Tutorial 10

1. We have a single observation on a random variable X from a distribution with density

$$
p(x ; \theta)= \begin{cases}e^{-(x-\theta)} & x \geq \theta \\ 0 & x<\theta\end{cases}
$$

where $\theta>0$ is unknown. We test $H_{0}: \theta=0$ against the alternative $H_{1}: \theta>0$ and we reject the null hypothesis if the observed value $x \in[c,+\infty)=\mathcal{R}_{\text {crit }}$ for an appropriate $c>0$.
(a) Compute c if the test has significance level $\alpha=0.05$.
(b) Determine whether or not this test is uniformly most powerful.
2. Let X_{1}, \ldots, X_{n} be i.i.d. with distribution $F(x)$ where

$$
F(x)=\left\{\begin{array}{ll}
1-e^{-x^{\theta}} & x \geq 0 \\
0 & x<0
\end{array} \quad \theta>0 .\right.
$$

Find the most powerful test for $H_{0}: \theta=1$ versus $H_{1}: \theta=\theta_{1}$ for a particular $\theta_{1}>1$. For $\alpha=0.05$, show that this does not give a UMP test for $H_{0}: \theta=1$ versus $H_{1}: \theta>1$.
3. Let

$$
X_{i}=\binom{X_{i 1}}{X_{i 2}} \sim N\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right)\right) \quad i=1, \ldots, n
$$

and suppose that X_{1}, \ldots, X_{n} are independent. Consider the hypothesis test: $H_{0}: \mu_{1}=$ $\mu_{2} \quad$ and $\quad \sigma_{1}=\sigma_{2}$ versus the alternative $H_{1}: \mu_{1} \neq \mu_{2} \quad$ or $\quad \sigma_{1} \neq \sigma_{2}$. Compute the likelihood ratio test statistic.
4. The $F_{n, m}$ distribution is defined as follows: if $V \sim \chi_{m}^{2}, W \sim \chi_{n}^{2}$ and $V \perp W$, then $F:=\frac{W / n}{V / m}$ has $F_{n, m}$ distribution. Let $X_{1}, \ldots, X_{n_{1}}$ and $Y_{1}, \ldots, Y_{n_{2}}$ be independent exponential $\operatorname{Exp}(\theta)$ and $\operatorname{Exp}(\lambda)$ samples respectively and let $\Delta=\frac{\theta}{\lambda}$.
(a) Let $f(\alpha)$ denote the value such that $\mathbb{P}(F>f(\alpha))=\alpha$ where $F \sim F_{2 n_{1}, 2 n_{2}}$. Show that $\left[\frac{\bar{Y}}{\bar{X}} f\left(1-\frac{\alpha}{2}\right), \frac{\bar{Y}}{\bar{X}} f\left(\frac{\alpha}{2}\right)\right]$ is a confidence interval for Δ with confidence coefficient $1-\alpha$.
(b) Show that the test with acceptance region (the region where H_{0} is not rejected) given by $[f(1-\alpha / 2), f(\alpha / 2)]$ for the test $H_{0}: \Delta=1$ versus $H_{1}: \Delta \neq 1$ using test statistic $\widehat{\Delta}=\frac{\bar{X}}{\bar{Y}}$ has size α.
5. Let X_{1}, \ldots, X_{n} denote the times (in days) to failure of n similar pieces of equipment which is considered to be an $\operatorname{Exp}(\lambda)$ random sample. Consider the hypothesis $H_{0}: \frac{1}{\lambda}=\mu \leq \mu_{0}$ (the average lifetime is no greater than μ_{0}).
(a) Show that the test with critical region $\bar{X} \in\left[\mu_{0} \frac{k_{2 n, \alpha}}{2 n},+\infty\right)$ where $k_{m, \alpha}$ is the value such that $\mathbb{P}\left(W>k_{m, \alpha}\right)=\alpha$ for $W \sim \chi_{m}^{2}$, is a size α test.
(b) Give an expression for the power function in terms of the $\chi_{2 n}^{2}$ distribution.
(c) Use the central limit theorem to show that $\Phi\left(-\frac{\mu_{0} z_{\alpha}}{\mu}+\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\mu}\right)$ is an approximation to the power function of the test in part (a). Here z_{α} is the value such that $\mathbb{P}\left(Z>z_{\alpha}\right)=\alpha$ for $Z \sim N(0,1)$ and $\Phi(z)=\mathbb{P}(Z \leq x)$.
6. Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Poiss}(\theta)$, where θ is unknown.
(a) Construct a UMP level α test for $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$.
(b) Show that the power function of the test is increasing in θ.
(c) What distribution tables would you need to calculate the power function of the UMP test?
(d) Give an approximate expression, derived using the central limit theorem, for the critical value (above which you reject H_{0}) if n is large and θ not too close to 0 or $+\infty$.
7. (a) Given a random sample X_{1}, \ldots, X_{n} from a distribution with c.d.f. F, let

