
Tutorial 13

1. Let X1, . . . , Xn be a random sample from distribution:

g(x, θ) =

{
θxθ−1 0 ≤ x ≤ 1 θ > 0

0 otherwise

(a) Find the MLE of 1
θ . Is it unbiased? Is it UMVU?

(b) Show that X is an unbiased estimator of θ
1+θ . Is it UMVU?

2. Let X and Y be two discrete random variables with well defined expected values and variances.

Prove that:

(a) E[E[X|Y ]] = E[X]

(b) Var(X) = Var(E[X|Y ]) + E[Var(X|Y )].

3. Let X1, . . . , Xn+1 be independent Bernoulli(p) variables and let

h(p) = P

(
n∑

i=1

Xi > Xn+1

∣∣∣∣∣ p
)
.

(a) Show that

T (X1, . . . , Xn+1) =

{
1
∑n

j=1Xj > Xn+1

0 otherwise

is an unbiased estimator of h(p).

(b) Find the UMVUE of h(p).

4. Let X be an observation from the probability with mass function:

p(−1, θ) =
θ

2
, p(0, θ) = 1− θ, p(1, θ) =

θ

2
θ ∈ [0, 1].

(a) Find the maximum likelihood estimator of θ and show that it is unbiased.

(b) Let

T (X) =

{
2 x = 1

0 x = −1 or 0

Show that T is an unbiased estimator of θ.

(c) Show that θ̂ (maximum likelihood estimator) is minimal sufficient for θ and that E[T |θ̂] = θ̂.

Show that Var(θ̂) < Var(T ).

5. Consider a Gaussian linear model Y = Xβ + ǫ, where Y is an n-vector, X is n × r of rank r

(r < n) and ǫ ∼ N(0, σ2I) and β is an r-vector of unknown parameters. σ2 is unknown. Recall

(from lectures) that the OLS estimator of β̂ is:

β̂ = (XtX)−1XtY.
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Show that β̂i is UMVU for each i = 1, . . . , r and that S2 = 1
n−r

∑n
j=1(Yj − Ŷj)

2 is an UMVU

estimator of σ2, where Ŷ = X(XtX)−1XtY .

6. Let X be the number of dots showing when a fair die is rolled; i.e.

pX(x) =
1

6
x = 1, 2, 3, 4, 5, 6.

Let Y be the number of heads obtained when X fair coins are tossed. Find

(a) The mean and variance of Y .

(b) The MSPE (mean squared prediction error) of the optimal linear predictor of Y based on

X. The optimal linear predictor is the function Ŷ = aX + b, where a and b are chosen such

that E[Ŷ ] = E[Y ] and, subject to this constraint, to minimise Var(Y − Ŷ ).

(c) The optimal linear predictor of Y given X = x for x = 1, 2, 3, 4, 5, 6.

7. A person walks into a clinic at time t and is diagnosed with a certain disease. At the same time

(t), a diagnostic indicator Z0 of the severity of the disease (e.g. a blood cell count or a virus

count) is obtained. Let S be the unknown date in the past when the subject was infected. We

are interested in the time Y0 = t−S from infection until detection. Assume that the conditional

density of Z0 (the present condition) given Y0 = y is N(µ+ βy0, σ
2). Let

Z =
Z0 − µ

σ
, Y =

β

σ
Y0.

(a) Show that the conditional density p(z|y) of Z given Y = y is N(y, 1).

(b) Suppose that Y has exponential density π(y) = λ exp{−λy}1{y>0} where λ > 0. Show that

the conditional distribution of Y given Z = z has density

π(y|z) = 1

(2π)1/2c
exp

{
−1

2
(y − (z − λ))2

}
y > 0

where c is a suitable constant (depending on z and λ). Compute c in terms of the c.d.f. Φ

for a N(0, 1) random variable.

(c) Find the conditional density π0(y0|z0) of Y0 given Z0 = z0.

(d) Suppose it is known that Z0 = z0. Find an expression (in terms of the c.d.f for N(0, 1) and

its inverse) for g(z0), the best predictor of Y0 given Z0 = z0 using mean absolute prediction

error E [|Y0 − g(Z0)|].
(e) Let φ denote the density function for a N(0, 1) random variable. Show that the best Mean

Squared Prediction Error (MSPE) predictor of Y given Z = z is:

E[Y |Z = z] =
1

c
φ(λ− z)− (λ− z).

215



Answers

1. (a) For (x1, . . . , xn) ∈ [0, 1]n,

logL(θ;x1, . . . , xn) = n log θ + (θ − 1)
n∑

j=1

log xj

∂

∂θ
logL(θ) =

n

θ
+

n∑

j=1

log xj

d2

dθ2
logL(θ) = − n

θ2

while logL(θ)
θ→0,θ→+∞−→ −∞ hence unique maximiser which is θ̂ = −1∑n

j=1 log xj
. Therefore:

1

θ̂ML

= − 1

n

n∑

j=1

logXj

Eθ

[
1

θ̂ML

]
= −θ

∫ 1

0
xθ−1 log xdx = θ

∫ ∞

0
e−θyydy =

1

θ

so 1

θ̂ML

is an unbiased estimator of 1
θ .

