
Chapter 5

Discriminant Function Analysis

Suppose that we are given a learning set x of multivariate observations, where x ∈ R
n×p. That is, n

multivariate observations, with p variables. In addition, there is a variable p+1 which is a class variable

taking values in C = {C1, . . . , Cm}. That is, each observation comes from one of m pre-defined classes.

In this set up, there are p classification variables and m groups or classes. Suppose that there are nj

observations from group Cj , for j = 1, . . . ,m. For example, there is a data set containing information

of several measurements from skulls found in Egypt. There are 150 skulls. They are from 5 different

periods, 30 skulls from each period. There is one class variable (the period) and four classification

variables (the measurements). The question is whether the age of the skull can be inferred from the

measurement variables. The data may be represented by:

x =




x1

...

xm




where m is the number of groups and

xj =




x1j1 . . . x1jp
...

...

xnjj1 . . . xnjjp




and n =
∑m

j=1 nj . These observations are described as labelled observations. There are two main goals:

• Discrimination Use the information in a learning set of labelled observations to construct a

classifier (or classification rule) that will separate the predefined classes as much as possible.

• Classification Given a set of measurements on a new unlabelled observation, use the classifier

to decide which class the observation belongs to.

There are two basic methods for discriminant analysis; the maximum likelihood method and Fisher’s

Linear Discriminant Function method. The maximum likelihood method may be used when the
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probability distribution of each population is known; the linear discriminant function method is used

when the probability distribution is unknown.

5.1 The Maximum Likelihood Discriminant Rule

The maximum likelihood rule is used when the probability distribution, or at least the parametric

family of probability distributions, is known for each population. Unknown parameters are estimated

by the training data and the estimates plugged in. Then a new observation x is allocated to group

j if L̂j(x) = maxm L̂m(x), where L̂k : k = 1, . . . ,m is the estimated likelihood function (when the

parameter estimates have been plugged in). It is assumed that the situation where there are two

groups which maximise the likelihood will not arise. If it does, a classification cannot be determined.

Example 5.1 (Normal Populations, same covariance structure).

Assume that Xj ∼ N(µ
j
, C) for j = 1, . . . ,m. That is, from group j, the observations are independent

identical multivariate normal, with mean vector µ
j

and covariance matrix C. The covariance matrix

is assumed to be the same for each group. Then

Lj(x) =
1

(2π)p/2|C|1/2
exp

{
−
1

2
(x− µ

j
)tC−1(x− µ

j
)

}
,

For an observation x, finding the j that maximises L.(x) is equivalent to finding the j that maximises

Lj(x) := lnLj(x) = −
p

2
ln(2π)−

1

2
ln |C| −

1

2
(x− µ

j
)tC−1(x− µ

j
).

If the parameters are unknown, they are estimated from the training examples. The expectation vectors

µ
j

are estimated by the sample average xj for group j and the covariance matrix C is estimated by

S, the pooled covariance matrix from all the observations. When classifying a new observation, the

problem is then to find the j which minimises the Mahalanobis distance from the observation x to the

centre of group j. Recall the definition of the Mahalanobis distance:

D2
j = (x− xj)

tS−1(x− xj).

New observations are classified as belonging to group j for which Dj is smallest.

5.1.1 The Bayes Discriminant Rule

This is almost the same as likelihood, except that there is a prior probability over classes; if Xp+1 is

the class variable, then

P(Xp+1 = Ci) = πi.

The posterior probability for class Ci given X = (X1. . . . , Xp) is then
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P(Xp+1 = Ci|X = x) ∝ πiLi(x).

The observation is then classified as class Ci; i = argmaxjπjLj(x) (these are estimated by plugging in

the appropriate parameter estimates).

5.2 The Linear Discriminant Function

Suppose we have two classes, C1 and C2. Suppose we have two normal populations, X1 ∼ N(µ
1
, C)

and X2 ∼ N(µ
2
, C). Let f1 and f2 denote the respective densities. Set

L(x) := ln
f1(x)

f2(x)

Then

L(x) = −
1

2
(x− µ

1
)tC−1(x− µ

1
) +

1

2
(x− µ

2
)tC−1(x− µ

2
)

= (µ
1
− µ

2
)C−1x−

1

2
µt
1
C−1µ

1
+

1

2
µ
2
C−1µ

2

= (µ
1
− µ

2
)C−1x−

1

2
(µt

1
+ µt

2
)C−1(µ

1
− µ

2
)

= (µ
1
− µ

2
)tC−1(x− µ) = b0 + btx

where

µ =
1

2
(µ

1
+ µ

2
).

