
Chapter 7

Support Vector Machines

Assume we have a learning set L = {(xi, yi) : i = 1, . . . , n} where xi ∈ R
r (and r-variate observation,

r real valued random variables) and yi ∈ {−1, 1}. Here yi is a class variable, two classes, which we

label +1 and −1. We would like to construct a function f : Rr → R such that C(x) = sign(f(x)) is a

classifier. The separating function f then classifies a test set T into two classes, Π+ and Π− depending

on whether f(x) is positive or negative.

7.1 Linear Separability

The learning set L is linearly separable if and only if there is a β0 ∈ R and a β ∈ R
r such that

f(x) = β0 + x′β separates L; for each (yi, xi) ∈ L, f(xi) > 0 if yi = 1 and f(xi) < 0 if yi = −1. The

hyperplane f(x) = 0 is said to separate L.

If such a f exists then, by rescaling, we can find β0 and β such that

{
β0 + x′iβ ≥ +1 yi = +1

β0 + x′iβ ≤ −1 yi = −1.

Now consider the two hyperplanes H+1 : (β0 − 1) + x′β = 0 and H−1 : (β0 + 1) + x′β = 0. Points of L
that lie in either H+1 or H−1 are said to be support vectors.

If x−1 lies on H−1 and x+1 lies on H+1 then

{
(x′+1 − x′−1)β = 2

β0 = −1
2(x

′
+1 + x′−1)β.

The perpendicular distances of the hyperplane β0 + x′β = 0 to the points x−1 and x+1 are:

d− =
|β0 + x′−1β|

‖β‖ =
1

‖β‖ d+ =
|β0 + x′+1β|

‖β‖ =
1

‖β‖ .
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The margin of the separating hyperplanes is: d = 2
‖β‖ . Note that:

yi(β0 + x′iβ) ≥ +1, i = 1, . . . , n

The problem is to find the optimal separating hyperplane, i.e. maximise the margin. That is:

minimise 1
2‖β‖2

subject to yi(β0 + x′iβ) ≥ 1 i = 1, . . . , n

This is a convex optimisation problem, hence we have a global minimum. The problem is solved using

the Lagrange multiplier technique: set

Fp(β0, β, α) =
1
2‖β‖2 −

∑n
i=1 αi (yi(β0 + x′iβ)− 1)

α = (α1, . . . , αn), αi ≥ 0

where α is the n-vector of Lagrange coeffficients. The Lagrange method is to find a global minimium

for fixed α and then choose the value of α such that the constraint is satisfied. This boils down to:





∂FP

∂β0
= −

∑n
i=1 αiyi = 0

∂FP

∂β
= β −

∑n
i=1 αiyixi = 0

yi(β0 + x′iβ)− 1 ≥ 0

αi ≥ 0

αi(yi(β0 + x′iβ)− 1) = 0

for i = 1, . . . , n.

This may be expressed in the dual form; the minimiser (β∗
0 , β) satisfies:

n∑

i=1

αiyi = 0 β∗ =
n∑

i=1

αiyixi

and, putting this into so the equation for FP gives the dual:

FD(α) =
1

2
‖β∗‖ −

n∑

i=1

αi

(
yi(β

∗
0 + x′iβ

∗)− 1
)

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj(x
′
ixj).

The primal variables have been removed from the problem; FD is referred to as the dual functional of

the optimisation problem. The problem may therefore be expressed as:

maximise FD(α) = 1
′
nα− 1

2α
′Hα

subject to α ≥ 0, α′y = 0
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where y = (y1, . . . , yn)
′, H is an n×n matrix with entries: Hijyiyj(x

′
ixj). Let α̂ solve the optimisation

problem, then

β̂ =

n∑

i=1

α̂iyixi

gives the optimal vector of weights. For α̂i > 0, we have yi(β
∗
0 + x′iβ

∗) = 1 and xi is a support vector;

for all observations that are not support vectors, α̂i = 0. Let sv ⊂ {1, . . . , n} be the subset of indices

that identify support vectors, then any optimal β is:

β̂ =
∑

i∈sv

α̂iyixi.

The primal and dual optimisation problems yield the same solution, the dual is easier to compute.

The optimal bias β̂0 is not determined explicitly from the optimisation problem, but is computed from

αi(yi(β0 + x′iβ)− 1) = 0 for each support vector and averaging the results.

β̂0 =
1

|sv|
∑

i∈sv

(
1− yix

′
iβ̂

yi

)
.

