
Chapter 9

Multidimensional Scaling and Distance

Geometry

9.1 The Data Matrix

Consider p variables, and a random sample x1, . . . , xn, where xj = (xj1, xj2, . . . , xjp)
t. Each observation

is a p vector, and there are n observations. A random sample means that x1, . . . , xn is an observation

of X1, . . . , Xn, where the (Xj)
n
j=1 are independent, identically distributed random p-vectors.

Notation A random p-vector, where each component corresponds to a different variable, is usually

taken as a column vector, but when presented in a data matrix of n independent observations, the

transpose is taken and each p-variate observation is taken as a row. .

Sampling If the observations were selected from a total population of N p-vectors, then a random

sample would mean that any subset of n vectors from N was chosen with probability 1






n

N







and each

ordering of the n vectors occurred with probability 1
n! . In general, a random sample is a sample that

has the properties of such a sample for N >> n.

The most widely used standard is to store the data in an n× p matrix, denoted x, where

x =









x11 . . . x1p
...

...

xn1 . . . xnp









=













xt1
xt2
...

xtn













. (9.1)
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9.2 One Way Representations of Data Matrices: Andrews Curves

When considering a one way representation of a two dimensional data matrix, one can represent either

the n units, or the p variables. Each variable, may be represented by an appropriate curve or solid

pattern that highlights the similarities or disssimilarities between the constructions.

One example is the method of Andrews Curves. For each unit (or p-variate observation) i of the

data matrix, set

fi(t) =
1√
2
xi1 +

[p/2]
∑

j=1

xi,2j sin(jt) +

[p/2]
∑

j=1

xi,2j+1 cos(jt) t ∈ [−π, π].

Properties The Andrews curve satisfies the following properties:

1. Let f = 1
n

∑n
i=1 fi(t), then

f(t) =
1√
2
x.1 +

[p/2]
∑

j=1

x.2j sin(jt) +

[p/2]
∑

j=1

x.,2j+1 cos(jt) t ∈ [−π, π].

2. This function representation preserves the Euclidean distance between the variables. That is, if

d2ij =
n
∑

k=1

(xik − xjk)
2

then
1

π

∫ π

−π
(fi(t)− fj(t))

2dt = d2ij .

3. Suppose (X1, . . . , Xp) are independent variables, each with variance σ2, then for each i,

Var(fi(t)) =

{

σ2

2 p p odd
σ2

2 (p− 1) + σ2 cos2(pt) p even.

The following features should be noted:

• An outlier appears as single Andrews’ curves that looks different from the rest.

• A subgroup of data is characterised by a set of simular curves.

• The order of the variables plays an important role for interpretation.

• For more than 20 observations we may obtain a bad “signal-to-ink-ratio”, i.e., too many curves

are overlaid in one picture.
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9.3 Subspace Projections

The data matrix x described by Equation (9.1) of p quantitative measurements on n units may be

described either in the object space or the variable space, as defined below.

Definition 9.1 (Object Space). Let x = 1
n

∑n
j=1 xj denote the sample mean vector. The object space

is the p dimensional space with origin at x.

Multivariate analysis studies how the variables relate to each other; their covariance and correlation.

Centralising around the sample average helps to keep this in view. When studying object space, n

points in R
p are considered, labelled (y)nj=1, where y

j
= xj − x. The distance between unit i and j in

object space is given by the Euclidean distance;

dij =

√

√

√

√

p
∑

k=1

(yik − yjk)2.

Definition 9.2 (Variable Space). Let x.k = 1
n

∑n
j=1 xjk, the sample average for variable k. Consider

the vectors zk = xk − x.k1 ∈ R
n, k = 1, . . . , p, where 1 = (1, . . . , 1)t ∈ R

n. These vectors are all

perpendicular to 1. The variable space is defined as the space spanned by these vectors. The variable

space is therefore a space of dimension less than or equal to p, embedded in the n − 1 dimensional

subspace of Rn perpendicular to the vector 1.

In the variable space, the scalar product ckl between zk and zl is given by

ckl =
n
∑

i=1

zikzil.

The quantity skl =
1

n−1ckl is defined as the sample covariance between variate k and variate l. In

the exercises, it is proved that this is an unbiased estimator of the population covariance. The sample

correlation between these variables is defined as

cos(αkl) = rkl :=
ckl√
ckkcll

,

where αkl is the angle between vector zk and zl.