This is a linear function, where

{
b = C−1(µ

1
− µ

2
)

b0 = −1
2

{
µt
1
C−1µ

1
− µt

2
C−1µ

2

} (5.1)

The function L is known as the Linear Discriminant Function (LDF). It partitions the space R
p into

disjoint classification regions R1 and R2. If x falls into R1, then the observation is classified as

belonging to C1. If it falls into R2, then it is classified as belonging to C2.

5.3 Misclassification Probability

L(X) is linear in X and therefore, conditioned on the class, is a Gaussian random variable. Its means

for each class and variance can be computed quite easily. Let C denote the class variable. Then, using

L(X) = (µ1 − µ2)
′C−1(X − 1

2(µ1 + µ2)),
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E[L(X)|C = C1] =
1

2
(µ1 − µ2)

′C−1(µ1 − µ2) E[L(X)|C ∈ C1] = −
1

2
(µ1 − µ2)

′C−1(µ1 − µ2).

Its variance, conditioned on the class, is:

Var(L(X)|C = C1) = Var(L(X)|C = C2) = (µ1 − µ2)
′C−1CC−1(µ1 − µ2) = (µ1 − µ2)

′C−1(µ1 − µ2).

Define

∆2 = (µ
1
− µ

2
)tC−1(µ

1
− µ

2
).

then

L(X)|{C = C1} ∼ N(
1

2
∆2,∆2) L(X)|{C = C2} ∼ N(−

1

2
∆2,∆2).

Let M denote the event of misclassification. The misclassification probabilities for individuals from the

respective groups is therefore:

P(M |C = C1) = P(L(X) < 0|C ∈ C1), P(M |C = C2) = P(L(X) > 0|C ∈ C2)

where, for a random variable Y ∼ N(12∆
2,∆2),

P(L(X) < 0|C = C1) = P(Y < 0) = P(Z < −
1

2
∆) = Φ

(
−
∆

2

)

and

P(L(X) > 0|C = C2) = P(Y < 0) = P(Z < −
1

2
∆) = Φ

(
−
∆

2

)
.

A graph of P(M |C = Ci) against ∆ shows a downward sloping curve. It has value 1
2 when ∆ = 0 (the

two populations are identical) and tends to 0 as ∆ increases. In other words, the greater the distance

between the two population means, the less likely one is to misclassify x.

5.4 Quadratic Discrimination

When populations are normal, but the covariance matrices are not equal, the maximum likelihood

technique leads to quadratic discriminant functions.
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Theorem 5.2. Suppose that Xj ∼ N(µ
j
, Cj) (that is, a p-variate observation from population j has

multivariate normal distribution with mean vector µ
j

and covariance matrix Cj). Suppose that xj and

Sj are the maximum likelihood estimates of the mean and covariance matrix for population j. Then the

maximum likelihood discrimination rule, where the estimates are used in place of the true parameter

values, allocates a new observation x to population j if and only if

(x− xj)
t(S−1

k − S−1
j )(x− xj) + (xj − xk)

tS−1
k (2x− (xj + xk)) + ln

|Sk|

|Sj |
> 0, k 6= j. (5.2)

Proof The log likelihood for population j is

lj(x) = −
1

2
ln(2π)−

1

2
ln |Sj | −

1

2
(x− xj)S

−1
j (x− xj).

The result follows from straightforward arithmetic manipulation.

Corollary 5.3. If m = 2 (two populations) and C1 = C2 = C and this model is used, with S =
1

n1+n2
W , then the maximum likelihood method allocates a new observation x to population 1 if and

only if

(x1 − x2)
tW−1(x−

1

2
(x1 + x2)) > 0.

Proof Straightforward exercise.

5.5 Fisher’s Discriminant Function

We now consider Fisher’s Discriminant Function, which is based on ANOVA (sums of squares). It

will be clear that the likelihood discrimination rule for multivariate normal observations, where each

population has the same covariance, the likelihood discriminant is the same as Fisher’s discriminant.

