Tutorial 9

1. Consider a situation where the parameter space has two elements, $\Theta=\left\{\theta_{0}, \theta_{1}\right\}$ Suppose we want to test $H_{0}: \theta=\theta_{0}$ versus the alternative, $H_{1}: \theta=\theta_{1}$. One way of doing this is to consider the test statistic

$$
\nu(x)=\frac{L\left(\theta_{1} ; x\right)}{L\left(\theta_{0} ; x\right)}
$$

the ratio of the likelihood functions. This is a different formulation, but gives the same test as the Likelihood Ratio statistic. We reject $H_{0}: \theta=\theta_{0}$ in favour of $H_{1}: \theta=\theta_{1}$ if $\nu(x)$ is large.

We have a single observation on a random variable X with distribution F, where F is either $U(0,1)$ or $\operatorname{Exp}(1)$. Construct the test described above, with significance level $\alpha=0.05$ to test $H_{0}: X \sim U(0,1)$ versus the alternative $H_{1}: X \sim \operatorname{Exp}(1)$. Compute the rejection region for the test and compute its power when H_{1} is true.
2. We have a single observation on the random variable X with density function

$$
p(x, \theta)= \begin{cases}\theta e^{-x}+2(1-\theta) e^{-2 x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

where $\theta \in[0,1]$ is an unknown parameter.
(a) Construct a test between the null hypothesis $H_{0}: \theta=0$ versus the alternative $H_{1}: \theta>0$ with significance level $\alpha=0.05$. (Use LRT method).
(b) Compute the power function of this test.
3. Let $\left(U_{j}\right)_{j \geq 1}$ be a sequence of i.i.d. $U(0,1)$ random variables. Let X be a random variable. It is required to test

$$
H_{0}: X=\min \left\{U_{1}, \ldots, U_{k}\right\} \quad \text { versus } \quad H_{1}: X=\min \left\{U_{1}, \ldots, U_{l}\right\} \quad l<k
$$

(a) Construct a test with significance level α based on the statistic $\nu(x):=\frac{L\left(H_{1} ; x\right)}{L\left(H_{0} ; x\right)}$ where $L\left(H_{1} ; x\right)$ and $L\left(H_{0} ; x\right)$ denote the likelihoods based on H_{1} and H_{0} respectively (each hypothesis corresponds to a single parameter value).
(b) What is the largest value of the ratio $\frac{l}{k}$ so that a test with significance $\alpha=0.05$ has power at least 0.95?
4. Consider a population with three types of individual, labelled 1, 2 and 3 , which occur in the Hardy - Weinberg proportions

$$
p_{\theta}(1)=\theta^{2} \quad p_{\theta}(2)=2 \theta(1-\theta) \quad p_{\theta}(3)=(1-\theta)^{2} .
$$

For a sample X_{1}, \ldots, X_{n} from this population, let $N_{1}=\sum_{j=1}^{n} \mathbf{1}_{1}\left(X_{j}\right), N_{2}=\sum_{j=1}^{n} \mathbf{1}_{2}\left(X_{j}\right)$, $N_{3}=\sum_{j=1}^{n} \mathbf{1}_{3}\left(X_{j}\right)$ denote the number of appearances of $1,2,3$ respectively in the sample. Let $0<\theta_{0}<\theta_{1}<1$.
(a) Show that $\nu\left(\underline{x} ; \theta_{0}, \theta_{1}\right)=\frac{L\left(\theta_{1} ; \underline{x}\right)}{L\left(\theta_{0} ; \underline{x}\right)}$ is an increasing function of $2 N_{1}+N_{2}$. (n is fixed).
(b) Show that if $c>0$ and $\alpha \in(0,1)$ satisfy

$$
\mathbb{P}_{\theta_{0}}\left(2 N_{1}+N_{2}>c\right)=\alpha
$$

then a test $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta=\theta_{1}$ with a given significance level α that rejects H_{0} if and only if $2 N_{1}+N_{2}>c$ corresponds to the test where $H_{0}: \theta=\theta_{0}$ is rejected for large values of $\nu\left(\underline{x} ; \theta_{0}, \theta_{1}\right)$, defined in the previous part.
5. Let X_{1}, \ldots, X_{n} be i.i.d. $U(0, \theta)$ variables and let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Consider a test of $H_{0}: \theta \leq \theta_{0}$ versus the alternative $H_{1}: \theta>\theta_{0}$ where H_{0} is rejected if and only if $M_{n}>c$ for some value $c>0$.
(a) Compute the power function of this test and show that it is monotone increasing in θ.
(b) For $\theta_{0}=\frac{1}{2}$, compute the value of c which would give the test a size exactly 0.05 .
(c) Compute the value of n so that the test of size 0.05 for $\theta_{0}=\frac{1}{2}$ has power 0.98 for $\theta=\frac{3}{4}$.
6. Consider a simple hypothesis test of $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta=\theta_{1}$. Suppose that the test statistic T has a continuous distribution and the null hypothesis is rejected for $t \geq c$ where t is the observed value of T for some c and that, as a function of c, the size of the test is:

$$
\alpha(c)=\mathbb{P}_{\theta_{0}}(T \geq c)
$$

Prove that, for $\theta=\theta_{0}, \alpha(T) \sim U(0,1)$.
7. Let T_{1}, \ldots, T_{r} be independent test statistics for the same simple $H_{0}: \theta=\theta_{0}$ and that for each j, T_{j} has a continuous distribution. Let $\alpha_{j}(c)=\mathbb{P}_{\theta_{0}}\left(T_{j} \geq c\right)$. Show that, under H_{0}, $\tilde{T}=-2 \sum_{j=1}^{r} \log \alpha_{j}\left(T_{j}\right) \sim \chi_{2 r}^{2}$.
8. Let $F_{0}(y)=\mathbb{P}(Y<y)$ where Y is a non negative random variable representing a survival time. Assume that F_{0} has a density f_{0}. Let X_{1}, \ldots, X_{n} be i.i.d. each with an alternative distribution, representing survival time under an alternative treatment. The new distribution is considered to take the form

$$
G(y, \Delta)=1-\left(1-F_{0}(y)\right)^{\Delta} \quad y>0 \quad \Delta>0
$$

To test whether the new treatment is beneficial, test $H_{0}: \Delta \leq 1$ versus $H_{1}: \Delta>1$. Compute the Likelihood Ratio Test and compute the critical region for a test with significance level α in terms of n and an appropriate χ^{2} distribution. (This is known as the Lehmann alternative).

Answers

1. $f_{0}(x)=1$ for $0 \leq x \leq 1$. $f_{1}(x)=\exp \{-x\}$ for $x \geq 0$. For the Neyman Pearson test, the ratio is:

$$
\nu(x)=\frac{f_{1}(x)}{f_{0}(x)}= \begin{cases}e^{-x} & 0 \leq x \leq 1 \\ +\infty & x>1 \\ \text { undefined } & x<0\end{cases}
$$

By the Neyman Pearson lemma, a test is a UMP test if and only if there is a k such that

$$
x \in \mathcal{R} \quad \text { if } \quad \nu(x)>k \quad \text { and } \quad x \in \mathcal{R}^{c} \quad \text { if } \quad \nu(x)<k
$$

For a 5% significance level,

$$
\begin{aligned}
0.05 & =\mathbb{P}(\nu(X)>k \mid X \sim U(0,1)) \\
& =\mathbb{P}(\{X<-\log k\} \cup\{X>1\} \mid X \sim U(0,1))=-\log k \Rightarrow k=e^{-0.05}
\end{aligned}
$$

Rejection region $\mathcal{R}=[0,0.05] \cup[1,+\infty]$. The power of the test when $X \sim \operatorname{Exp}(1)$ is

$$
\mathbb{P}(\{X<0.05\} \cup\{X>1\} \mid X \sim \operatorname{Exp}(1))=\left(1-e^{-0.05}\right)+e^{-1}
$$

2. (a) LRT First find $\widehat{\theta}_{M L}$;

$$
\begin{gathered}
L(\theta ; x)=\theta\left(e^{-x}-2 e^{-2 x}\right)+2 e^{-2 x} \\
\widehat{\theta}_{M L}= \begin{cases}0 & x<\log 2 \\
1 & x>\log 2 \\
\in[0,1] & x=\log 2\end{cases} \\
\lambda(x)=\frac{L(0, x)}{L\left(\widehat{\theta}_{M L}, x\right)}= \begin{cases}1 & 0 \leq x \leq \log 2 \\
\frac{2 e^{-2 x}}{e^{-x}}=2 e^{-x} & x>\log 2 .\end{cases}
\end{gathered}
$$

Reject H_{0} if

$$
\lambda(x)<c \Rightarrow 2 e^{-x}<c \Rightarrow x>-\log \frac{c}{2}=k
$$

k determined by:

$$
\begin{aligned}
0.05=\mathbb{P}_{\theta=0}(X>k) & =\int_{k}^{\infty} 2 e^{-2 x} d x=e^{-2 k} \Rightarrow k=\frac{1}{2} \log 20 \\
\mathcal{R} & =\left(\frac{1}{2} \log 20,+\infty\right)
\end{aligned}
$$

(b)

$$
\beta(\theta)=\mathbb{P}_{\theta}\left(X>\frac{1}{2} \log 20\right)=\frac{\theta}{\sqrt{20}}+(1-\theta) \frac{1}{20}
$$

