Chapter 7

Support Vector Machines

Assume we have a learning set $\mathcal{L} = \{(x_i, y_i) : i = 1, \ldots, n\}$ where $x_i \in \mathbb{R}^r$ (and *r*-variate observation, r real valued random variables) and $y_i \in \{-1,1\}$. Here y_i is a class variable, two classes, which we label +1 and -1. We would like to construct a function $f : \mathbb{R}^r \to \mathbb{R}$ such that $C(x) = sign(f(x))$ is a classifier. The separating function f then classifies a test set $\mathcal T$ into two classes, Π_+ and Π_- depending on whether $f(x)$ is positive or negative.

7.1 Linear Separability

The learning set $\mathcal L$ is linearly separable if and only if there is a $\beta_0 \in \mathbb R$ and a $\beta \in \mathbb R^r$ such that $f(x) = \beta_0 + x'\beta$ separates \mathcal{L} ; for each $(y_i, x_i) \in \mathcal{L}$, $f(x_i) > 0$ if $y_i = 1$ and $f(x_i) < 0$ if $y_i = -1$. The hyperplane $f(x) = 0$ is said to separate \mathcal{L} .

If such a f exists then, by rescaling, we can find β_0 and β such that

$$
\begin{cases} \n\beta_0 + x_i' \beta \ge +1 \quad y_i = +1 \\ \n\beta_0 + x_i' \beta \le -1 \quad y_i = -1. \n\end{cases}
$$

Now consider the two hyperplanes H_{+1} : $(\beta_0 - 1) + x'\beta = 0$ and H_{-1} : $(\beta_0 + 1) + x'\beta = 0$. Points of \mathcal{L} that lie in either H_{+1} or H_{-1} are said to be *support vectors*.

If x_{-1} lies on H_{-1} and x_{+1} lies on H_{+1} then

$$
\left\{ \begin{array}{l} (x_{+1}'-x_{-1}')\beta=2 \\ \beta_0=-\frac{1}{2}(x_{+1}'+x_{-1}')\beta. \end{array} \right.
$$

The perpendicular distances of the hyperplane $\beta_0 + x'\beta = 0$ to the points x_{-1} and x_{+1} are:

$$
d_{-} = \frac{|\beta_0 + x'_{-1}\beta|}{\|\beta\|} = \frac{1}{\|\beta\|} \qquad d_{+} = \frac{|\beta_0 + x'_{+1}\beta|}{\|\beta\|} = \frac{1}{\|\beta\|}.
$$

The *margin* of the separating hyperplanes is: $d = \frac{2}{\|\beta\|}$. Note that:

$$
y_i(\beta_0 + x'_i \beta) \ge +1, \qquad i = 1, \dots, n
$$

The problem is to find the optimal separating hyperplane, i.e. maximise the margin. That is:

minimise
$$
\frac{1}{2} ||\beta||^2
$$

subject to $y_i(\beta_0 + x'_i \beta) \ge 1$ $i = 1,..., n$

This is a convex optimisation problem, hence we have a global minimum. The problem is solved using the Lagrange multiplier technique: set

$$
F_p(\beta_0, \beta, \alpha) = \frac{1}{2} ||\beta||^2 - \sum_{i=1}^n \alpha_i (y_i(\beta_0 + x_i'\beta) - 1)
$$

$$
\alpha = (\alpha_1, \dots, \alpha_n), \quad \alpha_i \ge 0
$$

where α is the *n*-vector of Lagrange coeffficients. The Lagrange method is to find a global minimium for fixed α and then choose the value of α such that the constraint is satisfied. This boils down to:

$$
\begin{cases}\n\frac{\partial F_P}{\partial \beta_0} = -\sum_{i=1}^n \alpha_i y_i = 0 \\
\frac{\partial F_P}{\partial \beta} = \beta - \sum_{i=1}^n \alpha_i y_i x_i = 0 \\
y_i(\beta_0 + x_i'\beta) - 1 \ge 0 \\
\alpha_i \ge 0 \\
\alpha_i(y_i(\beta_0 + x_i'\beta) - 1) = 0\n\end{cases}
$$

for $i = 1, \ldots, n$.

