
Chapter 6

Recursive Partitioning and Tree-Based

Methods

6.1 Introduction

Recursive partitioning is the process for constructing a decision tree, where for each node we decide

to split into two child nodes, or not to split. It is the key to the nonparametric statistical method of

classification and regression trees (CART) introduced by Breiman, Friedman, Olshen and Stone, 1984.

The algorithm asks a series of hierarchical Boolean questions. For a continuous variable Xj , whether

or not Xj ≤ θi for some threshold value θi. For a categorical variable Xk with state space {θ1, . . . , θK},

whether or not Xk ∈ S, where S is a strict subset of {θ1, . . . , θK}.

Let Y be the variable to be predicted and X1, . . . , Xr the collection of predictors. The output (Y )

is a class variable; Y ∈ C = {C1, . . . , CL}. If X1, . . . , Xr are continous variables, then the input space

is R
r and, following the answers to successive questions, the input space is partitioned into a number

of non-overlapping hyper-rectangles. To each hyper-rectangle is associated a class from C, which may

be the maximum likelihood estimator of Y based on the answers to the questions.

6.2 Classification Trees

A classification tree is the result of asking an ordered sequence of questions, where the next question

in the sequence depends on the answers to the previous questions of the sequence. The sequence

terminates in a prediction of the class.

The starting point is the root node and consists of the entire learning set L. A node is a subset

of the variables, which can be terminal or non-terminal. A non-terminal node is a node which splits

into two child nodes. The binary split is determined by a Boolean condition on the value of a single

variable, where the condition is either satisfied (“yes”) or not satisfies (“no”) by the observed value of

the variable. A terminal node is a node that does not split.
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All observations in L that have reached a particular (parent) node and satisfy the condition drop

down to one of the two child nodes; the remaining observations drop down to the other child node.

In this way, each observation in L drops down to one of the terminal nodes.

There may be more than one terminal node with the same class label. A single-split tree with only

two terminal nodes is called a stump. The set of all terminal nodes is a partition of the data; each

datum will belong to exactly one terminal node.

Example Suppose we have two input variables X1 and X2.

• Q(root): X2 ≤ θ1? yes/no

• Q(yes): X1 ≤ θ2? yes/no

• Q(no): X2 ≤ θ3? yes/no

• Q(no)(yes): X1 ≤ θ4? yes/no

DRAW PICTURE OF THE TREE - IT HAS 5 TERMINAL NODES.

The space is split into 5 regions: Assume (X1, X2) ∈ [0, 1]2 and θi ∈ [0, 1] for i = 1, 2, 3, 4, then the 5

rectangles are R1 = [0, θ2] × [0, θ1], R2 = [θ1, 1] × [0, θ1], R3 = [0, θ4] × [θ1, θ3], R4 = [θ4, 1] × [θ1, θ2],

R5 = [0, 1]× [θ3, 1].

DRAW A PICTURE OF [0, 1]× [0, 1] PARTITIONED INTO RECTANGLES.

It is clear that categorical variables and ordinal variables can also be included; ordinal variables (which

take values in a set 1, . . . , N which represent an ordering are included in exactly the same way; the

questions are of the form X ≤ θ for some value of θ. For categorical variables, if a variable has M

distinct categories represented in the data at the node, labelled l1, . . . , lM , the set S of splits is simply

the number of ways of partitioning into two non-empty subsets. There are 2M−1 − 1 ways of doing

this. For example, if M = 4, there are 23 − 1 = 7 possible splits: ({l1}, {l2, l3, l4}), ({l2}, {l1, l3, l4}),

({l3}, {l1, l2, l4}), ({l4}, {l1, l2, l3}), ({l1, l2}, {l3, l4}), ({l1, l3}, {l2, l4}), ({l1, l4}, {l2, l3}).

Cleveland Heart Disease Data The data file cleveland.data from the UCI repository

www.ics.uci.edu/mlearn/databases/heart-disease

contains data obtained from a heart disease study conducted by the Cleveland Clinic Foundation. The

response variable is diag (diagnosis of heart disease: buff = healthy, sick = heart disease). There

were 303 patients in the study. There are 13 input variables: age (in years), gender (male / female),

cp (chest pain type: angina = typical angina, abnang = atypical angina, notang = non-anginal pain,

asympt = asymptomatic), trestbps (resting blood pressure), etc .......
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Choosing the Quesions Each question splits the population of the node in two. When we are

learning a classification tree (i.e. a list of questions), we choose the question which gives the greatest

Kullback Leibler information.

