Chapter 11

Kalman Recursions

State space models can simplify some problems, such as maximum-likelihood estimation and handling
missing values. Three problems for estimation of X, are considered; they are defined as prediction,

filtering and smoothing. The definitions are as follows:

e Estimating X, in terms of Y),...,Y, ; defines the prediction problem;
e Distimating X, in terms of Y,...,Y, defines the filtering problem;

e Estimating X, in terms of Y,...,Y,, n >, defines the smoothing problem.

Kalman filtering deals with (recursive) best linear estimation of X, in terms of observationsof Y, Y, ...
and a random vector Y, which is uncorrelated with V, and W, for all t > 1. Kalman recursions is

another term for Kalman filter.
Recall the state-space model defined by Equation (10.1).

Notation For a random vector V, the notation F;(V) = P, ) (V) will be used.
0:t

The following theorem gives the solution to the one-step prediction problem.

Theorem 11.1 (Kalman Prediction). Consider the system defined by Equations (10.1) and (10.2).

The one-step predictors Xt = P_1(X,) and their error covariance matrices
Q =E[(X, - Xt)(lt - Xt)t}
are uniquely determined by the initial conditions
Xl =P(Xy), =E[X, - Xl)(gl - Xl)t]
and the recursions, fort =1,...,
Xt-i—l - GtXt + @tAfl(Xt - FtXt) (11-1)
where
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X1 =P(X1]Yy), Qi =E[(X; - X1)(X; — X1)]

and:

Ay = B Fl+ Ry
O; = GtQtFt/ + S
Qi1 = GG+ Qr — ©,A7' 0] (11.2)
and At_l is a generalised inverse of A;.
Definition 11.2 (The Kalman Gain). The matriz ©;A; " is called the Kalman gain.

Example 11.1 (Local Trend Model).

We now show the recursive steps for the local trend model,

Y, =+ e €tNN(O;03)
preyr = pie + e e~ N(0,07)

{ne} L {es}

Here F; =1, G; = 1, S; = 0 for each t and hence ; = ©;. The Kalman recursion algorithm in this

setting is:
fitrr — iy = Ki(Yy — [ir)
At = Qt + O'g
Qo1 = +02— N
t+1 =3+ 0, — &
Here )
Q
Q1 — Y =02 - L
t+1 t = Op A,
so that:

Q1 = (1 - Ky) + 03
At = Qt + O'g

where the Kalman gain is K; := X—’i and iy = Elp| Fi—1].

One advantage of state-space models is that missing values can be handled with relative ease. Suppose

that the observations (Yt)zﬁﬁb are missing, where h > 1 and 1 <[ < T. There are several ways to

handle missing variables. Here we discuss a method that keeps the original time scale and model form.

From the equation, it follows that for ¢t > [,
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t
Mt = py + Z j-1-
=141

For s < t, use the notation i, = E[u|Fs]. Also, from the definition:

O = E[(pe — 7ir)*] = E[Var(u| Fi1)].
Forte{l+1,...,1+h},
E[pe| Fi-1] = Elpe| F] = tyg1p = Higa
Var (| Fi—1) = Var(u| F) = Var(ug1|F) + (t— 1 — 1)o7

Hence

fepi—1 = Petji—2 Qo1 = Qg2 +op  t=1+2,...,l+h
The Kalman recursion can still be applied by taking Ky = 0 for ¢t =1+ 1,...,l + h. This is rather

natural; when Y; is missing, there is no new innovation or new Kalman gain.

Proof of Theorem 11.1 We prove this in the case where S; = 0; the innovations for ‘observed’ and

‘hidden’ processes are independent. Let the innovations, I, be defined by I, := Y and
L=Y,~P,(Y)=Y,~-FEX,=F(X,-X,)+W, teN

It follows from (?7) that {I, : ¢ € N} are orthogonal. Furthermore, Y,...,Y, and Y,,...,Y, |, I,

contain the same information, or span the same Hilbert space. It follows that

Pt(K) = P(K | XOa s 7Xt—1alt) = Pt—l(g) + P(X ‘ Lﬁ)a (11-3)

where the last equality follows from Equation (77).

Note The following notation is used: P(X|Z) denotes the projection of X onto the space spanned
by Z (where Z is a collection of random variables). When Y = {Y{, Y1, ..., Y;}, this is abbreviated to:
P(X|Yo,Y1,..., Y1) = P(X).