Note: It should be clear (Exercise ?? Page ??) that the projection of the vector zk onto the one

dimensional subspace of Rn spanned by the vector zl is simply the linear regression of zk onto zl;

rkl

√

ckk
cll

zl.

Definition 9.3. Set Skl =
1

n−1ckl. The matrix S is the sample covariance matrix of the data matrix

X. The matrix R with entries rkl is the sample correlation matrix.
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Remark When the n observations are considered in object space, their respective distances from each

other may be represented by the n × n matrix (dij)1≤i≤n,1≤j≤n. Considered in variable space, the

observations lead to the p× p correlation and covariance matrices and the p× p matrix of angles αkl,

all representing the similarity between the variables.

Lemma 9.4. The matrices S and R are non-negative definite.

Proof Consider any p vector a. Then

atSa =
1

n− 1

n
∑

i=1

∑

kl

akalzikzil =
1

n− 1

n
∑

i=1

(

∑

k

akzik

)2

≥ 0.

atRa =

n
∑

i=1

akal
zik√
ckk

zil√
cll

=

n
∑

i=1

(

p
∑

k=1

zikak√
ckk

)2

≥ 0.

9.4 Distances and Proximity Matrices

When the p variables are numerical and observations of continuous random variables, the distance

between unit i and j in object space may be given by the Euclidean distance;

dij =

√

√

√

√

p
∑

k=1

(yik − yjk)2.

Data sets often also give information in the form of categorical variables and it is useful to be able

to incorporate both numerical and categorical variables. Also, there is a common problem of missing

data; for an observation i, the datum xik may be missing for some, but not all, values of k.

The following measure of distance between observations is known as Gower’s dissimilarity: Let

δijk =

{

1 xik, xjk can be compared

0 otherwise

sijk = 0 if δijk = 0.

If either xik or xjk are missing, then both δijk = 0 and sijk = 0. For δijk = 1, let

sijk = 1− |xik − xjk|
maxa,b |xak − xbk|

if variable k is a quantitive variable and

sijk =

{

1 xik = xjk

0 otherwise
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if variable k is categorical. Gower then constructs a distance by:

dij =
∑

k

sijkδijk
∑

k δijk
.

If greater weight is attached to some of the variables, this can be modified using weights;

dij =
∑

k

wksijkδijk
∑

k wkδijk
.

Constructing a ‘Virtual’ data set from distances There are situations where the data matrix

x is not given, but instead the distance matrix (dij) is given. The following discussion describes how

to construct a virtual data matrix x, which preserves the correct distances.

Let x be an n×p data matrix with entries xij and let Hn = In− 1
n11

t where 1 denotes an n-vector

where each entry is 1. Then it is an easy computation to see that

(Hnx)ij = xij − x.j .

Set

Q = Hnx(Hnx)
t,

then it is clear that

Qij =

p
∑

k=1

(xik − x.k)(xjk − x.k).

Set yij = xij − x.j . If the distance dij is the Euclidean distance, then

d2ij =
∑

k

(yik − yjk)
2

=
∑

k

y2ik +
∑

k

y2jk − 2
∑

k

yikyjk

= Qii +Qjj − 2Qij .

Note that Qij = Qji and that
∑n

i=1Qij = 0 for each j. It follows that

2n
∑

i

Qii =
∑

i,j

d2ij ,

Qii =
1

n

∑

k

d2ik −
1

2n2

∑

i,j

d2ij

Qij = −1

2



d2ij −
1

n

n
∑

k=1

d2kj −
1

n

n
∑

k=1

d2ik +
1

n2

∑

ij

d2ij



 . (9.2)
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If the data matrix is not given, but instead the distances (dij)(i,j)∈{1,...,n}, then a matrix Q may be

constructed using the formula given by Equation (9.2). The matrix constructed in this way is clearly

symmetric and can be diagonalised as

Q = PΛP t,

where P is orthonormal and Λ is diagonal. If the matrix (dij)(i,j)∈{1,...,n}2 is a distance, in the sense

that it is symmetric, the entries are non negative and dij ≤ dim + dmj for all (i, j,m) ∈ {1, . . . , n}3,
then Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn = 0. Let

√

λj denote the positive square root of λj and let

Λ1/2 = diag(
√
λ1 . . . ,

√
λn).

Definition 9.5 (Data Matrix obtained by Metric Scaling). Let

x = PΛ1/2,

then x is the data matrix corresponding to (dij) obtained by metric scaling.

Recall that the situation considered here is where the original data is not given; rather, the analyst

has been presented with a matrix of distances between the original data points. The ‘data matrix’

obtained in this manner will preserve the distances between the original data.