Fisher’s idea was to look for appropriate linear combinations of the variables:

Z =

p∑

k=1

akXk

to maximise the distance between the various groups. Fisher (1936) suggested taking the linear com-

bination that maximises the F ratio in the ANOVA table. Let n =
∑m

j=1 nj , z = 1
n

∑m
k=1

∑nk

l=1 zlk,

zk = 1
nk

∑nk

l=1 zlk. The ANOVA is

source d.f. mean square f

SSB =
∑m

j=1 nj(zj − z)2 m− 1 MB = SSB
m−1

MB

ME

SSE =
∑m

j=1

∑nj

k=1(zkj − zj)
2 n−m ME = SSE

n−m

SST = SSB + SSE =
∑m

j=1

∑nj

k=1(zkj − z)2 n− 1

Let T , W and B be the matrices for Total, Within (or error) and Between classes sums of squares

defined by
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Tab =
m∑

j=1

nj∑

k=1

(xkja − xa)(xkjb − xb),

Wab =

m∑

j=1

nj∑

k=1

(xkja − x.ja)(xkjb − x.jb),

Bab =
m∑

j=1

nj(x.ja − x..a)(x.jb − x..b),

where xkja denotes observation k from sample j for variable a, xa = 1
mnj

∑m
j=1

∑nj

k=1 xkja and xja =
1
nj

∑m
k=1 xkja. As described before, T denotes ‘total’, B denotes ‘between groups’ and W as ‘within

groups’, so W with suitable normalisation is an estimate of the error covariance. Note that

B = T −W.

Then it turns out that (this is one of the tutorial exercises) that Fisher’s rule amounts to choosing a

vector a ∈ R
p that maximises the ratio

atBa

atWa
.

Then the discriminant function is Z =
∑p

j=1 ajXj .

Definition 5.4. The linear function Z satisfying Z(x) =
∑p

j=1 ajxj is called Fisher’s linear discrimi-

nant function. The linear combination atx is also called the first canonical variate.

Theorem 5.5. The vector a that maximises atBa
atWa is the eigenvector corresponding to the largest

eigenvalue of the p× p matrix W−1B.

Proof (an exercise - details in the exercise set)

Let xj denote the mean vector for population (or group) j. Using Fisher’s linear discriminant function,

the rule is to assign a p- variate observation x to the class for which |at(x− xj)| is lowest.

Exercise Consider two populations j and k with mean vectors xj and xk respectively and assume that

the populations have been labelled such that atxj ≥ atxk. Then, for any x ∈ R
p,

|at(x− xj)| < |at(x− xk)| =⇒ at
(
x−

1

2
(xj + xk)

)
> 0.

This enables the following interpretation of Fisher’s linear discriminant rule. The set

Hjk =

{
x ∈ R

p|at
(
x−

1

2
(xj + xk)

)
= 0

}
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defines a hyperplane perpendicular to the vector a. This hyperplane divides R
p into two disjoint half

spaces; the mean xj lies in one and the mean xk lies in the other.

By considering all pairs of populations (j, k) with 1 ≤ j ≤ m and 1 ≤ k ≤ m, Fisher’s linear

discriminant function splits R
p into m disjoint regions

R
p = R1 ∪ . . . ∪Rm

by considering all p(p − 1)/2 hyperplanes Hjk. The region Rj corresponds to the region where an

observation x will be classified as belonging to population j. These hyperplanes are all perpendicular

to the vector a.

To find Rj , drop a line from xj , perpendicular to the vector a, to the line through the origin containing

the point a. Denote the point of intersection by y
j
. From the m− 1 hyperplanes Hj1, . . . , Hjm (there

is no hyperplane Hjj), find the two with smallest distance from y
j
, on either side of that point. The

region Rj is the region bounded by these two hyperplanes.

5.6 Canonical Discriminant Functions

Fisher’s technique may be extended quite easily to obtain more discriminant functions, to sharpen up

the clasification. Let s = min(p,m− 1) and let λ1 > . . . > λs be the first s eigenvalues of W−1B and

let (ai1, . . . , aip)
t denote the eigenvector corresponding to eigenvalue λi and set

Zi(x) =

p∑

k=1

aikxk.

Then Zi is known as the ith canonical discriminant function. It turns out (proof omitted) that the ith

eigenvalue is the ratio of the within group sum of squares to the between group sum of squares for

Z1 is the combination that gives the largest MB/MW ratio, subject to the constraint that
∑

a21k = 1.

Z2 is the combination that gives the largest MB/MW ratio, subject to constraints that
∑

k a
2
2k = 1

and
∑

jk a1jSjka2k = 0; i.e. Z2 is statistically uncorrelated with Z1.

For i ≥ 2, Zi is the linear combination that gives the largest MB/MW ratio, subject to the constraints

that
∑p

k=1 a
2
jk = 1, j = 1, . . . , p and

∑
α,β ajαakβSαβ = 0 for all 1 ≤ j < k ≤ i.

Where discriminant analysis is useful, the first few functions ought to be sufficient to show the group

differences. Hopefully, sufficiently few will be required so that they can be used to represent the group

differences graphically.
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Important Remark The value s = min(p,m− 1) is the maximum number of canonical discriminant

functions available; this is the rank of B as is easily checked and hence, if s < p all remaining eigenvalues

λs+1 = . . . = λp = 0.