Consequently:

Xi = P(Xyp) =Pa(Xe) + P(Xyyq | L)
-1
= Ba(GeXy + Vi) +E[ X, ) (E[LL]) 1,
= Pa(GiX,) +E X, L] (E[LL]) L.
Here the basic idea of projection in a Hilbert space is used. Let H be a Hilbert space, with x € H and
y € H, then

o) = (. Yy Y _ @)
PLly) = @ 1o Tl = Tl
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where (.,.) denotes the inner product and ||.|| denotes the norm for the Hilbert space.

Recall Ay := FiQF] + R, so that A, =E [ltﬁ]. From the above, it follows that:

Ap = F4F, + Ry = FE [(Xt - X,) (X - X})] F/ +E [W,W}] =E [L,I]

and (when S; = 0), ©, = G, F/ so that:

O = GiUF
= E[(GX)(X, - X,)'F|
= E[(GX, + V) (X, — X,)F + W})]
= =E[X,.,[]

To establish Equation (11.2), note that

Q1 =E [KtJrlX:erl] —-E [XtJrlX:erl} :

From this,

E [Xm—liéﬂ] = ]E[(Gtzt + Kt—&-l)(GtXt + Kt+1)/} = GE [thﬂ G; + Qt+1

and

~

E [Xt-‘rle,H—l} = E [(GtXt +OATL) (G X, + 9tAflLs)/}

— GE {XtXQ] G+ 0,07 AATIO, = GUE [XtX;} G+ 6,476

From this, it follows that:

Qi1 =Gy (E [Kt&ﬂ -E {XtX;D G+ Qi — 0,010, = GGl + Qi1 — 6,416y,

as required. O

Theorem 11.3 (Kalman Filtering). The filtered estimates Xy, := Py(X;) and the error covariance

matrices

Qt|t =K [(Kt - Xﬂt)(it - Xt\t)t}

are determined by the relations

Xy = P1(Xy) + QtFttA;l(Xt - FtXt)
and
Qt‘t+1 == Qt - QtFttAt_lFtQE.
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Proof From Equation (11.3), it follows that

PX, = P1X, + MI,

where
M=E[X,0[] E[LL]) " =E [X,(R(X, - X,) + W) A7' = GRAT
It follows that:
Xt*Ptht :Xt*Pth‘FPtXt*Pt—lXt :Xt*Pth+ML§~

Now use X, — P,X, L M1, to obtain:

Q= Qe + O FAFQ
as required. O
Theorem 11.4 (Kalman Fixed Point Smoothing). The smoothed estimates = P, (X,) and the

Dtln

error covariance matrices

Qt|n = E[(X, - LW(L - Xﬂn)l}

are determined for fized t by the recursions, which can be solved successively form =t t+1,... :

Pn(lt) = Pnfl(gt) + thFTiA;l(Xn - Fan)a
Qt,n+1 = Qt,n (Gn - @nAgan)t )
Q. = Qo1 — U FLALT R0

t.no

with initial conditions Py_1(X,) = Xt and Qi = Qyu_1 = Q¢ found from Kalman prediction.
Proof Again, from Equation (11.3), P, X, = P,,_1X, + CI,, where

Using the fact that
PX|Y)=MY

where
M =E[XY"] (E[vy1]) ™,

(]E [ﬂﬂ)f1 any generalised inverse of E [ﬂt], it follows that

C=E [ X,(Fu(X, — Xo) + W,)'| (B[LIL]) ™ = QuaFins. (11.4)
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It now follows using

Zt = Ftit + Et
X =GXy + Vi

and Equation (11.1), which may be re-written as:

PX;py =GP X, + OA (Y, — PaY))
together with the orthogonality of V,, ,; and W, with X, — Xt and the definition of €2, that
Qs =B (X, - Xt)(in - Xn)t (Gn — @nAgan)t = Qn(Gn — @nAgan)t
thus establishing the equation for € ,11. To establish the equation for €y,

Xy — P Xy =X, — P X, - CL,

Using Equation (11.4) and the fact that X, — P, X, L I, it follows that

Q= Q1 — UnFUATQ, n=tt+1,...

as required.
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