3. (a) Under H_{0}, X has density $f_{0}(x)=k(1-x)^{k-1} \quad 0 \leq x \leq 1$ and under H_{1}, X has density $f_{1}(x)=l(1-x)^{l-1} \quad 0 \leq x \leq 1$.
The N-P ratio is:

$$
\nu(x)=\frac{f_{1}(x)}{f_{0}(x)}=\frac{l}{k}(1-x)^{l-k}
$$

For N-P test, reject H_{0} for large values of $\lambda(x)$;

$$
x \in \mathcal{R} \quad \text { if } \quad \frac{l}{k}(1-x)^{l-k}>c \quad x \in \mathcal{R}^{c} \quad \text { if } \quad \frac{l}{k}(1-x)^{l-k}<c
$$

Simplifying gives:

$$
\mathcal{R}=\left\{x \left\lvert\, \frac{l}{k}(1-x)^{l-k}>c\right.\right\} \Rightarrow \mathcal{R}=\left\{x \left\lvert\, x>1-\left(\frac{c k}{l}\right)^{1 /(l-k)}=K\right.\right\}
$$

where we set $K:=1-\left(\frac{c k}{l}\right)^{1 /(l-k)}$. Then, for a size α test, K satisfies:

$$
\alpha=\mathbb{P}_{0}(X>K)=\int_{K}^{1} k(1-x)^{k-1} d x=(1-K)^{k} \Rightarrow K=1-\alpha^{1 / k}
$$

so that H_{0} is rejected for $X \in \mathcal{R}$ where

$$
\mathcal{R}=\left[1-\alpha^{1 / k}, 1\right]
$$

(b) We require a power of 0.95 when $\alpha=0.05$ and H_{1} is true. Then:

$$
0.95=\int_{1-0.05^{1 / k}}^{1} l(1-x)^{l-1} d x=0.05^{l / k} \Rightarrow \frac{l}{k}=\frac{\log 0.95}{\log 0.05}=\frac{\log (20 / 19)}{\log 20}
$$

4. (a)

$$
\begin{aligned}
\nu\left(\underline{x} ; \theta_{0}, \theta_{1}\right) & =\left(\frac{\theta_{1}}{\theta_{0}}\right)^{2 N_{1}}\left(\frac{\theta_{1}\left(1-\theta_{1}\right)}{\theta_{0}\left(1-\theta_{0}\right)}\right)^{N_{2}}\left(\frac{\left(1-\theta_{1}\right)}{\left(1-\theta_{0}\right)}\right)^{2 n-2\left(N_{1}+N_{2}\right)} \\
& =\left(\frac{\theta_{1}}{\theta_{0}}\right)^{2 N_{1}+N_{2}}\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{2 n-\left(2 N_{1}+N_{2}\right)}
\end{aligned}
$$

and since $\frac{\theta_{1}}{\theta_{0}}>1$ and $\frac{1-\theta_{1}}{1-\theta_{0}}<1$, this is increasing in $2 N_{1}+N_{2}$ for fixed n.
(b) Let \mathcal{R} denote rejection region from Neyman Pearson lemma, a test is UMP if and only if it satisfies

$$
\underline{x} \in \mathcal{R} \quad \text { if } \quad \nu\left(\underline{x} ; \theta_{0}, \theta_{1}\right)>k \quad \underline{x} \in \mathcal{R}^{c} \quad \text { if } \quad \nu\left(\underline{x} ; \theta_{0}, \theta_{1}\right)<k
$$

for some k.

$$
\begin{aligned}
\nu\left(\underline{x} ; \theta_{0}, \theta_{1}\right)>k & \Rightarrow\left(2 N_{1}+N_{2}\right)\left(\log \frac{\theta_{1}}{\theta_{0}}-\log \frac{1-\theta_{1}}{1-\theta_{0}}\right)+2 n \log \frac{1-\theta_{1}}{1-\theta_{0}}>\log k \\
& \Rightarrow 2 N_{1}+N_{2}>\frac{\log k-2 n \log \frac{1-\theta_{1}}{1-\theta_{0}}}{\log \frac{\theta_{1}}{\theta_{0}}-\log \frac{1-\theta_{1}}{1-\theta_{0}}}=K
\end{aligned}
$$

