Chapter 11

Kalman Recursions

State space models can simplify some problems, such as maximum-likelihood estimation and handling missing values. Three problems for estimation of \underline{X}_{t} are considered; they are defined as prediction, filtering and smoothing. The definitions are as follows:

- Estimating \underline{X}_{t} in terms of $\underline{Y}_{0}, \ldots, \underline{Y}_{t-1}$ defines the prediction problem;
- Estimating \underline{X}_{t} in terms of $\underline{Y}_{0}, \ldots, \underline{Y}_{t}$ defines the filtering problem;
- Estimating \underline{X}_{t} in terms of $\underline{Y}_{0}, \ldots, \underline{Y}_{n}, n>t$, defines the smoothing problem.

Kalman filtering deals with (recursive) best linear estimation of \underline{X}_{t} in terms of observations of $\underline{Y}_{1}, \underline{Y}_{2}, \ldots$ and a random vector \underline{Y}_{0} which is uncorrelated with \underline{V}_{t} and \underline{W}_{t} for all $t \geq 1$. Kalman recursions is another term for Kalman filter.

Recall the state-space model defined by Equation (10.1).

Notation For a random vector \underline{V}, the notation $P_{t}(\underline{V})=P_{\mathcal{F}_{0: t}^{(Y)}}(\underline{V})$ will be used. The following theorem gives the solution to the one-step prediction problem.

Theorem 11.1 (Kalman Prediction). Consider the system defined by Equations (10.1) and (10.2). The one-step predictors $\underline{\widehat{X}}_{t}:=P_{t-1}\left(\underline{X}_{t}\right)$ and their error covariance matrices

$$
\Omega_{t}:=\mathbb{E}\left[\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)^{t}\right]
$$

are uniquely determined by the initial conditions

$$
\underline{\widehat{X}}_{1}=P_{0}\left(\underline{X}_{1}\right), \quad \Omega_{1}:=\mathbb{E}\left[\left(\underline{X}_{1}-\underline{\widehat{X}}_{1}\right)\left(\underline{X}_{1}-\underline{\widehat{X}}_{1}\right)^{t}\right]
$$

and the recursions, for $t=1, \ldots$,

$$
\begin{equation*}
\underline{\widehat{X}}_{t+1}=G_{t} \widehat{\widehat{X}}_{t}+\Theta_{t} \Delta_{t}^{-1}\left(\underline{Y}_{t}-F_{t} \widehat{\widehat{X}}_{t}\right) \tag{11.1}
\end{equation*}
$$

where

$$
\widehat{X}_{1}=\mathbb{P}\left(X_{1} \mid Y_{0}\right), \quad \Omega_{1}=\mathbb{E}\left[\left(X_{1}-\widehat{X}_{1}\right)\left(X_{1}-\widehat{X}_{1}\right)^{\prime}\right]
$$

and:

$$
\begin{align*}
\Delta_{t} & =F_{t} \Omega_{t} F_{t}^{\prime}+R_{t} \\
\Theta_{t} & =G_{t} \Omega_{t} F_{t}^{\prime}+S_{t} \\
\Omega_{t+1} & =G_{t} \Omega_{t} G_{t}^{\prime}+Q_{t}-\Theta_{t} \Delta_{t}^{-1} \Theta_{t}^{\prime} \tag{11.2}
\end{align*}
$$

and Δ_{t}^{-1} is a generalised inverse of Δ_{t}.
Definition 11.2 (The Kalman Gain). The matrix $\Theta_{t} \Delta_{t}^{-1}$ is called the Kalman gain.
Example 11.1 (Local Trend Model).
We now show the recursive steps for the local trend model,

$$
\begin{cases}Y_{t}=\mu_{t}+e_{t} & e_{t} \sim N\left(0, \sigma_{e}^{2}\right) \\ \mu_{t+1}=\mu_{t}+\eta_{t} & \eta_{t} \sim N\left(0, \sigma_{\eta}^{2}\right) \\ \left\{\eta_{t}\right\} \perp\left\{e_{t}\right\} & \end{cases}
$$

Here $F_{t}=1, G_{t}=1, S_{t}=0$ for each t and hence $\Omega_{t}=\Theta_{t}$. The Kalman recursion algorithm in this setting is:

$$
\left\{\begin{array}{l}
\widehat{\mu}_{t+1}-\widehat{\mu}_{t}=K_{t}\left(Y_{t}-\widehat{\mu}_{t}\right) \\
\Delta_{t}=\Omega_{t}+\sigma_{e}^{2} \\
\Omega_{t+1}=\Omega_{t}+\sigma_{\eta}^{2}-\frac{\Omega_{t}^{2}}{\Delta_{t}}
\end{array}\right.
$$

