Tutorial 11

1. Let $X_{1}, \ldots, X_{n_{1}}$ and $Y_{1}, \ldots, Y_{n_{2}}$ be independent $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$ random samples respectively.
(a) Find the MLE of $\theta:=\left(\mu_{1}, \mu_{2}, \sigma^{2}\right)$. Let c_{n} be the value such that $S^{2}=c_{n} \widehat{\sigma}^{2}$ is an unbiased estimator of σ^{2}. What is c_{n} ? What is S^{2} ?
(b) Consider testing $H_{0}: \mu_{1} \leq \mu_{2}$ versus $H_{1}: \mu_{1}>\mu_{2}$. Assume that $\alpha<\frac{1}{2}$. Show that the likelihood ratio test is equivalent to the test with critical (rejection) region

$$
\bar{x}-\bar{y} \geq s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} t_{n_{1}+n_{2}-2, \alpha} .
$$

Here $t_{p, \alpha}$ is the value such that $\mathbb{P}\left(T>t_{p, \alpha}\right)=\alpha$ for $T \sim t_{p}$.
(c) Compute a normal approximation to the power function and use it to find the sample size n needed for the level 0.01 test to have power 0.95 when $n_{1}=n_{2}=\frac{n}{2}$ and $\frac{\mu_{1}-\mu_{2}}{\sigma}=\frac{1}{2}$.
2. Consider the linear Gaussian model $\underline{Y}=X \underline{\beta}+\underline{\epsilon}$ where $\underline{\epsilon} \sim N\left(\underline{0}, \sigma^{2} I_{n}\right)$, put into canonical coordinates via an orthonormal transform $\underline{U}=A \underline{Y}$ where $U_{i} \sim N\left(\eta_{i}, \sigma^{2}\right)$ for $i=1, \ldots, r$ and $U_{i} \sim N\left(0, \sigma^{2}\right)$ for $i=r+1, \ldots, n$ with unknown parameters $\underline{\eta}=\left(\eta_{1}, \ldots, \eta_{r}\right)^{t}$ and σ^{2}, and log likelihood function:

$$
\log L\left(\underline{\eta}, \sigma^{2} ; \underline{u}\right)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{r}\left(u_{i}-\eta_{i}\right)^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=r+1}^{n} u_{i}^{2}-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right) .
$$

Show that the MLE for $\left(\underline{\eta}, \sigma^{2}\right)$ does not exist if $n=r$ and that it is given by $\left(U_{1}, \ldots, U_{r}, \frac{1}{n} \sum_{i=r+1}^{n} U_{i}^{2}\right)$ if $n \geq r+1$. Show, in particular, that $\widehat{\sigma}_{M L}^{2}=\frac{1}{n}|\underline{Y}-\widehat{\mu}|^{2}$
3. Consider simple linear regression; there is one explanatory variable and

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right) \quad \text { i.i.d. } \quad i=1, \ldots, n
$$

where x_{1}, \ldots, x_{n} are not all equal. Express this as a Gaussian linear model

$$
\underline{Y}=X \underline{\beta}+\underline{\epsilon}
$$

identifying X and β.
(a) Show that

$$
\left(X^{t} X\right)^{-1}=\frac{1}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\left(\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right)
$$

where $\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}$ and $\overline{x^{2}}=\frac{1}{n} \sum_{j=1}^{n} x_{j}^{2}$.
(b) Let $\binom{\widehat{\beta}_{0}}{\widehat{\beta}_{1}}$ denote the maximum likelihood estimator of $\beta=\binom{\beta_{0}}{\beta_{1}}$. What is the distribution of $\binom{\widehat{\beta}_{0}}{\widehat{\beta}_{1}}$?
(c) Let

$$
S^{2}=\frac{1}{n-2} \sum_{j=1}^{n}\left(Y_{j}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{j}\right)^{2}
$$

What is the distribution of $\frac{(n-2) S^{2}}{\sigma^{2}}$?
(d) Suppose

$$
Y(z)=\beta_{0}+\beta_{1} z+\epsilon \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

Let s denote the observed value of S. Using $t_{p, \alpha}$ to denote the value such that $\mathbb{P}\left(T>t_{p, \alpha}\right)=$ α for $T \sim t_{p}$, show that a symmetric confidence interval for $\mathbb{E}[Y(z)]$ is given by:

$$
\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} z \pm s \sqrt{\frac{1}{n}+\frac{(\bar{x}-z)^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}} t_{n-2, \alpha / 2}\right)
$$

