Tutorial 12

1. Let $X_{1}, \ldots, X_{n_{1}}$ and $Y_{1}, \ldots, Y_{n_{2}}$ be two independent random samples from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ respectively. All parameters are assumed unknown. Let

$$
R=\frac{\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}}{\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}}
$$

and $F=\frac{\left(n_{1}-1\right)}{\left(n_{2}-1\right)} R$.
(a) Show that $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} F$ has an $F_{n_{2}-1, n_{1}-1}$ distribution.
(b) Compute the LR test of $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ versus $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ and show that it satisfies: reject H_{0} for $F>x_{1}$ or $F<x_{2}$ where $\left(x_{1}, x_{2}\right)$ satisfy:

$$
\left\{\begin{array}{l}
F_{n_{2}-1, n_{1}-1}\left(x_{2}\right)-F_{n_{2}-1, n_{1}-1}\left(x_{1}\right)=\alpha \\
\frac{x_{1}}{\left(1+\frac{n_{2}-1}{n_{1}-1} x_{1}\right)^{1+\left(n_{1} / n_{2}\right)}}=\frac{x_{2}}{\left(1+\frac{n_{2}-1}{n_{1}-1} x_{2}\right)^{1+\left(n_{1} / n_{2}\right)}}
\end{array}\right.
$$

Here $F_{v, w}(x)=\mathbb{P}(X \leq x)$ for $X \sim F_{v, w}$.
(c) Can you show that the LR test with significance α is asymptotically equivalent to: reject H_{0} for $F>F_{n_{2}-1, n_{1}-1 ; \alpha / 2}$ or $F>\frac{1}{F_{n_{1}-1, n_{2}-1 ; \alpha / 2}}$?
2. Consider the regression problem

$$
\underline{Y}=X \underline{\beta}+\underline{\epsilon}
$$

where \underline{Y} is an n vector, X is an $n \times(p+q+1)$ matrix, $\underline{\beta}=\binom{\beta^{(1)}}{\beta^{(2)}}, \beta^{(1)}$ is a $p+1$ vector and $\beta^{(2)}$ is a q vector. Let X_{1} be the matrix with the first $p+1$ columns of X and X_{2} the matrix with the remaining q columns. Consider the hypothesis test $H_{0}: \beta^{(2)}=0$ versus $H_{1}: \beta^{(2)} \neq 0$. Suppose that X has full rank.
(a) Let $\underline{\hat{\mu}}$ denote the ML estimator of $X \underline{\beta}$ for the full model and let $\underline{\widehat{\mu}}_{0}$ the estimator of $X_{1} \underline{\beta}^{(1)}$ under the null hypothesis. Show that

$$
\mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right]=\left(I-X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t}\right) X_{2} \beta^{(2)}
$$

(b) Let

$$
F=\frac{\left(Q_{\mathrm{res}, I}-Q_{\mathrm{res}, I I}\right) / q}{Q_{\mathrm{res}, I I} /(n-(p+q+1))}
$$

Show that this has $F_{q, n-(p+q-1)}\left(\theta^{2}\right)$ distribution, where the non-centrality parameter θ^{2} is:

$$
\theta^{2}=\frac{1}{\sigma^{2}} \beta^{(2) t}\left(X_{2}^{t} X_{2}-X_{2}^{t} X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t} X_{2}\right) \beta^{(2)}
$$

3. Consider the one-way layout model

$$
Y_{i j}=\alpha+\beta_{i}+\epsilon_{i j}, \quad i=1, \ldots, p, \quad j=1, \ldots, n_{i}
$$

where $\epsilon_{i j}$ are i.i.d. $N\left(0, \sigma^{2}\right)$ and $\sum_{i=1}^{p} n_{i} \beta_{i}=0$. Let $n=n_{1}+\ldots+n_{p}$.
(a) Find the $\operatorname{MLE}\left(\widehat{\alpha}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)^{t}$ of the parameter vector $\left(\alpha, \beta_{1}, \ldots, \beta_{p}\right)$.
(b) Compute the covariance matrix for $\left(\widehat{\alpha}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)^{t}$.
(c) Give symmetric confidence intervals for α and β_{k}.
4. Consider again the one-way layout model of the previous exercise. Consider the two models:

$$
\begin{cases}I & Y_{i j}=\alpha+\epsilon_{i j} \\ I I & Y_{i j}=\alpha+\beta_{i}+\epsilon_{i j}\end{cases}
$$

where Model II is the full model and Model I is the reduced model. Let $Q_{\mathrm{res}, I}$ and $Q_{\mathrm{res}, I I}$ be the residual sums of squares of the two models. Show that

$$
\frac{\left(Q_{\mathrm{res}, I}-Q_{\mathrm{res}, I I}\right) /(p-1)}{Q_{\mathrm{res}, I I} /(n-p)} \sim F_{p-1, n-p}\left(\delta^{2}\right)
$$

where the non-centrality parameter is:

$$
\delta^{2}=\frac{1}{\sigma^{2}} \sum_{k=1}^{p} n_{k} \beta_{k}^{2}
$$

5. Let $X=\left(X_{1} \mid X_{2}\right)$ where X_{1} is $n \times p, X_{2}$ is $n \times q, X$ is $n \times p+q$ and $X^{t} X$ is invertible. Show that

$$
X\left(X^{t} X\right)^{-1} X^{t} X_{1}=X_{1}
$$

6. Consider the linear model $Y=X \beta+\epsilon$ where $\epsilon \sim N\left(0, \sigma^{2} I\right)$. Let $\widehat{Y}=X \widehat{\beta}$ denote the fitted values, where $\widehat{\beta}$ is the least squares estimator of β. Assume that $X_{.1}=\mathbf{1}_{n}$ (the n -vector with each entry 1). We use $\operatorname{Var}(Z)$ to denote the covariance matrix of a random vector Z. Show that
(a) $\operatorname{Var}(Y)=\operatorname{Var}(\widehat{Y})+\operatorname{Var}(Y-\widehat{Y})$.
(b) $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}$.
7. Consider the linear model $Y=X \beta+\epsilon$ where the first column of X is a column of 1s. (This corresponds to multiple linear regression). Suppose that $\epsilon \sim N\left(0, \sigma^{2} I\right)$. Define the hat matrix H as $H=X\left(X^{t} X\right)^{-1} X^{t} . \beta$ is a p-vector of parameters. Show that:
(a) $\frac{1}{n} \leq H_{i i} \leq 1$ for all $i=1, \ldots, p$,
(b) $\operatorname{tr}(H)=p$,
(c) $H_{i i}=\operatorname{Cor}\left(Y_{i}, \widehat{Y}_{i}\right)^{2}$.

You may use the fact that if $X=\left(X^{(1)} \mid X^{(2)}\right), H^{(1)}=X^{(1)}\left(X^{(1) \prime} X^{(1)}\right)^{-1} X^{(1) \prime}$ and $H=$ $X\left(X^{\prime} X\right)^{-1} X^{\prime}$ then $H H^{(1)}=H^{(1)} H=H^{(1)}$.
8. Consider again the regression model

$$
Y=X \beta+\epsilon
$$

where all elements of the first column of X are 1 and $\epsilon \sim N\left(0, \sigma^{2} I\right)$. Define

$$
R^{2}=1-\frac{Q_{\mathrm{res}}}{Q_{T}}
$$

where \widehat{Y}_{j} are the fitted values, $\bar{Y}=\frac{1}{n} \sum_{j=1}^{n} Y_{j}$, $Q_{\text {res }}=\sum_{j=1}^{n}\left(Y_{j}-\widehat{Y}_{j}\right)^{2}$ (the residual sum of squares) and $Q_{T}=\sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}$ (the total sum of squares).
(a) Show that

$$
R^{2}=\left(\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(\widehat{Y}_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}}}\right)^{2}
$$

(b) Show that the test with critical region $R^{2}>c$ is equivalent to the LRT test for testing the null model (where only β_{0} is non-zero) against the full model (where all coefficients are non-zero).
(c) Show that R^{2} is distributed according to a $\operatorname{Beta}\left(\frac{p-1}{2}, \frac{n-p}{2}\right)$ distribution.
9. Let $Y=X \beta+\epsilon$ where $\epsilon \sim N\left(0, \sigma^{2} I_{n}\right), X$ is $n \times p$ of full rank, $p<n$ and let $\widehat{Y}=X\left(X^{t} X\right)^{-1} X^{t} Y$, the projection onto $\mathcal{S}=\left\{\mu: \mu=X \beta \quad \beta \in \mathbb{R}^{p}\right\}$. Let $H=X\left(X^{t} X\right)^{-1} X^{t}$, the projection matrix. Let Y^{*} be independent and indentically distributed with Y. Show that:

$$
\mathbb{E}\left[\left|Y^{*}-\widehat{Y}\right|^{2}\right]=\mathbb{E}\left[|Y-\widehat{Y}|^{2}\right]+2 \sigma^{2} \operatorname{tr}(H)
$$

Answers

1. (a)

$$
W:=\frac{\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}}{\sigma_{2}^{2}} \sim \chi_{n_{2}-1}^{2}, \quad V:=\frac{\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}}{\sigma_{1}^{2}} \sim \chi_{n_{1}-1}^{2}, \quad V \perp W
$$

From the definition of an F distribution,

$$
G:=\frac{W /\left(n_{2}-1\right)}{V /\left(n_{1}-1\right)} \sim F_{n_{2}-1, n_{1}-1} .
$$

Therefore

$$
G=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \frac{\left(n_{1}-1\right)}{\left.n_{2}-2\right)} \frac{\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}}{\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}}=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} F \sim F_{n_{2}-1, n_{1}-1} .
$$

as required.
(b) The likelihood is:

$$
L\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)=\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \sigma_{1}^{n_{1}} \sigma_{2}^{n_{2}}} \exp \left\{-\frac{1}{2 \sigma_{1}^{2}} \sum_{j=1}^{n_{1}}\left(x_{j}-\mu_{1}\right)^{2}-\frac{1}{2 \sigma_{2}^{2}} \sum_{j=1}^{n_{2}}\left(y_{j}-\mu_{2}\right)^{2}\right\}
$$