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{(-\infty, x]}\left(X_{j}\right)
$$

denote the empirical distribution. Consider the test of $H_{0}: F=F_{0}$ versus the alternative $H_{1}: F \neq F_{0}$ for a given F_{0}. Let $D_{n}=\sup _{x \in \mathbb{R}}\left|\widehat{F}_{n}(x)-F_{0}(x)\right|$ and consider the test: reject H_{0} if and only if $D_{n} \geq k_{\alpha}$ for k_{α} such that $\mathbb{P}_{F_{0}}\left(D_{n} \geq k_{\alpha}\right)=\alpha$ under H_{0}. (Recall that asymptotically D_{n} has the Kolmogorov distribution).
Show that the power of this test (for a true distribution F), $\beta(F)$, is bounded below by

$$
\beta(F) \geq \sup _{x} \mathbb{P}_{F}\left(\left|\widehat{F}_{n}(x)-F_{0}(x)\right| \geq k_{\alpha}\right) .
$$

(b) For $n=80$, obtain an approximation $\widetilde{k_{0.1}}$ for $k_{0.1}$ and see how well it approximates the true value:

$$
k_{0.1} \simeq \frac{1.2}{\sqrt{n}} \simeq 0.134
$$

(c) Again, take $\alpha=0.10$ and $n=80$. Let F_{0} be the $N(0,1)$ c.d.f. and

$$
F(x)=\frac{1}{1+\exp \left\{-\frac{x}{\tau}\right\}} \quad-\infty<x<+\infty \quad \tau=\frac{\sqrt{3}}{\pi} .
$$

With this choice of τ, this is the logistic distribution with mean zero and variance 1. Evaluate the lower bound $\mathbb{P}_{F}\left(\left|\widehat{F}_{n}(x)-F_{0}(x)\right| \geq k_{\alpha}\right)$ for $\alpha=0.10, n=80$ and $x=1.5$ using the normal approximation to the binomial distribution of $n \widehat{F}(x)$ and the approximate critical value of the previous part. (the value of 1.2 may be obtained from tables of the Kolmogorov Smirnov distribution). If F_{0} is the c.d.f. for $N(0,1)$ then $F_{0}(1.5) \simeq 0.93$.
(d) Show that if $F \neq F_{0}$ and F and F_{0} are continuous, then the power of this test tends to 1 as $n \rightarrow+\infty$. You may use the fact that $\sqrt{n} D_{n}$ under the null hypothesis converges to the Kolmogorov Smirnov distribution. In particular, $\sqrt{n} k_{0.1} \xrightarrow{n \rightarrow+\infty} c_{0.1}=1.2$.
8. Again, let X_{1}, \ldots, X_{n} be a random sample from a distribution with continuous c.d.f. F and let \widehat{F}_{n} denote the empirical distribution. Let $\psi:(0,1) \rightarrow(0,+\infty)$ and $\alpha>0$. Define the statistics:

$$
\begin{gathered}
S_{\psi, \alpha}=\sup _{x} \psi\left(F_{0}(x)\right)\left|\widehat{F}(x)-F_{0}(x)\right|^{\alpha} \\
T_{\psi, \alpha}=\sup _{x} \psi\left(\widehat{F}_{n}(x)\right)\left|\widehat{F}(x)-F_{0}(x)\right|^{\alpha} \\
U_{\psi, \alpha}=\int \psi\left(F_{0}(x)\right)\left|\widehat{F}_{n}(x)-F_{0}(x)\right|^{\alpha} F_{0}(d x) \\
V_{\psi, \alpha}=\int \psi\left(\widehat{F}_{n}(x)\right)\left|\widehat{F}_{n}(x)-F_{0}(x)\right|^{\alpha} \widehat{F}_{n}(d x)
\end{gathered}
$$

