Chapter 10

State Space Models

10.1 State-Space representations

10.1.1 Introduction

A state space model for a (possibly multivariate) time series $\left\{\underline{Y}_{t}: t \in \mathbb{Z}\right\}$ consists of two equations. The first, known as the observation equation expresses the w-variate observation \underline{Y}_{t} as a linear function of a v-variate state variable \underline{X}_{t} plus noise. The second equation, the state equation determines the state \underline{X}_{t+1} of the state variable in terms of the previous state \underline{X}_{t} plus a noise term. Thus, a linear time homogeneous state space model is of the form:

$$
\left\{\begin{array}{lll}
\underline{Y}_{t}=F_{t} \underline{X}_{t}+\underline{W}_{t} & t \in \mathbb{N} & \left\{\underline{W}_{t}\right\} \sim \mathrm{WN}\left(\underline{0},\left\{R_{t}\right\}\right) \tag{10.1}\\
\underline{X}_{t+1}=G_{t} \underline{X}_{t}+\underline{V}_{t+1} & t \in \mathbb{N} & \left\{\underline{V}_{t}\right\} \sim \mathrm{WN}\left(\underline{0},\left\{Q_{t}\right\}\right) .
\end{array}\right.
$$

where $\left\{\underline{Y}_{t}\right\}$ is the observation process, $\left\{\underline{X}_{t}\right\}$ is a v-variate process describing the state of an underlying system, $\left\{F_{t}\right\}$ is a sequence of $v \times v$ matrices and $\left\{G_{t}\right\}$ is a sequence of $w \times v$ matrices. The state $\left\{\underline{X}_{t}\right\}$ cannot be observed directly.
We consider the setting where the 'noise' $\left\{\underline{W}_{t}\right\}$ and the 'noise' $\left\{\underline{V}_{t}\right\}$ may be correlated;

$$
\binom{W_{t}}{\hline V_{t}} \sim W N\left(\binom{0}{\hline 0},\left(\begin{array}{c|c}
R_{t} & S_{t} \tag{10.2}\\
\hline S_{t}^{\prime} & Q_{t}
\end{array}\right)\right) .
$$

To complete the specification it is assumed that the initial state \underline{X}_{1} is uncorrelated with $\left\{\underline{W}_{t}\right\}$ and $\left\{\underline{V}_{t}\right\}$.

10.1.2 Examples of State Space Representations

We now show that processes we have already encountered have a state space representation.
Example 10.1 (State space representation of an $\mathrm{AR}(1)$ process).
A simple example of a Time Series model is the causal $\operatorname{AR}(1)$ process. Let Y be a stationary process satisfing:

$$
\begin{equation*}
Y_{t}=\phi Y_{t-1}+Z_{t}, \quad\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right) \tag{10.3}
\end{equation*}
$$

for $|\phi|<1$. This process already has a state space representation, since $\left\{Y_{t}\right\}$ is already of the form of the second equation of (10.1). The state space representation is (trivially):

$$
\left\{\begin{array}{l}
Y_{t}=X_{t} \tag{10.4}\\
X_{t+1}=\phi X_{t}+Z_{t+1} \quad\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right) .
\end{array}\right.
$$

Matching the components, this corresponds to: $G_{t}=1$ for all t and $R=0$ for the observation equation of (10.1) and $F_{t}=\phi$ for all t and $Q=\sigma^{2}$ for the state equation of (10.1), so $V_{t}=Z_{t}$.

It is assumed that the Kalman recursion starts from time 0 , so set $X_{1}=Y_{1}=\sum_{j=0}^{\infty} \phi^{j} Z_{1-j}$. Then Equation (10.1) becomes (10.4) and it is clear that $\left\{Y_{t}: t \in \mathbb{N}\right\}$ satisfies Equation (10.3).

Example 10.2 (State space representation of an $A R(p)$ process).
Now consider a causal $\operatorname{AR}(p)$ process:

$$
Y_{t}=\phi_{1} Y_{t-1}+\ldots+\phi_{p} Y_{t-p}+Z_{t}, \quad\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

With \underline{X}_{t} thus defined, the state which determines the observation $\left\{Y_{t}\right\}$ is the whole vector $\underline{X}_{t}=$ $\left(Y_{t-p+1}, \ldots, Y_{t}\right)^{t}$ and the state equation in (10.3) gives a recursive relation for this vector. The observation equation is (trivially)

$$
Y_{t}=(0, \ldots, 0,1) \underline{X}_{t}
$$

and the state equation for \underline{X}_{t+1} may be constructed quite easily as:

$$
\underline{X}_{t+1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{10.5}\\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \ldots & 1 \\
\phi_{p} & \phi_{p-1} & \phi_{p-2} & \ldots & \phi_{1}
\end{array}\right) \underline{X}_{t}+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) Z_{t+1}
$$

These equations have the required form with $\underline{W}_{t}=\underline{0}$ and

$$
\underline{V}_{t+1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
Z_{t+1}
\end{array}\right)
$$

It only remains to specify \underline{X}_{1}, which follows in the same way as for $p=1$.