So, if we have two classes, C = {C0, C1}, where the class index is the value of Y , p the proportion

for which Y = 1 and 1 − p the proportion for which Y = 0, let p11 be the proportion of those who

answer ‘yes’ and Y = 1, p10 those who answer ‘yes’ and Y = 0, and p01 those who answer ‘no’ and

Y = 1, p00 those who answer ‘no’ and Y = 0. The Shannon Information Gain is:

1∑

i=0

1∑

j=0

pij log
pij

pi+p+j

where pi+ = pi0+pi1 and p+j = p0j +p1j . The question which gives the greatest Shannon Information

Gain for each node is asked, until no question will give an appreciable increase in SIG. There are other

possible criteria for choosing the question; SIG has good properties, which we’ll discuss next.

6.3 Shannon Entropy and Information

We now to show how the negative of Shannon entropy gives a convincing approach to the amount of

information given by the answer to a question if we know the probability distribution and why, when

assessing the amount of information gained, the Kullback-Leibler divergence is a useful quantity.

In the following, we consider the parameter space Θ = C = {C1, . . . , CL}, the set of possible classes.

Definition 6.1 (Shannon Entropy). For a distribution with density π over a parameter space Θ, the

negative of the Shannon entropy is defined as:

E(π) := −

∫

Θ
π(θ) log π(θ)dθ.

We follow Lindley by taking the negative of this quantity, which we call the information in the distri-

bution:

I(π) = −E(π) =

∫

Θ
π(θ) log π(θ)dθ.

The negative sign in Shannon’s definition is due to the fact that he is considering the opposite of

information; Shannon’s entropy is a measure of disorder.

Shannon gives reasons why this is a good measure and we follow Lindley’s description of Shannon’s

motivational arguments.

In the discussion here, Θ is finite and πΘ is a probability mass function. In the absence of any prior

information about classes, we can take π(θ) = 1
L (uniform distribution) for each θ ∈ {1, . . . , L} (the
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class labels). A priori, I(p) =
∑

Θ π(θ) log π(θ)), then the amount of information, say I, can be

measured by the amount of additional information required before the value of θ is known.

This information could be provided in two stages:

Stage 1 Let Θ1 ⊂ Θ be a non-empty, strict subset of Θ where
∑

θ∈Θ1
πΘ(θ) 6= 0 or 1. Suppose the

experimenter is told whether θ ∈ Θ1 or θ ∈ Θ\Θ1. The prior distribution over (Θ1,Θ\Θ1) is (Π, 1−Π),

where Π =
∑

θ∈Θ1
πΘ(θ).

In the second stage, suppose the experimenter is told the value of θ; the information provided is I2

if θ ∈ Θ1, or I3 if θ ∈ Θ\Θ1. The distributions over Θ1 and Θ\Θ1 are πΘ(θ)
Π and πΘ(θ)

1−Π respectively.

Shannon requires that the information provided in the first stage and that the average amount in

the second stage add up to the total information; that is:

I = I1 +ΠI2 + (1−Π)I3.

This requirement is the fundamental postulate of Shannon.

Shannon proves that (apart from arbitrary multiplicative constant) I(π) =
∑

θ∈Θ πΘ(θ) log πΘ(θ) is

the only function satisfying this property (together with a mild continuity property).

We can see that I, thus defined, has this property;

I1 = Π logΠ + (1−Π) log(1−Π)

I2 =
∑

θ∈Θ1

πΘ(θ)
Π log πΘ(θ)

Π = 1
Π

(∑
θ∈Θ1

(log π(θ)− log Π
)

I3 =
∑

θ∈Θ\Θ1

πΘ(θ)
1−Π log πΘ(θ)

1−Π = 1
1−Π

∑
Θ\Θ1

πΘ(θ) (log πΘ(θ)− log(1−Π))

and the identity I = I1 + ΠI2 + (1 − Π)I3 follows directly. Shannon also shows that this is the only

function of πΘ for which this is satisfied for arbitrary πΘ and Θ1 ⊂ Θ.