Significance Tests The Hotelling T 2 test may be used to test for a significant difference between the

mean values for any pair of groups. Other tests, which are variants of this test, may be used to detect

overall significant differences between the means for the m groups.

χ2 test In addition, let (λj)
s
j=1 denote the eigenvalues of the matrix W−1B. Then, approximately,

φ2
j :=

(
n− 1−

p+m

2

)
ln(1 + λj) ∼ χ2

p+m−2j .

A large value substantiates the claim that there are significant differences of the mean vectors between

the groups. Alternatively, φ2
j + . . .+ φ2

s may be used, the χ2 having the d.f.
∑s

k=j(p+m− 2k).

Warnings

1. The χ2 test does not seem to be robust if assumptions Xj ∼ N(µj , C) are relaxed. This contrasts

with univariate analysis, where the results seem to be robust when assumptions of normality are

relaxed.

2. Even if the data is normal, the statistical values for λj may appear in the wrong order, if the

variance is large. The test does not take this possibility into account. A large value for an

eigenvalue further down on the list that happens by chance will give a wrong impression of the

significance of all the eigenvalues; the test has a greater chance of wrongly indicating significance

than the nominal significance level.

Example 5.6 (Egyptian Skulls).

The matrices W , T , B = T −W can be obtained and the matrix W−1B calculated and its eigenvalues

computed. These turn out to be λ1 = 0.437, λ2 = 0.035, λ3 = 0.015, λ4 = 0.002. The corresponding

eigenvectors may be calculated, giving (up to scaling) canonical discriminant functions

Z1 = 0.127X1 − 0.037X2 − 0.145X3 − 0.0083X4

Z2 = 0.039X1 + 0.210X2 − 0.068X3 − 0.077X4

Z3 = 0.093X1 − 0.025X2 + 0.015X3 − 0.295X4

Z4 = 0.149X1 − 0.000X2 + 0.133X3 + 0.067X4

The eigenvalue λ1 is much larger than the others; most of the sample differences are described by Z1

alone. Large values correspond to skulls which are tall and narrow with long jaws and short nasal

heights.
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The means and standard deviations for the discriminant function Z1 may be computed for the five

samples. They are

group mean standard deviation

I: Earl predynastic -0.029 0.097

II: Late predynastic -0.043 0.071

III: 12th and 13th dynasties -0.099 0.075

IV: Ptolemaic -0.143 0.080

V: Roman -0.167 0.095

This discriminant function shows a clear trend in the mean. It is decreasing over time, indicating on

average shorter broader skulls, with short jaws, but relatively larger nasal heights. But this is very

much an average change; the standard deviation is rather large. When the 150 skulls are classified

according to the group to which they are closest according to the Mahalanobis distance, rather many

are wrongly classified. The following table, known as a confusion table, gives the number of objects

which the classifier places in each class, from each class. The diagonal entries indicate the number that

are correctly classified, the off-diagonals those that are incorrectly classified.

number allocated to each group

source group I II III IV V total

I 12 8 4 4 2 30

II 10 8 5 4 3 30

III 4 4 15 2 5 30

IV 3 3 7 5 12 30

V 2 4 4 9 11 30

Allowing for Additional Information

Suppose, for example, there are two groups and it is known that many more will fall into group 1

than into group 2. In that case, if an individual is allocated to each group, it makes sense to bias the

allocation procedure in favour of group 1. The procedure of allocating an individual to the group with

the smallest Mahalanobis distance is then modified, by taking into account prior probabilities of group

membership.

Stepwise Discriminant Function Analysis

The standard approach to discriminant function analysis is to decide in advance the number of variables

to be used. Alternatively, a stepwise approach may be adopted, when there are a very large number

of variables, adding in the ‘best’ variable at each stage, until it is found that adding in extra variables
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does not lead to better discrimination.

The main problem with stepwise discriminant function analysis is that it introduces bias. Given

enough variables, it is likely that some combination of them will produce significant discriminant

functions by chance alone.

To check that the results are valid, it might then be a good idea to (for example, with the Egyptian

skull data) allocate the 150 skulls to the groups I,II,III,IV,V purely at random and see if the procedure

is able to detect a pattern. If it can detect a pattern with the randomised data, then there is clearly a

problem.

Jackknife Classification

A particular individual will necessarily affect the statistical average of the ‘correct’ group for that

individual. To check that the classification procedure works, it is therefore probably better to remove

that individual from the computations of sample means and sample covariance matrix, and then

allocate the individual based on the analysis from which that individual has been removed. When the

data set is reasonably large, this does not make much difference in practise.