Clearly, the initial condition is unnecessary if the state space representation is taken for $t \in \mathbb{Z}$.

Example 10.3 (State space representation for $\operatorname{ARMA}(p, q)$ process).
Let $\left\{Y_{t}\right\}$ be a causal $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process satisfying

$$
\phi(B) Y_{t}=\theta(B) Z_{t}, \quad\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

In the following state space representation, the AR part is incorporated into the state equation, as in Example 10.2 for the $\mathrm{AR}(\mathrm{p})$ process, while the MA part is incorporated into the observation equation.

This is obtained by making the following observation: let $U_{t}=\phi^{-1}(B) Z_{t}$ (this is well defined for ϕ causal). Then U_{t} is an $\operatorname{AR}(p)$ process satisfying $\phi(B) U_{t}=Z_{t}$ and $Y_{t}=\theta(B) U_{t}$. This follows from:

$$
\phi(B) Y_{t}=\theta(B) Z_{t}=\theta(B) \phi(B) U_{t}=\phi(B) \theta(B) U_{t}
$$

so that, applying $\phi(B)^{-1}$ to both sides:

$$
Y_{t}=\theta(B) U_{t}
$$

Therefore, a state space representation can be derived from:

$$
\left\{\begin{array}{l}
Y_{t}=\theta(B) U_{t} \\
\phi(B) U_{t+1}=Z_{t+1} \Rightarrow U_{t+1}=\sum_{j=1}^{p} \phi_{j} U_{t+1-j}+Z_{t+1}
\end{array}\right.
$$

The state vector is \underline{U}_{t} and, rewriting the first of these equations:

$$
Y_{t}=\left(\theta_{q}, \theta_{q-1}, \ldots, \theta_{1}, 1\right)\left(\begin{array}{c}
U_{t-q} \\
\vdots \\
U_{t}
\end{array}\right)
$$

Let $r=\max (p, q+1)$. The state vector is $X_{t}=\left(U_{t-r+1}, \ldots, U_{t}\right)^{t}$. If $r=p$, then the state equation is simply Equation (10.5). If $q+1>p$, then the state equation is:

$$
\underline{X}_{t+1}=\left(\begin{array}{cccccccccc}
0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0 & \phi_{p} & \phi_{p-1} & \phi_{p-2} & \ldots & \phi_{1}
\end{array}\right) \underline{X}_{t}+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) Z_{t+1}
$$

and the observation equation:

$$
Y_{t}=\left(1, \theta_{1}, \ldots, \theta_{q}\right) \underline{X}_{t}
$$

10.1.3 Akaike's State Space Model

This is a state space model for producing forecasts from an ARMA process. Akaike defines the state vector X_{t} as the minimum collection of variables that contain all the information needed to produce forecasts at the forecast origin t (i.e. if $\left\{Y_{t}\right\}$ is the ARMA process, then X_{t} contains all $\left(Y_{t}, Y_{t-1}, Y_{t-2}, \ldots\right)$ necessary for forecasts $\left.\widehat{Y}_{t+h \mid t}=\mathbb{E}\left[Y_{t+h} \mid \mathcal{F}_{t}^{(Y)}\right]\right)$. For the ARMA process with $r=$ $\max (p, q+1)$,

$$
X_{t}=\left(\widehat{Y}_{t \mid t}, \widehat{Y}_{t+1 \mid t}, \ldots, \widehat{Y}_{t+r-1 \mid t}\right)^{\prime}
$$

where x^{\prime} denotes the transpose of vector x.