(e) Let $Y_{*}=\beta_{0}+\beta_{1} z+\epsilon_{*}$ where $\epsilon_{*} \sim N\left(0, \sigma^{2}\right)$ is independent of $\epsilon_{1}, \ldots, \epsilon_{n}$ (Y_{*} is a new observation with explanatory variable set at $z)$. Let $\bar{Y}=\frac{1}{n} \sum_{j=1}^{n} Y_{j}$ and let $\widehat{Y}^{*}=\widehat{\beta}_{0}+\widehat{\beta}_{1} z$ (the predictor of Y_{*} based on Y_{1}, \ldots, Y_{n}). Show that, if $\beta_{1}=0$, then

$$
\mathbb{E}\left[\left(Y^{*}-\widehat{Y}^{*}\right)^{2}\right] \geq \mathbb{E}\left[\left(Y^{*}-\bar{Y}\right)^{2}\right]
$$

4. Consider the one way layout problem

$$
Y_{i j}=\beta_{i}+\epsilon_{i j} \quad i=1, \ldots, p \quad j=1, \ldots, n_{i}
$$

where $\epsilon_{i j}$ are i.i.d. $N\left(0, \sigma^{2}\right)$ and $n=n_{1}+\ldots+n_{p}$.
(a) Show that

$$
S^{2}=\frac{\sum_{i=1}^{p} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}}{\sum_{i=1}^{p}\left(n_{i}-1\right)}
$$

is an unbiased estimator of σ^{2} and that

$$
\frac{\sum_{i=1}^{p} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}}{\sigma^{2}} \sim \chi_{n-p}^{2}
$$

(b) Show that a level $1-\alpha$ confidence intervals for $\beta_{j}-\beta_{i}$ is:

$$
\beta_{j}-\beta_{i} \in\left(\bar{Y}_{j .}-\bar{Y}_{i .} \pm S t_{n-p ; \alpha / 2} \sqrt{\frac{n_{i}+n_{j}}{n_{i} n_{j}}}\right)
$$

where S^{2} is the unbiased estimator of $\sigma, \bar{Y}_{k}=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} Y_{k i}$ and $t_{p, \alpha}$ denotes the value such that $\mathbb{P}\left(T>t_{p, \alpha}\right)=\alpha$ if $T \sim t_{p}$. Show that the level $1-\alpha$ confidence interval for σ^{2} is given by:

$$
\frac{(n-p) s^{2}}{k_{n-p ;(\alpha / 2)}} \leq \sigma^{2} \leq \frac{(n-p) s^{2}}{k_{n-p ; 1-(\alpha / 2)}}
$$

where $k_{q, \beta}$ is the value such that $\mathbb{P}\left(V \geq k_{q, \beta}\right)=\beta$ if $V \sim \chi_{q}^{2}$.
(c) Find confidence intervals for $\psi=\frac{1}{2}\left(\beta_{2}+\beta_{3}\right)-\beta_{1}$ and $\sigma_{\psi}^{2}:=\mathbf{V}(\widehat{\psi})$ where $\widehat{\psi}=\frac{1}{2}\left(\widehat{\beta}_{2}+\widehat{\beta}_{3}\right)-\widehat{\beta}_{1}$.
5. Show that if C is an $n \times r$ matrix of full rank $r, r \leq n$, then the $r \times r$ matrix $C^{t} C$ is of rank r and hence non singular.

Hint: Because C^{t} is of rank r, it follows that for any r-vector $x, x^{t} C^{t}=0$ implies $x=0$. Use this to show that if x is a non zero r-vector, then $x^{t} C C^{t} x>0$.
6. Consider the one-way layout model: k groups of observations, all random variables independent. For group $j, Y_{1, j}, \ldots, Y_{n_{j}, j} \sim N\left(\mu_{j}, \sigma^{2}\right)$. Let $n=n_{1}+\ldots+n_{k}$ denote the total number of observations.
(a) Compute the likelihood ratio test statistic for $H_{0}: \mu_{1}=\ldots=\mu_{k}$ versus $H_{1}: \mu_{i} \neq \mu_{j}$ for some $i \neq j$.
(b) Let $Q_{\text {res }}=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}$ where $\bar{Y}_{. j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j}$, the sample average from group j. Let $Q_{M}=\sum_{j=1}^{k} n_{j}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}$ where $\bar{Y}_{. .}=\frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} Y_{i j}$ (the overall average). Here $Q_{\text {res }}$ denotes the residual sum of squares, while Q_{M} denotes the model sum of squares. Show that the likelihood ratio test is equavalent to reject H_{0} for $F:=\frac{Q_{M} /(k-1)}{Q_{\text {res }} /(n-k)}>c$ for some $c>0$.
(c) Show that the statistic F has $F_{k-1, n-k}$ distribution.