For each of these statistics show that the distribution under $H_{0}: F=F_{0}$, does not depend on F_{0} (continuous).

Short Answers

1. (a)

$$
0.05=\mathbb{P}_{0}(X \geq c)=e^{-c} \Rightarrow c=\log 20
$$

(b) This follows from the Karlin-Rubin theorem (Theorem 9.2). Clearly X is sufficient for θ and the likelihood ratio satisfies for $\theta_{1}<\theta_{2}$:

$$
\lambda\left(\theta_{1}, \theta_{2} ; x\right):=\frac{e^{-\left(x-\theta_{2}\right)}}{e^{-\left(x-\theta_{1}\right)}} \frac{\mathbf{1}_{\left[\theta_{2},+\infty\right)}(x)}{\mathbf{1}_{\left[\theta_{1},+\infty\right)}(x)}= \begin{cases}\text { undefined } & x, \theta_{1} \\ 0 & \theta_{1} \leq x<\theta_{2} \\ e^{\theta_{1}-\theta_{2}} & x \geq \theta_{2}\end{cases}
$$

This is monotone in x for x in the support of at least one of $p\left(.: \theta_{1}\right)$ or $p\left(. ; \theta_{2}\right)$.Hence, by Karlin-Rubin theorem, $\mathcal{R}_{\text {crit }}=\{x: x>c\}$ is UMP.
2. Here the density is $p(x ; \theta)=\theta x^{\theta-1} e^{-x^{\theta}} \mathbf{1}_{[0,+\infty)}(x)$. Therefore, for an NP test of $H_{0}: \theta=1$ against an alternative, we need the ratio:

$$
\lambda(\theta ; \underline{x}):=\theta^{n}\left(\prod_{j=1}^{n} x_{j}\right)^{\theta-1} \exp \left\{-\sum_{j=1}^{n}\left(x_{j}^{\theta}-x_{j}\right)\right\} .
$$

where $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ denotes the vector of observations.
The NP rejection region for $H_{0}: \theta=1$ against $H_{1}: \theta=\theta_{1}$ of size α, where $\theta_{1}>1$ is:

$$
\mathcal{R}_{\mathrm{crit} ; \theta_{1}, \alpha}=\left\{\underline{x}: \lambda\left(\theta_{1}, \underline{x}\right)>k_{\theta_{1}, \alpha}\right\}
$$

where $k_{\theta_{1}, \alpha}$ satisfies:

$$
\mathbb{P}\left(\lambda\left(\theta_{1}, \underline{X}\right)>k_{\theta_{1}, \alpha}\right)=\alpha, \quad \underline{X} \quad \text { i.i.d. } \quad \operatorname{Exp}(1) .
$$

This is the most powerful level α test.
A test (reject if $\underline{x} \in \mathcal{R}$ for some critical region \mathcal{R}) is UMP for all $\theta>1$ if and only if, for the given level α it satisfies $\mathbb{P}(\underline{X} \in \mathcal{R}) \leq \alpha$ and

$$
\beta(\theta):=\mathbb{P}_{\theta}(\underline{X} \in \mathcal{R}) \geq \mathbb{P}_{\theta}(\underline{X} \in \widetilde{\mathcal{R}})
$$

for any other $\widetilde{\mathcal{R}}$ such that

$$
\mathbb{P}_{1}(\underline{X} \in \widetilde{\mathcal{R}}) \leq \alpha .
$$

The NP lemma gives an 'if and only if' condition. That is, a test is UMP if the NP tests give the same critical region for all $\theta>1$. The critical region may be expressed as:

$$
\mathcal{R}_{\theta}=\left\{\underline{x}:(\theta-1) \sum_{j=1}^{n} \log x_{j}-\sum_{j=1}^{n}\left(x_{j}^{\theta}-x_{j}\right)>c_{\theta}\right\}
$$

where c_{θ} is chosen such that for X_{1}, \ldots, X_{n} i.i.d. $\operatorname{Exp}(1)$ variables,

$$
\mathbb{P}\left(\underline{X} \in \mathcal{R}_{\theta}\right)=0.05 .
$$

For the test to be UMP, we need: for all $\underline{x} \in \mathbb{R}_{+}^{n}$,

$$
\left(\theta_{1}-1\right) \sum_{j=1}^{n} \log x_{j}-\sum_{j=1}^{n} x_{j}^{\theta_{1}}+\sum_{j=1}^{n} x_{j} \geq c_{\theta_{1}} \Leftrightarrow\left(\theta_{2}-1\right) \sum_{j=1}^{n} \log x_{j}-\sum_{j=1}^{n} x_{j}^{\theta_{2}}+\sum_{j=1}^{n} x_{j} \geq c_{\theta_{2}}
$$

For $n \geq 2$, the shapes of the regions depend on the parameter θ. Indeed, we can see that $\lim _{\theta \rightarrow+\infty} F(x ; \theta)=\mathbf{1}_{[1,+\infty)}(x) ;$ for any $\epsilon>0$,

$$
\lim _{\theta \rightarrow+\infty} \mathbb{P}_{\theta}\left(1-\epsilon<\min \left(X_{1}, \ldots, X_{n}\right) \leq \max \left(X_{1}, \ldots, X_{n}\right)<1+\epsilon\right)=1
$$

so that $\mathcal{R}_{\text {limit }}=\bigcap_{\theta>1} \mathcal{R}_{\theta}=\{(1, \ldots, 1)\}$
and

$$
\mathbb{P}_{\theta}\left(\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{R}_{\text {limit }}\right)=0
$$

3. The samples $X_{11}, \ldots, X_{n 1}$ and $X_{12}, \ldots, X_{n 2}$ are independent. The log likelihood is:

$$
\log L\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)=\mathrm{const}-n \log \sigma_{1}-n \log \sigma_{2}-\frac{1}{2 \sigma_{1}^{2}} \sum_{i=1}^{n}\left(x_{i 1}-\mu_{1}\right)^{2}-\frac{1}{2 \sigma_{2}} \sum_{i=1}\left(x_{i 2}-\mu_{2}\right)^{2}
$$

For constrained problem (under H_{0}) the max. likelihood of $\mu=\mu_{1}=\mu_{2}$ is:

$$
\widehat{\mu}=\frac{1}{2 n}\left(\sum_{i=1}^{n} x_{i 1}+\sum_{i=1}^{n} x_{i 2}\right)=\bar{x}_{. .}
$$

and the max. likelihood for $\sigma^{2}=\sigma_{1}^{2}=\sigma_{2}^{2}$ is:

$$
\widehat{\sigma}^{2}=\frac{1}{2 n}\left(\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{. .}\right)^{2}+\sum_{i=1}^{n}\left(x_{i 2}-\bar{x}_{. .}\right)^{2}\right) .
$$

For the unconstrained problem,

$$
\widehat{\mu}_{1}=\bar{x}_{.1} \quad \widehat{\mu}_{2}=\bar{x}_{.2}
$$

while

$$
\widehat{\sigma}_{1}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i 1}-\bar{X}_{.1}\right)^{2}, \quad \widehat{\sigma}_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i 2}-\bar{X}_{.2}\right)^{2} .
$$

Then, for the constrained problem,

$$
L(\widehat{\mu}, \widehat{\sigma})=\frac{1}{(2 \pi)^{n} \widehat{\sigma}^{2 n}} \exp \{-n\}
$$

and, for the unconstrained problem,

$$
L\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}, \widehat{\sigma}_{1}, \widehat{\sigma}_{2}\right)=\frac{1}{(2 \pi)^{n} \widehat{\sigma}_{1}^{n} \widehat{\sigma}_{2}^{n}} \exp \{-n\}
$$

so that the LRT is:

$$
\lambda(x)=\frac{\widehat{\sigma}_{1}^{n} \widehat{\sigma}_{2}^{n}}{\widetilde{\sigma}^{2 n}}
$$