This may be expressed in the dual form; the minimiser (β_0^*, β) satisfies:

$$
\sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \beta^* = \sum_{i=1}^{n} \alpha_i y_i x_i
$$

and, putting this into so the equation for F_P gives the dual:

$$
F_D(\alpha) = \frac{1}{2} ||\beta^*|| - \sum_{i=1}^n \alpha_i (y_i(\beta_0^* + x_i'\beta^*) - 1)
$$

=
$$
\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (x_i' x_j).
$$

The primal variables have been removed from the problem; F_D is referred to as the dual functional of the optimisation problem. The problem may therefore be expressed as:

maximise
$$
F_D(\alpha) = \mathbf{1}_n' \alpha - \frac{1}{2} \alpha' H \alpha
$$

subject to $\alpha \ge 0$, $\alpha' y = 0$

7.2. LINEARLY NON-SEPARABLE 133

where $y = (y_1, \ldots, y_n)'$, H is an $n \times n$ matrix with entries: $H_{ij} y_i y_j (x'_i x_j)$. Let $\widehat{\alpha}$ solve the optimisation problem, then

$$
\widehat{\beta} = \sum_{i=1}^{n} \widehat{\alpha}_i y_i x_i
$$

gives the optimal vector of weights. For $\hat{\alpha}_i > 0$, we have $y_i(\beta_0^* + x_i'\beta^*) = 1$ and x_i is a support vector; for all observations that are not support vectors, $\hat{\alpha}_i = 0$. Let $sv \subset \{1, \ldots, n\}$ be the subset of indices that identify support vectors, then any optimal β is:

$$
\widehat{\beta} = \sum_{i \in sv} \widehat{\alpha}_i y_i x_i.
$$

The primal and dual optimisation problems yield the same solution, the dual is easier to compute. The optimal bias $\hat{\beta}_0$ is not determined explicitly from the optimisation problem, but is computed from $\alpha_i(y_i(\beta_0 + x'_i\beta) - 1) = 0$ for each support vector and averaging the results.

$$
\widehat{\beta}_0 = \frac{1}{|sv|} \sum_{i \in sv} \left(\frac{1 - y_i x_i' \widehat{\beta}}{y_i} \right).
$$

Hence the optimal hyperplane is:

$$
\widehat{f}(x) = \widehat{\beta}_0 + x'\widehat{\beta} = \widehat{\beta}_0 + \sum_{i \in sv} \widehat{\alpha}_i y_i(x'_i x_i)
$$

The classification rule is:

$$
C(x) = \text{sign}(\widehat{f}(x))
$$

For $j \in sv$,

$$
y_j \hat{f}(x_j) = y_j \hat{\beta}_0 + \sum_{i \in sv} \hat{\alpha}_i y_i y_j (x'_j x_i) = 1
$$

so that the squared-norm of the weight vector $\widehat{\beta}$ satisfies:

$$
\|\widehat{\beta}\|^2 = \sum_{i \in sv}\sum_{j \in sv}\widehat{\alpha}_i\widehat{\alpha}_jy_iy_j(x_i'x_j) = \sum_{j \in sv}\widehat{\alpha}_jy_j\sum_{i \in sv}\widehat{\alpha}_iy_i(x_i'x_j) = \sum_{j \in sv}\widehat{\alpha}_j(1-y_j\widehat{\beta}_0) = \sum_{j \in sv}\widehat{\alpha}_j
$$

7.2 Linearly Non-Separable

Now suppose that observations are noisy, so that they do not necessarily split into two distinct classes; there is some overlap. We introduce the concept of a non-negative slack variable ξ_i for each observation (x_i, y_i) . Let $\xi = (\xi_1, \ldots, \xi_n)'$. The constraint now becomes:

$$
y_i(\beta_0 + x'_i \beta) + \xi_i \ge 1
$$
 $i = 1, 2, ..., n$

We now find the optimal hyperplane that controls both the margin $\frac{2}{\|\beta\|}$ and some computationally simple function of the slack variables such as

$$
g_{\sigma}(\xi) = \sum_{j=1}^{n} \xi_j^{\sigma}.
$$

The usual values are either $\sigma = 1$ or $\sigma = 2$. We consider $\sigma = 1$ (the other case can be done as an exercise). The 1-norm soft-margin optimisation problem is to find β_0 , β and ξ to:

minimise
$$
\frac{1}{2} ||\beta||^2 + C \sum_{j=1}^n \xi_i
$$
subject to
$$
\xi_i \geq 0, \qquad y_i(\beta_0 + x_i'\beta) \geq 1 - \xi_i \qquad i = 1, ..., n
$$

where C is a cost parameter, the cost of misclassification. The primal function for the Lagrange multiplier problem is:

$$
F_P(\beta_0, \beta, \xi, \alpha, \eta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(\beta_0 + x_i'\beta) - (1 - \xi_i)) - \sum_{i=1}^n \eta_i \xi_i
$$