Answers

1. (a) Computing maximum likelihood estimators for normal distribution parameters should be straightforward. The log-likelihood function is:

$$
\log L\left(\mu_{1}, \mu_{2}, \sigma^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\mu_{1}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\mu_{2}\right)^{2}\right)
$$

This is maximised for:
$\widehat{\mu}_{1}=\bar{X}, \widehat{\mu}_{2}=\bar{Y}$,

$$
\widehat{\sigma}_{M L}^{2}=\frac{1}{n_{1}+n_{2}}\left(\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}\right)
$$

This estimator is biased; recall that

$$
\frac{\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n_{1}-1}^{2} \quad \frac{\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}}{\sigma^{2}} \sim \chi_{n_{2}-1}^{2}
$$

and that, for $V \sim \chi_{m}^{2}, \mathbb{E}[V]=m$. Therefore:

$$
\mathbb{E}\left[\widehat{\sigma}_{M L}^{2}\right]=\frac{n_{1}+n_{2}-2}{n_{1}+n_{2}} \sigma^{2} \Rightarrow c_{n}=\frac{n_{1}+n_{2}}{n_{1}+n_{2}-2}
$$

The unbiased estimator required in the question is therefore:

$$
S^{2}=\frac{1}{n_{1}+n_{2}-2}\left(\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}\right)
$$

(b) Recall $H_{0}: \mu_{1} \leq \mu_{2}$ versus $H_{1}: \mu_{1}>\mu_{2}$. The log likelihood ratio test statistic is:

$$
\lambda(x, y)=\frac{\sup _{\mu_{1}, \mu_{2}, \sigma \in H_{0}} L\left(\mu_{1}, \mu_{2}, \sigma ; x, y\right)}{\sup _{\mu_{1}, \mu_{2}, \sigma} L\left(\mu_{1}, \mu_{2}, \sigma ; x, y\right)}=\frac{L\left(\widehat{\mu}_{0,1}, \widehat{\mu}_{0,2}, \widehat{\sigma}_{0}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}\right)}
$$

where $\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}\right)$ are the MLE estimators for the full space

$$
\Theta=\left\{\left(\mu_{1}, \mu_{2}, \sigma^{2}\right):\left(\mu_{1}, \mu_{2}, \sigma^{2}\right) \in \mathbb{R}^{2} \times \mathbb{R}_{+}\right\}=\mathbb{R}^{2} \times \mathbb{R}_{+}
$$

These were computed in the previous part of the exercise. The values $\left(\widehat{\mu}_{0,1}, \widehat{\mu}_{0,2}, \widehat{\sigma}_{0}\right)$ are the values which maximise the likelihood over the null hypothesis space

$$
\Theta_{0}=\left\{\left(\mu_{1}, \mu_{2}, \sigma^{2}\right) \in \mathbb{R}^{2} \times \mathbb{R}_{+}: \mu_{1} \leq \mu_{2}\right\}
$$

If $\bar{X} \leq \bar{Y}$, then (clearly) $\left(\widehat{\mu}_{01}, \widehat{\mu}_{02}, \widehat{\sigma}_{0}^{2}\right)=\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}^{2}\right)$ and hence $\lambda(x, y)=1$ for $\bar{x}<\bar{y}$.