4. (a) $\sum_{j=1}^{n_{1}} X_{j}=n_{1} \bar{X} \sim \Gamma\left(n_{1}, \theta\right)$ so that $2 n_{1} \theta \bar{X} \sim \Gamma\left(n_{1}, \frac{1}{2}\right)=\chi_{2 n_{1}}^{2}$. Similarly, $2 \theta n_{2} \bar{Y} \sim \chi_{2 n_{2}}^{2}$. It follows that $\frac{\theta \bar{X}}{\lambda \bar{Y}}=\Delta \overline{\bar{X}} \sim F_{2 n_{1}, 2 n_{2}}$. Hence the $1-\alpha$ symmetric confidence interval is $f\left(1-\frac{\alpha}{2}\right) \leq \Delta \frac{\bar{X}}{\bar{Y}} \leq f\left(\frac{\alpha}{2}\right)$ giving a confidence interval of

$$
\Delta \in\left[\frac{\bar{Y}}{\bar{X}} f\left(1-\frac{\alpha}{2}\right), \frac{\bar{Y}}{\bar{X}} f\left(\frac{\alpha}{2}\right)\right]
$$

as required.
(b) Under $H_{0}: \Delta=1, F:=\frac{\bar{X}}{\bar{Y}} \sim F_{2 n_{1}, 2 n_{2}}$. Reject for observed value of F greater than $f\left(\frac{\alpha}{2}\right)$ or less than $f\left(1-\frac{\alpha}{2}\right)$. Hence acceptance region is $\left[f\left(1-\frac{\alpha}{2}\right), f\left(\frac{\alpha}{2}\right)\right]$.
5. (a) $T:=2 \lambda \sum_{j=1}^{n} X_{j} \sim \chi_{2 n}^{2}$. For $\lambda=\frac{1}{\mu_{0}}$,

$$
\mathbb{P}_{\mu_{0}}\left(\bar{X} \geq \mu_{0} \frac{k_{2 n, \alpha}}{2 n}\right)=\mathbb{P}\left(T>k_{2 n, \alpha}\right)=\alpha .
$$

Clearly the power function is increasing in μ, so this is a size α test.
(b)

$$
\beta(\mu)=\mathbb{P}_{\mu}\left(\bar{X} \geq \mu_{0} \frac{k_{2 n, \alpha}}{2 n}\right)=\mathbb{P}\left(T \geq \frac{\mu_{0}}{\mu} k_{2 n, \alpha}\right)=1-F\left(\frac{\mu_{0}}{\mu} k_{2 n, \alpha}\right)
$$

where F is the c.d.f. for the $\chi_{2 n}^{2}$.
(c) From CLT, approximately $\bar{X} \sim N\left(\mu, \frac{\mu^{2}}{n}\right)$ so that

$$
\beta(\mu) \simeq 1-\Phi\left(\frac{\mu_{0} \frac{k_{2 n, \alpha}^{2 n}}{2 n}-\mu}{\mu / \sqrt{n}}\right)=\Phi\left(\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\mu}+\frac{\sqrt{n} \mu_{0}}{\mu}\left(1-\frac{k_{2 n, \alpha}}{2 n}\right)\right)
$$