Remarks

1. Metric scaling only works if the matrix Q is non negative definite (i.e. positive semi definite).

This holds if and only if the input matrix (dij) satisfies the triangle inequality;

dij ≤ dim + dmj ∀(i, j, k) ∈ {1, . . . , n}3.

2. By construction, the data matrix x obtained in this way is already centred; x = Hx.

3. Since x = Hx, it follows that rank(Q) ≤ n− 1, at least one eigenvalue is zero. If

λ1 + . . .+ λm

λ1 + . . .+ λn−1

is sufficiently large for some m < n− 1, then the data matrix can be constructed from the first

m columns of P by taking x as the n × m matrix with entries xij = Pij

√

dj i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}.

9.5 Measuring and Testing Multivariate Distances

Often in multivariate analysis, the n observations are not an observed random sample from a single

population, but rather come from m different populations. Often, the aim is classification; to decide,

based on the p-variate observation, which population the observation belongs to.
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Consider m populations (for example, 7 different types of dog), where p features (variables) are

measured (for example, p different bones within the body may be considered and the length of each

measured for each animal). Suppose that n = n1 + . . . + nm, where nb denotes the number of dif-

ferent animals from population b, for each population b = 1, . . . ,m. Let xabc denote the observation:

observation a, population b, variable c. Suppose you are given an observation, but you are not told

which population the observation comes from. As a first step for making a guess, it is useful to have

a measure of distance between the various populations.

9.5.1 Penrose and Mahalanobis Distance

Penrose Distance Let n =
∑m

b=1 nb denote the total number of observations and let

s2c =

∑m
b=1(nb − 1)s2bc

n−m
.

The observed Penrose distance between two populations α and β is defined as

pα,β =
1

p

p
∑

k=1

(x̄.,α,k − x̄.,β,k)
2

s2k
.

Formal tests, of whether or not an observed Penrose distance is significantly different from zero, may

be carried out under distributional assumtions. If it is assumed that the the observations xabc are from

independent random variables Xabc, where

Xabc ∼ N(µbc, σ
2
c )

(that is, the variables are normal and for variate c, the population variance is the same for each

population b = 1, . . . ,m), then the distribution of

Pα,β =
1

p

p
∑

k=1

(X .,α,k −X .,β,k)
2

S2
k

under the null hypothesis that µ
α,.

= µ
β,.

may be computed.

The Mahalanobis Distance The Penrose distance does not take into account correlations between

the variables. The Mahalanobis distance is a modification of the Penrose distance that takes into

account possible correlations. If the independence assumption holds, then the Penrose distance is

better, because there are fewer parameters involved. Let Xa denote a random vector that models

population a, with E[Xa] = µ
a

and C(Xa) = C (the notation C is used to denote a covariance

matrix), where C is the same for each population a = 1, . . . ,m. Let x̄aj denote the jth component

of the vector x̄a, the sample average from population a. Let S denote the pooled estimate of the

covariance matrix and let V = S−1. The Mahalanobis distance between two populations α and β is

defined as
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Dαβ =

p
∑

r=1

p
∑

s=1

(x̄.,α,r − x̄.,β,r)Vrs(x̄.,α,s − x̄.,sβ) = (x̄α − x̄β)
tV (x̄α − x̄β).

To test whether the sample Mahalanobis distance, computed from the sample means and sample covari-

ance matrix is statistically significant, one uses Hotelling’s T 2 distribution; under the null hypothesis

(of no difference),

na + nb − p− 1

(na + nb − 2)p

nanb

na + nb
Dab ∼ Fp,na+nb−p−1.

Note that there are p(p + 1)/2 terms to be estimated in the covariance matrix for the Mahalanobis

distance, while there are only p variances to be estimated for the Penrose distance. Therefore, if there

is reason to believe that an independence assumption gives an accurate model, the Penrose distance is

a better measure of distance; rather many observations are required to obtain the whole matrix S−1

with accuracy.

Example 9.6 (Egyptian Skull Data).

The data set on Egyptian skulls, found in skulls.dat on the course home page gives the measurements

X1 = maximum breadth, X2 = basibregmatic height, X3 = basialveolar length and X4 = nasal height.

The data is for a total of 150 skulls, 30 from each of 5 groupings; −4000 Early Predynastic, −3300

Late Predynastic, −1850 12th and 13th Dynasties, −200 Ptolemaic Period, 150 Roman Period.