Hence the optimal hyperplane is:

f̂(x) = β̂0 + x′β̂ = β̂0 +
∑

i∈sv

α̂iyi(x
′
ixi)

The classification rule is:

C(x) = sign(f̂(x))

For j ∈ sv,

yj f̂(xj) = yj β̂0 +
∑

i∈sv

α̂iyiyj(x
′
jxi) = 1

so that the squared-norm of the weight vector β̂ satisfies:

‖β̂‖2 =
∑

i∈sv

∑

j∈sv

α̂iα̂jyiyj(x
′
ixj) =

∑

j∈sv

α̂jyj
∑

i∈sv

α̂iyi(x
′
ixj) =

∑

j∈sv

α̂j(1− yj β̂0) =
∑

j∈sv

α̂j

7.2 Linearly Non-Separable

Now suppose that observations are noisy, so that they do not necessarily split into two distinct classes;

there is some overlap. We introduce the concept of a non-negative slack variable ξi for each observation

(xi, yi). Let ξ = (ξ1, . . . , ξn)
′. The constraint now becomes:
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yi(β0 + x′iβ) + ξi ≥ 1 i = 1, 2, . . . , n

We now find the optimal hyperplane that controls both the margin 2
‖β‖ and some computationally

simple function of the slack variables such as

gσ(ξ) =

n∑

j=1

ξσj .

The usual values are either σ = 1 or σ = 2. We consider σ = 1 (the other case can be done as an

exercise). The 1-norm soft-margin optimisation problem is to find β0, β and ξ to:

minimise 1
2‖β‖2 + C

∑n
j=1 ξi

subject to ξi ≥ 0, yi(β0 + x′iβ) ≥ 1− ξi i = 1, . . . , n

where C is a cost parameter, the cost of misclassification. The primal function for the Lagrange

multiplier problem is:

FP (β0, β, ξ, α, η) =
1

2
‖β‖2 + C

n∑

i=1

ξi −
n∑

i=1

αi

(
yi(β0 + x′iβ)− (1− ξi)

)
−

n∑

i=1

ηiξi

where α ≥ 0 and η ≥ 0. For fixed α and η, differentiating with respect to β0, β and ξ gives:





∂FP

∂β0
= −

∑n
i=1 αiyi = 0

∂FP

∂β
= β −

∑
i=1 αiyixi = 0

∂FP

∂ξi
= C − αi − ηi = 0 i = 1, . . . , n

so that

n∑

i=1

αiyi = 0 β∗ =
n∑

i=1

αiyixi ηi = C − αi

The solution to the optimisation problem is obtained by fixing α and η so that the constraints are

satisfied.

The dual functional may be obtained by plugging in appropriately:

FD(α) =

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj(x
′
ixj)

which is the same as for linear separated.

We now have the Karush-Kuhn-Tucker conditions:
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yi(β0 + x′iβ)− (1− ξi) ≥ 0

ξi ≥ 0

αi ≥ 0

ηi ≥ 0

αi(yi(β0 + x′iβ)− (1− ξi)) = 0

ξi(αi − C) = 0

A slack variable ξi can be zero if and only if αi = C. The last two equations are used to compute the

optimal bias β0.

As before, the dual problem can be written as: find α to:

maximise FD(α) = 1
′
nα− 1

2α
′Hα

subject to α′y = 0, 0 ≤ α ≤ C1n.

The feasible region is the intersection of α′y = 0 with the box constraint 0 ≤ α ≤ C1n. As before, if

α̂ solves the optimisation problem, then

β̂ =
∑

i∈sv

α̂iyixi.

7.3 NonLinear Support Vector Machines

The observations xi only enter into the dual problem via their inner products 〈xi, xj〉 = x′ixj and this

observation is the crux of extending to nonlinear SVMs.

Let Φ : Rr → H be a linear mapping from observation space to a space known as feature space.

This may be a Hilbert space, which is what we will use. Let

Φ(xi) = (φ1(x1), . . . , φN(H)(x1))

where N(H) is the dimension of H. The transformed sample is (Φ(xi), yi), i = 1, . . . , n. If we substitute

Φ(xi) for xi, we need the inner products 〈Φ(xi),Φ(xj)〉.

7.3.1 The Kernel Trick

We compute these inner products using a non-linear kernel function K(xi, xj) = 〈Φ(xi),Φ(xj)〉. We

require a kernel to satisfy:

• K(x, y) = K(y, x) (symmetry)

• |K(x, y)|2 ≤ K(x, x)K(y, y) (derived from Cauchy Schwartz inequality)
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We would like a reproducing kernel; that is, for any function f ∈ H

〈f(.),K(x, .)〉 = f(x)

Note, if K is a reproducing kernel, then 〈K(x, .),K(y, .)〉 = K(x, y).