Note: $\widehat{Y}_{t \mid t}=Y_{t}$. Therefore, with this state vector, the observation equation is:

$$
Y_{t}=v X_{t} \quad v=(1,0, \ldots, 0)
$$

We use the notation $X_{j, t}$ to denote the j th component of state vector X_{t}. From the definition,

$$
X_{1, t+1}=Y_{t+1}=\widehat{Y}_{t+1 \mid t}+\left(Y_{t+1}-\widehat{Y}_{t+1 \mid t}\right)=X_{2, t}+Z_{t+1}
$$

This follows, because

$$
Y_{t+1}=\sum_{j=1}^{p} \phi_{j} Y_{t+1-j}+Z_{t+1}+\sum_{j=1}^{q} \theta_{j} Z_{t+1-j}
$$

hence

$$
\widehat{Y}_{t+1 \mid t}=\mathbb{E}\left[Y_{t+1} \mid \mathcal{F}_{t}\right]=\sum_{j=1}^{p} \phi_{j} Y_{t+1-j} \sum_{j=1}^{q} \theta_{j} Z_{t+1-j}
$$

and the result follows by subtraction.

Now consider the expansion of a causal ARMA process:

$$
\begin{equation*}
Y_{t}=\sum_{i=0}^{\infty} \psi_{i} Z_{t-i} \tag{10.6}
\end{equation*}
$$

where $\psi_{0}=1$ and the other weights can be computed from $\psi(z)=\frac{\theta(z)}{\phi(z)}$. This follows from expanding

$$
1+\sum_{j=1}^{\infty} \psi_{j} z^{j}=\frac{1+\sum_{j=1}^{q} \theta_{j} z^{j}}{1-\sum_{j=1}^{p} \phi_{j} z^{j}}=1+z\left(\theta_{1}+\phi_{1}\right)+z^{2}\left(\theta_{2}+\phi_{2}+\theta_{1} \phi_{1}\right)+\ldots
$$

so that

$$
\psi_{1}=\phi_{1}+\theta_{1}, \quad \psi_{2}=\phi_{1} \psi_{1}+\phi_{2}+\theta_{2}
$$

and recursively

$$
\psi_{r-1}=\sum_{i=1}^{r-1} \phi_{i} \psi_{r-1-i}+\theta_{r-1}
$$

Using expansion

$$
\widehat{Y}_{t+j \mid t+1}=\mathbb{E}\left[Y_{t+j} \mid \mathcal{F}_{t+1}\right]=\sum_{i=j-1}^{\infty} \psi_{i} Z_{t+j-i}=\psi_{j-1} Z_{t+1}+\widehat{Y}_{t+j \mid t}
$$

Since

$$
Y_{t}=\sum_{j=1}^{p} \phi_{j} Y_{t-j}+Z_{t}+\sum_{j=1}^{q} \theta_{j} Z_{t-j}
$$

taking expectations gives:

$$
\widehat{Y}_{t+r \mid t+1}=\sum_{i=1}^{r} \phi_{i} \widehat{Y}_{t+r-i \mid t+1}+\theta_{r-1} Z_{t+1}
$$

Recall that $r=p$ or $q+1$. $\phi_{i}=0$ for $i \geq p+1$ and $\theta_{i}=0$ for $i \geq q+1$. Inserting these gives:

$$
\begin{aligned}
\widehat{Y}_{t+r \mid t+1} & =\sum_{i=1}^{r-1} \phi_{i}\left(\widehat{Y}_{t+r-i \mid t}+\psi_{r-i-1} Z_{t+1}\right)+\phi_{r} \widehat{Y}_{t \mid t}-\theta_{r-1} Z_{t+1} \\
& =\sum_{i=1}^{r} \phi_{i} \widehat{Y}_{t+r-i \mid t}+\left(\sum_{i=1}^{r-1} \phi_{i} \psi_{r-1-i}+\theta_{r-1}\right) Z_{t+1} \\
& =\sum_{i=1}^{r} \phi_{i} \widehat{Y}_{t+r-i \mid t}+\psi_{r-1} Z_{t+1}
\end{aligned}
$$

Therefore, the state vector X_{t} satisfies the following:

$$
\left(\begin{array}{l}
y_{t+1} \\
y_{t+2 \mid t+1} \\
\vdots \\
y_{t+m \mid t+1}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
\phi_{m} & \phi_{m-1} & \phi_{m-2} & \ldots & \phi_{1}
\end{array}\right)\left(\begin{array}{l}
y_{t} \\
y_{t+1 \mid t} \\
\vdots \\
y_{t+m-1 \mid t}
\end{array}\right)+\left(\begin{array}{l}
1 \\
\psi_{1} \\
\vdots \\
\psi_{m-2} \\
\psi_{m-1}
\end{array}\right) Z_{t+1}
$$

This gives a recursive method of computing the forecasts from forecast origin t as t evolves.