where $\alpha \geq 0$ and $\eta \geq 0$. For fixed α and η , differentiating with respect to β_0 , β and ξ gives:

$$
\begin{cases}\n\frac{\partial F_P}{\partial \beta_0} = -\sum_{i=1}^n \alpha_i y_i = 0 \\
\frac{\partial F_P}{\partial \beta} = \beta - \sum_{i=1}^n \alpha_i y_i x_i = 0 \\
\frac{\partial F_P}{\partial \xi_i} = C - \alpha_i - \eta_i = 0 \qquad i = 1, ..., n\n\end{cases}
$$

so that

$$
\sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \beta^* = \sum_{i=1}^{n} \alpha_i y_i x_i \qquad \eta_i = C - \alpha_i
$$

The solution to the optimisation problem is obtained by fixing α and η so that the constraints are satisfied.

The dual functional may be obtained by plugging in appropriately:

$$
F_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (x'_i x_j)
$$

which is the same as for linear separated.

We now have the Karush-Kuhn-Tucker conditions:

$$
y_i(\beta_0 + x'_i \beta) - (1 - \xi_i) \geq 0
$$

$$
\xi_i \geq 0
$$

$$
\alpha_i \geq 0
$$

$$
\alpha_i (y_i(\beta_0 + x'_i \beta) - (1 - \xi_i)) = 0
$$

$$
\xi_i(\alpha_i - C) = 0
$$

A slack variable ξ_i can be zero if and only if $\alpha_i = C$. The last two equations are used to compute the optimal bias β_0 .

As before, the dual problem can be written as: find α to:

maximise
$$
F_D(\alpha) = \mathbf{1}_n' \alpha - \frac{1}{2} \alpha' H \alpha
$$

subject to $\alpha' y = 0$, $0 \le \alpha \le C \mathbf{1}_n$.

The feasible region is the intersection of $\alpha' y = 0$ with the box constraint $0 \leq \alpha \leq C \mathbf{1}_n$. As before, if $\hat{\alpha}$ solves the optimisation problem, then

$$
\widehat{\beta} = \sum_{i \in sv} \widehat{\alpha}_i y_i x_i.
$$

7.3 NonLinear Support Vector Machines

The observations x_i only enter into the dual problem via their inner products $\langle x_i, x_j \rangle = x'_i x_j$ and this observation is the crux of extending to nonlinear SVMs.

Let $\Phi : \mathbb{R}^r \to \mathcal{H}$ be a linear mapping from observation space to a space known as *feature* space. This may be a Hilbert space, which is what we will use. Let

$$
\Phi(x_i) = (\phi_1(x_1), \dots, \phi_{N(\mathcal{H})}(x_1))
$$

where $N(\mathcal{H})$ is the dimension of \mathcal{H} . The transformed sample is $(\Phi(x_i), y_i)$, $i = 1, \ldots, n$. If we substitute $\Phi(x_i)$ for x_i , we need the inner products $\langle \Phi(x_i), \Phi(x_j) \rangle$.

7.3.1 The Kernel Trick

We compute these inner products using a non-linear kernel function $K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$. We require a kernel to satisfy:

- $K(x, y) = K(y, x)$ (symmetry)
- $|K(x, y)|^2 \le K(x, x)K(y, y)$ (derived from Cauchy Schwartz inequality)

We would like a *reproducing kernel*; that is, for any function $f \in \mathcal{H}$

$$
\langle f(.), K(x,.) \rangle = f(x)
$$

Note, if K is a reproducing kernel, then $\langle K(x, .), K(y, .)\rangle = K(x, y)$.

7.3.2 Examples of Kernels

Some standard exaimples are:

- Polynomial of degree d: $K(x, y) = (\langle x, y \rangle + c)^d$
- Gaussian radial: $K(x, y) = \exp \left\{-\frac{1}{2\sigma^2} ||x y||^2\right\}$
- Laplace $K(x, y) = \exp\left\{-\frac{1}{\sigma} ||x y||\right\}$
- Thin-plate spline $K(x, y) = \left(\frac{\|x-y\|}{\sigma}\right)$ σ $\int^2 \log(\frac{\|x-y\|}{\sigma})$
- Sigmoid $K(x, y) = \tanh(a\langle x, y \rangle + b)$

For example, consider $r = 2$ and $d = 2$, $x = (x_1, x_2)'$, $y = (y_1, y_2)'$ and

$$
K(x,y) = (\langle x,y \rangle + c)^2 = (x_1y_1 + x_2y_2 + c)^2 = \langle \Phi(x), \Phi(y) \rangle.
$$

Here

$$
\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1, x_2, \sqrt{2}cx_1, \sqrt{2}cx_2, c)'
$$

The function $\Phi(x)$ consists of six features and $\mathcal{H} = \mathbb{R}^6$.