Now, by CLT, if $V \sim \chi_{2 n}^{2}$ then V is approximately $N(2 n, 4 n)$, so

$$
\alpha=\mathbb{P}\left(W>k_{2 n, \alpha}\right) \simeq \mathbb{P}\left(Z>\frac{k_{2 n, \alpha}-2 n}{2 \sqrt{n}}\right)
$$

so $z_{\alpha} \simeq \frac{k_{2 n, \alpha}-2 n}{2 \sqrt{n}}$ and hence

$$
\beta(\mu) \simeq \Phi\left(\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\mu}-\frac{\mu_{0}}{\mu} z_{\alpha}\right)
$$

as required.
6. (a) Construct UMP by Karlin-Rubin Theorem. Let $T=\sum_{i} X_{i}$, then T is sufficient for θ. Also, $T \sim \operatorname{Poiss}(n \theta)$. To show that test with critical region $T \in\left[t_{0},+\infty\right)$ is UMP, it is sufficient by K-R to show MLR. For $\theta_{1}<\theta_{2}$,

$$
\lambda\left(\theta_{1}, \theta_{2} ; t\right)=\frac{L\left(\theta_{1}, t\right)}{L\left(\theta_{0}, t\right)}=\left(\frac{\theta_{1}}{\theta_{0}}\right)^{t} e^{-n\left(\theta_{1}-\theta_{0}\right)}
$$

This is clearly monotone in t, hence likelihood ratio satisfies MLR property, hence UMP level α test is: reject H_{0} for $\sum_{j} X_{j}>k$ for an integer k, chosen as the smallest value such that

$$
\mathbb{P}_{\theta_{0}}\left(\sum_{j} X_{j}>k\right) \leq \alpha
$$

(b) For $S \sim \operatorname{Poiss}(n \theta)$ when the parameter value is θ,

$$
\beta(\theta)=\mathbb{P}_{\theta}(S>k)
$$

Use S is the number of events by time 1 in a Poisson process with parameter $n \theta$. Then $\{S>k\}=\{T<1\}$ where T is the time until the k th event. $T \sim \Gamma(k, n \theta)$ so that $2 n \theta T \sim \Gamma\left(k, \frac{1}{2}\right) \sim \chi_{2 k}^{2}$. It is clear that $\mathbb{P}_{\theta}(T<1)$ is increasing in θ.
(c) From part (b), the chi squared distribution.
(d) By CLT: $\sum_{j} X_{j} \sim N(n \theta, n \theta)$ approximately; reject H_{0} if $\frac{\sum_{j} X_{j}-n \theta_{0}}{\sqrt{n \theta_{0}}}=\frac{k-n \theta_{0}}{\sqrt{n \theta_{0}}}>z_{\alpha}$; k is the lowest integer greater than $n \theta_{0}+\sqrt{n} \sqrt{\theta_{0}} z_{\alpha}$.
7. (a) First part is trivial: since $D_{n} \geq\left|\widehat{F}_{n}(x)-F_{0}(x)\right|$ for each x, it follows that

$$
\mathbb{P}_{F}\left(\left|\widehat{F}_{n}(x)-F_{0}(x)\right| \geq k_{\alpha}\right) \leq \mathbb{P}_{F}\left(D_{n} \geq k_{\alpha}\right)
$$

for eacn $x \in \mathbb{R}$ and hence

$$
\sup _{x \in \mathbb{R}} \mathbb{P}_{F}\left(\left|\widehat{F}_{n}(x)-F_{0}(x)\right| \geq k_{\alpha}\right) \leq \mathbb{P}_{F}\left(D_{n} \geq k_{\alpha}\right)
$$

(b) Approximation for k_{α} :

$$
\alpha>\mathbb{P}_{F}\left(\left|\widehat{F}_{n}(x)-F(x)\right|>k_{\alpha}\right)
$$

so

$$
\alpha>\mathbb{P}_{F}\left(\left|n \widehat{F}_{n}(x)-n F(x)\right|>n k_{\alpha}\right)
$$

Consider X_{1}, \ldots, X_{n} i.i.d. $U(0,1)$ variables, then $F(x)=x$ and $n \widehat{F}_{n}(x) \sim B i(n, x) \sim$ $N(n x, n x(1-x))$ (central limit approximation). Let $Y \sim N(n x, n x(1-x))$ then

$$
\alpha=\sup _{x \in \mathbb{R}} \mathbb{P}\left(|Z|>\frac{\sqrt{n} \widetilde{k}_{\alpha}}{\sqrt{x(1-x)}}\right)
$$

