is invertible, it follows that 1
a(λ) =

√
2π
σ

∑∞
k=0 πke

−ikλ and hence:

1

a(·) ∈ spa{eim·, m ≤ 0} ⊂ L2(dλ),

from which:
1

a(·)
∈ spa{eim·, m ≥ 0} ⊂ L2(dλ).

It follows that

(
ei(n+h)· − g(·)

)
a(·) =

(
ei(n+h)· − g(·)

)
a(·)a(·) · 1

a(·)
∈ M+.

Set:

ei(n+h)λa(λ) = g(λ)a(λ) +
(
ei(n+h)λ − g(λ)

)
a(λ).
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Since g(·)a(·) ∈ spa{eim·, m ≤ n} and spa{eim·, m ≤ n} ⊥ M+ in L2(dλ), and furthermore an

element, here ei(n+h)·a(·), has a unique decomposition in two orthogonal Hilbert spaces, it follows

that:

g(λ)a(λ) =
σ√
2π
einλ

∞∑

k=0

ψk+he
−ikλ.

It follows that:

g(λ) = einλ
∑∞

k=0 ψk+he
−ikλ

θ(e−iλ)
φ(e−iλ)

:=

∞∑

j=0

αje
i(n−j)λ.

An application of the map I gives:

Pspa{Xt, t≤n}Xn+h =
∞∑

j=0

αjXn−j .

Example 13.1 (AR(1) process).

From Example 8.1, X̂n+1 = φ1Xn from which it follows directly that X̂n+h = φh1Xn. This also follows

from the derivation above. For the AR(1), θ(z) = 1, φ(z) = 1− φ1z and ψk = φk1. It follows that:

g(λ) = einλ
∑∞

k=0 φ
k+h
1 e−ikλ

1
1−φ1e−iλ

= φh1e
inλ,

and the predictor follows.
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Spectral Analysis: Written Exercises

1. Let {Xt} and {Yt} be stationary processes where

{
Xt − αXt−1 =Wt {Wt} ∼ WN(0, σ2)

Yt − αYt−1 = Xt + Zt {Zt} ∼ WN(0, σ2)

where |α| < 1 and {Wt} and {Zt} are uncorrelated. Compute the spectral density of {Yt}.

2. Let {Xt} be the MA(1) process:

Xt = Zt − 2Zt−1 {Zt} ∼ WN(0, σ2)

Given ǫ > 0, find a positive integer k(ǫ) and constants a0 = 1, a1, . . . , ak such that the spectral

density of the process

Yt =
k∑

j=0

ajXt−j

satisfies

sup
−π≤λ≤π

∣∣∣∣fY (λ)−
1

2π
V(Yt)

∣∣∣∣ < ǫ.

3. Let {Xt} be a stationary time series with spectral density f satisfying 0 ≤ f(λ) ≤ K and

f(π) 6= 0. Let fn denote the spectral density of the series Yt = (1−B)nXt.

(a) Express fn(λ) in terms of fn−1(λ) and hence evaluate fn(λ).

(b) Show that limn→+∞
fn(λ)
fn(π)

= 0 for each λ ∈ (−π, π).

4. Let {Z(ν) : −π ≤ ν ≤ π} be an orthogonal increment process with associated distribution

function F . Let ψ ∈ L2(F ).

(a) Prove that

W (ν) =

∫

(−π,ν]
ψ(λ)dZ(λ) − π ≤ ν ≤ π

is an orthogonal increment process with associated distribution function

G(ν) =

∫

(−π,ν]
|ψ(λ)|2dF (λ)

(b) Prove that if g ∈ L2(G) then gψ ∈ L2(F ) and that

∫

(−π,π]
g(λ)dW (λ) =

∫

(−π,π]
g(λ)ψ(λ)dZ(λ).

(c) Prove that if |ψ| > 0 (except possibly on a set of F -measure zero) then

Z(ν)− Z(−π) =
∫

(−π,ν]

1

ψ(λ)
dW (λ) − π ≤ ν ≤ π
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5. Let {Xt} be a stationary process with spectral representation

Xt =

∫

(−π,π]
eitνdZX(ν) t = 0,±1,±2, . . .

where

lim
h↓0

1

F (ν + h)− F (ν − h)
E

[
|ZX(ν + h)− ZX(ν − h)|2

]
= |φ(ν)|2

F is a distribution function on [−π, π], φ 6= 0 F -almost everywhere, φ ∈ L2(F ). Prove that

Yt =

∫

(−π,π]
eitν

1

φ(ν)
dZX(ν) t ∈ Z

is a stationary process and compute its spectral density f .