The likelihood ratio statistic is:

$$
\lambda(x, y)=\frac{\sup _{\mu_{1}, \mu_{2}, \sigma} L\left(\mu_{1}, \mu_{2}, \sigma, \sigma\right)}{\sup _{\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}} L\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)}
$$

For the numerator (restriction to H_{0} true), the likelihood, subject to the constraint that $\sigma_{1}=\sigma_{2}=\sigma$ is maximised for $\left(\mu_{1}, \mu_{2}, \sigma^{2}\right)=\left(\widehat{\mu}_{10}, \widehat{\mu}_{20}, \widehat{\sigma}_{0}^{2}\right)$ where

$$
\left(\widehat{\mu}_{10}, \widehat{\mu}_{20}, \widehat{\sigma}_{0}^{2}\right)=\left(\bar{x}, \bar{y}, \frac{1}{n_{1}+n_{2}}\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\bar{x}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\bar{y}\right)^{2}\right)\right)
$$

For the denominator (no restrictions on parameter space) the likelihood is maximised for $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)=\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}_{1}^{2}, \widehat{\sigma}_{2}^{2}\right)$, where

$$
\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}_{1}^{2}, \widehat{\sigma}_{2}^{2}\right)=\left(\bar{x}, \bar{y}, \frac{1}{n_{1}} \sum_{j=1}^{n_{1}}\left(x_{j}-\bar{x}\right)^{2}, \frac{1}{n_{2}} \sum_{j=1}^{n_{2}}\left(y_{j}-\bar{y}\right)^{2}\right)
$$

Note:

$$
\widehat{\sigma}_{0}^{2}=\frac{n_{1}}{n_{1}+n_{2}} \widehat{\sigma}_{1}^{2}+\frac{n_{2}}{n_{1}+n_{2}}{\widehat{\sigma_{2}}}^{2}
$$

then, using the usual trick of

$$
\begin{aligned}
& \left(\sum_{j=1}^{n_{1}}\left(x_{j}-\bar{x}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\bar{y}\right)^{2}\right)=\left(n_{1}+n_{2}\right) \widehat{\sigma}_{0}^{2}, \\
& \sum_{j=1}^{n_{1}}\left(x_{j}-\bar{x}\right)^{2}=n_{1} \widehat{\sigma}_{1}^{2}, \\
& \sum_{j=1}^{n_{2}}\left(y_{j}-\bar{y}\right)^{2}=n_{2} \widetilde{\sigma}_{2}^{2}
\end{aligned}
$$

gives:

$$
\begin{aligned}
\lambda(x, y) & =\frac{\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \widehat{\sigma}_{0}^{n_{1}+n_{2}}} \exp \left\{-\frac{1}{2 \widehat{\sigma}_{0}^{2}}\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\bar{x}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\bar{y}\right)^{2}\right)\right\}}{\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \widehat{\sigma}_{1}^{n_{1}} \widehat{\sigma}_{2}^{n_{2}}} \exp \left\{-\frac{1}{2 \widehat{\sigma}_{1}^{2}} \sum_{j=1}^{n_{1}}\left(x_{j}-\bar{x}\right)^{2}-\frac{1}{2 \widehat{\sigma}_{2}^{2}} \sum_{j=1}^{n_{2}}\left(y_{j}-\bar{y}\right)^{2}\right\}} \\
& =\frac{\widehat{\sigma}_{1}^{n_{1}} \widehat{\sigma}_{2}^{n_{2}}}{\widehat{\sigma}_{0}^{n_{1}+n_{2}}}=\frac{\left(n_{1}+n_{2}\right)^{n_{1}+n_{2}}}{n_{1}^{n_{1} / 2} n_{2}^{n_{2} / 2}}\left(\frac{n_{1} \widehat{\sigma}_{1}^{2}}{n_{1} \widehat{\sigma}_{1}^{2}+n_{2} \widehat{\sigma}_{2}^{2}}\right)^{n_{1} / 2}\left(\frac{n_{2} \widehat{\sigma}_{2}^{2}}{n_{1} \widehat{\sigma}_{1}^{2}+n_{2} \widehat{\sigma}_{2}^{2}}\right)^{n_{2} / 2} \\
& =\frac{\left(n_{1}+n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}}{n_{1}^{n_{1} / 2} n_{2}^{n_{2} / 2}}\left(\frac{1}{1+\frac{\sum_{j}\left(y_{j}-\bar{y}\right)^{2}}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}}\right)^{\left(n_{1}+n_{2}\right) / 2}\left(\frac{\sum_{j}\left(y_{j}-\bar{y}\right)^{2}}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}\right)^{n_{2} / 2} \\
& =\frac{\left(n_{1}+n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}}{n_{1}^{n_{1} / 2} n_{2}^{n_{2} / 2}} \frac{R^{n_{2} / 2}}{(1+R)^{\left(n_{1}+n_{2}\right) / 2}}
\end{aligned}
$$