Recall that $\alpha=0.1$. The supremum occurs at $x=\frac{1}{2}$. With $n=80$,

$$
0.1=\mathbb{P}\left(|Z|>17.89 \widetilde{k}_{0.1}\right) \Rightarrow 17.89 \widetilde{k}_{0.1}=1.65 \Rightarrow \widetilde{k}_{0.1} \simeq 0.09
$$

(value for the Kolmogorov Smirnov statistic: $k_{\alpha}=0.136$).
(c) Note that $80 \times 0.136 \simeq 11$. For F_{0} the $N(0,1)$ c.d.f., $80 \times F_{0}(1.5)=74.4$, so look for:

$$
\mathbb{P}_{F}\left(\left|n \widehat{F}_{n}(1.5)-74.4\right| \geq 11\right)
$$

where $n \widehat{F}_{n}(1)=\operatorname{Binomial}\left(80, \mathbb{P}_{F}(X \leq 1.5)\right)$. Using $\tau=\frac{\sqrt{3}}{\pi}$, it follows that

$$
\mathbb{P}_{F}(X \leq 1.5)=\frac{1}{1+e^{-1.5 \pi / \sqrt{3}}} \simeq 0.94
$$

The answer is therefore

$$
\mathbb{P}(Y \leq 56)+\mathbb{P}(Y \geq 79) \quad Y \sim \operatorname{Binomial}(80,0.94) \simeq N(75.2,4.5)
$$

which is:

$$
(1-\Phi(9.1))+(1-\Phi(1.65)) \simeq 0.05
$$

In other words, the test is catastrophically awful. The null hypothesis is wrong, nevertheless, we only reject it with probability 0.05 .
(d) Choose a point x such that $0<F(x)<1,0<F_{0}(x)<1$ and $F(x) \neq F_{0}(x)$ and let $c_{0.1} \simeq 1.22$ the value such that

$$
\lim _{n \rightarrow+\infty} \mathbb{P}_{F_{0}}\left(\sqrt{n} D_{n} \geq c_{0.1}\right)=0.1
$$

Using $Y:=n \widehat{F}_{n}(x) \sim \operatorname{Binomial}(n F(x), n F(x)(1-F(x))$, it follows from the central limit theorem that the power $\beta_{n}(F)$ (based on sample size n) satisfies:

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \beta_{n}(F) \geq & \Phi\left(\frac{\sqrt{n}\left(F_{0}(x)-F(x)\right)}{\sqrt{F(x)(1-F(x))}}-\frac{c_{\alpha}}{\sqrt{F(x)(1-F(x))}}\right) \\
& +\Phi\left(\frac{\sqrt{n}\left(F(x)-F_{0}(x)\right)}{\sqrt{F(x)(1-F(x))}}-\frac{c_{\alpha}}{\sqrt{F(x)(1-F(x))}}\right) \rightarrow 1
\end{aligned}
$$

from which the result follows; if $F_{0}(x)>F(x)$ then the first term converges to 1 and the second to 0 ; if $F(x)>F_{0}(x)$ then the first term converges to 0 and the second to 1 .
8. The first and second are similar to arguments given before (earlier tutorial exercises). The third and fourth are similar; here is the argument for the fourth.

$$
\mathbb{P}\left(V_{\psi, \alpha}>v\right)=\mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} \psi\left(\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left(-\infty, X_{k}\right]}\left(X_{j}\right)\right)\left|\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left(-\infty, X_{k}\right]}\left(X_{j}\right)-F_{0}\left(X_{k}\right)\right|^{\alpha}>v\right)
$$

Now let $Y_{k}=F_{0}\left(X_{k}\right)$ so that Y_{1}, \ldots, Y_{n} are i.i.d. $U(0,1)$, then

$$
\mathbb{P}\left(V_{\psi, \alpha}>v\right)=\mathbb{P}\left(\frac{1}{n} \sum_{k=1}^{n} \psi\left(\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left(-\infty, Y_{k}\right]}\left(Y_{j}\right)\right)\left|\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left(-\infty, Y_{k}\right]}\left(Y_{j}\right)-Y_{k}\right|^{\alpha}>v\right)
$$

which does not depend on F_{0}.