5.7 LDA using Multiple Regression Techniques

The results on LDA can also be obtained using linear regression techniques. This may prove to be

useful when we have a large number of variables and we would like to choose a subset of them for

classification purposes. We may then employ LASSO to construct the classifier.

To use regression for LDA, create a variable Y which indicates which class the observations belong

to, Then regress the feature variables X on Y .

Consider two classes, n1 resp. n2 in each class, items 1, . . . , n1 belong to class 1 and items n1 +

1, . . . , n1 + n2 belong to class 2. let Yi = y1 for i = 1, . . . , n1 and y2 for i = n1 + 1, . . . , n2.

Let X =

(
X1

X2

)
where X1 and X2 are respectively the n1× p and n2× p matrices containing the

values of (X1, . . . , Xp) for the observations for populations 1 and 2 respectively.

When classification is in view, we may use centred variables. Let

H = In −
1

n
1n1

t
n

be the centring matrix and let

Xc = HnX Y c = HnY

so that the columns of Xc have mean zero and Y c has mean 0. Therefore

T = XctXc.
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Regressing gives the OLS estimator

β̂ = (XctXc)−1XctY c.

Set

d =
1

n1
Xt

11n1
−

1

n2
Xt

21n2
,

The vector d is a p-vector where the entries are the differences of the sample means of the two popu-

lations for each variable.

A straightforward computation gives:

B =
n1n2

n
ddt

Let

SXX = Xt
1Hn1

X1 +Xt
2Hn2

X2

Here

SXX;ab =

n1∑

k=1

(xk1a − x.1a)(xk1b − x.1b) +

n2∑

k=1

(xk2a − x.2a)(xk2b − x.2b);

For two classes, the matrix SXX is the matrix W from earlier. Set

k =
n1n2

n

Then

XctXc = SXX + kddt

This is the identity T = B +W .

XctY c = k(y1 − y2)d

Y ctY c = k(y1 − y2)
2.

It follows that

β̂ = k(y1 − y2)(SXX + kddt)−1d = k(y1 − y2)S
−1
XX(Ip + kddtS−1

XX)−1d.

Recall the matrix result:

(A+ uvt)−1 = A−1 −
(A−1u)(vtA−1)

1 + vtA−1u
.

Set A = Ip, u = kd, v = S−1
XXd, then
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(Ip + kddtS−1
XX)−1 = Ip −

kddtS−1
XX

1 + kdtS−1
XXd

=
Ip

1 + kdtS−1
XXd

from which

β̂ =
k(y1 − y2)

n− 2 + T 2
Σ̂−1
XXd

where Σ̂XX = 1
n−2SXX and

T 2 = kdtΣ̂−1
XXd =

n1n2

n
(X1 −X2)

tΣ̂−1
XX(X1 −X2)

is the Hotelling T 2 statistic for testing µ1 = µ2.

Recall the formulae for linear discriminant analysis (5.1) Note that D2 = dtΣ̂−1
XXd is proportional to

the estimate of ∆ and

β̂ ∝ Σ̂−1
XX(X1 −X2) = b̂.

Variable Selection High dimensional data contains highly correlated variables. The equivalence

between LDA and linear regression means that exactly the same techniques may be employed for

making a selection; stepwise regression or other techniques that have not yet been encountered, such

as LARS (least angle regression) and LASSO.

5.7.1 Logistic Discrimination

Consider two classes. Starting from

log
L1(x)

L2(x)
= b0 + btx

where

b = Σ−1
XX(µ1 − µ2)

b0 = −
1

2
(µt

1Σ
−1
XXµ1 + µt

2Σ
−1
XXµ2)

and using P(C1|x) ∝ L1(x), P(C2|x) ∝ L2(x) so that P(C2|x) = 1− P(C1|x), it follows that

logitp(C1|x) = b0 + btx

which is of the form of a logistic regression model. The logistic approach to discrimination assumes this

linear model, estimates the parameters by logistic regression and assigns the observation to whichever

category has the higher estimated likelihood.
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5.8 Implementation in R

Implementation in R is straightforward, using (for example) the MASS library. This is illustrated using

the skulls.dat data set.

www =

"https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/data/

skulls.dat"

skulls <- read.table(www,header=T)

library("MASS")

fit <- lda(Year ~ MB + BH + BL + NH, data=skulls,

na.action="na.omit",

CV=TRUE)

‘lda’ stands for ‘linear discriminant analysis’. The variable ‘Year’ is to be explained in terms of MB,

BH, BL and NH. The ‘na.action’ refers to how R should treat a value that is not a number. The

command ‘CV = TRUE’ generates the predictions. These are jacknifed (i.e. ‘leave one out’). The

.$class item gives the classes assigned to the skulls.