To show that it is UMVU: this is an exponential family;

L(x1, . . . , xn; θ) =
1∏n

j=1 xj

n∏

j=1

1[0,1](xj) exp



θ

n∑

j=1

log xj + n log θ



 .

The sufficient statistic T (x1, . . . , xn) =
∑n

j=1 log xj is therefore complete. The UMVU

estimator is therefore:

E

[
1

θ̂ML

|T (X)

]
=

1

θ̂ML

.

(b)

E[X] = E[X] = θ

∫ 1

0
xθdx =

θ

1 + θ

so X is an unbiased estimator of θ
1+θ .

To show that it is not UMVU, E[X|
∑

i logXi] is the unique UMVU estimator and this is

not equal to X since with probability 1, X is not a function of
∑

i logXi.

2. (a)

E[E[X|Y ]] =
∑

y

pY (y(
∑

x

xpX|Y (x|y) =
∑

x,y

x
pX,Y (x, y)

pY (y)

=
∑

x

x(
∑

y

pX,Y (x, y) =
∑

x

xpX(x) = E[X].
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(b)

Var(X) = E[X2]− E[X]2 = E[E[X2|Y ]]− E[E[X|Y ]]2

= E[Var(X|Y )] + E[(E[X|Y ])2]− E[E[X|Y ]]2

= E[Var(X|Y )] + Var(E[X|Y ]).

3. (a) Trivially clear from the definition: T is a binary variable taking values in {0, 1}, therefore:

Ep[T ] = Pp(T = 1) = h(p).

(b)
∑n+1

j=1 Xj is a complete sufficient statistic for p, hence unique UMVUE is

S := E[T |
n+1∑

j=1

Xj ].

Now, for each y ∈ {0, 1, . . . , n+ 1}:

E[T |
n+1∑

j=1

Xj = y] = P(T = 1|
n+1∑

j=1

Xj = y) =
P(
∑n

j=1Xj > Xn+1,
∑n+1

j=1 Xj = y)

P(
∑n+1

j=1 Xj = y)
.

The denominator is
(
n+1
y

)
py(1− p)n+1−y; the numerator is:





0 y = 0

P(
∑n

j=1Xj = 1, Xn+1 = 0) = np(1− p)n y = 1

P(
∑n

j=1Xj = 2, Xn+1 = 0) = n(n−1)
2 p2(1− p)n−1 y = 2

P(
∑n+1

j=1 Xj = y) =
(
n+1
y

)
py(1− p)n+1−y y ≥ 3

Note: for y ≥ 3, it always holds that
∑n

j=1Xj > Xn=1. Putting this together gives:





0 y = 0
n

n+1 y = 1
n−1
n+1 y = 2

1 y ≥ 3

4. (a)

L(θ;x) =
θ

2
1{−1,1}(x) + (1− θ)1{0}(x)

Clearly this is maximised for: θ̂(1) = θ̂(−1) = 1 θ̂(0) = 0.

To compute its expected value:

Eθ[θ̂] =
θ

2
+

θ

2
= θ.

(b) E[T (X)] = 2× θ
2 = θ so it is unbiased.
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(c) Note that θ̂(X) = |X|. To show sufficiency:

Pθ(X = x||X| = y) =
Pθ(X = x, |X| = y)

Pθ(|X| = y)
=





1 x = 0, y = 0
1
2 x = ±1, y = 1

0 other

which does not depend on θ.

To prove minimal sufficiency: Any reduction is a function S : S(|X|) = constant so that

Pθ(X ∈ .|S) = Pθ(X ∈ .) which does depend on θ. hence S is not sufficient. Therefore θ̂ is

minimal sufficient.

Clearly:

E[T (X)||X|] =
{

0 X = 0

1 X = ±1

Finally: θ̂ ∼ Be(θ) so that

Var(θ̂) = θ(1− θ).

while T = 2Z for Z ∼ Be( θ2) so that

Var(T ) = 4
θ

2
(1− θ

2
) = 2θ(1− θ

2
)

which is clearly greater.

5. Unbiased follows directly from lectures:

β̂ = (XtX)−1XtY

so that

E[β̂] = (XtX)−1Xt
E[Y ] = (XtX)−1XtXβ = β.

For the sample standard deviation, let H = X(XtX)−1Xt then H is idempotent, of rank r and

hence H = PDP t where P is orthonormal and D = diag(1, . . . , 1, 0, . . . , 0) where 1 appears with

multiplicity r. Hence

Y − Ŷ = (I −H)Y = (I −H)Xβ + (I −H)ǫ = (I −H)ǫ.