Now consider the other case, where $\bar{x}>\bar{y}$. The maximiser clearly does not lie in the interior of the space; in this case there are no solutions to the likelihood equations $\nabla_{\theta} \log L(\theta)=0$ in the space Θ_{0}. Therefore the maximiser lies on the boundary.
Clearly, as $\mu_{1} \rightarrow-\infty$ or $\mu_{2} \rightarrow+\infty, \log L\left(\mu_{1}, \mu_{2}, \sigma\right) \rightarrow-\infty$, so the maximiser does not lie on the part of the boundary where parameter values are $\pm \infty$. Therefore, the maximiser lies on the boundary $\mu_{1}=\mu_{2}$. Therefore, for $\bar{x}>\bar{y}, \widehat{\mu}_{0,1}=\widehat{\mu}_{02}=\widehat{\mu}_{0}$ where ($\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}$) are the values which maximise
$\log L(\mu, \sigma)=-\frac{\left(n_{1}+n_{2}\right)}{2} \log (2 \pi)-\frac{\left(n_{1}+n_{2}\right)}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\mu\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\mu\right)^{2}\right)$.
From this,

$$
\begin{aligned}
& \widehat{\mu}_{0}=\frac{1}{n_{1}+n_{2}}\left(\sum_{j=1}^{n_{1}} X_{j}+\sum_{j=1}^{n_{2}} Y_{j}\right) \\
& \widehat{\sigma}_{0}^{2}=\frac{1}{n_{1}+n_{2}}\left(\sum_{j=1}^{n_{1}}\left(X_{j}-\widehat{\mu}_{0}\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{j}-\widehat{\mu}_{0}\right)^{2}\right)
\end{aligned}
$$

To compute the likelihood ratio:

$$
\begin{aligned}
L\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}^{2}\right) & =\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \widehat{\sigma}^{n_{1}+n_{2}}} \exp \left\{-\frac{1}{2 \widehat{\sigma}^{2}}\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\widehat{\mu}_{1}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\widehat{\mu}_{2}\right)^{2}\right)\right\} \\
& =\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \widehat{\sigma}^{n_{1}+n_{2}}} \exp \left\{-\frac{\left(n_{1}+n_{2}\right)}{2}\right\}
\end{aligned}
$$

The last simplification comes from the formula for $\widehat{\sigma}^{2}$. Similarly, for the case $\bar{x}>\bar{y}$,

$$
\begin{aligned}
L\left(\widehat{\mu}_{0,1}, \widehat{\mu}_{0,2}, \widehat{\sigma}_{0}^{2}\right) & =\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \widehat{\sigma}_{0}^{n_{1}+n_{2}}} \exp \left\{-\frac{1}{2 \widehat{\sigma}_{0}^{2}}\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\widehat{\mu}_{0}\right)^{2}+\sum_{j=1}^{n_{2}}\left(y_{j}-\widehat{\mu}_{0}\right)^{2}\right)\right\} \\
& =\frac{1}{(2 \pi)^{\left(n_{1}+n_{2}\right) / 2} \widehat{\sigma}_{0}^{n_{1}+n_{2}}} \exp \left\{-\frac{n_{1}+n_{2}}{2}\right\}
\end{aligned}
$$

using $\widehat{\mu}_{01}=\widehat{\mu}_{02}=\widehat{\mu}_{0}$.
The LRT is therefore:

$$
\lambda(x, y)= \begin{cases}1 & \bar{x} \leq \bar{y} \\ \left(\frac{\widehat{\sigma}}{\tilde{\sigma}}\right)^{n_{1}+n_{2}} & \bar{x}>\bar{y}\end{cases}
$$

Test: reject H_{0} for $\lambda(x, y)<c$ where $c<1$, (so a necessary condition for rejection is: $\bar{x}>\bar{y}$). To get it into the format required in the question, use:

$$
\begin{aligned}
\left(n_{1}+n_{2}\right) \widehat{\sigma}_{0}^{2} & =\sum_{j=1}^{n_{1}}\left(X_{j}-\widehat{\mu}_{0}\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{j}-\widehat{\mu}_{0}\right)^{2} \\
& =\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2}+n_{1}\left(\bar{X}-\widehat{\mu}_{0}\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{j}-\widehat{\mu}_{0}\right)^{2}+n_{2}\left(\bar{Y}-\widehat{\mu}_{0}\right)^{2} \\
& =\left(n_{1}+n_{2}\right) \widehat{\sigma}^{2}+\frac{n_{1} n_{2}}{n_{1}+n_{2}}(\bar{X}-\bar{Y})^{2}
\end{aligned}
$$

so that

$$
\widehat{\sigma}_{0}^{2}=\widehat{\sigma}^{2}+\frac{n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}}(\bar{X}-\bar{Y})^{2}
$$