Here

$$
\Omega_{t+1}-\Omega_{t}=\sigma_{\eta}^{2}-\frac{\Omega_{t}^{2}}{\Delta_{t}}
$$

so that:

$$
\left\{\begin{array}{l}
\Omega_{t+1}=\Omega_{t}\left(1-K_{t}\right)+\sigma_{\eta}^{2} \\
\Delta_{t}=\Omega_{t}+\sigma_{e}^{2}
\end{array}\right.
$$

where the Kalman gain is $K_{t}:=\frac{\Omega_{t}}{\Delta_{t}}$ and $\widehat{\mu}_{t}=\mathbb{E}\left[\mu_{t} \mid \mathcal{F}_{t-1}\right]$.
One advantage of state-space models is that missing values can be handled with relative ease. Suppose that the observations $\left(Y_{t}\right)_{t=l+1}^{t=l+h}$ are missing, where $h \geq 1$ and $1 \leq l \leq T$. There are several ways to handle missing variables. Here we discuss a method that keeps the original time scale and model form.

From the equation, it follows that for $t \geq l$,

$$
\mu_{t}=\mu_{l}+\sum_{j=l+1}^{t} \eta_{j-1}
$$

For $s<t$, use the notation $\widehat{\mu}_{t \mid s}=\mathbb{E}\left[\mu_{t} \mid \mathcal{F}_{s}\right]$. Also, from the definition:

$$
\Omega_{t}=\mathbb{E}\left[\left(\mu_{t}-\widehat{\mu}_{t}\right)^{2}\right]=\mathbb{E}\left[\operatorname{Var}\left(\mu_{t} \mid \mathcal{F}_{t-1}\right)\right]
$$

For $t \in\{l+1, \ldots, l+h\}$,

$$
\left\{\begin{array}{l}
\mathbb{E}\left[\mu_{t} \mid \mathcal{F}_{t-1}\right]=\mathbb{E}\left[\mu_{t} \mid \mathcal{F}_{l}\right]=\widehat{\mu}_{l+1 \mid l}=\widehat{\mu}_{l+1} \\
\operatorname{Var}\left(\mu_{t} \mid \mathcal{F}_{t-1}\right)=\operatorname{Var}\left(\mu_{t} \mid \mathcal{F}_{l}\right)=\operatorname{Var}\left(\mu_{l+1} \mid \mathcal{F}_{l}\right)+(t-l-1) \sigma_{\eta}^{2}
\end{array}\right.
$$

Hence

$$
\mu_{t \mid t-1}=\mu_{t-1 \mid t-2} \quad \Omega_{t \mid t-1}=\Omega_{t-1 \mid t-2}+\sigma_{\eta}^{2} \quad t=l+2, \ldots, l+h
$$

The Kalman recursion can still be applied by taking $K_{t}=0$ for $t=l+1, \ldots, l+h$. This is rather natural; when Y_{t} is missing, there is no new innovation or new Kalman gain.

Proof of Theorem 11.1 We prove this in the case where $S_{t}=0$; the innovations for 'observed' and 'hidden' processes are independent. Let the innovations, \underline{I}_{t}, be defined by $\underline{I}_{0}:=\underline{Y}_{0}$ and

$$
\underline{I}_{t}:=\underline{Y}_{t}-P_{t-1}\left(\underline{Y}_{t}\right)=\underline{Y}_{t}-F_{t} \underline{\widehat{X}}_{t}=F_{t}\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)+\underline{W}_{t} \quad t \in \mathbb{N}
$$

It follows from (??) that $\left\{\underline{I}_{t}: t \in \mathbb{N}\right\}$ are orthogonal. Furthermore, $\underline{Y}_{0}, \ldots, \underline{Y}_{t}$ and $\underline{Y}_{0}, \ldots, \underline{Y}_{t-1}, \underline{I}_{t}$ contain the same information, or span the same Hilbert space. It follows that

$$
\begin{equation*}
P_{t}(\underline{X})=P\left(\underline{X} \mid \underline{Y}_{0}, \ldots, \underline{Y}_{t-1}, \underline{I}_{t}\right)=P_{t-1}(\underline{X})+P\left(\underline{X} \mid \underline{I}_{t}\right), \tag{11.3}
\end{equation*}
$$

where the last equality follows from Equation (??).