After the experiment has been performed, a result x observed and the distribution over Θ updated to

πΘ|X(.|x), the information is:

I(πΘ|X(.|x)) =

∫

Θ
πΘ|X(θ|x) log πΘ|X(θ|x)dθ

and the information gain is:

K(x) = I(πΘ|X(.|x))− I(πΘ).

We assume that, given a true parameter value θ, the outcome x of an experiment is governed by a

probability distribution pX|Θ(.|θ).

The information difference depends on the observation x. If we are choosing between different ex-

periments (in this case questions to be asked), then clearly we do not know the outcome before we
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carry out the experiment! We therefore average the information difference over all outcomes for an

experiment to get a suitable measure:

∫
K(x)pX(x)dy =

∫
pX(x)

∫
(πΘ|X(θ|x) log πΘ|X(θ|x)− πΘ(θ) log πΘ(θ))dθdx

=

∫ ∫ (
pX(x)

πΘ(θ)pX|θ(x|θ)

pX(x)
log

πΘ|X(θ|x)pX(x)

pX(x)
− πΘ(θ) log πΘ(θ)

)
dθdx

=

∫ ∫
πΘ(θ)pX|Θ(x|θ) log

πΘ|X(θ|x)pX(x)

pY (x)πΘ(θ)
dθdx = DKL(πΘ|XpX‖πΘpX). (6.1)

(Here πΘpX|Θ is the joint distribution over parameter space / state space).

This is the Kullback-Leibler divergence between the joint distribution πΘpX|Θ over Θ×X and the prod-

uct distribution πΘpX over Θ×X (if the parameter and observation were independent, the Kullback-

Leibler divergence would be zero; the experiment would provide no information).

The Kullback-Leibler divergence has several important properties, which indicate that it is useful

for measuring the gain of information from an experiment. Firstly, if f and g are two probability

distributions over a state space X , then DKL(f‖g) ≥ 0, where the inequality is strict if f and g differ

on a set of positive f probability. This follows from Jensen’s inequality; if φ is a convex function

and X a random variable with well defined expected value, then E[φ(X)] ≥ φ(E[X]). The function

φ(x) = − log x is convex. Applying this to Kullback Leibler, this gives:

DKL(f‖g) =

∫
f(x) log

f(x)

g(x)
dx = −

∫
f(x) log

g(x)

f(x)
dx

≥ − log

∫
f(x)

g(x)

f(x)
dx = − log

∫
f(x)dx = − log 1 = 0.

Another property is the additive property, which was Shannon’s basic reason for introducing the entropy

functional. Let E denote an experiment which takes place in two parts, E = (E1, E2), where E2 is

performed after E1. Let KE1 denote the average information provided by the whole experiment, KE1

the information provided by the first part and KE2|E1 the additional information provided by the second,

then

KE = KE1 +KE2|E1 .

This follows quite easily; KE2|E1 is defined as the average information gain from the second part. Now,

using X = (X1, X2) to denote answers to two successive questions (or more generally two parts of an

experiment) and x = (x1, x2) to denote the two outcomes:
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KE2|E1 =

∫

X1

pX1(x1)

∫

X2

∫

Θ
pX2|Θ,X1

(x2|θ, x1)πΘ|X1
(θ|x1) log

pX2|Θ,X1
(x2|θ, x1)πΘ|X1

(θ|x1)

πΘ|X1
(θ|x1)pX2|X1

(x2|x1)
dθdx2dx1

=

∫

X

∫

Θ
pX|Θ(x|θ)πΘ(θ) log

pX|Θ(x|θ)πΘ(θ)pX1(x1)

pX1|Θ(x1|θ)πΘ(θ)pX(x)
dθdx.

The last line comes from taking pX|Θ = pX1,X2|Θ = pX2|X1,ΘpX1|Θ and πΘ|X1
=

πΘpX1|Θ

pX1
. From this:

KE1+KE2|E1 =

∫

X

∫

Θ
πΘ(θ)pX|Θ(x|θ)

(
log

πΘ(θ)pX|Θ(x|θ)pX1(x1)

πΘ(θ)pX1|θ(x1|θ)pX(x)
+ log

πΘ(θ)pX1|Θ(x1|θ)

πΘ(θ)pX1(x1)

)
dθdx = KE .