7.3.2 Examples of Kernels

Some standard exaimples are:

• Polynomial of degree d: K(x, y) = (〈x, y〉+ c)d

• Gaussian radial: K(x, y) = exp
{
− 1

2σ2 ‖x− y‖2
}

• Laplace K(x, y) = exp
{
− 1

σ
‖x− y‖

}

• Thin-plate spline K(x, y) =
(
‖x−y‖

σ

)2
log(‖x−y‖

σ
)

• Sigmoid K(x, y) = tanh(a〈x, y〉+ b)

For example, consider r = 2 and d = 2, x = (x1, x2)
′, y = (y1, y2)

′ and

K(x, y) = (〈x, y〉+ c)2 = (x1y1 + x2y2 + c)2 = 〈Φ(x),Φ(y)〉.

Here

Φ(x) = (x21, x
2
2,
√
2x1, x2,

√
2cx1,

√
2cx2, c)

′

The function Φ(x) consists of six features and H = R
6.

Let K be a kernel and suppose that the observations of L are linearly separable in the feature space

corresponding to kernel K. Then the dual optimisation problem is as before, but with the matrix H:

Hij = yiyjK(xi, xj) = yiyjKij .

Since K is a kernel, the matrix K defined by entries Kij is non-negative definite so that the optimisation

problem can be solved as before.

The non-separable setting (for the dual problem) also follows through as before.
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Grid search for parameters A reproducing kernel Hilbert space is a Hilbert space such that there

is a Kernel K satisfying f(x) = 〈f,Kx〉. Consider the Gaussian reproducing kernel. We need to

determine two parameters: C, the cost of violating the constraints and the parameter γ = 1
σ2 . The

parameter C for the box constraints is usually chosen by searching through a wide range of possible

values using cross validation (usually 10-fold) on L An initial grid rather crude grid of possible values

for γ, say 0.00001, 0.001, 0.01, 0.1, 1 can be used to get a ‘ball park’ figure and then refined. In this

way, we make a two-way grid for (C, γ).

7.3.3 SVM as a Regularisation Method

Let f ∈ HK , the reproducing Hilbert space associated with K. Let ‖f‖2HK
denote the squared norm

of f in HK . We consider the hinge loss function:

L = (1− yif(xi))+

Note that L = 0 if yif(xi) ≥ 1. That is, L = 0 for yi = 1 and f(xi) ≥ 1 or yi = −1 and f(xi) < −1

(the situations where f(xi) gives the correct classification).

Consider the problem of finding f ∈ HK to:

minimise
1

n

n∑

i=1

(1− yif(xi))+ + λ‖f‖2HK

where λ > 0. The first term measures the distance of the data from separability, while the second

penalises overfitting. THe tuning parameter λ balances the trade-off.

The optimisation criterion is not differentiable, but we can consider it as follows:

f(.) = f‖(.) + f⊥(.) =
n∑

i=1

αiK(xi, .) + f⊥(.)

where f‖ denotes the projection of f onto the subspace of HK generated by (K(x1, .), . . . ,K(xn, .))

and f⊥ is the part perpendicular to this; i.e. 〈f⊥(.),K(xi, .)〉 = 0 for i = 1, . . . , n. Since

f(xi) = 〈f(.),K(xi, .)〉 = 〈f‖(.),K(xi, .)〉+ 〈f⊥(.),K(xi, .)〉

and the second term vanishes, we have:

f‖(x) =
n∑

i=1

αiK(xi, x)

independent of f⊥ and hence



138 CHAPTER 7. SUPPORT VECTOR MACHINES

‖f‖2HK
= ‖

∑

i

αiαiK(xi, .)‖2HK
+ ‖f⊥‖2HK

≥ ‖
∑

i

αiK(xi, .)‖2HK

with equality if and only if f⊥ = 0.

Therefore

‖f‖‖2HK
=
∑

i,j

αiαjK(xi, xj) = ‖β‖2

where β =
∑n

i=1 αiΦ(xi).

If the space HK consists of linear functions of the form f(x) = β0 +Φ(x)′β, with ‖f‖2Hk
= ‖β‖2, then

the problem of finding f is equivalent ot finding β0, β which solves:

minimise
1

n

n∑

i=1

(1− yi(β0 +Φ(xi)
′β))+ + λ‖β‖2

so that the problem with non-differentiability due to the hinge loss function can be reformulated in

terms of the 1-norm soft-margin optimisation problem.