Therefore:

$$
\lambda(x, y)<c \Leftrightarrow \frac{\widehat{\sigma}_{0}^{2}}{\widehat{\sigma}^{2}}>\frac{1}{c^{2 /\left(n_{1}+n_{2}\right)}} \Leftrightarrow\left(1+\frac{n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}} \frac{(\bar{X}-\bar{Y})^{2}}{\widehat{\sigma}^{2}}\right)>\frac{1}{c^{2 /\left(n_{1}+n_{2}\right)}}
$$

Since $\widehat{\sigma}^{2}=\frac{n_{1}+n_{2}-2}{n_{1}+n_{2}} S^{2}$ also need $\bar{X}-\bar{Y}>0$ to reject H_{0}, this gives a test of reject H_{0} if and only if

$$
\frac{\bar{X}-\bar{Y}}{S}>k
$$

for a suitable value of k, which depends on the significance level α. Since

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2}
$$

it follows that $\mathbb{P}_{\mu_{1}, \mu_{2}}\left(\frac{\bar{X}-\bar{Y}}{S}>k\right)$ is increasing as $\mu_{1}-\mu_{2}$ increases and the result follows.
(c) The test is: Reject H_{0} for $\frac{(\bar{x}-\bar{y})}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>t_{n_{1}+n_{2}-2 ; \alpha}$, where $t_{n_{1}+n_{2} ; \alpha}$ is the value such that $\mathbb{P}\left(T>t_{n_{1}+n_{2}-2 ; \alpha}\right)=\alpha$.

Let $\theta=\mu_{2}-\mu_{1}$, then $\bar{X}-\bar{Y} \sim N\left(\theta, \sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right)$ and hence

$$
Z:=\frac{(\bar{X}-\bar{Y})-\theta}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim N(0,1)
$$

The power of the test is

$$
\begin{aligned}
\beta(\theta) & :=\mathbb{P}\left(\left.\frac{(\bar{X}-\bar{Y})}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>t_{n_{1}+n_{2}-2 ; \alpha} \right\rvert\, \mu_{2}-\mu_{1}=\theta\right) \\
& =\mathbb{P}\left(\left.\frac{(\bar{X}-\bar{Y})-\theta}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>t_{n_{1}+n_{2}-2 ; \alpha}-\frac{\theta}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \right\rvert\, \mu_{2}-\mu_{1}=\theta\right)
\end{aligned}
$$

For large $n_{1}, n_{2}, S \simeq \sigma$ (law of large numbers) and $t_{n_{1}+n_{2} ; \alpha} \simeq z_{\alpha}$ where $\mathbb{P}\left(Z>z_{\alpha}\right)=\alpha$ for $Z \sim N(0,1)$, so

$$
\beta(\theta) \simeq \mathbb{P}\left(Z \geq z_{\alpha}-\frac{\theta}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right)
$$

For the numbers given, $\alpha=0.01$ and

$$
0.95=\beta\left(\frac{\sigma}{2}\right) \simeq 1-\Phi\left(z_{0.01}-\frac{\sqrt{n}}{4}\right)
$$

Using $z_{0.01}=2.33$ and $z_{0.05}=1.64$, we have:

$$
-1.64=2.33-\frac{\sqrt{n}}{4} \Rightarrow n=253
$$

2. Likelihood equations obtained by: $\frac{\partial}{\partial \eta_{i}} \log L=0, i=1, \ldots, r$ and $\frac{\partial}{\partial \sigma} \log L=0$. These give directly that the ML estimate has to satisfy:

$$
\left\{\begin{array}{l}
\widehat{\eta}_{i}=U_{i} \\
\frac{1}{\widehat{\sigma}^{2}} \sum_{j=r+1}^{n} U_{j}^{2}=n
\end{array} \quad i=1, \ldots, r\right.
$$

For $r=n, \widehat{\eta}_{i}=U_{i}$ so that the log likelihood evaluated at $\widehat{\eta}$ is:

$$
\log L\left(\widehat{\eta}, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)
$$

which is maximised for $\sigma=0$, which is not in the (open) parameter space $(0,+\infty)$, hence $\widehat{\sigma}_{M L}$ does not exist. Hence no solution for $n=r$.

