
Chapter 11

Kalman Recursions

State space models can simplify some problems, such as maximum-likelihood estimation and handling

missing values. Three problems for estimation of Xt are considered; they are defined as prediction,

filtering and smoothing. The definitions are as follows:

• Estimating Xt in terms of Y 0, . . . , Y t−1 defines the prediction problem;

• Estimating Xt in terms of Y 0, . . . , Y t defines the filtering problem;

• Estimating Xt in terms of Y 0, . . . , Y n, n > t, defines the smoothing problem.

Kalman filtering deals with (recursive) best linear estimation of Xt in terms of observations of Y 1, Y 2, . . .

and a random vector Y 0 which is uncorrelated with V t and W t for all t ≥ 1. Kalman recursions is

another term for Kalman filter.

Recall the state-space model defined by Equation (10.1).

Notation For a random vector V , the notation Pt(V ) = P
F

(Y )
0:t

(V ) will be used.

The following theorem gives the solution to the one-step prediction problem.

Theorem 11.1 (Kalman Prediction). Consider the system defined by Equations (10.1) and (10.2).

The one-step predictors X̂t := Pt−1(Xt) and their error covariance matrices

Ωt := E[(Xt − X̂t)(Xt − X̂t)
t]

are uniquely determined by the initial conditions

X̂1 = P0(X1), Ω1 := E[(X1 − X̂1)(X1 − X̂1)
t]

and the recursions, for t = 1, . . .,

X̂t+1 = GtX̂t +Θt∆
−1
t (Y t − FtX̂t) (11.1)

where
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X̂1 = P(X1|Y0), Ω1 = E[(X1 − X̂1)(X1 − X̂1)
′]

and:

∆t = FtΩtF
′
t +Rt

Θt = GtΩtF
′
t + St

Ωt+1 = GtΩtG
′
t +Qt −Θt∆

−1
t Θ′

t (11.2)

and ∆−1
t is a generalised inverse of ∆t.

Definition 11.2 (The Kalman Gain). The matrix Θt∆
−1
t is called the Kalman gain.

Example 11.1 (Local Trend Model).

We now show the recursive steps for the local trend model,





Yt = µt + et et ∼ N(0, σ2
e)

µt+1 = µt + ηt ηt ∼ N(0, σ2
η)

{ηt} ⊥ {et}

Here Ft = 1, Gt = 1, St = 0 for each t and hence Ωt = Θt. The Kalman recursion algorithm in this

setting is:





µ̂t+1 − µ̂t = Kt(Yt − µ̂t)

∆t = Ωt + σ2
e

Ωt+1 = Ωt + σ2
η −

Ω2
t

∆t

Here

Ωt+1 − Ωt = σ2
η −

Ω2
t

∆t

so that:

{
Ωt+1 = Ωt(1−Kt) + σ2

η

∆t = Ωt + σ2
e

where the Kalman gain is Kt :=
Ωt

∆t
and µ̂t = E[µt|Ft−1].

One advantage of state-space models is that missing values can be handled with relative ease. Suppose

that the observations (Yt)
t=l+h
t=l+1

are missing, where h ≥ 1 and 1 ≤ l ≤ T . There are several ways to

handle missing variables. Here we discuss a method that keeps the original time scale and model form.

From the equation, it follows that for t ≥ l,
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µt = µl +
t∑

j=l+1

ηj−1.

For s < t, use the notation µ̂t|s = E[µt|Fs]. Also, from the definition:

Ωt = E[(µt − µ̂t)
2] = E[Var(µt|Ft−1)].

For t ∈ {l + 1, . . . , l + h},

{
E[µt|Ft−1] = E[µt|Fl] = µ̂l+1|l = µ̂l+1

Var(µt|Ft−1) = Var(µt|Fl) = Var(µl+1|Fl) + (t− l − 1)σ2
η.

Hence

µt|t−1 = µt−1|t−2 Ωt|t−1 = Ωt−1|t−2 + σ2
η t = l + 2, . . . , l + h.

The Kalman recursion can still be applied by taking Kt = 0 for t = l + 1, . . . , l + h. This is rather

natural; when Yt is missing, there is no new innovation or new Kalman gain.

Proof of Theorem 11.1 We prove this in the case where St = 0; the innovations for ‘observed’ and

‘hidden’ processes are independent. Let the innovations, It, be defined by I0 := Y 0 and

It := Y t − Pt−1(Y t) = Y t − FtX̂t = Ft(Xt − X̂t) +W t t ∈ N

It follows from (??) that {It : t ∈ N} are orthogonal. Furthermore, Y 0, . . . , Y t and Y 0, . . . , Y t−1, It

contain the same information, or span the same Hilbert space. It follows that

Pt(X) = P (X | Y 0, . . . , Y t−1, It) = Pt−1(X) + P (X | It), (11.3)

where the last equality follows from Equation (??).

Note The following notation is used: P (X|Z) denotes the projection of X onto the space spanned

by Z (where Z is a collection of random variables). When Y = {Y0, Y1, . . . , Yt}, this is abbreviated to:

P (X|Y0, Y1, . . . , Yt) =: Pt(X).

Consequently:

X̂t+1 = Pt(Xt+1) = Pt−1(Xt+1) + P (Xt+1 | It)

= Pt−1(GtXt + V t+1) + E
[
Xt+1I

t
t

] (
E
[
ItI

t
t

])−1
It

= Pt−1(GtXt) + E
[
Xt+1I

t
t

] (
E
[
ItI

t
t

])−1
It.