Note The following notation is used: $P(X \mid Z)$ denotes the projection of X onto the space spanned by Z (where Z is a collection of random variables). When $Y=\left\{Y_{0}, Y_{1}, \ldots, Y_{t}\right\}$, this is abbreviated to: $P\left(X \mid Y_{0}, Y_{1}, \ldots, Y_{t}\right)=: P_{t}(X)$.

Consequently:

$$
\begin{aligned}
\underline{X}_{t+1} & =P_{t}\left(\underline{X}_{t+1}\right)=P_{t-1}\left(\underline{X}_{t+1}\right)+P\left(\underline{X}_{t+1} \mid \underline{I}_{t}\right) \\
& =P_{t-1}\left(G_{t} \underline{X}_{t}+\underline{V}_{t+1}\right)+\mathbb{E}\left[\underline{X}_{t+1} \underline{I}_{t}^{t}\right]\left(\mathbb{E}\left[\underline{I}_{t} \underline{I}_{t}^{t}\right]\right)^{-1} \underline{I}_{t} \\
& =P_{t-1}\left(G_{t} \underline{X}_{t}\right)+\mathbb{E}\left[\underline{X}_{t+1} \underline{I}_{t}^{t}\right]\left(\mathbb{E}\left[\underline{I}_{t} \underline{I}_{t}^{t}\right]\right)^{-1} \underline{I}_{t}
\end{aligned}
$$

Here the basic idea of projection in a Hilbert space is used. Let H be a Hilbert space, with $x \in H$ and $y \in H$, then

$$
P(x \mid y)=\left\langle x, \frac{y}{\|y\|}\right\rangle \frac{y}{\|y\|}=\frac{\langle x, y\rangle}{\|y\|^{2}} y
$$

where $\langle.,$.$\rangle denotes the inner product and \|$.$\| denotes the norm for the Hilbert space.$
Recall $\Delta_{t}:=F_{t} \Omega_{t} F_{t}^{\prime}+R_{t}$ so that $\Delta_{t}=\mathbb{E}\left[\underline{I}_{t} \underline{I}_{t}^{t}\right]$. From the above, it follows that:

$$
\Delta_{t}:=F_{t} \Omega_{t} F_{t}^{\prime}+R_{t}=F_{t} \mathbb{E}\left[\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)^{\prime}\right] F_{t}^{\prime}+\mathbb{E}\left[\underline{W}_{t} \underline{W}_{t}^{\prime}\right]=\mathbb{E}\left[\underline{I}_{t} \underline{I}_{t}^{\prime}\right]
$$

and (when $S_{t}=0$), $\Theta_{t}=G_{t} \Omega_{t} F_{t}^{\prime}$ so that:

$$
\begin{aligned}
\Theta_{t} & :=G_{t} \Omega_{t} F_{t}^{\prime} \\
& =\mathbb{E}\left[\left(G_{t} \underline{X}_{t}\right)\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)^{\prime} F_{t}^{\prime}\right] \\
& =\mathbb{E}\left[\left(G_{t} \underline{X}_{t}+\underline{V}_{t+1}\right)\left(\left(\underline{X}_{t}-\widehat{\widehat{X}}_{t}\right)^{\prime} F_{t}^{\prime}+\underline{W}_{t}^{\prime}\right)\right] \\
& =\mathbb{E}\left[\underline{X}_{t+1} \underline{I}_{t}^{\prime}\right]
\end{aligned}
$$

To establish Equation (11.2), note that

$$
\Omega_{t+1}=\mathbb{E}\left[\underline{X}_{t+1} \underline{X}_{t+1}^{\prime}\right]-\mathbb{E}\left[\underline{\widehat{X}}_{t+1} \underline{\hat{X}}_{t+1}^{\prime}\right] .
$$