To get the UMP test of significance level α, K has to be chosen such that

$$
\mathbb{P}\left(2 N_{1}+N_{2}>K\right)=\alpha
$$

so that $K=c$.
5. (a) $P(\theta)=\mathbb{P}_{\theta}\left(M_{n}>c\right)=1-\left(\frac{c}{\theta}\right)^{n} \mathbf{1}_{\{c<\theta\}}$ (monotone non-decreasing)
(b) $0.05=P\left(\frac{1}{2}\right)=1-(2 c)^{n} 1_{\{c<\theta\}} \Rightarrow c=\frac{1}{2}(0.95)^{1 / n}$.
(c) $0.98=P\left(\frac{3}{4}\right)=1-0.95\left(\frac{2}{3}\right)^{n}$ so that $n=\frac{\log (95 / 2)}{\log (3 / 2)}$. First integer greater than or equal to this gives $n=10$.
6. Let $\gamma(c)=1-\alpha(c)$ then, since T is continuous, γ is the c.d.f. of T and hence $\gamma(T) \sim U(0,1)$. It follows that $\alpha(T)=1-\gamma(T) \sim U(0,1)$.
7. This follows directly from the previous exercise: for each $j \alpha_{j}\left(T_{j}\right) \sim U(0,1)$ from which it follow directly that $-\log \alpha_{j}\left(T_{j}\right) \sim \operatorname{Exp}(1)$ and hence $-2 \sum_{j=1}^{r} \log \alpha_{j}\left(T_{j}\right) \sim \Gamma\left(r, \frac{1}{2}\right)=\chi_{2 r}^{2}$.
8. $g(y, \Delta)=\Delta\left(1-F_{0}(y)\right)^{\Delta-1} f_{0}(y)$. It follows that

$$
\lambda(\underline{x})=\frac{\sup _{0 \leq \Delta \leq 1} \Delta^{n}\left(\prod_{j=1}^{n}\left(1-F_{0}\left(x_{j}\right)\right)\right)^{\Delta-1}}{\sup _{0 \leq \Delta<+\infty} \Delta^{n}\left(\prod_{j=1}^{n}\left(1-F_{0}\left(x_{j}\right)\right)\right)^{\Delta-1}}= \begin{cases}1 & \Delta^{*} \leq 1 \\ \frac{1}{\Delta^{* n}\left(e^{-n+\left(n / \Delta^{*}\right)}\right)} & \Delta^{*}>1\end{cases}
$$

where

$$
\Delta^{*}=-\frac{1}{\frac{1}{n} \sum_{j=1}^{n} \log \left(1-F_{0}\left(x_{j}\right)\right)}
$$

This comes from solving

$$
\frac{d}{d \Delta} n \log \Delta+\left.(\Delta-1) \log \prod_{j=1}\left(1-F_{0}\left(x_{j}\right)\right)\right|_{\Delta=\Delta^{*}}=0
$$

giving

$$
\frac{n}{\Delta^{*}}+\log \prod_{j=1}\left(1-F_{0}\left(x_{j}\right)\right)=0 \Rightarrow \Delta^{*}=-\frac{1}{\frac{1}{n} \sum_{j=1}^{n} \log \left(1-F_{0}\left(x_{j}\right)\right)}
$$

The LRT rejects H_{0} if the ratio is small; for some k to be determined

$$
\mathcal{R}=\left\{\underline{x} \left\lvert\, \lambda(\underline{x})<\frac{1}{k^{n}}\right.\right\}=\left\{\underline{x} \mid \Delta^{*} e^{\left(1 / \Delta^{*}\right)-1}>k\right\} .
$$

For $x>1, x e^{(1 / x)-1}$ is increasing (take derivative of \log) hence critical region is

$$
\mathcal{R}=\left\{\underline{x} \mid-\sum_{j=1}^{n} \log \left(1-F_{0}\left(x_{j}\right)\right)<c\right\}
$$

for some constant c.

Recall that if X has c.d.f. F for F continuous, then

$$
\mathbb{P}(F(X) \leq x)=\mathbb{P}\left(X \leq F^{-1}(x)\right)=F\left(F^{-1}(x)\right)=x
$$

so $F(X) \sim U(0,1)$ and hence $1-F(X) \sim U(0,1)$.
For a prescribed significance level α, under the assumption of H_{0}, X_{j} has distribution F_{0} and hence

$$
\alpha=\mathbb{P}(\underline{X} \in \mathcal{R})=\mathbb{P}\left(-\sum_{j=1}^{n} \log U_{j}<c\right)
$$

where U_{1}, \ldots, U_{n} are i.i.d. $U(0,1)$ If $U_{j} \sim U(0,1)$, then $-\log U_{j} \sim \operatorname{Exp}(1)$ and hence

$$
-\sum_{j=1}^{n} \log U_{j} \sim \operatorname{gamma}(n, 1)
$$

so that $W:=-2 \sum_{j=1}^{n} \log U_{j} \sim \chi_{2 n}^{2}$, so

$$
\alpha=\mathbb{P}(W<2 c) \Rightarrow c=\frac{1}{2} k_{2 n, 1-\alpha}
$$

where $k_{2 n, \gamma}$ is the value such that $\mathbb{P}\left(W>k_{2 n, \gamma}\right)=\gamma$.