Firstly, the sample mean vector for (X1, X2, X3, X4)
t is computed for each period, and the pooled

covariance matrix. That is, firstly Sa, the sample covariance matrix for period a is computed for each

of the 5 periods and then

S =

∑5
a=1 29Sa

145
.

Here S is a 4× 4 covariance matrix, with the sample variances along the diagonal.

The Penrose distances may now be computed directly; to compute the Mahalanobis distances, the

inverse S−1 is required. These distances turn out to be:

Penrose

I II III IV V

I −
II 0.023 −
III 0.216 0.163 −
IV 0.493 0.404 0.108 −
V 0.736 0.583 0.244 0.066 −
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Mahalanobis

I II III IV V

I −
II 0.091 −
III 0.903 0.729 −
IV 1.881 1.594 0.443 −
V 2.697 2.176 0.911 0.219 −

Due to the change of scale (the Penrose is divided by a 1/p) it does not make sense to compare the

absolute values of these distances, but the ratios should be comparable, giving the change between one

group and another. The ratio of the I → II and I → V distance is 0.736/0.023 = 32.0 for the Penrose

and 2.697/0.091 = 29.6 for the Mahalanobis measure; the results are similar.

9.6 Classical Scaling and Distance Geometry

Suppose we have n points X1, . . . , Xn ∈ R
r and we compute an n×n proximity matrix ∆ with entries

δij = ‖Xi −Xj‖.

If Euclidean distances are used, then:

δ2ij = ‖Xi‖2 + ‖Xj‖2 − 2(Xi, Xj).

Let

bij = (Xi, Xj) =
1

2
(δ2ij − δ2i0 − δ2j0)

where δ2i0 := ‖Xi‖2. Then, summing over i and j gives:

1

n

∑

i

δ2ij =
1

n

∑

i

δ2i0 + δ2j0

1

n

∑

j

δ2ij − δ2i0 +
1

n

∑

j

δ2j0

1

n2

∑

i,j

δ2ij =
2

n

∑

i

δ2i0

and, letting aij = −1
2δ

2
ij , we get:

bij = aij − ai. − a.j + a...

The notation is:
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ai. =
1

n

∑

j

a2ij a.j =
1

n

∑

i

a2ij aii =
1

n2

∑

ij

a2ij .

Let A denote the matrix with entries aij and B matrix with entries bij then A and B are related

through

B = HAH H = In − 1

n
1n1

′
n.

The matrix B is a ‘doubly centred’ version of A.

MDS is about dimensionality reduction and we would like to find Y1, . . . , Yn ∈ R
t where t < r (referred

to as the principal co-ordinates). When distances are Euclidean interpoint distances, this is the same

as the PCA problem.

In typical classical scaling problems, we are not given the points Xi ∈ R
r, but rather the proximity

matrix ∆. Using ∆, we form A and then B. The idea is to find a matrix B∗ with entries b∗ij with rank

at most t which minimises

tr((B −B∗)2) =
∑

ij

(bij − b∗ij)
2

If λ1 ≥ . . . ≥ λn are the eigenvalues of B, then it turns out that the eigenvalues of B∗ are λ∗
k =

max(λk, 0) for k = 1, . . . , t and 0 otherwise.

The classical scaling algorithm is based on an eigenvalue/vector decomposition of B which produces

Y1, . . . , Yn ∈ R
t, a configuration whose Euclidean interpoint distances dij satisfy

d2ij = ‖Yi − Yj‖2

The solution is not unique; any orthogonal transformation also gives a solution.

Assessing Dimensionality One way of doing this is to look at the eigenvalues of B.The usual

strategy is to plot the ordered eigenvalues against dimension and then identify a dimension at which

the eigenvalues become ‘stable’ (i.e. do not change perceptively).

9.6.1 Distance Scaling

Given n items and the n × n matrix of dissimilarities ∆ with entries δij we wish to find a function f

such that

dij = f(δij)

gives interpoint distances. The use of ‘metric’ or ‘non-metric’ distance scaling depends on the nature

of the dissimilarities.
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9.6.2 Metric distance scaling

For MDS, the function f is taken as:

f(δij) = α+ βδij

where α and β are unknown positive constants. We make the dimension reduction and get points

Y1, . . . , Yn ∈ R
t and compute dij the distances between them.We then compute the weighted loss

function

Lf (Y1, . . . , Yn;W ) =
∑

i<j

wij(dij − f(δij)
2

the parameters α and β are chosen to minimise this. W is a given matrix of weights and the stress is

defined as

stress =
√

Lf (Y1, . . . , Yn;W ).