For $n \geq r+1$,

$$
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{j=r+1}^{n} U_{j}^{2}
$$

Let $U=\binom{U^{(1)}}{U^{(2)}}$ where $U^{(1)}=\left(U_{1}, \ldots, U_{r}\right)^{t}$ and $U^{(2)}=\left(U_{r+1}, \ldots, U_{n}\right)^{t}$. Let $A=\binom{A^{(1)}}{A^{(2)}}$ where $A^{(1)}$ is $r \times n$ and $A^{(2)}$ is $n-r \times n$. Note that $\widehat{\mu}=A^{(1) t} U^{(1)}$ so that $Y-\widehat{\mu}=A^{(2) t} U^{(2)}$. It follows that

$$
\sum_{j=r+1}^{n} U_{j}^{2}=U^{(2) t} U^{(2)}=U^{(2) t} A^{(2)} A^{(2) t} U^{(2)}=|Y-\widehat{\mu}|^{2}
$$

3. The purpose of this question is to see all the abstract results for $Y=X \beta+\epsilon$ in the concrete setting of a single explanatory variable. Here the formulae are more transparent and we can see (for example) what happens when there is ill-conditioning in the X matrix.
(a) The matrix X is:

$$
X=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right)
$$

and the parameter vector is:

$$
\beta=\binom{\beta_{0}}{\beta_{1}}
$$

To get $\left(X^{\prime} X\right)^{-1}$ (so that - for example - we can compute the covariance of the parameter vector estimator):

$$
\left(X^{t} X\right)=\left(\begin{array}{cc}
n & \sum_{j=1}^{n} x_{j} \\
\sum_{j=1}^{n} x_{j} & \sum_{j=1}^{n} x_{j}^{2}
\end{array}\right)=n\left(\begin{array}{cc}
n & \bar{x} \\
\bar{x} & \overline{x^{2}}
\end{array}\right)
$$

Using the usual formula for inverting a 2×2 matrix together with the obvious identity:

$$
\operatorname{det}\left(X^{\prime} X\right)=n\left(\overline{x^{2}}-\bar{x}^{2}\right)=\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}
$$

gives:

$$
\left(X^{t} X\right)^{-1}=\frac{1}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\left(\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right)
$$

(b) The MLE is equal to the least squares estimator. From lectures,

$$
\widehat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y
$$

Plugging in $\left(X^{t} X\right)^{-1}$ which has been computed gives:

$$
\begin{aligned}
\binom{\widehat{\beta}_{0}}{\widehat{\beta}_{1}} & =\left(X^{t} X\right)^{-1}\binom{n \bar{Y}}{n \overline{x Y}} \\
& =\frac{1}{\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\binom{\overline{x^{2}} \bar{Y}-\bar{x} \overline{x Y}}{\overline{x Y}-\bar{x} \bar{Y}} \\
& =\binom{\bar{Y}-\bar{x} \frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(Y_{j}-\bar{y}\right)}{\sum_{j j=1}^{n}\left(x_{j}-\bar{x}\right.}{ }^{2}}{\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(Y_{j}-\bar{y}\right)}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}}
\end{aligned}
$$

This gives the best fitting straight line in the least squares sense. Note that

$$
\widehat{\beta}_{0}=\bar{Y}-\widehat{\beta}_{1} \bar{x}
$$

(c) For the standard deviation estimate,

$$
\frac{(n-2) S^{2}}{\sigma^{2}}=\frac{|Y-\widehat{\mu}|^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2}
$$

Note: $n-2$ degrees of freedom is obtained from the previous exercise.

We may also see it directly: the argument goes as follows: $\widehat{Y}=X\left(X^{t} X\right)^{-1} X^{t} Y$ so that the residuals are:

$$
Y-\widehat{Y}=\left(I-X\left(X^{t} X\right)^{-1} X^{t}\right) Y=(I-H) \epsilon
$$

where $H=X\left(X^{t} X\right)^{-1} X^{t}$ and $\epsilon \sim N\left(0, \sigma^{2} I\right)$. This is because $Y=X \beta+\epsilon$ and $H X=$ X. Note that $H^{2}=H$ (straightforward computation). It therefore follows that all the eigenvalues are either 0 or 1 . Therefore, since X is rank 2 it follows that H is of rank $2 ; 2$ e-values are 1 , the remaining are 0 and it is straightforward that that $I-H$ is rank $n-2$; the eigenvalues of matrix $I-H$ are $n-21^{\prime}$'s and $20^{\prime} 2$. Let $D=\operatorname{diag}(1, \ldots, 1,0,0)$ and let $I-H=P D P^{t}$ where P is orthonormal. Then

