
Chapter 10

State Space Models

10.1 State-Space representations

10.1.1 Introduction

A state space model for a (possibly multivariate) time series {Y t : t ∈ Z} consists of two equations. The

first, known as the observation equation expresses the w-variate observation Y t as a linear function of

a v-variate state variable Xt plus noise. The second equation, the state equation determines the state

Xt+1 of the state variable in terms of the previous state Xt plus a noise term. Thus, a linear time

homogeneous state space model is of the form:

{
Y t = FtXt +W t t ∈ N {W t} ∼ WN(0, {Rt})

Xt+1 = GtXt + V t+1 t ∈ N {V t} ∼ WN(0, {Qt}).
(10.1)

where {Y t} is the observation process, {Xt} is a v-variate process describing the state of an underlying

system, {Ft} is a sequence of v× v matrices and {Gt} is a sequence of w× v matrices. The state {Xt}

cannot be observed directly.

We consider the setting where the ‘noise’ {W t} and the ‘noise’ {V t} may be correlated;

(
Wt

Vt

)
∼WN

((
0

0

)
,

(
Rt St

S′
t Qt

))
. (10.2)

To complete the specification it is assumed that the initial state X1 is uncorrelated with {W t} and

{V t}.

10.1.2 Examples of State Space Representations

We now show that processes we have already encountered have a state space representation.

Example 10.1 (State space representation of an AR(1) process).

A simple example of a Time Series model is the causal AR(1) process. Let Y be a stationary process

satisfing:
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Yt = φYt−1 + Zt, {Zt} ∼ WN(0, σ2). (10.3)

for |φ| < 1. This process already has a state space representation, since {Yt} is already of the form of

the second equation of (10.1). The state space representation is (trivially):

{
Yt = Xt

Xt+1 = φXt + Zt+1 {Zt} ∼ WN(0, σ2).
(10.4)

Matching the components, this corresponds to: Gt = 1 for all t and R = 0 for the observation equation

of (10.1) and Ft = φ for all t and Q = σ2 for the state equation of (10.1), so Vt = Zt.

It is assumed that the Kalman recursion starts from time 0, so set X1 = Y1 =
∑∞

j=0 φ
jZ1−j . Then

Equation (10.1) becomes (10.4) and it is clear that {Yt : t ∈ N} satisfies Equation (10.3).

Example 10.2 (State space representation of an AR(p) process).

Now consider a causal AR(p) process:

Yt = φ1Yt−1 + . . .+ φpYt−p + Zt, {Zt} ∼ WN(0, σ2).

With Xt thus defined, the state which determines the observation {Yt} is the whole vector Xt =

(Yt−p+1, . . . , Yt)
t and the state equation in (10.3) gives a recursive relation for this vector. The obser-

vation equation is (trivially)

Yt = (0, . . . , 0, 1)Xt.

and the state equation for Xt+1 may be constructed quite easily as:

Xt+1 =




0 1 0 . . . 0

0 0 1 . . . 0
...

0 0 0 . . . 1

φp φp−1 φp−2 . . . φ1




Xt +




0

0
...

0

1




Zt+1. (10.5)

These equations have the required form with W t = 0 and

V t+1 =




0

0
...

0

Zt+1




.

It only remains to specify X1, which follows in the same way as for p = 1.

Clearly, the initial condition is unnecessary if the state space representation is taken for t ∈ Z.
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Example 10.3 (State space representation for ARMA(p,q) process).

Let {Yt} be a causal ARMA(p,q) process satisfying

φ(B)Yt = θ(B)Zt, {Zt} ∼ WN(0, σ2).

In the following state space representation, the AR part is incorporated into the state equation, as in

Example 10.2 for the AR(p) process, while the MA part is incorporated into the observation equation.

This is obtained by making the following observation: let Ut = φ−1(B)Zt (this is well defined for φ

causal). Then Ut is an AR(p) process satisfying φ(B)Ut = Zt and Yt = θ(B)Ut. This follows from:

φ(B)Yt = θ(B)Zt = θ(B)φ(B)Ut = φ(B)θ(B)Ut

so that, applying φ(B)−1 to both sides:

Yt = θ(B)Ut.

Therefore, a state space representation can be derived from:

{
Yt = θ(B)Ut

φ(B)Ut+1 = Zt+1 ⇒ Ut+1 =
∑p

j=1 φjUt+1−j + Zt+1.

The state vector is U t and, rewriting the first of these equations:

Yt = (θq, θq−1, . . . , θ1, 1)




Ut−q

...

Ut


 .

Let r = max(p, q + 1). The state vector is Xt = (Ut−r+1, . . . , Ut)
t. If r = p, then the state equation is

simply Equation (10.5). If q + 1 > p, then the state equation is:

Xt+1 =




0 1 0 . . . 0 0 0 0 . . . 0

0 0 1 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

... . . .
...

0 0 0 . . . 1 0 0 0 . . . 0

0 0 0 . . . 0 1 0 0 . . . 0

0 0 0 . . . 0 0 1 0 . . . 0

0 0 0 . . . 0 0 0 1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 . . . 0 0 0 0 . . . 1

0 0 0 . . . 0 φp φp−1 φp−2 . . . φ1




Xt +




0

0
...

0

1




Zt+1

and the observation equation:
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Yt = (1, θ1, . . . , θq)Xt.