> head(fit$class)

[1] -1850 -4000 -3300 -4000 -1850 -200

Levels: -4000 -3300 -1850 -200 150

From the first 11 skulls, it is clear that they are not perfectly classified. To assess the accuracy of

prediction, the following may help:

> ct <- table(skulls$Year, fit$class)

> ct

-4000 -3300 -1850 -200 150

-4000 9 10 5 4 2

-3300 11 7 5 4 3

-1850 6 4 12 2 6

-200 3 3 7 5 12

150 2 4 4 10 10

> diag(prop.table(ct, 1))

-4000 -3300 -1850 -200 150

0.3000000 0.2333333 0.4000000 0.1666667 0.3333333

> sum(diag(prop.table(ct)))

[1] 0.2866667
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Note that ‘leave one out’ is a more reliable method and this has substantially affected the accuracy of

the prediction. The last item gives the total percentage correct.

Quadratic discriminant analysis may be carried out by substituting the lda command for qda.

Quadratic discriminant analysis in this example does not give as good classification.

> fit <- qda(Year ~ MB + BH + BL + NH, data=na.omit(skulls), CV = TRUE,

prior=c(1,1,1,1,1)/5)

> ct <- table(skulls$Year, fit$class)

> ct

-4000 -3300 -1850 -200 150

-4000 8 12 4 4 2

-3300 11 5 4 6 4

-1850 4 5 6 11 4

-200 2 3 2 14 9

150 3 4 5 11 7

> sum(diag(prop.table(ct)))

[1] 0.2666667

If one wants to obtain Fisher’s canonical discriminant functions, this is not possible with the ‘jacknifed’

method; one needs to define a training data set. In this case, it is the whole data set. try

> fit2 <- lda(Year~MB + BH + BL + NH, data = skulls,CV=FALSE)

> fit2

Call:

lda(Year ~ MB + BH + BL + NH, data = skulls, CV = FALSE)

Prior probabilities of groups:

-4000 -3300 -1850 -200 150

0.2 0.2 0.2 0.2 0.2

Group means:

MB BH BL NH

-4000 131.3667 133.6000 99.16667 50.53333

-3300 132.3667 132.7000 99.06667 50.23333

-1850 134.4667 133.8000 96.03333 50.56667

-200 135.5000 132.3000 94.53333 51.96667

150 136.1667 130.3333 93.50000 51.36667
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Coefficients of linear discriminants:

LD1 LD2 LD3 LD4

MB 0.12667629 0.03873784 0.09276835 0.1488398644

BH -0.03703209 0.21009773 -0.02456846 -0.0004200843

BL -0.14512512 -0.06811443 0.01474860 0.1325007670

NH 0.08285128 -0.07729281 -0.29458931 0.0668588797

Proportion of trace:

LD1 LD2 LD3 LD4

0.8823 0.0809 0.0326 0.0042

These coefficients give the discriminant functions listed above. Discriminant analysis requires training

data, which is used to construct the classifier, followed by data to be classified. Once the classifier has

been constructed, classification is made using:

> pred <- predict(fit2,skulls[,1:4])

The classes to which the objects are assigned are found in pred$class.

> ct2 <- table(skulls$Year,pred$class)

> ct2

-4000 -3300 -1850 -200 150

-4000 12 8 4 4 2

-3300 10 8 5 4 3

-1850 4 4 15 2 5

-200 3 3 7 5 12

150 2 4 4 9 11



Discriminant Function Analysis: Written Exercises

1. Let xijk denote observation i (i = 1, . . . , nj) from population j (j = 1, . . . ,m), for variable k

(k = 1, . . . , p). Let W denote the matrix with entries given by

Wab =

m∑

j=1

nj∑

i=1

(xija − x̄.ja)(xijb − x̄.jb)

and let B denote the matrix with entries given by

Bab =

m∑

j=1

nj(x̄.ja − x̄..a)(x̄.jb − x̄..b).

and T the matrix with entries

Tab =

m∑

j=1

nj∑

i=1

(xija − x̄..a)(xijb − x̄..b).

where . denotes the index that has been averaged over and the data matrix is:

x =




x111 . . . x11p
...

...

xn111 . . . xn11p

x121 . . . x12p
...

...

xn221 . . . xn22p

...
...

x1m1 . . . x1mp

...
...

xnmm1 . . . xnmmp




Let n =
∑m

j=1 nj and let

H = In −
1

n
11

t

where 1 = (1, . . . , 1)t, the n vector where each entry is 1.