$$
\sum\left(Y_{i}-\widehat{\beta}_{0}-x_{i} \widehat{\beta}_{1}\right)^{2}=(Y-\widehat{Y})^{t}(Y-\widehat{Y})=\epsilon^{t} P D P^{t} \epsilon=\sum_{j=1}^{n-2} \eta_{j}^{2}
$$

where $\eta=P^{t} \epsilon$. Since P is orthonormal, it follows that $\eta \sim N\left(0, \sigma^{2} I\right)$.
Therefore, it follows that:

$$
\begin{gathered}
\frac{(n-2) S^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2} \\
\widehat{\widehat{\beta}} \sim N\left(\underline{\beta},\left(X^{t} X\right)^{-1} \sigma^{2}\right)
\end{gathered}
$$

(d) Let $\underline{v}=(1, z)^{t}$ then

$$
\begin{gathered}
\mathbb{E}[Y(z)]=\underline{v}^{t} \underline{\beta} \\
\frac{\underline{v}^{t} \underline{\hat{\beta}}-\underline{v}^{t} \underline{\beta}}{\sigma \sqrt{\underline{v}^{t}\left(X^{t} X\right)^{-1} \underline{v}}} \sim N(0,1) \\
\frac{\underline{v}^{t} \widehat{\beta}-\underline{v}^{t} \underline{\beta}}{S \sqrt{\underline{v}^{t}\left(X^{t} X\right)^{-1} \underline{v}}} \sim t_{n-2}
\end{gathered}
$$

with $1-\alpha$ confidence,

$$
\underline{v}^{t} \underline{\beta} \in\left(\underline{v}^{t} \underline{\hat{\beta}} \pm s \sqrt{\underline{v}^{t}\left(X^{t} X\right)^{-1} \underline{v}} t_{n-2 ; \alpha / 2}\right)
$$

and

$$
\underline{v}^{t}\left(X^{t} X\right)^{-1} \underline{v}=\frac{\overline{x^{2}}-2 z \bar{x}+z^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}=\frac{\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}+(\bar{x}-z)^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}
$$

and the result follows.
(e) From the previous part,

$$
\mathbb{E}\left[\left(Y^{*}-\widehat{Y}^{*}\right)^{2}\right]=\mathbf{V}\left(Y^{*}-\widehat{Y}^{*}\right)=\mathbf{V}\left(Y^{*}\right)+\mathbf{V}\left(\widehat{Y}^{*}\right)=\sigma^{2}\left(1+\frac{1}{n}+\frac{(\bar{x}-z)^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\right)
$$

while, under the assumption $\beta_{1}=0$,

$$
\mathbb{E}\left[\left(Y^{*}-\bar{Y}\right)^{2}\right]=\mathbf{V}\left(Y^{*}\right)+\mathbf{V}(\bar{Y})=\sigma^{2}\left(1+\frac{1}{n}\right)
$$

and the result is clear.
4. (a)

$$
\begin{gathered}
\bar{Y}_{j .}-\bar{Y}_{i .} \sim N\left(\beta_{j}-\beta_{i}, \sigma^{2}\left(\frac{1}{n_{j}}+\frac{1}{n_{i}}\right)\right) \\
S^{2}=\frac{1}{n-p} \sum_{i=1}^{p} \sum_{j=1}^{n}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2} \quad n-p \quad d . f .
\end{gathered}
$$

is the unbiased estimator of σ^{2}. Then

$$
\frac{\left(\bar{Y}_{j .}-\bar{Y}_{i .}\right)-\left(\beta_{j}-\beta_{i}\right)}{S \sqrt{\frac{n_{i}+n_{j}}{n_{i} n_{j}}}} \sim t_{n-p}
$$

and the confidence interval follows. The confidence interval for σ follows from:

$$
\frac{(n-p) S^{2}}{\sigma^{2}} \sim \chi_{n-p}^{2}
$$

hence the $1-\alpha$ confidence bound is given by:

$$
k_{n-p ; 1-(\alpha / 2)} \leq \frac{(n-p) s^{2}}{\sigma^{2}} \leq k_{n-p ;(\alpha / 2)}
$$

from which the result follows.
(b)

$$
\widehat{\psi} \sim N\left(\psi, \sigma^{2}\left(\frac{1}{4 n_{2}}+\frac{1}{4 n_{3}}+\frac{1}{n_{1}}\right)\right)
$$

the estimator of σ^{2} is $S^{2}=Q_{\operatorname{res} n} n$ given above with $n-p$ degrees of freedom and hence

$$
\frac{1}{2}\left(\beta_{2}+\beta_{3}\right)-\beta_{1} \in\left(\frac{1}{2}\left(\bar{Y}_{2 .}+\bar{Y}_{3 .}\right)-\bar{Y}_{1 .} \pm s t_{n-p, \alpha / 2} \sqrt{\frac{n_{1} n_{3}+n_{1} n_{2}-4 n_{2} n_{3}}{4 n_{1} n_{2} n_{3}}}\right)
$$

