
Chapter 12

Non-Linear Models and their Applications

The course, so far, has concentrated on linear causal models:

Xt = µ+

∞∑

j=1

ψjZt−j {Zt} ∼WN(0, σ2).

There are many situations where a linear model does not fit and we need to consider more general

models. The most general model would be:

Xt = f(t : Zt, Zt−1, Zt−2, . . .)

where {Zt} ∼ WN(0, σ2) and for each t ∈ Z, f(t; .) is a (deterministic) function. Xt is value of the

process at time t, which depends on t and the innovations up to time t.

Let Ft denote the observable information up to time t; that is, Ft = {Xt, Xt−1.Xt−2, . . .}. We

will restrict attention to situations where the conditional mean and variance of Xt given Ft−1 may be

written as:

µt = E[Xt|Ft−1] = g(Ft−1), σ2t = Var(Xt|Ft−1) = h(Ft−1).

and where the model can be written as:

Xt = g(Ft−1) +
√
h(Ft−1)ǫt

where ǫt =
Zt

σt
is the standardised shock, or standardised innovation. That is, {ǫt} ∼WN(0, 1).

12.1 Bilinear Model

The bilinear model is a model of the form:

Xt = c+

p∑

i=1

φiXt−i +

q∑

j=1

θjZt−j +
m∑

i=1

s∑

j=1

βijXt−iZt−j + Zt.
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Here p, q,m, s are non-negative integers. It is so-called, because for fixed Z, it is linear in X and for

fixed X it is linear in Z. This level of linearity helps to estalish properties of the model and makes

parameter estimation possible. The model was introduced by Granger and Andersen in 1978.

Consider now the following special bilinear model:

Xt = µ+ φXt−2 + βXt−2Zt−1 + Zt.

Using the fact that Zt−1 ⊥ Zt and {Zt−1, Zt} ⊥ Xt−2, the conditional mean and variance for this

model can be computed quite easily; for {Zt} ∼WN(0, σ2),

E[Xt|Ft−2] = µ+ φXt−2, Var(Xt|Ft−2) =
(
1 + β2X2

t−2

)
σ2

If the further assumption is made that {Zt} ∼ IIDN(0, σ2) (independent identically distributed normal

variables), then parameter estimation can be carried out using a quasi-likelihood. Here

Xt|Ft−2 ∼ N(µ+ φXt−2, (1 + β2X2
t−2)σ

2)

so conditionally, conditioned on two time steps back, the likelihood function is straightforward. Re-

moving the conditioning to obtain the marginal (and hence the usual likelihood) is not an easy problem,

but we can use the conditional likelihoods instead. The parameter vector is θ = (µ, φ, β, σ)t and the

quasi-log likelihood is the following.

{
Ln(θ) =

∑n
t=1 lt(θ)

lt(θ) = −1
2

(
log σ2 + log(1 + β2x2t−2)

)
+ (xt−µ−φxt−2)2

σ2(1+β2x2

t−2
)

The maximising θ̂ can be obtained by standard algorithms. It turns out that, asymptotically at least,

this gives the right answer; asymptotic efficiency and asymptotic normality may be shown for θ̂, the

estimator of θ = (µ, φ, β, σ)t.

Example 12.1.

Consider the monthly returns of the CRSP equal-weighted index from January 1926 - December 2008

for 996 observations. Denote the series by X. Firstly, the sample pacf shows significant partial

autocorrelations at lags 1 and 3, suggesting an AR(3) model.

Then, the squared series of the residuals of the AR(3) suggest that the conditional heteroskedasticity

depends on lags 1,3 and 8 of the residuals. The special bilinear model:

Xt = µ+ φ1Xt−1 + φ3Xt−3 + (1 + β1Zt−1 + β3Zt−3)Zt

fits the data quite well.
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12.2 Threshold Autoregressive (TAR) Model

In practise, there are several non-linear characteristics that we would like to model: asymmetry in

declining and rising patterns of a process. The TAR model uses threshold space to improve linear

approximation. Consider a simple 2-regime AR(1) model:

Xt =

{
−1.5Xt−1 + Zt Xt−1 < 0

0.5Xt−1 + Zt Xt−1 ≥ 0.

Here the threshold variable is Xt−1 and the delay is 1; the threshold is 0.

A time series Xt is said to follow a k-regime self-exciting TAR (SETAR) model with threshold

variable Xt−d if it satisfies:

Xt = φ
(j)
0 + φ

(j)
1 Xt−1 + . . .+ φ(j)p Xt−p + Zt γj−1 ≤ Xt−d < γj .

Example 12.2.

The US monthly employment rate, seasonally adjusted and measured in percentage from January

1948 to March 2009 for 735 observations seems to follow a TAR model. A plot of the data shows

two characteristis: slow upward trend and rapid decay. The series is not reversible and may not be

unit-root stationary. The TAR model

Yt =

{
0.083Yt−2 + 0.158Yt−3 + 0.118Yt−4 − 0.180Yt−12 + Z1t Yt−1 ≤ 0.1

0.421Yt−2 + 0.239Yt−3 − 0.127Yt−12 + Z2t Yt−1 > 0.1

fits the data. The number of data points in regimes 1 and 2 are: 460 and 262.

12.3 Smooth Transition AR (STAR) Model

A time series Xt follows a 2-regime STAR(p) model if it satisfies:

Xt = c0 +

p∑

i=1

φ0iXt−i + F

(
Xt−d −∆

s

)(
c1 +

p∑

i=1

φ1iXt−i

)
+ Zt.

