Tutorial 2

PC and PLS Regression using the pls package

PCR and PLSR can be carried out easily using the package pls. Install and active this package. The
use is quite straightforward. The optimal number of components is arrived at using leave-one-out cross

validation.

Exercise 1: Polyethylene Terephthalate Data

Consider the Polyethylene Terephthalate data found in the data set yarn, included in the package
pls. The data were obtained from a calibration study of polytheylene terephthalate yarns, which are
used for textile manufacture and other industrial purposes. Raman near-infrared (NIR) spectoscopy has
recently become an important tool in the pharmaceutical and semiconductor industries for investigating
structural information on polymers.

The Y variable is the density (measured in kg/m?) of the yarn. There are 268 explanatory variables,
selected from the NIR spectrum of the yarn.

There are 28 observations, so that the X matrix is 28 x 268 (if centred variables are considered so
that the intercept is 0).

Remember to centre (and standardise) the data where appropriate.

1. Perform a principal component analysis on the X variables. How many eigenvalues greater than

1 are there?

You can do a PCA on the X variables (which are the NIR variables) by:
> pcxyarn = prcomp(yarn$NIR,center=TRUE, scale=TRUE)

Note that the eigenvalues are the variances of the principal components and hence the squares

of the standard deviations. To get the eigenvalues, try:

> ev = pcxyarn$sdev~2
> ev

[1] 1.369756e+02 8.278146e+01 4.414949e+01 2.646324e+00 6.006888e-01
3.409703e-01

[7] 2.317032e-01 7.035091e-02 6.121514e-02 4.929247e-02 2.760041e-02
1.866255e-02
[13] 1.048080e-02 8.622384e-03 6.670331e-03 4.678203e-03 4.179166e-03
3.241186e-03
[19] 2.195114e-03 1.725305e-03 1.456335e-03 1.240840e-03 7.721071e-04
6.085844e-04
[25] 3.988832e-04 2.611062e-04 1.453094e-04 2.499623e-28

34

so we see that even though there are 28 variables, there are only 4 eigenvalues greater than 1.

. Perform a PCR (principal component regression). Try it with 1,3,4,20 components.

useful here? If so, how many components would you recommend.

From the pls package:

> pcreg = pcr(density”NIR,ncomp=6,data=yarn)
> summary (pcreg)

Data: X dimension: 28 268

Y dimension: 28 1

Fit method: svdpc

Number of components considered: 6

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps b5 comps 6 comps
X 52.17 98.60 99.47 99.70 99.88 99.97
density 5.50 98.15 99.40 99.58 99.95 99.99

Is PCR

uses 6 components. As we can see, already after the second component, 98% of the total sum

of squares is explained, but the leading principal component doesn’t explain very much of the

density sum of squares. Even though the first principal component of NIR has a much larger

eigenvalue than the others, it does not help much for prediction of density; the second principal

component is much more important.

. Perform a PLSR (partial least squares regression). How many PLSR components are needed?

(Answer: the final shape of the coefficient estimates can already be discerned by 3 components

- that is, the coefficient for the significant components do not change substantially as further

components are added. A useful representation is given by 4 components. Is it useful to add

further components?)

> pcreg = plsr(density~NIR,ncomp=6,data=yarn)
> summary (pcreg)

Data: X dimension: 28 268

Y dimension: 28 1

Fit method: kernelpls

Number of components considered: 6

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps b5 comps 6 comps
X 46.83 98.38 99.46 99.67 99.85 99.97
density 98.12 98.25 99.64 99.97 99.99 99.99

35

We can see that this is much better than PCR; even after the first component we have explained
98% of the total sum of squares by the model. At the first pass, the PLSR algorithm selects
the linear component of the X variables most strongly correlated with the response Y. In this

problem, this leads to a pronounced improvement.

4. Try PCR, PLSR again. Centre the variables and compare what happens if you standardise the

X variables and if you do not standardise the X variables.

Note Consider centred variables. Let X denote the design matrix without standardizing and
X when we standardise. In the decompositions of X’'X and X'X , the eignenvectors remain the
same, but the eigenvalues may change. Hence X'X = VDV’ while XX = VDV'. Let Vlye Uy
be the eigenvectors corresponding to Xl >...> XT. If D= (A1,...,\), where \; corresponds to
eigenvector v_;, it does not necessarily hold that these eigenvalues are in decreasing order. Hence

the components may be presented in a different order, hence we can get different results.

5. How are the results affected if you neither standardise nor centre the variables?

Note Of course, the whole theory of PC analysis breaks down, since we’re no longer doing a

PCA on a covariance matrix.