We now consider the concept of independent experiments; two experiments E1 and E2, whose outcomes

are observations of random variables X1 and X2, where both distributions have the same parameter

space Θ, are said to be independent if pX1,X2|Θ = pX1|ΘpX2|Θ. That is, for any given parameter

value θ, X1 and X2 are conditionally independent conditioned on the value of the parameter. Suppose

E = (E1, E2) where E1 is performed first and E2 is then performed. Let E2(x1) indicate the experiment

E2, given that E1 gave outcome x1; independence means that E2(x1) = E2, which does not depend on

x1.

If E1 and E2 are independent, then KE2|E1 ≤ KE2 , with equality if and only if X1 ⊥ X2 (i.e. they

are marginally independent; pX1,X2 = pX1pX2). This is seen by a simple computation:

KE2 −KE2|E1 =

∫

Θ

∫

X
πΘ(θ)pX|Θ(x|θ)

(
log

πΘ(θ)pX2|Θ(x2|θ)

πΘ(θ)pX2(x2)
− log

πΘ|X1
(θ|x1)pX2|Θ,X1

(x2|θ, x1)

pX2|X1
(x2|x1)πΘ|X1

(θ|x1)

)
dxdθ

=

∫

Θ

∫

X
πΘ(θ)pX|Θ(x|θ)

(
log

πΘ(θ)pX2|Θ(x2|θ)

πΘ(θ)pX2(x2)
− log

πΘ(θ)pX|Θ(x|θ)pX1(x1)

pX(x)πΘ(θ)pX1|Θ(x1|θ)

)
dxdθ

=

∫

Θ

∫

X
πΘ(θ)pX|Θ(x|θ) log

pX1|Θ(x1|θ)pX2|Θ(x2|θ)

pX|Θ(x|θ)

pX(x)

pX1(x1)pX2(x2)
dxdθ

=

∫

X
pX(x) log

pX(y)

pX1(x1)pX2(x2)
dx ≥ 0.

The expression in the last line is a Kullback-Leibler divergence, which is 0 if and only if pX1,X2 =

pX1pX2 .

This tells us (among other things) that if Experiment 2 is an independent repeat of Experiment 1,

then the repetition is less informative, on average, than the original experiment.

Indeed, if we consider E1, E2, . . . a sequence of independent identical experiments and E(n) = (E1, . . . , En),

let Kn := KE(n) , then Kn is a concave increasing function of n.
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6.3.1 Tree-Growing Procedure

Some basic questions have to be answered:

1. How do we choose the Boolean conditions for splitting at each node? The choice of SIG is

motivated by the fact that the sum of information gains from a sequence of questions is the same

as the information gain if the multiple question were posed. This is a versatile choice, but not

the only one.

2. Choice of criterion for when to split a parent node into two child nodes or when to decide if it is

a terminal node.

3. Assigning a class to a node.

Node Impurity Functions Ideally, we would like all elements of a terminal node to belong to the

same class, but this is not to be expected. Impurity is a measure of the amount of mixing in terminal

nodes. Suppose that Y takes values in {1, . . . ,K} (there are K possible classes). For node τ , we define

the node impurity function as:

i(τ) = φ(p(1|τ), . . . , p(K|τ))

where p(i|τ) is the proportion of class i observations in node τ . This is an estimate of P(X ∈ Πi|τ),

probability that the observation is in class i given that the questions thus far place the observation at

node τ .

The Shannon Information Gain is obtained by using

i(τ) = −
K∑

k=1

p(k|τ) log p(k|τ)

There are other possibilities; for example,

iG(τ) =
∑

k 6=k′

p(k|τ)p(k′|τ) = 1−
∑

k

(p(k|τ))2.

iG is the so-called Gini index. If classification is binary, then the entropy is

i(τ) = −p log p− (1− p) log(1− p)

and the Gini index is:

iG(τ) = 2p(1− p).
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6.4 Assigning classes to nodes: Estimating the Misclassification Rate

Suppose we have reached a node τ . The misclassification rate is:

R(τ) = 1−max
k

p(k|τ).

For two classes, this is:

R(τ) = 1−max(p, 1− p) = min(p, 1− p).