Then

$$
\lambda(x, y)=\frac{\left(n_{1}+n_{2}\right)^{\left(n_{1}+n_{2}\right) / 2}}{n_{1}^{n_{1} / 2} n_{2}^{n_{2} / 2}} \frac{\left(\frac{n_{2}-1}{n_{1}-1} F\right)^{n_{2} / 2}}{\left(1+\frac{n_{2}-1}{n_{1}-1} F\right)^{\left(n_{1}+n_{2}\right) / 2}} .
$$

Reject H_{0} if and only if $\lambda(x, y)<c$. We would like to show that this implies: reject H_{0} for $F<k_{1}$ and $F>k_{2}$ for some k_{1} and k_{2}, which we will then compute (or at least find an expression for).
Note that $\lambda=\lambda(F)$ (it is a function of F). As a function of F,

$$
\frac{d}{d F} \log \lambda(F)=0 \Leftrightarrow F=\frac{1-\frac{1}{n_{1}}}{1-\frac{1}{n_{2}}} .
$$

Therefore $\lambda(0)=\lambda(+\infty)=0, \lambda(F)$ increases from 0 to a unique maximum at $F=\frac{1-\frac{1}{n_{1}}}{1-\frac{1}{n_{2}}}$ and then decreases to 0 . The rejection region therefore has the form $F<k_{1}, F>k_{2}$ as required. Since $F \sim F_{n_{2}-1, n_{1}-1}, k_{1}$ and k_{2} satisfy the following two equations: with confidence level $1-\alpha$,

$$
\left\{\begin{array}{l}
F_{n_{2}-1, n_{1}-1}\left(k_{2}\right)-F_{n_{2}-1, n_{1}-1}\left(k_{1}\right)=1-\alpha \\
\frac{k_{1}}{\left(1+\frac{n_{2}-1}{n_{1}-1} k_{1}\right)^{1+\left(n_{1} / n_{2}\right)}}=\frac{1}{\left(1+\frac{n_{2}-1}{n_{1}-1} k_{2}\right)^{1+\left(n_{1} / n_{2}\right)}}
\end{array}\right.
$$

For the first of these, $F_{n_{2}-1, n_{1}-1}(x)=\mathbb{P}(F \leq x)$ for $F \sim F_{n_{2}-1, n_{1}-1}$. For the second of these, since we reject for $\lambda \leq k$ for some value k, we have $\lambda\left(k_{1}\right)=\lambda\left(k_{2}\right)=k$.
2. (a) For the reduced model, $\beta^{(1)}$ is estimated by

$$
\beta^{(1) *}=\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t} Y
$$

so that (using $\mathbb{E}[Y]=X \beta$)

$$
\mathbb{E}\left[\beta^{(1) *}\right]=\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t}\left(X_{1} \mid X_{2}\right)\binom{\beta^{(1)}}{\beta^{(2)}}=\beta^{(1)}+\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t} X_{2} \beta^{(2)}
$$

and hence, using $\mathbb{E}\left[\widehat{\mu}_{0}\right]=X_{1} \mathbb{E}\left[\beta^{(1) *}\right]$ and $\mathbb{E}[\widehat{\mu}]=X \beta$, we have:

$$
\begin{aligned}
\mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right] & =\left(X_{1} \mid X_{2}\right)\binom{\beta_{1}}{\beta_{2}}-X_{1} \beta^{(1)}-X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t} X_{2} \beta^{(2)} \\
& =\left(I-X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t}\right) X_{2} \beta^{(2)} .
\end{aligned}
$$

(b) The non-centrality parameter is:

$$
\theta^{2}=\frac{1}{\sigma^{2}}\left(\mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right]^{t} \mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right]\right)
$$

and, using the previous part,

$$
\begin{aligned}
\mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right]^{t} \mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right] & =\beta^{(2) t} X_{2}^{t}\left(I-X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t}\right)\left(I-X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t}\right) X_{2} \beta^{(2)} \\
& =\beta^{(2) t}\left(X_{2}^{t} X_{2}-X_{2}^{t}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t} X_{2}\right) \beta^{(2)}
\end{aligned}
$$