10.1.4 Local Trend Model

Consider the univariate time series $\left\{Y_{t}: t \in \mathbb{Z}\right\}$ satisfying:

$$
\begin{cases}y_{t}=\mu_{t}+e_{t} & e_{t} \sim N\left(0, \sigma_{e}^{2}\right) \\ \mu_{t+1}=\mu_{t}+\eta_{t} & \eta_{t} \sim N\left(0, \sigma_{\eta}^{2}\right)\end{cases}
$$

where $\left\{e_{t}\right\}$ and $\left\{\eta_{t}\right\}$ are two independent Gaussian noise processes. This is related to the ARIMA model as follows: if there is no measurement error (i.e. $\sigma_{e}=0$) then $y_{t}=\mu_{t}$ which is an $\operatorname{ARIMA}(0,1,0)$ model. If $\sigma_{e}>0$, there is an extra measurement error. Consequently, y_{t} is an $\operatorname{ARIMA}(0,1,1)$ process satisfying:

$$
\begin{gathered}
y_{t}-y_{t-1}=\mu_{t}-\mu_{t-1}+e_{t}-e_{t-1}=\left(e_{t}-e_{t-1}\right)+\eta_{t-1} \\
(I-B) y_{t}=(1-\theta B) a_{t}
\end{gathered}
$$

where $\left\{a_{t}\right\}$ is a Gaussian white noise with variance σ_{a}^{2} which may be computed from considering the covariance structure of an $\mathrm{MA}(1)$ process: if Z_{t} is $W N\left(0, \sigma^{2}\right)$ and $X_{t}=Z_{t}+\theta Z_{t-1}$ then

$$
\operatorname{Var}\left(X_{t}\right)=\left(1+\theta^{2}\right) \sigma^{2} \quad \operatorname{Cov}\left(X_{t-1}, X_{t}\right)=\theta \sigma^{2} .
$$

It follows that:

$$
2 \sigma_{e}^{2}+\sigma_{\eta}^{2}=\left(1+\theta^{2}\right) \sigma_{a}^{2} \quad \sigma_{e}^{2}=\theta \sigma_{a}^{2}
$$

This is easily solvable; select the solution satisfying $|\theta|<1$. This gives:

$$
\sigma_{a}=\frac{\sigma_{\eta}}{2}+\sqrt{\sigma_{e}^{2}+\frac{\sigma_{\eta}^{2}}{4}} \quad \theta=1-\frac{\sigma_{\eta}}{\sigma_{a}}=1-\frac{2}{1+\sqrt{1+\frac{4 \sigma_{2}^{2}}{\sigma_{\eta}}}} .
$$

10.1.5 CAPM (Capital Asset Pricing Model) with Time-Varying Coefficients

We now show that the CAPM may be written in this form. The model is:

$$
\begin{cases}r_{t}=\alpha_{t}+\beta_{t} r_{M t}+e_{t} & e_{t} \sim \operatorname{IIDN}\left(0, \sigma_{e}^{2}\right) \\ \alpha_{t+1}=\alpha_{t}+\eta_{t} & \eta_{t} \sim \operatorname{IIDN}\left(0, \sigma_{\eta}^{2}\right) \\ \beta_{t+1}=\beta_{t}+\epsilon_{t} & \eta_{t} \sim \operatorname{IIDN}\left(0, \sigma_{\epsilon}^{2}\right)\end{cases}
$$

Here r_{t} is the excess return of an asset (this is the return that exceeds what was expected), while $r_{M t}$ is the excess return of the market, α is the risk-free return and β is the asset's price volatility with respect to the overall market.

Firstly, consider α and β;

$$
\binom{\alpha_{t+1}}{\beta_{t+1}}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\alpha_{t}}{\beta_{t}}+\binom{\eta_{t}}{\epsilon_{t}}
$$

The return r_{t} may be written as:

$$
r_{t}=\left(1, r_{M t}\right)\binom{\alpha_{t}}{\beta_{t}}+e_{t}
$$

This is a state space model with $F=\left(1, r_{M t}\right),\left\{W_{t}\right\}=\left\{e_{t}\right\} \sim \operatorname{IIDN}\left(0, \sigma_{e}^{2}\right), G=I_{2}$,

$$
\left\{V_{t}\right\}=\left\{\binom{\eta_{t}}{\epsilon_{t}}\right\} \sim \operatorname{IIDN}\left(\binom{0}{0},\left(\begin{array}{cc}
\sigma_{\eta}^{2} & 0 \\
0 & \sigma_{\epsilon}^{2}
\end{array}\right)\right)
$$