(a) Show that

T = W +B.

(b) Show that

T = X
tHX.
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2. Let a ∈ R
p be the vector defining Fisher’s linear discriminant function; namely, the unit vector

that maximises atBa
atWa . Show by computing partial derivatives

∂

∂ai

(
atBa

atWa

)
, i = 1, . . . , p

that it satisfies

W−1Ba =
atBa

atWa
a.

From this, note that it must be an eigenvector of W−1B. Why is Fisherś linear discriminant

function given by the eigenvector corresponding to the largest eigenvalue?

3. Consider a situation where an individual is chosen from m = 2 populations. Let x̄1 and x̄2 denote

the sample mean vectors for populations 1 and 2 respectively. Let d = x̄1− x̄2. Let n1, n2 denote

the number of observations from populations 1 and 2 respectively and let n = n1 + n2.

(a) Show that

B =
n1n2

n
ddt.

(b) Hence show that in this case, for any eigenvalue λ of W−1B and corresponding eigenvector

a such that atd 6= 0,

W−1d =
n

n1n2

λ

dta
a.

(c) Use this to show that there is exactly one non zero eigenvalue of W−1B, which is therefore

the largest one, and that W−1d is an eigenvector with this eigenvalue.

4. Consider two bivariate normal distributions, with true means µ
1
= (0, 0)t and µ

2
= (1, 0)t and

true covariances

C1 =

(
1
4 0

0 1

)
C2 =

(
4 0

0 1
4

)

respectively. The corresponding Maximum Likelihood Discriminant Rule is based on a division

of R2 into two disjoint regions R1 and R2.

(a) Give the equation of the boundary separating the two regions.

(b) Sketch the two regions.

(c) To which population would you assign a new individual with measurements (12 ,
1
2)

t?

5. Let X =




X1

...

Xm


 be a multivariate random sample on p variables taken from m populations,

where nj is the number of units taken from population j and n =
∑p

j=1 nj ( Xj , j = 1, . . . ,m is

a random sample from population j with entries xijk denoting observation on individual i from

population j on variable k).
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(a) Define the group means x̄1, . . . x̄m, the between group sum of squares matrix B and the

within group sum of squares matrix W . In what follows, assume that W−1 exists.

(b) Suppose that λ1 is the largest eigenvalue of W−1B with associated eigenvector a1 ∈ R
p.

i. Prove that

λ1 =
(at1Ba1)

at1Wa1
≥

(btBb)

btWb

for all non zero p vectors b.

ii. Why does a large ratio (btBb)

btWb
help to discriminate between groups?

(c) Consider m = 2, where both populations have bivariate normal distribution and both the

covariance matrices are the same. Estimating this covariance matrix by 1
n1+n2−2W , prove

that the maximum likelihood discriminant rule allocates a new observation x to population

1 if and only if

(x̄1 − x̄2)
tW−1

(
x−

1

2
(x̄1 + x̄2)

)
> 0.

6. For two classes, show that Fisher’s linear discriminant function may be obtained by OLS regres-

sion.
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Short Answers

1. (a)

Tab =
m∑

j=1

nj∑

i=1

(xija − x̄.ja + x̄.ja − x̄..a)(xijb − x̄.jb + x̄.jb − x̄..b)

=

m∑

j=1

nj∑

i=1

(xija − x̄.ja)(xijb − x̄.jb) +

m∑

j=1

nj(x̄.ja − x̄..a)(x̄.jb − x̄..b)

+
m∑

j=1

nj∑

i=1

(xija − x̄.ja)(x̄.jb − x̄.jb) +
m∑

j=1

nj∑

i=1

(xijb − x̄.jb)(x̄.ja − x̄.ja)

= Wab +Bab

(b) Note that H = Ht = HHt so that

XtHX = XtHHtX

(HtX)ijk = xijk − x̄..k

so that

(XtHHtX)kl =
m∑

j=1

nj∑

i=1

(xijk − x̄..k)(xijl − x̄..l) = Tkl

as required

2. Let A(a) = atBa
atWa . Let ã denote the vector that maximises A. Then

∂

∂aj
A =

2

2atWa
(Bj.a−AWj.a) .

At the maximum this is zero, so that,

at the maximum,

Bã = A(ã)Wã

where A(ã) is a scalar, so that

W−1Bã = A(ã)ã.

By the definition of eigenvalue, it follows that A(ã) is an eigenvalue. The vector ã may be taken

such that
∑p

j=1 ã
2
j = 1, since multiplying a vector b by a scalar does not alter the value of A(b).