From lectures (moving to canonical co-ordinates): $\left(Q_{\mathrm{res}, I}-Q_{\mathrm{res}, I I}\right) \sim \chi_{q}^{2}\left(\theta^{2}\right)$ and $Q_{\mathrm{res}, I I} \sim$ $\chi_{n-(p+q+1)}^{2}$. These are independent. The result follows from the definition of the non-central F distribution.
A quick reminder of lectures: consider a linear model $Y=\left(X_{1} \mid X_{2}\right)\left(\frac{\beta^{(1)}}{\beta^{(2)}}\right)+\epsilon$ where $\beta^{(1)}$ is a $p+1$ vector, $\beta^{(2)}$ is a q vector and let

$$
\mathcal{S}_{1}=\left\{X_{1} \beta: \beta \in \mathbb{R}^{p+1}\right\} \quad \mathcal{S}=\left\{\left(X_{1} \mid X_{2}\right) \gamma: \gamma \in \mathbb{R}^{p+q+1}\right\}
$$

then we can find an $n \times n$ orthonormal matrix $V=\left(\frac{V^{(1)}}{V^{(2)}} \frac{V^{(3)}}{)}\right.$ where $V^{(1)}$ spans the space \mathcal{S}_{1} and $\left(\frac{V^{(1)}}{V^{(2)}}\right)$ spans the space \mathcal{S}. Let $U=V Y$. Then

$$
U \sim N\left(V X \beta, \sigma^{2} V I V^{\prime}\right)=N\left(V X \beta, \sigma^{2} I\right) .
$$

This is a vector of n independent random variables, where $U_{i} \sim N\left(\eta_{i}, \sigma^{2}\right)$ and $\eta_{p+q+2}=\ldots=$ $\eta_{n}=0$ for some $\eta_{1}, \ldots, \eta_{p+q+1}$.

Let

$$
U^{(1)}=\left(\begin{array}{c}
U_{1} \\
\vdots \\
U_{p+1}
\end{array}\right) \quad U^{(2)}=\left(\begin{array}{c}
U_{p+2} \\
\vdots \\
U_{p+q+1}
\end{array}\right)
$$

We have

$$
\widehat{\mu}=\left(V^{(1) \prime} \mid V^{(2) \prime}\right)\left(\frac{U^{(1)}}{U^{(2)}}\right) \quad \widehat{\mu}_{0}=V^{(1)} U^{(1)}
$$

so that

$$
\begin{aligned}
Q_{\mathrm{res}, I}-Q_{\mathrm{res}, I I} & =\left|Y-\widehat{\mu}_{0}\right|^{2}-|Y-\widehat{\mu}|^{2} \\
& =\left|V^{\prime} U-V^{(1) \prime} U^{(1)}\right|^{2}-\left|V^{\prime} U-\left(V^{(1) \prime} \mid V^{(2) \prime}\right)\left(\frac{U^{(1)}}{U^{(2)}}\right)\right|^{2} \\
& =\left|\left(V^{(2) \prime} \mid V^{(3) \prime}\right)\left(\frac{U^{(2)}}{U^{(3)}}\right)\right|^{2}-\left|V^{(3) \prime} U^{(3)}\right|^{2} \\
& =U^{(2) \prime} V^{(2)} V^{(2) \prime} U^{(2)}=\sum_{j=p+2}^{p+q+1} U_{j}^{2}
\end{aligned}
$$

while

$$
\mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right]=V^{(2) \prime}\left(\begin{array}{c}
\eta_{p+2} \\
\vdots \\
\eta_{p+q+1}
\end{array}\right)
$$

so that

$$
\left|\mathbb{E}\left[\widehat{\mu}-\widehat{\mu}_{0}\right]\right|^{2}=\sum_{j=p+2}^{p+q+1} \eta_{j}^{2}
$$

$\frac{Q \mathrm{res}, I I}{\sigma^{2}}=\sum_{j=p+q+2}^{n} U_{j}^{2} \sim \chi_{n-(p+q+1)}^{2}$. Furthermore,

$$
\frac{Q_{\mathrm{res}, I}-Q_{\mathrm{res}, I I}}{\sigma^{2}}=\sum_{j=p+2}^{p+q+1}\left(\frac{U_{j}}{\sigma}\right)^{2} \sim \chi_{q}^{2}\left(\sum_{j=p+2}^{q}\left(\frac{\eta_{j}}{\sigma}\right)^{2}\right)
$$

and $\frac{Q \mathrm{res}, I-Q \mathrm{res}, I I}{\sigma^{2}} \perp \frac{Q \mathrm{res}, I I}{\sigma^{2}}$ and the result follows by the definition of the non-central F distribution.
3. (a) The MLE for $\left(\mu_{1}, \ldots, \mu_{p}\right)$ is $\left(\bar{Y}_{1 .}, \ldots, \bar{Y}_{p}\right)$.

$$
\begin{gathered}
\bar{Y}_{i .}=\widehat{\alpha}+\widehat{\beta}_{i} \\
\sum_{i} n_{i} \bar{Y}_{i .}=n \widehat{\alpha} \Rightarrow \widehat{\alpha}=\bar{Y}_{. .} \\
\widehat{\beta}_{i}=\bar{Y}_{i .}-\bar{Y}_{. .}
\end{gathered}
$$