Let K be a kernel and suppose that the observations of $\mathcal L$ are linearly separable in the *feature* space corresponding to kernel K. Then the dual optimisation problem is as before, but with the matrix H :

$$
H_{ij} = y_i y_j K(x_i, x_j) = y_i y_j K_{ij}.
$$

Since K is a kernel, the matrix K defined by entries K_{ij} is non-negative definite so that the optimisation problem can be solved as before.

The non-separable setting (for the dual problem) also follows through as before.

7.3. NONLINEAR SUPPORT VECTOR MACHINES 137

Grid search for parameters A reproducing kernel Hilbert space is a Hilbert space such that there is a Kernel K satisfying $f(x) = \langle f, K_x \rangle$. Consider the Gaussian reproducing kernel. We need to determine two parameters: C, the cost of violating the constraints and the parameter $\gamma = \frac{1}{\sigma^2}$. The parameter C for the box constraints is usually chosen by searching through a wide range of possible values using cross validation (usually 10-fold) on $\mathcal L$ An initial grid rather crude grid of possible values for γ , say 0.00001, 0.001, 0.01, 0.1, 1 can be used to get a 'ball park' figure and then refined. In this way, we make a two-way grid for (C, γ) .

7.3.3 SVM as a Regularisation Method

Let $f \in \mathcal{H}_K$, the reproducing Hilbert space associated with K. Let $||f||_{\mathcal{H}_K}^2$ denote the squared norm of f in \mathcal{H}_K . We consider the *hinge loss function*:

$$
L = (1 - y_i f(x_i))_+
$$

Note that $L = 0$ if $y_i f(x_i) \geq 1$. That is, $L = 0$ for $y_i = 1$ and $f(x_i) \geq 1$ or $y_i = -1$ and $f(x_i) < -1$ (the situations where $f(x_i)$ gives the correct classification).

Consider the problem of finding $f \in \mathcal{H}_K$ to:

minimise
$$
\frac{1}{n} \sum_{i=1}^{n} (1 - y_i f(x_i))_{+} + \lambda \|f\|_{\mathcal{H}_K}^2
$$

where $\lambda > 0$. The first term measures the distance of the data from separability, while the second penalises overfitting. The tuning parameter λ balances the trade-off.

The optimisation criterion is not differentiable, but we can consider it as follows:

$$
f(.) = f^{\parallel}(.) + f^{\perp}(.) = \sum_{i=1}^{n} \alpha_i K(x_i,.) + f^{\perp}(.)
$$

where f^{\parallel} denotes the projection of f onto the subspace of \mathcal{H}_K generated by $(K(x_1, .), \ldots, K(x_n, .))$ and f^{\perp} is the part perpendicular to this; i.e. $\langle f^{\perp}(.) , K(x_i, .) \rangle = 0$ for $i = 1, ..., n$. Since

$$
f(x_i) = \langle f(.), K(x_i, .) \rangle = \langle f^{||}(.) , K(x_i, .) \rangle + \langle f^{+}(.) , K(x_i, .) \rangle
$$

and the second term vanishes, we have:

$$
f^{\parallel}(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)
$$

independent of f^{\perp} and hence

$$
||f||_{\mathcal{H}_K}^2 = ||\sum_i \alpha_i \alpha_i K(x_i,.)||_{\mathcal{H}_K}^2 + ||f^{\perp}||_{\mathcal{H}_K}^2 \ge ||\sum_i \alpha_i K(x_i,.)||_{\mathcal{H}_K}^2
$$

with equality if and only if $f^{\perp} = 0$.

Therefore

$$
||f^{||}||_{\mathcal{H}_K}^2 = \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j) = ||\beta||^2
$$

where $\beta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$.

If the space \mathcal{H}_K consists of linear functions of the form $f(x) = \beta_0 + \Phi(x)'\beta$, with $||f||^2_{\mathcal{H}_k} = ||\beta||^2$, then the problem of finding f is equivalent ot finding β_0, β which solves:

minimise
$$
\frac{1}{n} \sum_{i=1}^{n} (1 - y_i(\beta_0 + \Phi(x_i)'\beta))_{+} + \lambda ||\beta||^2
$$

so that the problem with non-differentiability due to the hinge loss function can be reformulated in terms of the 1-norm soft-margin optimisation problem.