6. Let {Xt} be the moving average

Xt =

∞∑

j=−∞
ψjZt−j {Zt} ∼ WN(0, σ2)

where

ψk =

{
1
π

(
sin k
k

)
k 6= 0

ψ0 k = 0

Find the spectral density of {Xt}.

7. Suppose that

Xt = A cos

(
πt

3

)
+B sin

(
πt

3

)
+ Zt +

1

2
Zt−1 t = 0,±1,±2, . . .

where {Zt} ∼ WN(0, 1) and A and B are uncorrelated random variables with mean 0, variance 4

and satisfying E[AZt] = E[BZt] = 0 for each t ∈ Z. Find the best linear predictor of Xt+1 based

on Xt and Xt−1. What is the mean squared error of the best linear predictor of Xt+1 based on

{Xj : −∞ < j ≤ t}?

8. Recall the definition of deterministic and recall the Wold decomposition. Let {Yt} be the MA(1)

process

Yt = Zt + 2.5Zt−1 {Zt} ∼ WN(0, σ2).

Define:

Xt = A cos(ωt) +B sin(ωt) + Yt

where A and B are uncorrelated (0, σ21) variables and are uncorrelated with {Yt}.

(a) Show that {Xt} is non-deterministic.

(b) Determine the Wold decomposition of {Xt}.
(c) What are the components of the spectral distribution function of {Xt} corresponding to the

deterministic and purely non-deterministic components of the Wold decomposition?
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Answers

1. Firstly, the spectral density for X may be computed by:

(Xt+h − αXt+h−1)(Xt − αXt) =Wt+hWt

giving

(1 + α2)γX(h)− α(γX(h+ 1) + γX(h− 1)) = σ210(h)

so that

(1 + α2)fX(λ)− α(eiλ + e−iλ)fX(λ) =
σ2

2π

fX(λ) =
σ2

2π(1 + α2 − 2α cos(λ))
.

For the spectral density of Y ,

(1 + α2)γY (h)− α(γY (h+ 1) + γY (h− 1)) = γX(h) + σ210(h)

(1 + α2 − 2α cos(λ))fY (λ) = fX(λ) +
σ2

2π

fY (λ) =
σ2

2π(1 + α2 − 2α cos(λ))2
+

σ2

2π(1 + α2 − 2α cos(λ))
.

2. Here

γX(h) =





5σ2 h = 0

−2σ2 h = ±1

0 |h| ≥ 2

so

fY (λ) =
1

2π

∞∑

h=−∞
eiλh

k∑

j1=0

k∑

j2=0

aj1aj2γX(h− j1 + j2)

giving

fY (λ) =
1

2π

∞∑

h=−∞
eiλh

k∑

j=0

aj (5aj+h − 2aj+h−1 − 2aj+h+1) .

(a0 = 1, aj = 0 for j ≥ k + 1. Solving 2− 5x+ 2x2 = 0, for |x| < 1 gives x = 1.25−
√
1.252 − 1.

Set

aj = xj j = 0, . . . , k

for this value of x, then

fY (λ) =
σ2

2π

(
(5− 2x) + x2k−1(5x− 2)

)

+
σ2

2π

k∑

h=1

(
eiλh + e−iλh)(5xk − 4xk−1)

)
− 2xk

σ2

2π

(
ei(λ(k+1)) + e−i(λ(k+1))

)

=
1

2π
V(Yt) +

σ2

π
(5xk − 4xk−1)

k∑

h=1

cos(λh)− xk
2σ2

π
cos(λ(k + 1)).
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so that

|fY (λ)−
1

2π
V(Yt)| ≤

σ2

π
kxk−1(5x− 4) +

2σ2

π
xk

from which the result may easily be obtained.

3. Let Y = (I −B)X, then

fY (λ) = 2(1− cos(λ))fX(λ)

so

fn(λ) = 2(1− cos(λ))fn−1(λ), fn(λ) = 2n(1− cos(λ))nfX(λ).

fn(λ)

fn(π)
=

1

2n
(1− cos(λ))n

fX(λ)

fX(π)

from which the result follows.

4. (a) This follows from approximations:

W (n)(ν) =
∑

λj≤ν
ψ(λn,j) (Z(λn,j+1)− Z(λn,j) .