(b)

$$
\operatorname{Var}(\widehat{\alpha})=\frac{\sigma^{2}}{n}
$$

$$
\begin{aligned}
& \operatorname{Var}\left(\widehat{\beta}_{i}\right)=\operatorname{Var}\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right) \\
&=\operatorname{Var}\left(\left(1-\frac{n_{i}}{n}\right) \bar{Y}_{i .}-\sum_{j \neq i} \frac{n_{j}}{n} \bar{Y}_{j .}\right) \\
&=\left(1-\frac{n_{i}}{n}\right)^{2} \frac{\sigma^{2}}{n_{i}}+\sum_{j \neq i} \frac{n_{j}^{2}}{n^{2}} \frac{\sigma^{2}}{n_{j}} \\
&=\left(1-\frac{n_{i}}{n}\right)^{2} \frac{\sigma^{2}}{n_{i}}+\left(1-\frac{n_{i}}{n}\right) \frac{\sigma^{2}}{n} \\
&=\left(\frac{1}{n_{i}}-\frac{2}{n}+\frac{n_{i}}{n^{2}}+\frac{1}{n}-\frac{n_{i}}{n^{2}}\right) \sigma^{2}=\left(\frac{1}{n_{i}}-\frac{1}{n}\right) \sigma^{2} \\
& \quad \operatorname{Cov}\left(\widehat{\alpha}, \widehat{\beta}_{i}\right)=\operatorname{Cov}\left(\bar{Y}_{. .}, \bar{Y}_{i .}\right)-\operatorname{Var}\left(\bar{Y}_{. .}\right)=\frac{\sigma^{2}}{n}-\frac{\sigma^{2}}{n}=0 \\
& i \neq j: \quad \operatorname{Cov}\left(\widehat{\beta}_{i}, \widehat{\beta}_{j}\right)=-\operatorname{Cov}\left(\bar{Y}_{i .}, \bar{Y}_{. .}\right)-\operatorname{Cov}\left(\bar{Y}_{j .}, \bar{Y}_{. .}\right)+\operatorname{Var}\left(Y_{. .}\right)=-\frac{\sigma^{2}}{n}
\end{aligned}
$$

(c)

$$
\alpha \in\left(\widehat{\alpha} \pm \frac{s}{\sqrt{n}} t_{n-p, a / 2}\right)
$$

(d)

$$
\beta_{j} \in\left(\widehat{\beta}_{j} \pm s \sqrt{\frac{1}{n_{j}}-\frac{1}{n}} t_{n-p, a / 2}\right)
$$

where a is the significance and

$$
s=\sqrt{\frac{Q_{\mathrm{res}}}{n-p}} \quad Q_{\mathrm{res}}=\sum_{i=1}^{p} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\widehat{\alpha}-\widehat{\beta}_{j}\right)^{2}
$$

4.

$$
\delta^{2}=\frac{1}{\sigma^{2}}\left|\mu-\mu_{0}\right|^{2}=\frac{1}{\sigma^{2}} \sum_{i=1}^{p} n_{i} \beta_{i}^{2}
$$

5.

$$
X\left(X^{t} X\right)^{-1} X^{t} X=X \Rightarrow X\left(X^{t} X\right)^{-1} X^{t}\left(X_{1} \mid X_{2}\right)=\left(X_{1} \mid X_{2}\right) \Rightarrow X\left(X^{t} X\right)^{-1} X_{1}=X_{1}
$$

6. (a) Using $\widehat{\epsilon}=Y-\widehat{Y}$ and $\operatorname{Var}(Z)$ to denote the covariance matrix of a random vector Z,

$$
\operatorname{Var}(Y)=\operatorname{Var}(\widehat{Y}+Y-\widehat{Y})=\operatorname{Var}(\widehat{Y})+\operatorname{Var}(\widehat{\epsilon})+2 \operatorname{Cov}(\widehat{Y}, Y-\widehat{Y})
$$

Now, $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$, so that $\widehat{Y}=X \widehat{\beta}=X\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ and
$\operatorname{Cov}(\widehat{Y}, Y-\widehat{Y})=\operatorname{Cov}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime} Y,\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime} Y\right)=X\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Cov}(Y)\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}\right.$
Now use: $\operatorname{Var}(Y)=\operatorname{Var}(\epsilon)=\sigma^{2} I$ and

$$
X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}=X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

so that

$$
\operatorname{Cov}(\widehat{Y}, Y-\widehat{Y})=\sigma^{2} X\left(X^{t} X\right)^{-1} X^{t}\left(I-X\left(X^{t} X\right)^{-1} X^{t}\right)=0
$$

as required.
(b) We'll consider this in two ways. Firstly, directly and secondly, by putting into canonical variables. Directly:

$$
\begin{gathered}
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}+2 \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)\left(\widehat{Y}_{i}-\bar{Y}\right) \\
\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)\left(\widehat{Y}_{i}-\bar{Y}\right)=Y^{t}\left(I-X\left(X^{t} X\right)^{-1} X^{t}\right)\left(X\left(X^{t} X\right)^{-1} X^{t}-X_{1}\left(X_{1}^{t} X_{1}\right)^{-1} X_{1}^{t}\right) Y
\end{gathered}
$$

where $X_{1}=(1, \ldots, 1)^{t}$. From above (previous exercise, taking $X=\left(X_{1} \mid X_{2}\right)$), it follows that:

$$
\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)\left(\widehat{Y}_{i}-\bar{Y}\right)=0
$$