Here d is the delay parameter, ∆ and s are parameters representing location and scale of model

transition and F (.) is a smooth transition function. In practise, F is either logistic, exponential or a

cumulative distribution function.

The advantage of STAR over TAR is that the conditional mean function is differentiable; the

disadvantage is that the parameters ∆ and s are hard to estimate.

For both AR processes for TAR and STAR, the zeroes of the AR polynomials have to be outside

the unit ball.
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12.4 Markov Switching Model

A time series Xt follows a MSA (Markov Switching Autoregressive) model if it satisfies:

Xt =

{
c1 +

∑p
i=1 φ1iXt−i + Zt St = 1

c2 +
∑p

i=1 φ2iXt−i + Zt St = 2

Here St is a Markov chain with state space {1, 2} with transition probabilities defined by

P12 = p1, P21 = p2.

12.5 Nonparametric Models

The essence of nonparametric models is smoothing. Consider two time series variable X and Y related

by

Yt = m(Xt) + Zt

where m is an arbitrary function and {Zt} ∼ WN(0, σ2). We would like to estimate the unknown

function m from the data. The most common technique is kernel regression. A kernel is a function

K ≥ 0 satisfying
∫
K(y)dy = 1. A bandwidth h is included;

Kh(x) =
1

h
K
(x
h

)
.

The function m is estimated by:

m̂(x) =

∑T
t=1Kh(x−Xt)Yt∑T
t=1Kh(x−Xt)

.

Derivation Suppose we have a joint density fX,Y for (X,Y ). We estimate this density by smoothing

the empirical density; e(x, y) = 1
n

∑n
i=1 δxi,yi(x, y) where δ denotes a dirac delta mass function. This is

smoothed in the following way: for each data point (xi, yi), we replace δxi,yi(x, y) by Kh(x−xi)K̃h(y−
yi), so that

f̂X,Y (x, y) =
1

n

n∑

j=1

Kh(x− xj)K̃h(y − yj).

Marginalising over y gives:

f̂X(x, y) =
1

n

n∑

j=1

Kh(x− xj).

Now,

m(x) = E[Y |X = x] =

∫
yfY |X(y|x)dy =

∫
y
fX,Y (x, y)

fX(x)
dy
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which we approximate by

m̂(x) =

∫
yf̂X,Y (x, y)dy

f̂X(s)
=

1
n

∑n
i=1Kh(x− xi)

∫
yK̃h(y − yi)dy

1
n

∑n
i=1Kh(x− xi)

.

Using the fact that K̃h is symmetric, therefore:

m̂(x) =

∑n
j=1Kh(x− xj)yj∑n
j=1Kh(x− xj)

.

Choice of Kernel Theoretical and practical considerations lead to a several possible kernels. One

popular choice is the Gaussian kernel:

K(x) =
1√
2π

exp

{
−x

2

2

}

another is the Epanechinkov kernel:

K̃(x) = 0.75
(
1− x2

)
I (|x| ≤ 1) .

If there is a large quantity of data, then h is taken small; for h = 0

m̂(x) =

∑
Yt1(Xt = x)∑
1(Xt = x)

.

As h → +∞, m̂(x)
h→+∞−→ Y . Large h leads to oversmoothing. The bandwidth is usually selected

via a MISE (mean integrated squared error) criterion: minimising

MISE = E

[∫ ∞

−∞
(m̂(x)−m(x))2 dx

]

This can be computed as ĥopt = 1.06σn−1/5 for the Gaussian kernel and ĥopt = 2.34σn−1/5 for the

Epachinkov kernel. s, the estimate is used in place of σ.

Another method for bandwidth selection is leave-one-out cross validation.

12.6 Neural Networks

A neural network consists of

• input layer

• hidden layers

• output layer
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If xi denotes the value of the input of the ith node, the jth node of the hidden layer is given by:

hj = fj


α0j +

∑

i→j

wijxi


 .

The activation function fj is usually taken as:

fj(z) =
exp{z}

1 + exp{z} .

For the output,

o = fo(α0o +
∑

j→o

wjohj)

where fo can be linear fo(z) = z or Heaviside fo(z) = 1(0,+∞)(z). A neuron with a Heaviside function

is called a threshold neuron, with 1 denoting that the neuron fires its message. For example, the output

of the 2-3-1 network is:

o = α0o + w10h1 + w2oh2 + w3oh3

for a linear activation and

o =

{
1 α)o + w10h1 + w2oh2 + w30h3 > 0

0 α0o + w1oh1 + w2oh2 + w3oh3 ≤ 0

if fo(.) is a Heaviside function.

Combining the layers, the output of a feed-forward neural network can be written as:

o = fo


α0o +

∑

j→o

wjofj


α0j +

∑

i→j

wijxi




 .

If one also allows for direct connections from the input layer to the output layer, then the network

becomes:

o = fo


α0o +

∑

i→o

αioxi +
∑

j→o

wjofj


α0j +

∑

i→j

wijxi




 .

The first summation is summing over the input nodes.

Training and Forecasting The first step is to build the network, determining the number of nodes,

the biases α0j and α0o and weights wij . The second step is inference, especially forecasting.

In time series applications, let {(rt,xt) : t = 1, . . . , n} denote the series of training data, where xt

denotes the vector of inputs, while rt denotes the series of interest (e.g. log returns of a given asset).

Training the network amounts to choosing these parameters to minimise a fitting criterion, for example

least squares:
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S2 =
n∑

t=1

(rt − ot)
2.

This is a non-linear problem and may be approached by iterative methods. A popular algorithm is

Back Propogation (BP), which starts with the output layer and works backwards, using a gradient

rule to modify the parameters.
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