Clearly mean zero, orthogonal increments, and prescribed variance:

E[W (ν)W (ν)] =

∫

(−π,ν]
|ψ(λ)|2dF (λ).

(b)

+∞ >

∫
|g|2dG =

∫
|g|2|ψ|2dF ⇒ gψ ∈ L2(F )

(c) From previous part, require: 1
ψ1(−π,ν] ∈ L2(G) for each ν. Let K = ess min|ψ(λ)| then

∫
1

|ψ(λ)|2dG(λ) ≤
1

K2

∫

(−π,π]
|ψ(λ)|2dF (λ) < +∞

because ψ ∈ L2(F ). The result follows:
∫

(−π,ν]

1

ψ(λ)
dW (λ) =

∫

(−π,ν]
dZ(λ) = Z(ν)− Z(−π).

5. Clearly E[Yt] = 0 and

E[YtY t+s] =

∫

(−π,π]
eitνe−i(t+s)ν

1

|φ(ν)|2dF (ν) =
∫

(−π,π]
e−isν

1

|φ(ν)|2dF (ν)

=

∫ π

−π
e−isνdν =

{
2π s = 0

0 s = ±1,±2, . . .

which does not depend on t, hence stationary, and

fY (λ) =
1

2π

∞∑

−∞
eihλγY (h) = 1 λ ∈ (−π, π].
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6.

fX(λ) =
σ2

2π
|
∑

j

ψje
−ijλ|2

∑

j

ψje
−ijλ = ψ0 +

1

π

∑

j 6=0

sin(j)

j
e−ijλ = ψ0 +

1

2π


∑

j 6=0

1

2ij

(
eij(1−λ) − e−ij(1+λ)

)



= ψ0 +
1

2π




∞∑

j=1

1

2ij

(
eij(1−λ) − e−ij(1−λ) + eij(1+λ) − e−ij(1+λ)

)



Now use: ∫ ∞

0
e−(α+iβ)jdα =

1

j
e−iβj .

so that:
∞∑

j=1

1

j
e−iβj =

∞∑

j=1

∫ ∞

0
e−(α+iβ)jdα =

∫ ∞

0

e−(α+iβ)

1− e−(α+iβ)
dα = ln

1

1− e−iβ

giving

∑

j

ψje
−iλj = ψ0 +

1

4πi

(
− ln(1− ei(1−λ)) + ln(1− e−i(1−λ))− ln(1− ei(1+λ)) + ln(1− e−i(1+λ))

)

= ψ0 −
1

2π

fX(λ) =
σ2

2π

(
ψ0 −

1

2π

)2

.

7.

X̂t+1 = αXt + βXt−1.

From the definition,

γ(0) = 5.25 γ(1) = 4 cos
π

3
+

1

2
= 2.5

C(X̂t+1, Xt) = C(Xt+1, Xt) = γ(1) = αγ(0) + βγ(1) ⇒ 5.25α+ 2.5β = 2.5

C(X̂t+1, Xt−1) = 4 cos
2π

3
= −2 = αγ(1) + βγ(0) ⇒ 2.5α+ 5.25β = −2.

α ≃ 0.8504 β ≃ −0.7859

For the second part: V(Zt) = 1.

8. (a)

M−∞ = {A,B}

hence non-deterministic (since M−∞ is non empty).
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(b) For Wold decomposition, Vt = A cos(ωt) +B sin(ωt), ψ0 = 1, ψ1 = 2.5, ψk = 0 for k 6= 0, 1.

Xt = Vt +
∑

j

ψjZt−j

fX(λ) = fV (λ) + fY (λ)

γV (h) = σ21 cos(ωh)

Spectral density: sum is not well defined; instead consider

G(λ) = σ21

∑

h 6=0

1

ih
e−ihλγV (h) =

1

2

∑

h 6=0

1

ih

(
e−i(λ−ω)h + e−i(λ+ω)h

)
.

Now use (previous question)

∞∑

h=1

1

ih
eiβh = i ln(1− eiβ)

G(λ) =
i

2

(
ln(1− e−i(λ−ω))− ln(1− ei(λ−ω)) + ln(1− e−i(λ+ω))− ln(1− ei(λ+ω))

)
= λ.

so that

fV (λ) =
d

dλ
G(λ) =

σ2

2π

γY (h) =





7.25σ2 h = 0

2.5σ2 h = ±1

0 |h| ≥ 2.

fY (λ) =
7.25σ2

2π
+ 5

σ2

2π
cos(λ)

fX = fY + fV .
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