and the result follows.
Canonical variables: Assume X is $n \times r$, of rank $r U=A^{t} Y$ where A is an orthonormal $n \times n$ matrix. We let $A_{.1}=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)^{t}$ so that $U_{1}=\sqrt{n} \bar{Y}$. We let $A_{.2}, \ldots, A_{. r}$ be the $r-1$ unit vectors, orthogonal to each other and to $A_{.1}$, so that $A_{.1}, \ldots, A_{. r}$ are an orthonormal basis for the space $\mathcal{S}=\left\{X \beta: \beta \in \mathbb{R}^{r}\right\}$. Let $B_{1}=\left(A_{.1}|0| \ldots \mid 0\right)$ (the first column $A_{.1}$ the other columns 0), $B_{1}=\left(0\left|A_{.2}\right| \ldots\left|A_{. r}\right| 0|\ldots| 0\right)$ (the $n \times n$ matrix with the first column 0 s and the subsequent $r-1$ columns $A_{.1}, \ldots, A_{. r}$ and the remaining columns 0 . Let $B_{3}=A-B_{2}-B_{1}$. Then

$$
\begin{aligned}
\sum\left(Y_{i}-\bar{Y}\right)^{2} & =\left(Y-\bar{Y} \mathbf{1}_{n}\right)^{t}\left(Y-\bar{Y} \mathbf{1}_{n}\right) \\
& =U^{t}\left(A-B_{1}\right)^{t}\left(A-B_{1}\right) U=U^{t} B_{2}^{t} B_{2} U+U^{t} B_{3}^{t} B_{3} U \\
& =\left(\widehat{Y}-\bar{Y} \mathbf{1}_{n}\right)^{t}\left(\widehat{Y}-\bar{Y} \mathbf{1}_{n}\right)+(Y-\widehat{Y})^{t}(Y-\widehat{Y})
\end{aligned}
$$

as required.
7. (a) Firstly, to show that $H_{i i} \leq 1$ for each $i: I-H$ is non-negative definite, since $\widehat{\epsilon}^{t} \widehat{\epsilon}=Y^{t}(I-$ $H) Y$, hence $H_{i i} \leq 1$. (otherwise there would exist a diagonal element of $I-H$ which was negative, say i. Take vector $v=(0, \ldots, 0,1,0, \ldots, 0)^{t}$ to get $\left.v^{t}(I-H) v=1-H_{i i}<1\right)$. Secondly, to show that $H_{i i} \geq \frac{1}{n}$ for each i : let $X^{(1)}=(1, \ldots, 1)^{t}$ and $X=\left(X^{(1)} \mid X^{(2)}\right)$ then

$$
G:=X\left(X^{t} X\right)^{-1} X^{t}-X^{(1)}\left(X^{(1) t} X^{(1)}\right)^{-1} X^{(1) t}
$$

is positive definite, since

$$
G^{\prime} G=G^{2}=\left(H-H^{(1)}\right)^{2}=H^{2}-H H^{(1)}-H^{(1)} H+H^{(1) 2}=H-H^{(1)}=G
$$

using the hint. Now,

$$
H^{(1)}=X^{(1)}\left(X^{(1) \prime} X^{(1)}\right)^{-1} X^{(1) \prime}=\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}
$$

where $\mathbf{1}$ is the n vector with each entry 1 . Therefore $H_{i i}=\frac{1}{n}+G_{i i}$ for all $1 \leq i \leq p$. By the argument for the previous part, $G_{i i} \geq 0$, from which the result follows.
(b) Since H is idempotent, it has eigenvalues 1 or 0 . Since it is of rank p, it has p eigenvalues 1 and $n-p$ eigenvalues 0 . The trace is the sum of the eigenvalues, hence the result follows.
(c)

$$
\begin{gathered}
\operatorname{Cov}(Y, \widehat{Y})=\operatorname{Var}(\widehat{Y}) \\
\operatorname{Cor}\left(Y_{i}, \widehat{Y}_{i}\right)=\frac{\operatorname{Var}\left(\widehat{Y}_{i}\right)}{\sqrt{\operatorname{Var}\left(Y_{i}\right) \operatorname{Var}\left(\widehat{Y}_{i}\right)}}=\frac{H_{i i}}{\sqrt{H_{i i}}}=\sqrt{H_{i i}}
\end{gathered}
$$

8. (a) Follows directly from previous exercise;

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(\widehat{Y}_{i}-\bar{Y}\right)=\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}
$$

(b)

$$
\begin{aligned}
\lambda(y) & =\frac{\sup _{\sigma} \sup _{\beta_{0}} \frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n}\left(y_{j}-\beta_{0}\right)^{2}\right\}}{\sup _{\sigma} \sup _{\beta} \frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}(y-X \beta)^{t}(y-X \beta)\right\}} \\
& =\frac{\widetilde{\sigma}^{-n}}{\hat{\sigma}^{-n}}
\end{aligned}
$$

where

$$
\begin{gathered}
\widetilde{\sigma}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2} \\
\widehat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y \\
\widehat{\beta}=\frac{1}{n}(y-X \widehat{\beta})^{t}(y-X \widehat{\beta}) \\
\left.\widehat{Y} X^{t} X\right)^{-1} X^{t} Y
\end{gathered}
$$