10.1.3 Akaike’s State Space Model

This is a state space model for producing forecasts from an ARMA process. Akaike defines the

state vector Xt as the minimum collection of variables that contain all the information needed to

produce forecasts at the forecast origin t (i.e. if {Yt} is the ARMA process, then Xt contains all

(Yt, Yt−1, Yt−2, . . .) necessary for forecasts Ŷt+h|t = E[Yt+h|F
(Y )
t ]). For the ARMA process with r =

max(p, q + 1),

Xt = (Ŷt|t, Ŷt+1|t, . . . , Ŷt+r−1|t)
′

where x′ denotes the transpose of vector x.

Note: Ŷt|t = Yt. Therefore, with this state vector, the observation equation is:

Yt = vXt v = (1, 0, . . . , 0).

We use the notation Xj,t to denote the jth component of state vector Xt. From the definition,

X1,t+1 = Yt+1 = Ŷt+1|t + (Yt+1 − Ŷt+1|t) = X2,t + Zt+1.

This follows, because

Yt+1 =

p∑

j=1

φjYt+1−j + Zt+1 +

q∑

j=1

θjZt+1−j ,

hence

Ŷt+1|t = E[Yt+1|Ft] =

p∑

j=1

φjYt+1−j

q∑

j=1

θjZt+1−j

and the result follows by subtraction.

Now consider the expansion of a causal ARMA process:

Yt =

∞∑

i=0

ψiZt−i (10.6)

where ψ0 = 1 and the other weights can be computed from ψ(z) = θ(z)
φ(z) . This follows from expanding

1 +
∞∑

j=1

ψjz
j =

1 +
∑q

j=1 θjz
j

1−
∑p

j=1 φjz
j
= 1 + z(θ1 + φ1) + z2(θ2 + φ2 + θ1φ1) + . . .
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so that

ψ1 = φ1 + θ1, ψ2 = φ1ψ1 + φ2 + θ2

and recursively

ψr−1 =
r−1∑

i=1

φiψr−1−i + θr−1.

Using expansion

Ŷt+j|t+1 = E[Yt+j |Ft+1] =
∞∑

i=j−1

ψiZt+j−i = ψj−1Zt+1 + Ŷt+j|t.

Since

Yt =

p∑

j=1

φjYt−j + Zt +

q∑

j=1

θjZt−j ,

taking expectations gives:

Ŷt+r|t+1 =

r∑

i=1

φiŶt+r−i|t+1 + θr−1Zt+1.

Recall that r = p or q + 1. φi = 0 for i ≥ p+ 1 and θi = 0 for i ≥ q + 1. Inserting these gives:

Ŷt+r|t+1 =
r−1∑

i=1

φi(Ŷt+r−i|t + ψr−i−1Zt+1) + φrŶt|t − θr−1Zt+1

=

r∑

i=1

φiŶt+r−i|t +

(
r−1∑

i=1

φiψr−1−i + θr−1

)
Zt+1

=

r∑

i=1

φiŶt+r−i|t + ψr−1Zt+1.

Therefore, the state vector Xt satisfies the following:




yt+1

yt+2|t+1
...

yt+m|t+1




=




0 1 0 . . . 0

0 0 1 . . . 0
...

...

0 0 0 . . . 1

φm φm−1 φm−2 . . . φ1







yt

yt+1|t
...

yt+m−1|t




+




1

ψ1

...

ψm−2

ψm−1




Zt+1

This gives a recursive method of computing the forecasts from forecast origin t as t evolves.
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10.1.4 Local Trend Model

Consider the univariate time series {Yt : t ∈ Z} satisfying:

{
yt = µt + et et ∼ N(0, σ2e)

µt+1 = µt + ηt ηt ∼ N(0, σ2η)

where {et} and {ηt} are two independent Gaussian noise processes. This is related to the ARIMA

model as follows: if there is no measurement error (i.e. σe = 0) then yt = µt which is an ARIMA(0,1,0)

model. If σe > 0, there is an extra measurement error. Consequently, yt is an ARIMA(0,1,1) process

satisfying:

yt − yt−1 = µt − µt−1 + et − et−1 = (et − et−1) + ηt−1.

(I −B)yt = (1− θB)at

where {at} is a Gaussian white noise with variance σ2a which may be computed from considering the

covariance structure of an MA(1) process: if Zt is WN(0, σ2) and Xt = Zt + θZt−1 then

Var(Xt) = (1 + θ2)σ2 Cov(Xt−1, Xt) = θσ2.

It follows that:

2σ2e + σ2η = (1 + θ2)σ2a σ2e = θσ2a.

This is easily solvable; select the solution satisfying |θ| < 1. This gives:

σa =
ση

2
+

√

σ2e +
σ2η

4
θ = 1−

ση

σa
= 1−

2

1 +

√
1 + 4σ2

e

σ2
η

.

10.1.5 CAPM (Capital Asset Pricing Model) with Time-Varying Coefficients

We now show that the CAPM may be written in this form. The model is:





rt = αt + βtrMt + et et ∼ IIDN(0, σ2e)

αt+1 = αt + ηt ηt ∼ IIDN(0, σ2η)

βt+1 = βt + ǫt ηt ∼ IIDN(0, σ2ǫ )

Here rt is the excess return of an asset (this is the return that exceeds what was expected), while rMt

is the excess return of the market, α is the risk-free return and β is the asset’s price volatility with

respect to the overall market.

Firstly, consider α and β;
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(
αt+1

βt+1

)
=

(
1 0

0 1

)(
αt

βt

)
+

(
ηt

ǫt

)
.

The return rt may be written as:

rt = (1, rMt)

(
αt

βt

)
+ et.

This is a state space model with F = (1, rMt), {Wt} = {et} ∼ IIDN(0, σ2e), G = I2,

{Vt} =

{(
ηt

ǫt

)}
∼ IIDN

((
0

0

)
,

(
σ2η 0

0 σ2ǫ

))
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