From this,

$$
\mathbb{E}\left[\underline{X}_{t+1} \underline{X}_{t+1}^{\prime}\right]=\mathbb{E}\left[\left(G_{t} \underline{X}_{t}+\underline{V}_{t+1}\right)\left(G_{t} \underline{X}_{t}+\underline{V}_{t+1}\right)^{\prime}\right]=G_{t} \mathbb{E}\left[\underline{X}_{t} \underline{X}_{t}^{\prime}\right] G_{t}^{\prime}+Q_{t+1}
$$

and

$$
\begin{aligned}
\mathbb{E}\left[\underline{\widehat{X}}_{t+1} \underline{\widehat{X}}_{t+1}^{\prime}\right] & =\mathbb{E}\left[\left(G_{t} \widehat{\widehat{X}}_{t}+\Theta_{t} \Delta_{t}^{-1} \underline{I}_{t}\right)\left(G_{t} \widehat{\widehat{X}}_{t}+\Theta_{t} \Delta_{t}^{-1} \underline{I}_{t}\right)^{\prime}\right] \\
& =G_{t} \mathbb{E}\left[\widehat{\widehat{X}}_{t} \underline{\widehat{X}}_{t}^{\prime}\right] G_{t}^{\prime}+\Theta_{t} \Delta_{t}^{-1} \Delta_{t} \Delta_{t}^{-1} \Theta_{t}=G_{t} \mathbb{E}\left[\underline{\widehat{X}}_{t} \underline{\widehat{X}}_{t}^{\prime}\right] G_{t}^{\prime}+\Theta_{t} \Delta_{t}^{-1} \Theta_{t}
\end{aligned}
$$

From this, it follows that:

$$
\Omega_{t+1}=G_{t}\left(\mathbb{E}\left[\underline{X}_{t} \underline{X}_{t}^{\prime}\right]-\mathbb{E}\left[\underline{\hat{X}}_{t} \underline{\hat{X}}_{t}^{\prime}\right]\right) G_{t}^{\prime}+Q_{t}-\Theta_{t} \Delta_{t}^{-1} \Theta_{t}=G_{t} \Omega_{t} G_{t}^{\prime}+Q_{t+1}-\Theta_{t} \Delta_{t}^{-1} \Theta_{t}
$$

as required.
Theorem 11.3 (Kalman Filtering). The filtered estimates $\underline{X}_{t \mid t}:=P_{t}\left(\underline{X}_{t}\right)$ and the error covariance matrices

$$
\Omega_{t \mid t}:=\mathbb{E}\left[\left(\underline{X}_{t}-\underline{X}_{t \mid t}\right)\left(\underline{X}_{t}-\underline{X}_{t \mid t}\right)^{t}\right]
$$

are determined by the relations

$$
X_{t \mid t}=P_{t-1}\left(\underline{X}_{t}\right)+\Omega_{t} F_{t}^{t} \Delta_{t}^{-1}\left(\underline{Y}_{t}-F_{t} \underline{\hat{X}}_{t}\right)
$$

and

$$
\Omega_{t \mid t+1}=\Omega_{t}-\Omega_{t} F_{t}^{t} \Delta_{t}^{-1} F_{t} \Omega_{t}^{t}
$$

Proof From Equation (11.3), it follows that

$$
P_{t} \underline{X}_{t}=P_{t-1} \underline{X}_{t}+M \underline{I}_{t}
$$

where

$$
M=\mathbb{E}\left[\underline{X}_{t} \underline{I}_{t}^{t}\right]\left(\mathbb{E}\left[\underline{I}_{t} \underline{I}_{t}^{t}\right]\right)^{-1}=\mathbb{E}\left[\underline{X}_{t}\left(F_{t}\left(\underline{X}_{t}-\underline{X}_{t}\right)+W_{t}\right)^{t}\right] \Delta_{t}^{-1}=\Omega_{t} F_{t} \Delta_{t}^{-1}
$$

It follows that:

$$
\underline{X}_{t}-P_{t-1} \underline{X}_{t}=\underline{X}_{t}-P_{t} \underline{X}_{t}+P_{t} \underline{X}_{t}-P_{t-1} \underline{X}_{t}=\underline{X}_{t}-P_{t} \underline{X}_{t}+M \underline{I}_{t}
$$

Now use $\underline{X}_{t}-P_{t} \underline{X}_{t} \perp M \underline{I}_{t}$ to obtain:

$$
\Omega_{t}=\Omega_{t \mid t}+\Omega_{t} F_{t} \Delta_{t}^{-1} F_{t}^{\prime} \Omega_{t}^{t}
$$

as required.
Theorem 11.4 (Kalman Fixed Point Smoothing). The smoothed estimates $\underline{X}_{t \mid n}:=P_{n}\left(\underline{X}_{t}\right)$ and the error covariance matrices

$$
\Omega_{t \mid n}:=\mathbb{E}\left[\left(\underline{X}_{t}-\underline{X}_{t \mid n}\right)\left(\underline{X}_{t}-\underline{X}_{t \mid n}\right)^{\prime}\right]
$$