It now follows that

$$
\lambda(y)=\left(\frac{Q_{\mathrm{res}}}{Q_{T}}\right)^{n / 2}
$$

where $Q_{\text {res }}=\sum_{j=1}^{n}\left(Y_{j}-\widehat{Y}\right)^{2}$ and $Q_{T}=\sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}$. The likelihood ratio test is: reject H_{0} for $\lambda(y)<k$ for some k which is equivalent to: reject H_{0} for $R^{2}>c$ for some c.
(c) Use the result: if $X \sim \operatorname{Gamma}(a, \lambda)$ and $Y \sim \operatorname{Gamma}(b, \lambda)$ then

$$
\frac{X}{X+Y} \sim \operatorname{Beta}(a, b)
$$

This is basic calculus: let $V=\frac{X}{X+Y}$, then for $t \in(0,1)$,

$$
\mathbb{P}(V \leq t)=\mathbb{P}\left(X \leq \frac{t}{1-t} Y\right)=\frac{\lambda^{a+b}}{\Gamma(a) \Gamma(b)} \int_{0}^{\infty} d y y^{b-1} e^{-\lambda y} \int_{t y /(1-t)}^{\infty} d x x^{a-1} e^{-\lambda x}
$$

Take derivative with respect to t to get the density:

$$
f_{V}(t)=\frac{\lambda^{a+b}}{\Gamma(a) \Gamma(b)} \frac{t^{a-1}}{(1-t)^{a+1}} \int_{0}^{\infty} y^{a+b-1} e^{-\lambda y /(1-t)} d y
$$

Now use: $z=\frac{\lambda y}{1-t}$ to get:

$$
f_{V}(t)=\frac{1}{\Gamma(a) \Gamma(b)} t^{a-1}(1-t)^{b-1} \int_{0}^{\infty} z^{a+b-1} e^{-z} d z=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} t^{a-1}(1-t)^{b-1} \quad t \in(0,1)
$$

as required.

Let $Q_{M}=\sum_{j=1}^{n}\left(\widehat{Y}_{j}-\bar{Y}\right)^{2}$, then $Q_{M} \perp Q_{\text {res }}$ and

$$
\frac{Q_{M}}{\sigma^{2}} \sim \chi_{p-1}^{2}=\Gamma\left(\frac{p-1}{2}, \frac{1}{2}\right) \quad \frac{Q_{\mathrm{res}}}{\sigma^{2}} \sim \chi_{n-p}^{2}=\Gamma\left(\frac{n-p}{2}, \frac{1}{2}\right)
$$

so that

$$
R^{2}=\frac{Q_{T}-Q_{\mathrm{res}}}{Q_{T}}=\frac{Q_{M}}{Q_{M}+Q_{\mathrm{res}}} \sim \operatorname{Beta}\left(\frac{p-1}{2}, \frac{n-p}{2}\right)
$$

9. Firstly, $H X \beta=X\left(X^{t} X\right)^{-1} X^{t} X \beta=X \beta$ so that

$$
\widehat{Y}-X \beta=H Y-X \beta=H(Y-X \beta)=H \epsilon
$$

Therefore $\mathbb{E}[\widehat{Y}]=X \beta$ and

$$
\begin{aligned}
\mathbb{E}\left[\left|Y^{*}-\widehat{Y}\right|^{2}\right] & =\mathbb{E}\left[\left|Y^{*}-X \beta+X \beta-\widehat{Y}\right|^{2}\right] \\
& =\mathbb{E}\left[\left|Y^{*}-X \beta\right|^{2}\right]+\mathbb{E}\left[|\widehat{Y}-X \beta|^{2}\right] \\
& =n \sigma^{2}+\operatorname{tr} \operatorname{Var}(\widehat{Y}) \\
& =n \sigma^{2}+\sigma^{2} \operatorname{tr}(H)
\end{aligned}
$$

using $\operatorname{Var}(\widehat{Y})=\operatorname{Var}(H Y)=\sigma^{2} H I H^{t}=\sigma^{2} H$.
For the right hand side, using $Y-\widehat{Y}=(I-H) Y, \mathbb{E}[Y]=\mathbb{E}[\widehat{Y}]$ and $(I-H)^{2}=I-H$ gives:

$$
\mathbb{E}\left[|(I-H) Y|^{2}\right]=\operatorname{tr} \operatorname{Var}((I-H) Y)=\sigma^{2} \operatorname{tr}(I-H)=n \sigma^{2}-\sigma^{2} \operatorname{tr}(H)
$$

so that

$$
\mathbb{E}\left[\left|Y^{*}-\widehat{Y}\right|^{2}\right]=\mathbb{E}\left[|Y-\widehat{Y}|^{2}\right]+2 \sigma^{2} \operatorname{tr}(H)
$$