Let η = P tǫ then η ∼ N(0, σ2I). Also,

(Y − Ŷ )t(Y − Ŷ ) = ηt(I −D)η =

n∑

r+1

η2j

so that
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(n− r)S2

σ2
=

n∑

r+1

(ηj
σ

)2
∼ χ2

n−r.

From this, E[S2] = σ2 so that the estimator is unbiased.

Now to show that the estimators are UMVU:

p(y1, . . . , yn) =
1

(2π)n/2σn
exp

{
− 1

2σ2
(y −Xβ)t(y −Xβ)

}

and the argument inside exp{−1
2(.)} is:

1

σ2
(yty − ytXβ − βtXty + βtXtXβ).

The sufficient statistic is therefore:

T (y) = (yty,

n∑

j=1

Xjiyj : i = 1, . . . , r).

β̂i =
∑

jk(X
tX)−1

ij Xkjyk is clearly a linear function of the sufficient statistics. For the standard

deviation:

(Y − Ŷ t)(Y − Ŷ ) = Y tY − Ŷ tŶ

This holds since

Y tŶ = Y tHY = Y tHtHY = Ŷ tŶ

Now Ŷ = X(XtX)−1XtY which is a (linear) function of the sufficient statistics and hence

E[S2|T (Y )] = S2.

The result follows by the Lehman-Scheffé theorem.

6. (a) E[Y ] = 7
4 ,

Var(Y ) = E[Var(Y |X)]+Var(E[Y |X]) =
1

4
E[X]+

1

4
Var(X) =

3

8
+
12.5 + 4.5 + 0.5

24
=

26.5

24
= 1

5

48
.

(b)

Ŷ = aX + b

minimise

Var(Y − aX − b) = Var(Y ) + a2Var(X)− 2aC(Y,X)
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gives:

a =
C(Y,X)

Var(X)

We can show Cov(X,Y ) = 1
2Var(X) as follows:

E[XY ] = E[XE[Y |X]] =
1

2
E[X2]

E[Y ] =
1

2
E[X]

hence

C(Y,X) =
1

2
Var(X) ⇒ a =

1

2

Var(Y − Ŷ ) = Var(Y )− 1

4
Var(X) =

1

4
E[X] =

7

8
.

(c)

E[Ŷ ] = E[Y ] =
1

2
E[X].

Now using Ŷ = aX + b with a = 1
2 gives b = 0 so that

Ŷ =
1

2
X.

7. (a) Z ∼ N(y, 1) follows directly from rescaling.

(b)

π(y|z) = π(y)p(z|y)
p(z)

∝ λe−λy 1√
2π

e−
1
2
(z−y)2

1{y>0}

=
λ√
2π

exp

{
−y2

2
+ y(z − λ)− z2

2

}
1{y≥0}

so

π(y|z) = K exp

{
−1

2
(y − (z − λ))2

}
1{y≥0}

1 =
√
2πK

∫ ∞

−(z−λ)

1√
2π

e−x2/2dx =
√
2πKΦ(z − λ)

where Φ is the N(0, 1) c.d.f., hence

π(y|z) = 1√
2πΦ(z − λ)

exp

{
−1

2
(y − (z − λ))2

}
1{y≥0}

(c)

π0(y0|z0) =
β

(2π)1/2σΦ( z0−µ
σ − λ)

exp

{
− 1

2σ2
(β2y0 − (z0 − µ− λ))2

}
1{y0>0}
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(d) First find h(z), the best linear predictor of Y given Z = a. Then g(z0) =
β
σh(

z0−µ
σ ).

h(z) is the value of h that minimises
∫∞
0 |y − h|π(y|z)dy so that h satisfies:

∫ h

0

1

(2π)1/2
exp{−1

2
(y − (z − λ))2}dy =

∫ ∞

h

1

(2π)1/2
exp{−1

2
(y − (z − λ))2}dy

giving

Φ(h− (z − λ))− Φ(−(z − λ)) = 1− Φ(h− (z − λ)),

Φ(h− (z − λ)) =
1

2
(1 + Φ(−(z − λ)))

h(z) = (z − λ) + Φ−1

(
1

2
(1 + Φ(λ− z))

)
.

(e) We want to find h which minimises

∫ ∞

0
(y − h)2π(y|z)dz

which is given by h(z) = E[Y |Z = z]. This is:

E[Y |Z = z] = (z − λ) +
1

(2π)1/2c

∫ ∞

0
(y − (z − λ))e−

1
2
(y−(z−λ))2dy

= (z − λ) +
1

(2π)1/2c

∫ e−
1
2 (z−λ)2

0
dx

= (z − λ) +
1

(2π)1/2c
e−

1
2
(z−λ)2 .
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