To show that the maximum of the expression is also the maximum eigenvalue of W−1B and ã

the corresponding eigenvector, consider any other eigenvector b with eigenvalue λ. Then

W−1Bb = λb

so

btBb = λbtWb
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so

λ = A(b).

By definition of ã (a vector that maximises A(a)), it follows that

λ = A(b) ≤ A(ã)

and the result follows.

3. (a)

Bab =
m∑

j=1

(x̄.ja − x̄..a)(x̄.jb − x̄..b)

When m = 2, note that

x̄..a =
n1x̄.1a + n2x̄.2a

n

so that, using n1 + n2 = n

Bab = n1(x̄.1a − x̄..a)(x̄.1b − x̄..b) + n2(x̄.2a − x̄..a)(x̄.2b − x̄..b)

= n1((1−
n1

n
)x̄.1a −

n2

n
x̄.2a)((1−

n1

n
)x̄.1b −

n2

n
x̄.2b)

+n2((1−
n2

n
)x̄.2a −

n1

n
x̄.1a)((1−

n2

n
)x̄.2b −

n1

n
x̄.1b)

=
n1n

2
2 + n2n

2
1

n2
(x̄.1a − x̄.2a)(x̄.1b − x̄.2b)

=
n1n2

n
(ddt)ab

as required.

(b) Let a be an eigenvector of W−1B with dta 6= 0. Then

λa = W−1Ba =
n1n2

n
W−1ddta

so that

W−1d = λ
n

n1n2(d
ta)

a

as required.

(c) For any eigenvector v, suppose vtd = 0, then

W−1Bv = W−1d(dtv) = 0

so that the corresponding eigenvalue is 0.

Suppose that the eigenvalue is non-zero, then vtd 6= 0 and

W−1d =
n

n1n2

λ

dtv
v
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from previous part. This is the only eigenvector with non-zero eigenvalue; the other eigen-

vectors are orthogonal to this and hence have zero eigenvalue.

CONCLUSION: there is exactly one strictly positive eigenvalue and Fisher’s linear discrim-

inant function is given by

f(x) = dtW−1x.

4.

|C1| =
1

4
, |C2| = 1, C−1

1 =

(
4 0

0 1

)
, C−1

2 =

(
1
4 0

0 4

)
.

Log likelihoods are

L1(x1, x2) = − log(2π)−
1

2
log

1

4
−

1

2
(4x21 + x22)

L2(x1, x2) = − log(2π)−
1

2
(
1

4
(x1 − 1)2 + 4x22)

For an observation (x1, x2) classify it according to the population for which the log likelihood is

the largest.

(a)

L1(x1, x2)− L2(x1, x2) = 0

gives

(log 2−
1

8
)−

15

8
x21 −

1

4
x1 +

3

2
x22 = 0

(log 2 +
2

15
)−

15

8
(x1 +

1

15
)2 +

3

2
x22 = 0

(b) (draw the hyperbola)

(c)

L1(
1

2
,
1

2
)− L2(

1

2
,
1

2
) = (log 2 +

2

15
)−

172

480
+

3

8
≃ 0.5994 > 0

so assign the observation to population 1.

5. (a) x̄j is the vector with kth component x̄.jk = 1
nj

∑nj

i=1 xijk.

B is the between population sum of squares matrix. It is a p× p matrix with elements

Bab =
m∑

j=1

nj(x̄.ja − x̄..a)(x̄.jb − x̄..b)

W is the within population, or error sum of squares matrix. It is a p × p matrix with

elements

Wab =

m∑

j=1

nj∑

i=1

(xija − x̄.ja)(xijb − x̄.jb)

(b) i. See Q3
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ii. For a unit vector b that maximises the ratio, let Z = btX. This linear combination

ensures that the largest proportion of the sum of squares is due to the difference between

group means, hence giving the strongest clustering around the group means.

(c)

L1(x) = − log 2π −
1

2
log |C| −

1

2
(x− µ

1
)tC−1(x− µ

1
)

approximated by

L̂1(x) = − log 2π −
1

2
log |W | −

1

2
(x− x1)

tW−1(x− x1)

L2(x) = − log 2π −
1

2
log |C| −

1

2
(x− µ

2
)tC−1(x− µ

2
)

approximated by

L̂2(x) = − log 2π −
1

2
log |W | −

1

2
(x− x2)

tW−1(x− x2)

Allocate to group 1 if L̂1(x) > L̂2(x). That is

−(xt1W
−1x1 − xt2W

−1x2) + 2xtW−1(x1 − x2) > 0

i.e. if

(2x− (x1 + x2))W
−1(x1 + x2) > 0

as required.

6. (Lecture notes)
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