Sammon Mapping The Sammon mapping is a popular choice. Here

wij =
1

δij
∑

k<l δkl
.

The Sammon mapping preserve the small δij and gives them a greater emphasis than the larger δij .

Bayesian MDS

We consider the situation where the entries of ∆ are tained by measurement error. Let us assume that

the measured dissimilarity δij > 0 is subject to a Gaussian error, so that

δij = δ0ij + ǫij

where δ0ij is the true measurement error and ǫij ∼ N(0, σ2) (independent of each other). Hence

δij ∼ N(δ0ij , σ
2)1{δij>0}.

The likelihood of ({Xi}, σ2) given ∆ is therefore

L({Xi}, σ2|∆) =
∏

i<j

1√
2πσ2

exp

{

−
(δij − δ0ij)

2

2σ2

}{

1− Φ

(

δ0ij
σ

)}−1

∝ (σ2)−m/2 exp







−ESS

2σ2
−
∑

i<j

log Φ

(

δ0ij
σ

)






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where ESS =
∑

i<j(δij − δ0ij)
2 is the error sum of squares and Φ(.) is the standard Gaussian c.d.f. and

m = n(n−1)
2 , the number of dissimilarities. The second term is the modification of the likelihood due

to the truncation.

Now we assume that Xi ∼ N(0, CXX) where CXX = diag(λ1, . . . , λr). Then the full conditional

posterior is:

(σ2)−m/2





r
∏

j=1

λ
−n/2
j



 exp







−Q1 +Q2

2
−
∑

i<j

log Φ

(

δ0ij
σ

)







where Q1 = ESS
σ2 , Q2 =

∑n
i=1(X

′
iC

−1
XXXi) =

∑r
j=1

1
λj
sj are quadratic functions of the {Xi} and

sj =
∑n

i=1X
2
ij .

Now assume that the error variance σ2 has conjugate prior

σ2 ∼ IG(a, b)

inverse Gamma with parameters a and b. That is

π(σ2) ∝ (σ2)−(a+1)e−b/σ2

a, b > 0

and we take the prior for λj ∼ IG(α, βj) independently for each j. The joint posterior, given the

observed proximity matrix is:

p({Xi}, {λj}, σ2|∆) ∝ (σ2)−((m/2)+a+a)





r
∏

j=1

λ
−((n/2)+α+1)
j



 e−A

A =
Q1 +Q2

2
+
∑

i<j

log Φ

(

δ0ij
σ

)

+
b

σ2
+

r
∑

j=1

βj
λj

The maximum posterior estimate may be computed using MCMC.

9.6.3 Non-metric Distance Scaling

In non-metric distance scaling, we assume that f is an arbitrary function that satisfies f(x) ≤ f(y)

whenever x < y for any pairs of dissimilarities x and y. The function f is chosen to preserve the rank

of the dissimilarities. We find Y1, . . . , Yn ∈ R
t where t < r with distances

dij = ‖Yi − Yj‖

such that the ordering of the distances (from lowest to highest) matches the ordering of the dissimi-

larities.
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Motivation The motivation comes from psychological experiments, where respondents often give

extreme answers (extremely good or extremely bad). The ranking is therefore important, but raw

distances can give an exaggerated picture.

9.7 The Mantel Randomisation Test

The Mantel test (1967) was introduced to detect space / time clustering of diseases. Suppose that n

objects are being studied and suppose that there are observations on two sets of observations. Let M

be the n× n matrix where Mij is the distance between object i and object j based on the first set of

variables and let E be a matrix of distances between the objects based on the second set of variables.

Mantel’s test assesses whether or not the elements in M and E show some significant correlation. Let

Z =

n
∑

j=2

j−1
∑

k=1

MjkEjk.

This is compared with observations

Zσ =
n
∑

j=2

j−1
∑

k=1

Mσ(j)σ(k)Ejk,

where σ is a randomly chosen permutation of (1, . . . , n). The values zσ are computed for each of the

n! permutations σ and then it is seen if Z is a ‘typical’ observation of this distribution (i.e. does it

land between the α
2 × 100 and 1 − α

2 × 100 percentiles of this empirical distribution, where α is the

significance level?)

For the Egyptian skulls data, the n objects are the n different skulls. To perform a Mantel ran-

domisation test, the two sets of variables are: Set 1 (on which M is based) are the measurements of

the skulls and Set 2 (on which E is based) is the single variable, the period from which the skull comes.