Here the basic idea of projection in a Hilbert space is used. Let H be a Hilbert space, with x ∈ H and

y ∈ H, then

P (x|y) = 〈x,
y

‖y‖
〉
y

‖y‖
=

〈x, y〉

‖y‖2
y
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where 〈., .〉 denotes the inner product and ‖.‖ denotes the norm for the Hilbert space.

Recall ∆t := FtΩtF
′
t +Rt so that ∆t = E

[
ItI

t
t

]
. From the above, it follows that:

∆t := FtΩtF
′
t +Rt = FtE

[(
Xt − X̂t

)(
Xt − X̂t

)′
]
F ′
t + E

[
W tW

′
t

]
= E

[
ItI

′
t

]

and (when St = 0), Θt = GtΩtF
′
t so that:

Θt := GtΩtF
′
t

= E

[
(GtXt)(Xt − X̂t)

′F ′
t

]

= E[(GtXt + V t+1)((Xt − X̂t)
′F ′

t +W ′
t)]

= = E
[
Xt+1I

′
t

]

To establish Equation (11.2), note that

Ωt+1 = E
[
Xt+1X

′
t+1

]
− E

[
X̂t+1X̂

′

t+1

]
.

From this,

E
[
Xt+1X

′
t+1

]
= E[(GtXt + V t+1)(GtXt + V t+1)

′] = GtE
[
XtX

′
t

]
G′

t +Qt+1

and

E

[
X̂t+1X̂

′

t+1

]
= E

[
(GtX̂t +Θt∆

−1
t It)(GtX̂t +Θt∆

−1
t It)

′
]

= GtE

[
X̂tX̂

′

t

]
G′

t +Θt∆
−1
t ∆t∆

−1
t Θt = GtE

[
X̂tX̂

′

t

]
G′

t +Θt∆
−1
t Θt.

From this, it follows that:

Ωt+1 = Gt

(
E
[
XtX

′
t

]
− E

[
X̂tX̂

′

t

])
G′

t +Qt −Θt∆
−1
t Θt = GtΩtG

′
t +Qt+1 −Θt∆

−1
t Θt,

as required.

Theorem 11.3 (Kalman Filtering). The filtered estimates Xt|t := Pt(Xt) and the error covariance

matrices

Ωt|t := E

[
(Xt −Xt|t)(Xt −Xt|t)

t
]

are determined by the relations

Xt|t = Pt−1(Xt) + ΩtF
t
t∆

−1
t (Y t − FtX̂t)

and

Ωt|t+1 = Ωt − ΩtF
t
t∆

−1
t FtΩ

t
t.
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Proof From Equation (11.3), it follows that

PtXt = Pt−1Xt +MIt,

where

M = E
[
XtI

t
t

] (
E
[
ItI

t
t

])−1
= E

[
Xt(Ft(Xt − X̂t) +Wt)

t
]
∆−1

t = ΩtFt∆
−1
t .

It follows that:

Xt − Pt−1Xt = Xt − PtXt + PtXt − Pt−1Xt = Xt − PtXt +MIt.

Now use Xt − PtXt ⊥ MIt to obtain:

Ωt = Ωt|t +ΩtFt∆
−1
t F ′

tΩ
t
t

as required.

Theorem 11.4 (Kalman Fixed Point Smoothing). The smoothed estimates Xt|n := Pn(Xt) and the

error covariance matrices

Ωt|n := E[(Xt −Xt|n)(Xt −Xt|n)
′]

are determined for fixed t by the recursions, which can be solved successively for n = t, t+ 1, . . . :

Pn(Xt) = Pn−1(Xt) + Ωt,nF
t
n∆

−1
n (Y n − FnX̂n),

Ωt,n+1 = Ωt,n

(
Gn −Θn∆

−1
n Fn

)t
,

Ωt|n = Ωt|n−1 − Ωt,nF
t
n∆

−1
n FnΩ

t
t.n,

with initial conditions Pt−1(Xt) = X̂t and Ωt.t = Ωt|t−1 = Ωt found from Kalman prediction.

Proof Again, from Equation (11.3), PnXt = Pn−1Xt + CIn where

In = Fn(Xn − X̂n) +Wn.

Using the fact that

P (X|Y ) = MY

where

M = E[XY t]
(
E
[
Y Y t

])−1
,

(
E
[
Y Y t

])−1
any generalised inverse of E

[
Y Y t

]
, it follows that

C = E

[
Xt(Fn(Xn − X̂n) +Wn)

t
] (

E
[
InI

t
n

])−1
= Ωt,nF

t
n∆

−1
n . (11.4)
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It now follows using

{
Y t = FtXt +W t

Xt+1 = GtXt + V t+1

and Equation (11.1), which may be re-written as:

PtXt+1 = GtPt−1Xt +Θt∆
−1
t (Y t − Pt−1Y t)

together with the orthogonality of V n+1 and Wn with Xt − X̂t and the definition of Ωt,n that

Ωt,n+1 = E

[
(Xt − X̂t)(Xn − X̂n)

t
]
(Gn −Θn∆

−1
n Fn)

t = Ωt,n(Gn −Θn∆
−1
n Fn)

t

thus establishing the equation for Ωt,n+1. To establish the equation for Ωt|n,

Xt − PnXt = Xt − Pn−1Xt − CIn

Using Equation (11.4) and the fact that Xt − PnXt ⊥ In, it follows that

Ωt|n = Ωt|n−1 − Ωt,nF
t
n∆

−1
n Ωt

t,n n = t, t+ 1, . . .

as required.
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