are determined for fixed t by the recursions, which can be solved successively for $n=t, t+1, \ldots$:

$$
\begin{aligned}
P_{n}\left(\underline{X}_{t}\right) & =P_{n-1}\left(\underline{X}_{t}\right)+\Omega_{t, n} F_{n}^{t} \Delta_{n}^{-1}\left(\underline{Y}_{n}-F_{n} \underline{\widehat{X}}_{n}\right), \\
\Omega_{t, n+1} & =\Omega_{t, n}\left(G_{n}-\Theta_{n} \Delta_{n}^{-1} F_{n}\right)^{t}, \\
\Omega_{t \mid n} & =\Omega_{t \mid n-1}-\Omega_{t, n} F_{n}^{t} \Delta_{n}^{-1} F_{n} \Omega_{t . n}^{t},
\end{aligned}
$$

with initial conditions $P_{t-1}\left(\underline{X}_{t}\right)=\underline{\widehat{X}}_{t}$ and $\Omega_{t . t}=\Omega_{t \mid t-1}=\Omega_{t}$ found from Kalman prediction.

Proof Again, from Equation (11.3), $P_{n} \underline{X}_{t}=P_{n-1} \underline{X}_{t}+C \underline{I}_{n}$ where

$$
\underline{I}_{n}=F_{n}\left(\underline{X}_{n}-\underline{\widehat{X}}_{n}\right)+\underline{W}_{n} .
$$

Using the fact that

$$
P(\underline{X} \mid \underline{Y})=M \underline{Y}
$$

where

$$
M=\mathbb{E}\left[\underline{X Y^{t}}\right]\left(\mathbb{E}\left[\underline{Y Y^{t}}\right]\right)^{-1}
$$

$\left(\mathbb{E}\left[\underline{Y Y^{t}}\right]\right)^{-1}$ any generalised inverse of $\mathbb{E}\left[\underline{Y Y^{t}}\right]$, it follows that

$$
\begin{equation*}
C=\mathbb{E}\left[\underline{X}_{t}\left(F_{n}\left(\underline{X}_{n}-\widehat{X}_{n}\right)+\underline{W}_{n}\right)^{t}\right]\left(\mathbb{E}\left[\underline{I}_{n} \underline{I}_{n}^{t}\right]\right)^{-1}=\Omega_{t, n} F_{n}^{t} \Delta_{n}^{-1} \tag{11.4}
\end{equation*}
$$

It now follows using

$$
\left\{\begin{array}{l}
\underline{Y}_{t}=F_{t} \underline{X}_{t}+\underline{W}_{t} \\
\underline{X}_{t+1}=G_{t} \underline{X}_{t}+\underline{V}_{t+1}
\end{array}\right.
$$

and Equation (11.1), which may be re-written as:

$$
P_{t} \underline{X}_{t+1}=G_{t} P_{t-1} \underline{X}_{t}+\Theta_{t} \Delta_{t}^{-1}\left(\underline{Y}_{t}-P_{t-1} \underline{Y}_{t}\right)
$$

together with the orthogonality of \underline{V}_{n+1} and \underline{W}_{n} with $\underline{X}_{t}-\underline{X}_{t}$ and the definition of $\Omega_{t, n}$ that

$$
\Omega_{t, n+1}=\mathbb{E}\left[\left(\underline{X}_{t}-\underline{\widehat{X}}_{t}\right)\left(\underline{X}_{n}-\underline{\widehat{X}}_{n}\right)^{t}\right]\left(G_{n}-\Theta_{n} \Delta_{n}^{-1} F_{n}\right)^{t}=\Omega_{t, n}\left(G_{n}-\Theta_{n} \Delta_{n}^{-1} F_{n}\right)^{t}
$$

thus establishing the equation for $\Omega_{t, n+1}$. To establish the equation for $\Omega_{t \mid n}$,

$$
\underline{X}_{t}-P_{n} \underline{X}_{t}=\underline{X}_{t}-P_{n-1} \underline{X}_{t}-C \underline{I}_{n}
$$

Using Equation (11.4) and the fact that $\underline{X}_{t}-P_{n} \underline{X}_{t} \perp \underline{I}_{n}$, it follows that

$$
\Omega_{t \mid n}=\Omega_{t \mid n-1}-\Omega_{t, n} F_{n}^{t} \Delta_{n}^{-1} \Omega_{t, n}^{t} \quad n=t, t+1, \ldots
$$

as required.