Similarly,

$$
\mathbf{V}(\widehat{\psi})=\frac{n_{1} n_{3}+n_{1} n_{2}+4 n_{2} n_{3}}{4 n_{1} n_{2} n_{3}} \sigma^{2}
$$

hence the confidence interval is:

$$
\frac{n_{1} n_{3}+n_{1} n_{2}+4 n_{2} n_{3}}{4 n_{1} n_{2} n_{3}} \frac{(n-p) s^{2}}{k_{n-p ;(\alpha / 2)}} \leq \mathbf{V}(\widehat{\psi}) \leq \frac{n_{1} n_{3}+n_{1} n_{2}+4 n_{2} n_{3}}{4 n_{1} n_{2} n_{3}} \frac{(n-p) s^{2}}{k_{n-p ; 1-(\alpha / 2)}}
$$

5. $x^{t} C^{t} C x=0$ implies that $x^{t} C^{t}=0$ which implies that $x=0$ so that if $x \neq 0$ then $x^{t} C^{t} C x \neq 0$ hence $C^{t} C$ is (strictly) positive definite.
6. (a) Let $n=n_{1}+\ldots+n_{k}$ denote the total number of experimental units. For $H_{0}: \mu_{1}=\ldots=$ $\mu_{k}=\mu$, we have the maximiser $\tilde{\mu}=\frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} Y_{i j}$ and

$$
\widetilde{\sigma}^{2}=\frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\widetilde{\mu}\right)^{2}
$$

and the maximum likelihood under the constraint H_{0} is: $\frac{1}{(2 \pi)^{n / 2} \widetilde{\sigma}^{n}} e^{-n / 2}$.
For the unconstrained problem, the likelihood is maximised at $\widehat{\mu}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j}$ and

$$
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\widehat{\mu}_{j}\right)^{2}
$$

The maximum likelihood for the unconstrained problem is: $\frac{1}{(2 \pi)^{n / 2} \widehat{\sigma}^{n}} e^{-n / 2}$ and hence the likelihood ratio statistic is:

$$
\lambda(y)=\left(\frac{\widehat{\sigma}}{\widetilde{\sigma}}\right)^{n} .
$$

(b) Pythagorean identity: note that $\bar{Y}_{. j}=\widehat{\mu}_{j}$ and $\bar{Y}_{. .}=\widetilde{\mu}$ from previous part.
$\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\widetilde{\mu}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}+\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}+\sum_{j=1}^{k} n_{j}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}$ so:

$$
n \widetilde{\sigma}^{2}=Q_{\mathrm{res}}+Q_{M} \quad n \widehat{\sigma}^{2}=Q_{\mathrm{res}}
$$

Therefore, the likelihood ratio test is:

$$
\lambda(y)<c \Leftrightarrow \frac{Q_{r e s}}{Q_{M}+Q_{r e s}}<c^{2 / n} \Leftrightarrow \frac{Q_{M} /(k-1)}{Q_{\mathrm{res}} /(n-k)}>\left(\frac{n-k}{k-1}\right)\left(\frac{1-c^{2 / n}}{c^{2 / n}}\right)=k
$$

establishing the result.
(c) It follows from the canonical representation (lectures) that $Q_{M} \perp Q_{\text {res }}$. Under $H_{0}: \mu_{1}=$ $\ldots=\mu_{k}$, it follows that $\frac{Q_{M}}{\sigma^{2}} \sim \chi_{k-1}^{2}$ since the parameter space for μ_{1}, \ldots, μ_{k} is k-dimensional and the parameter space for the mean under the null hypothesis is 1-dimensional, and $\frac{Q_{\text {res }}}{\sigma^{2}} \sim \chi_{n-k}^{2}$. The result follows from Proposition 11.4.