For a tree, the mis-classification is based on the terminal nodes. If T̃ denotes the set of terminal nodes,

then the true misclassification rate for the tree T is:

R(T ) =
∑

τ∈T̃

R(τ)P (τ)

where P (τ) is the probability that an observation is placed in (terminal) node τ . We use estimates

(based on the learning set where classifications are known) to estimate P (τ) and R(τ) for each terminal

node τ .

6.5 Pruning the Tree

The tree is grown according to a greedy algorithm; for each node, choose the question which gives the

greatest increase in score for that node. This can lead to a tree that is too large. For tree pruning,

we use a regularisation approach, starting at the terminal nodes and removing them if they do not

represent sufficient gain over the parents. For a node τ , which is terminal in the current tree, we

consider:

Rα(τ) = R(τ) + α

where R(τ) denotes the estimated mis-specification. Then

Rα(T ) = R(T ) + α|T̃ |.

The term α|T̃ | is a penalty on the tree size. For each α, we choose the subtree Tα which minimises

Rα(T ). This gives T (α). The tree T (α) is not necessarily unique.

The chosen value of α determines the tree size. Although α ∈ [0,+∞), the number of possible sub-trees

of T is finite. We can consider α1 the lowest value of α such that T (α) 6= T and let T1 = T (α), α2 the

next lowest yielding T2 = T (α2) and so on. This gives a finite sequence of trees T ⊃ T1 ⊃ T2 ⊂ . . ..

Suppose a node τ in an optimal tree T has two terminal child nodes τL and τR, then R(τ) ≥ R(τL) +

R(τR) (we’re using R to denote the estimates used to generate the tree). Now let T1, T2, . . . denote the
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trees obtained by reducing T as α is increased. Let (τ1, τ2) denote the terminal nodes of T which are

not in T1 (in case of ambiguity, we take a specific sequence of trees) and let τ ∈ T1 denote the terminal

node in T1 which is a non-terminal node in T . For a node τ in a tree T , we denote by Tτ the subtree

with root τ , going down to the terminal nodes of T .

As long as Rα(τ) ≥ Rα(Tτ ), the subtree Tτ has lower cost than terminating the tree at τ and hence

it is retained.

Therefore, when

α <
R(τ)−R(Tτ )

|T̃τ | − 1

we retain Tτ . We can set

g1(τ) =
R(τ)−R(T1,τ )

|T̃1,r| − 1
τ 6∈ T (α1)

where T1,τ = Tτ and g1(τ) gives the critical value for α; when g1(τ) ≥ α1 for each τ , we do not prune

the terminal nodes.

The weakest link node τ̃1 is the node in T1 that satisfies

g(τ̃1) = min
τ∈T1

g(τ).

As α increases, τ̃1 is the first node for which Rα(τ) = Rα(Tτ ), so α2 = g1(τ̃1). Recursively,

g3(τ) =
R(τ)−R(T2,τ

|T̃2,τ | − 1
τ ∈ T (α2), τ 6∈ T̃ (α2)

and so on.

6.5.1 Choosing the best pruned subtree

Choosing the subtree requires good estimates of the misclassification rate. There are two approaches:

for large data sets, using an independent test set is straightforward and computationally efficient. For

small data sets, cross validation is recommended. Randomly assign the data into two sets of equal size,

the learning set and the test set. Construct the tree using the learning set; estimate the misclassification

rate using the test set.

At each stage, dropping down a level, let the chance of misclassification be p∗. We can consider

each observation dropped down as a Bernoulli trial, from which we can compute the estimate of

misclassification, together with a standard error.

Cross Validation Divide the data into V sets of approximately equal size, call them D1, . . . , DV .

Create V learning sets Lv = D\Dv. Use Lv to learn the classification tree T v. Fix the value of the

complexity parameter α and let T v(α) be the best pruned subtree of T v, v = 1, . . . , V . Drop each
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observation of the vth test set down the tree T v(α) and let nv
ij denote the number of observations class

j that are classified as being of class i from test set v. Then nij(α) =
∑V

v=1 n
v
ij(α). Set

RCV/V (T (α)) =
1

n

K∑

i=1

K∑

j=1;j 6=i

nij(α)