(X -1, X)(X-1,X)=X'X —nX X

where X = (X1,..., X)) (the row vector where X; = & > j—1 Xji) so that

X'X =(X-1,X)(X -1,X)+nX X.

Exploring pls further

We explore the pls package further using three data sets, the yarn data set described above, the oliveoil
data set, which contains 5 quality measurements (chemical), 6 sensory variables (sensory) made on 16
olive oil samples. We concentrate mostly on the gasoline data set which contains the octane number

octane and the NIR spectra (NIR) of 60 gasoline samples.

data("yarn")
data("oliveoil")

data("gasoline")
We use the first 50 gasoline observations for training and the remaining 10 to test the predictor.

gasTrain <- gasoline[1:50,]
gasTest <- gasoline[51:60,]
gasl <- plsr(octane ~ NIR, ncomp = 10, data = gasTrain, validation = "LOO")

summary (gas1)

36

The LOO validation is leave-one-out; a predictor computed using 49 of the 50; the mean squared error
determined by the prediction of the remaining. CV denotes the ordinary CV estimate, adjCV the bias
corrected estimate; these should be approximately the same for LOO. RMSEP stands for root mean

squared error of the predictor; let us see how it depends on the number of components.

plot (RMSEP(gasl), legendpos = "topright")
plot(gasl, ncomp = 2, asp = 1, line = TRUE)
plot(gasl, plottype = "scores", comps = 1:3)

The explained variables can be extracted explicitly with explvar:
explvar(gasl)
The loading plot is extremely useful:

plot(gasl, "loadings", comps = 1:2, legendpos = "topleft",
labels = "numbers", xlab = "nm")
abline(h = 0)

NOTE: to understand the plot, look at the explanatory variables, which are labelled by nm. Since there
are so many of them, the plot looks like a continuous line, but it is not; the plot gives the loading on
the Principal Component for each of the explanatory variables, labelled by nm.

The aim of the fitted model is to predict future behaviour:
predict(gasl, ncomp = 2, newdata = gasTest)

and since we actually have the values we can calculate the RMSEP for the test set.
RMSEP(gasl, newdata = gasTest)

the plsr function returns a model of class mvr:

densl <- plsr(density ~ NIR, ncomp = 5, data = yarn)

If the response term of the model is a matrix, a multi-response model is fitted:

dim(oliveoil$sensory)

plsr(sensory ~ chemical, data = oliveoil)
The update function is useful for adding explanatory variables:

trainind <- which(yarn$train == TRUE)
dens2 <- update(densl, subset = trainind)

dens3 <- update(densl, ncomp = 10)

37

If scale is TRUE, then each variable is standardised. If it is a numeric vector, each variable is divided

by the corresponding number.
olivel <- plsr(sensory ~ chemical, scale = TRUE, data = oliveoil)

The function msc produces a multiplicative scatter corrected matrix, which is sometimes more useful.

Does it give a better predictor?

gas2 <- plsr(octane ~ msc(NIR), ncomp = 10, data = gasTrain)

predict(gas2, ncomp = 3, newdata = gasTest)
We can do cross validation with ‘leave 10 out’.

gas2.cv <- crossval(gas2, segments = 10)
plot (MSEP(gas2.cv), legendpos = "topright")

summary (gas2.cv, what = "validation")

The plottype command enables us to plot several regressions simultaneously, each with a different

number of explanatory variables.

plot(gasl, plottype = "coef", ncomp = 1:3, legendpos = "bottomleft",

labels = "numbers", xlab = "nm"

Prediction is straightforward using the predict command.

predict(gasl, ncomp = 2:3, newdata = gasTest[1:5,])

predict(gasl, comps = 2, newdata = gasTest[1:5,])
and drop is useful for comparing a smaller model with a larger model.
drop(predict(gasl, ncomp = 2:3, newdata = gasTest[1:5, 1))

Predictions can be plotted using the predplot command:
predplot(gasl, ncomp = 2, newdata = gasTest, asp = 1, line = TRUE)

The fit functions can be called directly if, for example, one does not want the overhead of formula and

data handling repeating fits.

X <- gasTrain$NIR
Y <- gasTrain$octane
ncomp <- 5

cvPreds <- matrix(nrow = nrow(X), ncol = ncomp)

38

for (i in 1:nrow(X)) {
fit <- simpls.fit(X[-i, 1, Y[-il, ncomp = ncomp, stripped = TRUE)
cvPreds[i, 1 <- (X[i,] - fit$Xmeans) %x*% drop(fit$coefficients) +
fit$Ymeans

}
sqrt (colMeans ((cvPreds - Y)~2))

39

